summaryrefslogtreecommitdiffstats
path: root/kernel/drivers/md/persistent-data/dm-btree.c
diff options
context:
space:
mode:
authorYunhong Jiang <yunhong.jiang@intel.com>2015-08-04 12:17:53 -0700
committerYunhong Jiang <yunhong.jiang@intel.com>2015-08-04 15:44:42 -0700
commit9ca8dbcc65cfc63d6f5ef3312a33184e1d726e00 (patch)
tree1c9cafbcd35f783a87880a10f85d1a060db1a563 /kernel/drivers/md/persistent-data/dm-btree.c
parent98260f3884f4a202f9ca5eabed40b1354c489b29 (diff)
Add the rt linux 4.1.3-rt3 as base
Import the rt linux 4.1.3-rt3 as OPNFV kvm base. It's from git://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-rt-devel.git linux-4.1.y-rt and the base is: commit 0917f823c59692d751951bf5ea699a2d1e2f26a2 Author: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Date: Sat Jul 25 12:13:34 2015 +0200 Prepare v4.1.3-rt3 Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> We lose all the git history this way and it's not good. We should apply another opnfv project repo in future. Change-Id: I87543d81c9df70d99c5001fbdf646b202c19f423 Signed-off-by: Yunhong Jiang <yunhong.jiang@intel.com>
Diffstat (limited to 'kernel/drivers/md/persistent-data/dm-btree.c')
-rw-r--r--kernel/drivers/md/persistent-data/dm-btree.c892
1 files changed, 892 insertions, 0 deletions
diff --git a/kernel/drivers/md/persistent-data/dm-btree.c b/kernel/drivers/md/persistent-data/dm-btree.c
new file mode 100644
index 000000000..200ac12a1
--- /dev/null
+++ b/kernel/drivers/md/persistent-data/dm-btree.c
@@ -0,0 +1,892 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-btree-internal.h"
+#include "dm-space-map.h"
+#include "dm-transaction-manager.h"
+
+#include <linux/export.h>
+#include <linux/device-mapper.h>
+
+#define DM_MSG_PREFIX "btree"
+
+/*----------------------------------------------------------------
+ * Array manipulation
+ *--------------------------------------------------------------*/
+static void memcpy_disk(void *dest, const void *src, size_t len)
+ __dm_written_to_disk(src)
+{
+ memcpy(dest, src, len);
+ __dm_unbless_for_disk(src);
+}
+
+static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
+ unsigned index, void *elt)
+ __dm_written_to_disk(elt)
+{
+ if (index < nr_elts)
+ memmove(base + (elt_size * (index + 1)),
+ base + (elt_size * index),
+ (nr_elts - index) * elt_size);
+
+ memcpy_disk(base + (elt_size * index), elt, elt_size);
+}
+
+/*----------------------------------------------------------------*/
+
+/* makes the assumption that no two keys are the same. */
+static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
+{
+ int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
+
+ while (hi - lo > 1) {
+ int mid = lo + ((hi - lo) / 2);
+ uint64_t mid_key = le64_to_cpu(n->keys[mid]);
+
+ if (mid_key == key)
+ return mid;
+
+ if (mid_key < key)
+ lo = mid;
+ else
+ hi = mid;
+ }
+
+ return want_hi ? hi : lo;
+}
+
+int lower_bound(struct btree_node *n, uint64_t key)
+{
+ return bsearch(n, key, 0);
+}
+
+void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
+ struct dm_btree_value_type *vt)
+{
+ unsigned i;
+ uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
+
+ if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
+ for (i = 0; i < nr_entries; i++)
+ dm_tm_inc(tm, value64(n, i));
+ else if (vt->inc)
+ for (i = 0; i < nr_entries; i++)
+ vt->inc(vt->context, value_ptr(n, i));
+}
+
+static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
+ uint64_t key, void *value)
+ __dm_written_to_disk(value)
+{
+ uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
+ __le64 key_le = cpu_to_le64(key);
+
+ if (index > nr_entries ||
+ index >= le32_to_cpu(node->header.max_entries)) {
+ DMERR("too many entries in btree node for insert");
+ __dm_unbless_for_disk(value);
+ return -ENOMEM;
+ }
+
+ __dm_bless_for_disk(&key_le);
+
+ array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
+ array_insert(value_base(node), value_size, nr_entries, index, value);
+ node->header.nr_entries = cpu_to_le32(nr_entries + 1);
+
+ return 0;
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * We want 3n entries (for some n). This works more nicely for repeated
+ * insert remove loops than (2n + 1).
+ */
+static uint32_t calc_max_entries(size_t value_size, size_t block_size)
+{
+ uint32_t total, n;
+ size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
+
+ block_size -= sizeof(struct node_header);
+ total = block_size / elt_size;
+ n = total / 3; /* rounds down */
+
+ return 3 * n;
+}
+
+int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
+{
+ int r;
+ struct dm_block *b;
+ struct btree_node *n;
+ size_t block_size;
+ uint32_t max_entries;
+
+ r = new_block(info, &b);
+ if (r < 0)
+ return r;
+
+ block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
+ max_entries = calc_max_entries(info->value_type.size, block_size);
+
+ n = dm_block_data(b);
+ memset(n, 0, block_size);
+ n->header.flags = cpu_to_le32(LEAF_NODE);
+ n->header.nr_entries = cpu_to_le32(0);
+ n->header.max_entries = cpu_to_le32(max_entries);
+ n->header.value_size = cpu_to_le32(info->value_type.size);
+
+ *root = dm_block_location(b);
+ return unlock_block(info, b);
+}
+EXPORT_SYMBOL_GPL(dm_btree_empty);
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Deletion uses a recursive algorithm, since we have limited stack space
+ * we explicitly manage our own stack on the heap.
+ */
+#define MAX_SPINE_DEPTH 64
+struct frame {
+ struct dm_block *b;
+ struct btree_node *n;
+ unsigned level;
+ unsigned nr_children;
+ unsigned current_child;
+};
+
+struct del_stack {
+ struct dm_btree_info *info;
+ struct dm_transaction_manager *tm;
+ int top;
+ struct frame spine[MAX_SPINE_DEPTH];
+};
+
+static int top_frame(struct del_stack *s, struct frame **f)
+{
+ if (s->top < 0) {
+ DMERR("btree deletion stack empty");
+ return -EINVAL;
+ }
+
+ *f = s->spine + s->top;
+
+ return 0;
+}
+
+static int unprocessed_frames(struct del_stack *s)
+{
+ return s->top >= 0;
+}
+
+static void prefetch_children(struct del_stack *s, struct frame *f)
+{
+ unsigned i;
+ struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
+
+ for (i = 0; i < f->nr_children; i++)
+ dm_bm_prefetch(bm, value64(f->n, i));
+}
+
+static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
+{
+ return f->level < (info->levels - 1);
+}
+
+static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
+{
+ int r;
+ uint32_t ref_count;
+
+ if (s->top >= MAX_SPINE_DEPTH - 1) {
+ DMERR("btree deletion stack out of memory");
+ return -ENOMEM;
+ }
+
+ r = dm_tm_ref(s->tm, b, &ref_count);
+ if (r)
+ return r;
+
+ if (ref_count > 1)
+ /*
+ * This is a shared node, so we can just decrement it's
+ * reference counter and leave the children.
+ */
+ dm_tm_dec(s->tm, b);
+
+ else {
+ uint32_t flags;
+ struct frame *f = s->spine + ++s->top;
+
+ r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
+ if (r) {
+ s->top--;
+ return r;
+ }
+
+ f->n = dm_block_data(f->b);
+ f->level = level;
+ f->nr_children = le32_to_cpu(f->n->header.nr_entries);
+ f->current_child = 0;
+
+ flags = le32_to_cpu(f->n->header.flags);
+ if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
+ prefetch_children(s, f);
+ }
+
+ return 0;
+}
+
+static void pop_frame(struct del_stack *s)
+{
+ struct frame *f = s->spine + s->top--;
+
+ dm_tm_dec(s->tm, dm_block_location(f->b));
+ dm_tm_unlock(s->tm, f->b);
+}
+
+int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
+{
+ int r;
+ struct del_stack *s;
+
+ s = kmalloc(sizeof(*s), GFP_KERNEL);
+ if (!s)
+ return -ENOMEM;
+ s->info = info;
+ s->tm = info->tm;
+ s->top = -1;
+
+ r = push_frame(s, root, 0);
+ if (r)
+ goto out;
+
+ while (unprocessed_frames(s)) {
+ uint32_t flags;
+ struct frame *f;
+ dm_block_t b;
+
+ r = top_frame(s, &f);
+ if (r)
+ goto out;
+
+ if (f->current_child >= f->nr_children) {
+ pop_frame(s);
+ continue;
+ }
+
+ flags = le32_to_cpu(f->n->header.flags);
+ if (flags & INTERNAL_NODE) {
+ b = value64(f->n, f->current_child);
+ f->current_child++;
+ r = push_frame(s, b, f->level);
+ if (r)
+ goto out;
+
+ } else if (is_internal_level(info, f)) {
+ b = value64(f->n, f->current_child);
+ f->current_child++;
+ r = push_frame(s, b, f->level + 1);
+ if (r)
+ goto out;
+
+ } else {
+ if (info->value_type.dec) {
+ unsigned i;
+
+ for (i = 0; i < f->nr_children; i++)
+ info->value_type.dec(info->value_type.context,
+ value_ptr(f->n, i));
+ }
+ pop_frame(s);
+ }
+ }
+
+out:
+ kfree(s);
+ return r;
+}
+EXPORT_SYMBOL_GPL(dm_btree_del);
+
+/*----------------------------------------------------------------*/
+
+static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
+ int (*search_fn)(struct btree_node *, uint64_t),
+ uint64_t *result_key, void *v, size_t value_size)
+{
+ int i, r;
+ uint32_t flags, nr_entries;
+
+ do {
+ r = ro_step(s, block);
+ if (r < 0)
+ return r;
+
+ i = search_fn(ro_node(s), key);
+
+ flags = le32_to_cpu(ro_node(s)->header.flags);
+ nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
+ if (i < 0 || i >= nr_entries)
+ return -ENODATA;
+
+ if (flags & INTERNAL_NODE)
+ block = value64(ro_node(s), i);
+
+ } while (!(flags & LEAF_NODE));
+
+ *result_key = le64_to_cpu(ro_node(s)->keys[i]);
+ memcpy(v, value_ptr(ro_node(s), i), value_size);
+
+ return 0;
+}
+
+int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *keys, void *value_le)
+{
+ unsigned level, last_level = info->levels - 1;
+ int r = -ENODATA;
+ uint64_t rkey;
+ __le64 internal_value_le;
+ struct ro_spine spine;
+
+ init_ro_spine(&spine, info);
+ for (level = 0; level < info->levels; level++) {
+ size_t size;
+ void *value_p;
+
+ if (level == last_level) {
+ value_p = value_le;
+ size = info->value_type.size;
+
+ } else {
+ value_p = &internal_value_le;
+ size = sizeof(uint64_t);
+ }
+
+ r = btree_lookup_raw(&spine, root, keys[level],
+ lower_bound, &rkey,
+ value_p, size);
+
+ if (!r) {
+ if (rkey != keys[level]) {
+ exit_ro_spine(&spine);
+ return -ENODATA;
+ }
+ } else {
+ exit_ro_spine(&spine);
+ return r;
+ }
+
+ root = le64_to_cpu(internal_value_le);
+ }
+ exit_ro_spine(&spine);
+
+ return r;
+}
+EXPORT_SYMBOL_GPL(dm_btree_lookup);
+
+/*
+ * Splits a node by creating a sibling node and shifting half the nodes
+ * contents across. Assumes there is a parent node, and it has room for
+ * another child.
+ *
+ * Before:
+ * +--------+
+ * | Parent |
+ * +--------+
+ * |
+ * v
+ * +----------+
+ * | A ++++++ |
+ * +----------+
+ *
+ *
+ * After:
+ * +--------+
+ * | Parent |
+ * +--------+
+ * | |
+ * v +------+
+ * +---------+ |
+ * | A* +++ | v
+ * +---------+ +-------+
+ * | B +++ |
+ * +-------+
+ *
+ * Where A* is a shadow of A.
+ */
+static int btree_split_sibling(struct shadow_spine *s, dm_block_t root,
+ unsigned parent_index, uint64_t key)
+{
+ int r;
+ size_t size;
+ unsigned nr_left, nr_right;
+ struct dm_block *left, *right, *parent;
+ struct btree_node *ln, *rn, *pn;
+ __le64 location;
+
+ left = shadow_current(s);
+
+ r = new_block(s->info, &right);
+ if (r < 0)
+ return r;
+
+ ln = dm_block_data(left);
+ rn = dm_block_data(right);
+
+ nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
+ nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
+
+ ln->header.nr_entries = cpu_to_le32(nr_left);
+
+ rn->header.flags = ln->header.flags;
+ rn->header.nr_entries = cpu_to_le32(nr_right);
+ rn->header.max_entries = ln->header.max_entries;
+ rn->header.value_size = ln->header.value_size;
+ memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
+
+ size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
+ sizeof(uint64_t) : s->info->value_type.size;
+ memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left),
+ size * nr_right);
+
+ /*
+ * Patch up the parent
+ */
+ parent = shadow_parent(s);
+
+ pn = dm_block_data(parent);
+ location = cpu_to_le64(dm_block_location(left));
+ __dm_bless_for_disk(&location);
+ memcpy_disk(value_ptr(pn, parent_index),
+ &location, sizeof(__le64));
+
+ location = cpu_to_le64(dm_block_location(right));
+ __dm_bless_for_disk(&location);
+
+ r = insert_at(sizeof(__le64), pn, parent_index + 1,
+ le64_to_cpu(rn->keys[0]), &location);
+ if (r)
+ return r;
+
+ if (key < le64_to_cpu(rn->keys[0])) {
+ unlock_block(s->info, right);
+ s->nodes[1] = left;
+ } else {
+ unlock_block(s->info, left);
+ s->nodes[1] = right;
+ }
+
+ return 0;
+}
+
+/*
+ * Splits a node by creating two new children beneath the given node.
+ *
+ * Before:
+ * +----------+
+ * | A ++++++ |
+ * +----------+
+ *
+ *
+ * After:
+ * +------------+
+ * | A (shadow) |
+ * +------------+
+ * | |
+ * +------+ +----+
+ * | |
+ * v v
+ * +-------+ +-------+
+ * | B +++ | | C +++ |
+ * +-------+ +-------+
+ */
+static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
+{
+ int r;
+ size_t size;
+ unsigned nr_left, nr_right;
+ struct dm_block *left, *right, *new_parent;
+ struct btree_node *pn, *ln, *rn;
+ __le64 val;
+
+ new_parent = shadow_current(s);
+
+ r = new_block(s->info, &left);
+ if (r < 0)
+ return r;
+
+ r = new_block(s->info, &right);
+ if (r < 0) {
+ /* FIXME: put left */
+ return r;
+ }
+
+ pn = dm_block_data(new_parent);
+ ln = dm_block_data(left);
+ rn = dm_block_data(right);
+
+ nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
+ nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
+
+ ln->header.flags = pn->header.flags;
+ ln->header.nr_entries = cpu_to_le32(nr_left);
+ ln->header.max_entries = pn->header.max_entries;
+ ln->header.value_size = pn->header.value_size;
+
+ rn->header.flags = pn->header.flags;
+ rn->header.nr_entries = cpu_to_le32(nr_right);
+ rn->header.max_entries = pn->header.max_entries;
+ rn->header.value_size = pn->header.value_size;
+
+ memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
+ memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
+
+ size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
+ sizeof(__le64) : s->info->value_type.size;
+ memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
+ memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
+ nr_right * size);
+
+ /* new_parent should just point to l and r now */
+ pn->header.flags = cpu_to_le32(INTERNAL_NODE);
+ pn->header.nr_entries = cpu_to_le32(2);
+ pn->header.max_entries = cpu_to_le32(
+ calc_max_entries(sizeof(__le64),
+ dm_bm_block_size(
+ dm_tm_get_bm(s->info->tm))));
+ pn->header.value_size = cpu_to_le32(sizeof(__le64));
+
+ val = cpu_to_le64(dm_block_location(left));
+ __dm_bless_for_disk(&val);
+ pn->keys[0] = ln->keys[0];
+ memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
+
+ val = cpu_to_le64(dm_block_location(right));
+ __dm_bless_for_disk(&val);
+ pn->keys[1] = rn->keys[0];
+ memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
+
+ /*
+ * rejig the spine. This is ugly, since it knows too
+ * much about the spine
+ */
+ if (s->nodes[0] != new_parent) {
+ unlock_block(s->info, s->nodes[0]);
+ s->nodes[0] = new_parent;
+ }
+ if (key < le64_to_cpu(rn->keys[0])) {
+ unlock_block(s->info, right);
+ s->nodes[1] = left;
+ } else {
+ unlock_block(s->info, left);
+ s->nodes[1] = right;
+ }
+ s->count = 2;
+
+ return 0;
+}
+
+static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
+ struct dm_btree_value_type *vt,
+ uint64_t key, unsigned *index)
+{
+ int r, i = *index, top = 1;
+ struct btree_node *node;
+
+ for (;;) {
+ r = shadow_step(s, root, vt);
+ if (r < 0)
+ return r;
+
+ node = dm_block_data(shadow_current(s));
+
+ /*
+ * We have to patch up the parent node, ugly, but I don't
+ * see a way to do this automatically as part of the spine
+ * op.
+ */
+ if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
+ __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
+
+ __dm_bless_for_disk(&location);
+ memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
+ &location, sizeof(__le64));
+ }
+
+ node = dm_block_data(shadow_current(s));
+
+ if (node->header.nr_entries == node->header.max_entries) {
+ if (top)
+ r = btree_split_beneath(s, key);
+ else
+ r = btree_split_sibling(s, root, i, key);
+
+ if (r < 0)
+ return r;
+ }
+
+ node = dm_block_data(shadow_current(s));
+
+ i = lower_bound(node, key);
+
+ if (le32_to_cpu(node->header.flags) & LEAF_NODE)
+ break;
+
+ if (i < 0) {
+ /* change the bounds on the lowest key */
+ node->keys[0] = cpu_to_le64(key);
+ i = 0;
+ }
+
+ root = value64(node, i);
+ top = 0;
+ }
+
+ if (i < 0 || le64_to_cpu(node->keys[i]) != key)
+ i++;
+
+ *index = i;
+ return 0;
+}
+
+static int insert(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *keys, void *value, dm_block_t *new_root,
+ int *inserted)
+ __dm_written_to_disk(value)
+{
+ int r, need_insert;
+ unsigned level, index = -1, last_level = info->levels - 1;
+ dm_block_t block = root;
+ struct shadow_spine spine;
+ struct btree_node *n;
+ struct dm_btree_value_type le64_type;
+
+ le64_type.context = NULL;
+ le64_type.size = sizeof(__le64);
+ le64_type.inc = NULL;
+ le64_type.dec = NULL;
+ le64_type.equal = NULL;
+
+ init_shadow_spine(&spine, info);
+
+ for (level = 0; level < (info->levels - 1); level++) {
+ r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
+ if (r < 0)
+ goto bad;
+
+ n = dm_block_data(shadow_current(&spine));
+ need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) ||
+ (le64_to_cpu(n->keys[index]) != keys[level]));
+
+ if (need_insert) {
+ dm_block_t new_tree;
+ __le64 new_le;
+
+ r = dm_btree_empty(info, &new_tree);
+ if (r < 0)
+ goto bad;
+
+ new_le = cpu_to_le64(new_tree);
+ __dm_bless_for_disk(&new_le);
+
+ r = insert_at(sizeof(uint64_t), n, index,
+ keys[level], &new_le);
+ if (r)
+ goto bad;
+ }
+
+ if (level < last_level)
+ block = value64(n, index);
+ }
+
+ r = btree_insert_raw(&spine, block, &info->value_type,
+ keys[level], &index);
+ if (r < 0)
+ goto bad;
+
+ n = dm_block_data(shadow_current(&spine));
+ need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) ||
+ (le64_to_cpu(n->keys[index]) != keys[level]));
+
+ if (need_insert) {
+ if (inserted)
+ *inserted = 1;
+
+ r = insert_at(info->value_type.size, n, index,
+ keys[level], value);
+ if (r)
+ goto bad_unblessed;
+ } else {
+ if (inserted)
+ *inserted = 0;
+
+ if (info->value_type.dec &&
+ (!info->value_type.equal ||
+ !info->value_type.equal(
+ info->value_type.context,
+ value_ptr(n, index),
+ value))) {
+ info->value_type.dec(info->value_type.context,
+ value_ptr(n, index));
+ }
+ memcpy_disk(value_ptr(n, index),
+ value, info->value_type.size);
+ }
+
+ *new_root = shadow_root(&spine);
+ exit_shadow_spine(&spine);
+
+ return 0;
+
+bad:
+ __dm_unbless_for_disk(value);
+bad_unblessed:
+ exit_shadow_spine(&spine);
+ return r;
+}
+
+int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *keys, void *value, dm_block_t *new_root)
+ __dm_written_to_disk(value)
+{
+ return insert(info, root, keys, value, new_root, NULL);
+}
+EXPORT_SYMBOL_GPL(dm_btree_insert);
+
+int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *keys, void *value, dm_block_t *new_root,
+ int *inserted)
+ __dm_written_to_disk(value)
+{
+ return insert(info, root, keys, value, new_root, inserted);
+}
+EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
+
+/*----------------------------------------------------------------*/
+
+static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
+ uint64_t *result_key, dm_block_t *next_block)
+{
+ int i, r;
+ uint32_t flags;
+
+ do {
+ r = ro_step(s, block);
+ if (r < 0)
+ return r;
+
+ flags = le32_to_cpu(ro_node(s)->header.flags);
+ i = le32_to_cpu(ro_node(s)->header.nr_entries);
+ if (!i)
+ return -ENODATA;
+ else
+ i--;
+
+ if (find_highest)
+ *result_key = le64_to_cpu(ro_node(s)->keys[i]);
+ else
+ *result_key = le64_to_cpu(ro_node(s)->keys[0]);
+
+ if (next_block || flags & INTERNAL_NODE)
+ block = value64(ro_node(s), i);
+
+ } while (flags & INTERNAL_NODE);
+
+ if (next_block)
+ *next_block = block;
+ return 0;
+}
+
+static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
+ bool find_highest, uint64_t *result_keys)
+{
+ int r = 0, count = 0, level;
+ struct ro_spine spine;
+
+ init_ro_spine(&spine, info);
+ for (level = 0; level < info->levels; level++) {
+ r = find_key(&spine, root, find_highest, result_keys + level,
+ level == info->levels - 1 ? NULL : &root);
+ if (r == -ENODATA) {
+ r = 0;
+ break;
+
+ } else if (r)
+ break;
+
+ count++;
+ }
+ exit_ro_spine(&spine);
+
+ return r ? r : count;
+}
+
+int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *result_keys)
+{
+ return dm_btree_find_key(info, root, true, result_keys);
+}
+EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
+
+int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *result_keys)
+{
+ return dm_btree_find_key(info, root, false, result_keys);
+}
+EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
+
+/*----------------------------------------------------------------*/
+
+/*
+ * FIXME: We shouldn't use a recursive algorithm when we have limited stack
+ * space. Also this only works for single level trees.
+ */
+static int walk_node(struct dm_btree_info *info, dm_block_t block,
+ int (*fn)(void *context, uint64_t *keys, void *leaf),
+ void *context)
+{
+ int r;
+ unsigned i, nr;
+ struct dm_block *node;
+ struct btree_node *n;
+ uint64_t keys;
+
+ r = bn_read_lock(info, block, &node);
+ if (r)
+ return r;
+
+ n = dm_block_data(node);
+
+ nr = le32_to_cpu(n->header.nr_entries);
+ for (i = 0; i < nr; i++) {
+ if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
+ r = walk_node(info, value64(n, i), fn, context);
+ if (r)
+ goto out;
+ } else {
+ keys = le64_to_cpu(*key_ptr(n, i));
+ r = fn(context, &keys, value_ptr(n, i));
+ if (r)
+ goto out;
+ }
+ }
+
+out:
+ dm_tm_unlock(info->tm, node);
+ return r;
+}
+
+int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
+ int (*fn)(void *context, uint64_t *keys, void *leaf),
+ void *context)
+{
+ BUG_ON(info->levels > 1);
+ return walk_node(info, root, fn, context);
+}
+EXPORT_SYMBOL_GPL(dm_btree_walk);