diff options
author | José Pekkarinen <jose.pekkarinen@nokia.com> | 2015-10-09 08:42:44 +0300 |
---|---|---|
committer | José Pekkarinen <jose.pekkarinen@nokia.com> | 2015-10-09 08:52:35 +0300 |
commit | fdb8b20906f3546ba6c2f9f0686d8a5189516ba3 (patch) | |
tree | 6bb43dc8a42d6e9403763bc749f706939dd2bc60 /kernel/arch/x86 | |
parent | cc84a1f21026270463b580f2564f9d71912b20db (diff) |
Kernel bump from 4.1.3-rt to 4.1.7-rt.
These changes brings a vanilla kernel from kernel.org, and the patch
applied for rt is patch-4.1.7-rt8.patch. No further changes needed.
Change-Id: Id8dd03c2ddd971e4d1d69b905f3069737053b700
Signed-off-by: José Pekkarinen <jose.pekkarinen@nokia.com>
Diffstat (limited to 'kernel/arch/x86')
25 files changed, 386 insertions, 299 deletions
diff --git a/kernel/arch/x86/boot/compressed/eboot.c b/kernel/arch/x86/boot/compressed/eboot.c index 48304b89b..0cdc154a2 100644 --- a/kernel/arch/x86/boot/compressed/eboot.c +++ b/kernel/arch/x86/boot/compressed/eboot.c @@ -1193,6 +1193,10 @@ static efi_status_t setup_e820(struct boot_params *params, unsigned int e820_type = 0; unsigned long m = efi->efi_memmap; +#ifdef CONFIG_X86_64 + m |= (u64)efi->efi_memmap_hi << 32; +#endif + d = (efi_memory_desc_t *)(m + (i * efi->efi_memdesc_size)); switch (d->type) { case EFI_RESERVED_TYPE: diff --git a/kernel/arch/x86/include/asm/kasan.h b/kernel/arch/x86/include/asm/kasan.h index 8b22422fb..74a2a8dc9 100644 --- a/kernel/arch/x86/include/asm/kasan.h +++ b/kernel/arch/x86/include/asm/kasan.h @@ -14,15 +14,11 @@ #ifndef __ASSEMBLY__ -extern pte_t kasan_zero_pte[]; -extern pte_t kasan_zero_pmd[]; -extern pte_t kasan_zero_pud[]; - #ifdef CONFIG_KASAN -void __init kasan_map_early_shadow(pgd_t *pgd); +void __init kasan_early_init(void); void __init kasan_init(void); #else -static inline void kasan_map_early_shadow(pgd_t *pgd) { } +static inline void kasan_early_init(void) { } static inline void kasan_init(void) { } #endif diff --git a/kernel/arch/x86/include/asm/mmu_context.h b/kernel/arch/x86/include/asm/mmu_context.h index 883f6b933..e997f70f8 100644 --- a/kernel/arch/x86/include/asm/mmu_context.h +++ b/kernel/arch/x86/include/asm/mmu_context.h @@ -23,7 +23,7 @@ extern struct static_key rdpmc_always_available; static inline void load_mm_cr4(struct mm_struct *mm) { - if (static_key_true(&rdpmc_always_available) || + if (static_key_false(&rdpmc_always_available) || atomic_read(&mm->context.perf_rdpmc_allowed)) cr4_set_bits(X86_CR4_PCE); else diff --git a/kernel/arch/x86/include/asm/sigcontext.h b/kernel/arch/x86/include/asm/sigcontext.h index 6fe6b182c..9dfce4e04 100644 --- a/kernel/arch/x86/include/asm/sigcontext.h +++ b/kernel/arch/x86/include/asm/sigcontext.h @@ -57,9 +57,9 @@ struct sigcontext { unsigned long ip; unsigned long flags; unsigned short cs; - unsigned short __pad2; /* Was called gs, but was always zero. */ - unsigned short __pad1; /* Was called fs, but was always zero. */ - unsigned short ss; + unsigned short gs; + unsigned short fs; + unsigned short __pad0; unsigned long err; unsigned long trapno; unsigned long oldmask; diff --git a/kernel/arch/x86/include/uapi/asm/sigcontext.h b/kernel/arch/x86/include/uapi/asm/sigcontext.h index 16dc4e8a2..d8b9f9081 100644 --- a/kernel/arch/x86/include/uapi/asm/sigcontext.h +++ b/kernel/arch/x86/include/uapi/asm/sigcontext.h @@ -177,24 +177,9 @@ struct sigcontext { __u64 rip; __u64 eflags; /* RFLAGS */ __u16 cs; - - /* - * Prior to 2.5.64 ("[PATCH] x86-64 updates for 2.5.64-bk3"), - * Linux saved and restored fs and gs in these slots. This - * was counterproductive, as fsbase and gsbase were never - * saved, so arch_prctl was presumably unreliable. - * - * If these slots are ever needed for any other purpose, there - * is some risk that very old 64-bit binaries could get - * confused. I doubt that many such binaries still work, - * though, since the same patch in 2.5.64 also removed the - * 64-bit set_thread_area syscall, so it appears that there is - * no TLS API that works in both pre- and post-2.5.64 kernels. - */ - __u16 __pad2; /* Was gs. */ - __u16 __pad1; /* Was fs. */ - - __u16 ss; + __u16 gs; + __u16 fs; + __u16 __pad0; __u64 err; __u64 trapno; __u64 oldmask; diff --git a/kernel/arch/x86/kernel/apic/apic.c b/kernel/arch/x86/kernel/apic/apic.c index dcb52850a..cde732c1b 100644 --- a/kernel/arch/x86/kernel/apic/apic.c +++ b/kernel/arch/x86/kernel/apic/apic.c @@ -1424,7 +1424,7 @@ static inline void __x2apic_disable(void) { u64 msr; - if (cpu_has_apic) + if (!cpu_has_apic) return; rdmsrl(MSR_IA32_APICBASE, msr); @@ -1483,10 +1483,13 @@ void x2apic_setup(void) static __init void x2apic_disable(void) { - u32 x2apic_id; + u32 x2apic_id, state = x2apic_state; - if (x2apic_state != X2APIC_ON) - goto out; + x2apic_mode = 0; + x2apic_state = X2APIC_DISABLED; + + if (state != X2APIC_ON) + return; x2apic_id = read_apic_id(); if (x2apic_id >= 255) @@ -1494,9 +1497,6 @@ static __init void x2apic_disable(void) __x2apic_disable(); register_lapic_address(mp_lapic_addr); -out: - x2apic_state = X2APIC_DISABLED; - x2apic_mode = 0; } static __init void x2apic_enable(void) diff --git a/kernel/arch/x86/kernel/cpu/perf_event_intel_cqm.c b/kernel/arch/x86/kernel/cpu/perf_event_intel_cqm.c index e4d1b8b73..cb77b11bc 100644 --- a/kernel/arch/x86/kernel/cpu/perf_event_intel_cqm.c +++ b/kernel/arch/x86/kernel/cpu/perf_event_intel_cqm.c @@ -934,6 +934,14 @@ static u64 intel_cqm_event_count(struct perf_event *event) return 0; /* + * Getting up-to-date values requires an SMP IPI which is not + * possible if we're being called in interrupt context. Return + * the cached values instead. + */ + if (unlikely(in_interrupt())) + goto out; + + /* * Notice that we don't perform the reading of an RMID * atomically, because we can't hold a spin lock across the * IPIs. diff --git a/kernel/arch/x86/kernel/dumpstack_32.c b/kernel/arch/x86/kernel/dumpstack_32.c index 464ffd69b..00db1aad1 100644 --- a/kernel/arch/x86/kernel/dumpstack_32.c +++ b/kernel/arch/x86/kernel/dumpstack_32.c @@ -42,7 +42,7 @@ void dump_trace(struct task_struct *task, struct pt_regs *regs, unsigned long *stack, unsigned long bp, const struct stacktrace_ops *ops, void *data) { - const unsigned cpu = get_cpu(); + const unsigned cpu = get_cpu_light(); int graph = 0; u32 *prev_esp; @@ -86,7 +86,7 @@ void dump_trace(struct task_struct *task, struct pt_regs *regs, break; touch_nmi_watchdog(); } - put_cpu(); + put_cpu_light(); } EXPORT_SYMBOL(dump_trace); diff --git a/kernel/arch/x86/kernel/dumpstack_64.c b/kernel/arch/x86/kernel/dumpstack_64.c index 5f1c6266e..c331e3fef 100644 --- a/kernel/arch/x86/kernel/dumpstack_64.c +++ b/kernel/arch/x86/kernel/dumpstack_64.c @@ -152,7 +152,7 @@ void dump_trace(struct task_struct *task, struct pt_regs *regs, unsigned long *stack, unsigned long bp, const struct stacktrace_ops *ops, void *data) { - const unsigned cpu = get_cpu(); + const unsigned cpu = get_cpu_light(); struct thread_info *tinfo; unsigned long *irq_stack = (unsigned long *)per_cpu(irq_stack_ptr, cpu); unsigned long dummy; @@ -241,7 +241,7 @@ void dump_trace(struct task_struct *task, struct pt_regs *regs, * This handles the process stack: */ bp = ops->walk_stack(tinfo, stack, bp, ops, data, NULL, &graph); - put_cpu(); + put_cpu_light(); } EXPORT_SYMBOL(dump_trace); @@ -255,7 +255,7 @@ show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs, int cpu; int i; - preempt_disable(); + migrate_disable(); cpu = smp_processor_id(); irq_stack_end = (unsigned long *)(per_cpu(irq_stack_ptr, cpu)); @@ -291,7 +291,7 @@ show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs, pr_cont(" %016lx", *stack++); touch_nmi_watchdog(); } - preempt_enable(); + migrate_enable(); pr_cont("\n"); show_trace_log_lvl(task, regs, sp, bp, log_lvl); diff --git a/kernel/arch/x86/kernel/entry_64.S b/kernel/arch/x86/kernel/entry_64.S index 9bf907020..8a3445bdf 100644 --- a/kernel/arch/x86/kernel/entry_64.S +++ b/kernel/arch/x86/kernel/entry_64.S @@ -809,8 +809,6 @@ do_preempt_schedule_irq: restore_c_regs_and_iret: RESTORE_C_REGS REMOVE_PT_GPREGS_FROM_STACK 8 - -irq_return: INTERRUPT_RETURN ENTRY(native_iret) @@ -1431,11 +1429,12 @@ ENTRY(nmi) * If the variable is not set and the stack is not the NMI * stack then: * o Set the special variable on the stack - * o Copy the interrupt frame into a "saved" location on the stack - * o Copy the interrupt frame into a "copy" location on the stack + * o Copy the interrupt frame into an "outermost" location on the + * stack + * o Copy the interrupt frame into an "iret" location on the stack * o Continue processing the NMI * If the variable is set or the previous stack is the NMI stack: - * o Modify the "copy" location to jump to the repeate_nmi + * o Modify the "iret" location to jump to the repeat_nmi * o return back to the first NMI * * Now on exit of the first NMI, we first clear the stack variable @@ -1444,32 +1443,151 @@ ENTRY(nmi) * a nested NMI that updated the copy interrupt stack frame, a * jump will be made to the repeat_nmi code that will handle the second * NMI. + * + * However, espfix prevents us from directly returning to userspace + * with a single IRET instruction. Similarly, IRET to user mode + * can fault. We therefore handle NMIs from user space like + * other IST entries. */ /* Use %rdx as our temp variable throughout */ pushq_cfi %rdx CFI_REL_OFFSET rdx, 0 + testb $3, CS-RIP+8(%rsp) + jz .Lnmi_from_kernel + /* - * If %cs was not the kernel segment, then the NMI triggered in user - * space, which means it is definitely not nested. + * NMI from user mode. We need to run on the thread stack, but we + * can't go through the normal entry paths: NMIs are masked, and + * we don't want to enable interrupts, because then we'll end + * up in an awkward situation in which IRQs are on but NMIs + * are off. */ - cmpl $__KERNEL_CS, 16(%rsp) - jne first_nmi + + SWAPGS + cld + movq %rsp, %rdx + movq PER_CPU_VAR(kernel_stack), %rsp + pushq 5*8(%rdx) /* pt_regs->ss */ + pushq 4*8(%rdx) /* pt_regs->rsp */ + pushq 3*8(%rdx) /* pt_regs->flags */ + pushq 2*8(%rdx) /* pt_regs->cs */ + pushq 1*8(%rdx) /* pt_regs->rip */ + pushq $-1 /* pt_regs->orig_ax */ + pushq %rdi /* pt_regs->di */ + pushq %rsi /* pt_regs->si */ + pushq (%rdx) /* pt_regs->dx */ + pushq %rcx /* pt_regs->cx */ + pushq %rax /* pt_regs->ax */ + pushq %r8 /* pt_regs->r8 */ + pushq %r9 /* pt_regs->r9 */ + pushq %r10 /* pt_regs->r10 */ + pushq %r11 /* pt_regs->r11 */ + pushq %rbx /* pt_regs->rbx */ + pushq %rbp /* pt_regs->rbp */ + pushq %r12 /* pt_regs->r12 */ + pushq %r13 /* pt_regs->r13 */ + pushq %r14 /* pt_regs->r14 */ + pushq %r15 /* pt_regs->r15 */ /* - * Check the special variable on the stack to see if NMIs are - * executing. + * At this point we no longer need to worry about stack damage + * due to nesting -- we're on the normal thread stack and we're + * done with the NMI stack. + */ + movq %rsp, %rdi + movq $-1, %rsi + call do_nmi + + /* + * Return back to user mode. We must *not* do the normal exit + * work, because we don't want to enable interrupts. Fortunately, + * do_nmi doesn't modify pt_regs. + */ + SWAPGS + jmp restore_c_regs_and_iret + +.Lnmi_from_kernel: + /* + * Here's what our stack frame will look like: + * +---------------------------------------------------------+ + * | original SS | + * | original Return RSP | + * | original RFLAGS | + * | original CS | + * | original RIP | + * +---------------------------------------------------------+ + * | temp storage for rdx | + * +---------------------------------------------------------+ + * | "NMI executing" variable | + * +---------------------------------------------------------+ + * | iret SS } Copied from "outermost" frame | + * | iret Return RSP } on each loop iteration; overwritten | + * | iret RFLAGS } by a nested NMI to force another | + * | iret CS } iteration if needed. | + * | iret RIP } | + * +---------------------------------------------------------+ + * | outermost SS } initialized in first_nmi; | + * | outermost Return RSP } will not be changed before | + * | outermost RFLAGS } NMI processing is done. | + * | outermost CS } Copied to "iret" frame on each | + * | outermost RIP } iteration. | + * +---------------------------------------------------------+ + * | pt_regs | + * +---------------------------------------------------------+ + * + * The "original" frame is used by hardware. Before re-enabling + * NMIs, we need to be done with it, and we need to leave enough + * space for the asm code here. + * + * We return by executing IRET while RSP points to the "iret" frame. + * That will either return for real or it will loop back into NMI + * processing. + * + * The "outermost" frame is copied to the "iret" frame on each + * iteration of the loop, so each iteration starts with the "iret" + * frame pointing to the final return target. + */ + + /* + * Determine whether we're a nested NMI. + * + * If we interrupted kernel code between repeat_nmi and + * end_repeat_nmi, then we are a nested NMI. We must not + * modify the "iret" frame because it's being written by + * the outer NMI. That's okay; the outer NMI handler is + * about to about to call do_nmi anyway, so we can just + * resume the outer NMI. + */ + + movq $repeat_nmi, %rdx + cmpq 8(%rsp), %rdx + ja 1f + movq $end_repeat_nmi, %rdx + cmpq 8(%rsp), %rdx + ja nested_nmi_out +1: + + /* + * Now check "NMI executing". If it's set, then we're nested. + * This will not detect if we interrupted an outer NMI just + * before IRET. */ cmpl $1, -8(%rsp) je nested_nmi /* - * Now test if the previous stack was an NMI stack. - * We need the double check. We check the NMI stack to satisfy the - * race when the first NMI clears the variable before returning. - * We check the variable because the first NMI could be in a - * breakpoint routine using a breakpoint stack. + * Now test if the previous stack was an NMI stack. This covers + * the case where we interrupt an outer NMI after it clears + * "NMI executing" but before IRET. We need to be careful, though: + * there is one case in which RSP could point to the NMI stack + * despite there being no NMI active: naughty userspace controls + * RSP at the very beginning of the SYSCALL targets. We can + * pull a fast one on naughty userspace, though: we program + * SYSCALL to mask DF, so userspace cannot cause DF to be set + * if it controls the kernel's RSP. We set DF before we clear + * "NMI executing". */ lea 6*8(%rsp), %rdx /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */ @@ -1480,25 +1598,21 @@ ENTRY(nmi) cmpq %rdx, 4*8(%rsp) /* If it is below the NMI stack, it is a normal NMI */ jb first_nmi - /* Ah, it is within the NMI stack, treat it as nested */ + + /* Ah, it is within the NMI stack. */ + + testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp) + jz first_nmi /* RSP was user controlled. */ + + /* This is a nested NMI. */ CFI_REMEMBER_STATE nested_nmi: /* - * Do nothing if we interrupted the fixup in repeat_nmi. - * It's about to repeat the NMI handler, so we are fine - * with ignoring this one. + * Modify the "iret" frame to point to repeat_nmi, forcing another + * iteration of NMI handling. */ - movq $repeat_nmi, %rdx - cmpq 8(%rsp), %rdx - ja 1f - movq $end_repeat_nmi, %rdx - cmpq 8(%rsp), %rdx - ja nested_nmi_out - -1: - /* Set up the interrupted NMIs stack to jump to repeat_nmi */ leaq -1*8(%rsp), %rdx movq %rdx, %rsp CFI_ADJUST_CFA_OFFSET 1*8 @@ -1517,60 +1631,23 @@ nested_nmi_out: popq_cfi %rdx CFI_RESTORE rdx - /* No need to check faults here */ + /* We are returning to kernel mode, so this cannot result in a fault. */ INTERRUPT_RETURN CFI_RESTORE_STATE first_nmi: - /* - * Because nested NMIs will use the pushed location that we - * stored in rdx, we must keep that space available. - * Here's what our stack frame will look like: - * +-------------------------+ - * | original SS | - * | original Return RSP | - * | original RFLAGS | - * | original CS | - * | original RIP | - * +-------------------------+ - * | temp storage for rdx | - * +-------------------------+ - * | NMI executing variable | - * +-------------------------+ - * | copied SS | - * | copied Return RSP | - * | copied RFLAGS | - * | copied CS | - * | copied RIP | - * +-------------------------+ - * | Saved SS | - * | Saved Return RSP | - * | Saved RFLAGS | - * | Saved CS | - * | Saved RIP | - * +-------------------------+ - * | pt_regs | - * +-------------------------+ - * - * The saved stack frame is used to fix up the copied stack frame - * that a nested NMI may change to make the interrupted NMI iret jump - * to the repeat_nmi. The original stack frame and the temp storage - * is also used by nested NMIs and can not be trusted on exit. - */ - /* Do not pop rdx, nested NMIs will corrupt that part of the stack */ + /* Restore rdx. */ movq (%rsp), %rdx CFI_RESTORE rdx - /* Set the NMI executing variable on the stack. */ + /* Set "NMI executing" on the stack. */ pushq_cfi $1 - /* - * Leave room for the "copied" frame - */ + /* Leave room for the "iret" frame */ subq $(5*8), %rsp CFI_ADJUST_CFA_OFFSET 5*8 - /* Copy the stack frame to the Saved frame */ + /* Copy the "original" frame to the "outermost" frame */ .rept 5 pushq_cfi 11*8(%rsp) .endr @@ -1578,6 +1655,7 @@ first_nmi: /* Everything up to here is safe from nested NMIs */ +repeat_nmi: /* * If there was a nested NMI, the first NMI's iret will return * here. But NMIs are still enabled and we can take another @@ -1586,16 +1664,21 @@ first_nmi: * it will just return, as we are about to repeat an NMI anyway. * This makes it safe to copy to the stack frame that a nested * NMI will update. - */ -repeat_nmi: - /* - * Update the stack variable to say we are still in NMI (the update - * is benign for the non-repeat case, where 1 was pushed just above - * to this very stack slot). + * + * RSP is pointing to "outermost RIP". gsbase is unknown, but, if + * we're repeating an NMI, gsbase has the same value that it had on + * the first iteration. paranoid_entry will load the kernel + * gsbase if needed before we call do_nmi. + * + * Set "NMI executing" in case we came back here via IRET. */ movq $1, 10*8(%rsp) - /* Make another copy, this one may be modified by nested NMIs */ + /* + * Copy the "outermost" frame to the "iret" frame. NMIs that nest + * here must not modify the "iret" frame while we're writing to + * it or it will end up containing garbage. + */ addq $(10*8), %rsp CFI_ADJUST_CFA_OFFSET -10*8 .rept 5 @@ -1606,9 +1689,9 @@ repeat_nmi: end_repeat_nmi: /* - * Everything below this point can be preempted by a nested - * NMI if the first NMI took an exception and reset our iret stack - * so that we repeat another NMI. + * Everything below this point can be preempted by a nested NMI. + * If this happens, then the inner NMI will change the "iret" + * frame to point back to repeat_nmi. */ pushq_cfi $-1 /* ORIG_RAX: no syscall to restart */ ALLOC_PT_GPREGS_ON_STACK @@ -1623,29 +1706,11 @@ end_repeat_nmi: call paranoid_entry DEFAULT_FRAME 0 - /* - * Save off the CR2 register. If we take a page fault in the NMI then - * it could corrupt the CR2 value. If the NMI preempts a page fault - * handler before it was able to read the CR2 register, and then the - * NMI itself takes a page fault, the page fault that was preempted - * will read the information from the NMI page fault and not the - * origin fault. Save it off and restore it if it changes. - * Use the r12 callee-saved register. - */ - movq %cr2, %r12 - /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */ movq %rsp,%rdi movq $-1,%rsi call do_nmi - /* Did the NMI take a page fault? Restore cr2 if it did */ - movq %cr2, %rcx - cmpq %rcx, %r12 - je 1f - movq %r12, %cr2 -1: - testl %ebx,%ebx /* swapgs needed? */ jnz nmi_restore nmi_swapgs: @@ -1653,12 +1718,27 @@ nmi_swapgs: nmi_restore: RESTORE_EXTRA_REGS RESTORE_C_REGS - /* Pop the extra iret frame at once */ + + /* Point RSP at the "iret" frame. */ REMOVE_PT_GPREGS_FROM_STACK 6*8 - /* Clear the NMI executing stack variable */ - movq $0, 5*8(%rsp) - jmp irq_return + /* + * Clear "NMI executing". Set DF first so that we can easily + * distinguish the remaining code between here and IRET from + * the SYSCALL entry and exit paths. On a native kernel, we + * could just inspect RIP, but, on paravirt kernels, + * INTERRUPT_RETURN can translate into a jump into a + * hypercall page. + */ + std + movq $0, 5*8(%rsp) /* clear "NMI executing" */ + + /* + * INTERRUPT_RETURN reads the "iret" frame and exits the NMI + * stack in a single instruction. We are returning to kernel + * mode, so this cannot result in a fault. + */ + INTERRUPT_RETURN CFI_ENDPROC END(nmi) diff --git a/kernel/arch/x86/kernel/head64.c b/kernel/arch/x86/kernel/head64.c index 5a4668136..f129a9af6 100644 --- a/kernel/arch/x86/kernel/head64.c +++ b/kernel/arch/x86/kernel/head64.c @@ -161,11 +161,12 @@ asmlinkage __visible void __init x86_64_start_kernel(char * real_mode_data) /* Kill off the identity-map trampoline */ reset_early_page_tables(); - kasan_map_early_shadow(early_level4_pgt); - - /* clear bss before set_intr_gate with early_idt_handler */ clear_bss(); + clear_page(init_level4_pgt); + + kasan_early_init(); + for (i = 0; i < NUM_EXCEPTION_VECTORS; i++) set_intr_gate(i, early_idt_handler_array[i]); load_idt((const struct desc_ptr *)&idt_descr); @@ -177,12 +178,9 @@ asmlinkage __visible void __init x86_64_start_kernel(char * real_mode_data) */ load_ucode_bsp(); - clear_page(init_level4_pgt); /* set init_level4_pgt kernel high mapping*/ init_level4_pgt[511] = early_level4_pgt[511]; - kasan_map_early_shadow(init_level4_pgt); - x86_64_start_reservations(real_mode_data); } diff --git a/kernel/arch/x86/kernel/head_64.S b/kernel/arch/x86/kernel/head_64.S index df7e78057..7e5da2cbe 100644 --- a/kernel/arch/x86/kernel/head_64.S +++ b/kernel/arch/x86/kernel/head_64.S @@ -516,38 +516,9 @@ ENTRY(phys_base) /* This must match the first entry in level2_kernel_pgt */ .quad 0x0000000000000000 -#ifdef CONFIG_KASAN -#define FILL(VAL, COUNT) \ - .rept (COUNT) ; \ - .quad (VAL) ; \ - .endr - -NEXT_PAGE(kasan_zero_pte) - FILL(kasan_zero_page - __START_KERNEL_map + _KERNPG_TABLE, 512) -NEXT_PAGE(kasan_zero_pmd) - FILL(kasan_zero_pte - __START_KERNEL_map + _KERNPG_TABLE, 512) -NEXT_PAGE(kasan_zero_pud) - FILL(kasan_zero_pmd - __START_KERNEL_map + _KERNPG_TABLE, 512) - -#undef FILL -#endif - - #include "../../x86/xen/xen-head.S" __PAGE_ALIGNED_BSS NEXT_PAGE(empty_zero_page) .skip PAGE_SIZE -#ifdef CONFIG_KASAN -/* - * This page used as early shadow. We don't use empty_zero_page - * at early stages, stack instrumentation could write some garbage - * to this page. - * Latter we reuse it as zero shadow for large ranges of memory - * that allowed to access, but not instrumented by kasan - * (vmalloc/vmemmap ...). - */ -NEXT_PAGE(kasan_zero_page) - .skip PAGE_SIZE -#endif diff --git a/kernel/arch/x86/kernel/nmi.c b/kernel/arch/x86/kernel/nmi.c index c3e985d17..d05bd2e2e 100644 --- a/kernel/arch/x86/kernel/nmi.c +++ b/kernel/arch/x86/kernel/nmi.c @@ -408,15 +408,15 @@ static void default_do_nmi(struct pt_regs *regs) NOKPROBE_SYMBOL(default_do_nmi); /* - * NMIs can hit breakpoints which will cause it to lose its - * NMI context with the CPU when the breakpoint does an iret. - */ -#ifdef CONFIG_X86_32 -/* - * For i386, NMIs use the same stack as the kernel, and we can - * add a workaround to the iret problem in C (preventing nested - * NMIs if an NMI takes a trap). Simply have 3 states the NMI - * can be in: + * NMIs can page fault or hit breakpoints which will cause it to lose + * its NMI context with the CPU when the breakpoint or page fault does an IRET. + * + * As a result, NMIs can nest if NMIs get unmasked due an IRET during + * NMI processing. On x86_64, the asm glue protects us from nested NMIs + * if the outer NMI came from kernel mode, but we can still nest if the + * outer NMI came from user mode. + * + * To handle these nested NMIs, we have three states: * * 1) not running * 2) executing @@ -430,15 +430,14 @@ NOKPROBE_SYMBOL(default_do_nmi); * (Note, the latch is binary, thus multiple NMIs triggering, * when one is running, are ignored. Only one NMI is restarted.) * - * If an NMI hits a breakpoint that executes an iret, another - * NMI can preempt it. We do not want to allow this new NMI - * to run, but we want to execute it when the first one finishes. - * We set the state to "latched", and the exit of the first NMI will - * perform a dec_return, if the result is zero (NOT_RUNNING), then - * it will simply exit the NMI handler. If not, the dec_return - * would have set the state to NMI_EXECUTING (what we want it to - * be when we are running). In this case, we simply jump back - * to rerun the NMI handler again, and restart the 'latched' NMI. + * If an NMI executes an iret, another NMI can preempt it. We do not + * want to allow this new NMI to run, but we want to execute it when the + * first one finishes. We set the state to "latched", and the exit of + * the first NMI will perform a dec_return, if the result is zero + * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the + * dec_return would have set the state to NMI_EXECUTING (what we want it + * to be when we are running). In this case, we simply jump back to + * rerun the NMI handler again, and restart the 'latched' NMI. * * No trap (breakpoint or page fault) should be hit before nmi_restart, * thus there is no race between the first check of state for NOT_RUNNING @@ -461,49 +460,36 @@ enum nmi_states { static DEFINE_PER_CPU(enum nmi_states, nmi_state); static DEFINE_PER_CPU(unsigned long, nmi_cr2); -#define nmi_nesting_preprocess(regs) \ - do { \ - if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) { \ - this_cpu_write(nmi_state, NMI_LATCHED); \ - return; \ - } \ - this_cpu_write(nmi_state, NMI_EXECUTING); \ - this_cpu_write(nmi_cr2, read_cr2()); \ - } while (0); \ - nmi_restart: - -#define nmi_nesting_postprocess() \ - do { \ - if (unlikely(this_cpu_read(nmi_cr2) != read_cr2())) \ - write_cr2(this_cpu_read(nmi_cr2)); \ - if (this_cpu_dec_return(nmi_state)) \ - goto nmi_restart; \ - } while (0) -#else /* x86_64 */ +#ifdef CONFIG_X86_64 /* - * In x86_64 things are a bit more difficult. This has the same problem - * where an NMI hitting a breakpoint that calls iret will remove the - * NMI context, allowing a nested NMI to enter. What makes this more - * difficult is that both NMIs and breakpoints have their own stack. - * When a new NMI or breakpoint is executed, the stack is set to a fixed - * point. If an NMI is nested, it will have its stack set at that same - * fixed address that the first NMI had, and will start corrupting the - * stack. This is handled in entry_64.S, but the same problem exists with - * the breakpoint stack. + * In x86_64, we need to handle breakpoint -> NMI -> breakpoint. Without + * some care, the inner breakpoint will clobber the outer breakpoint's + * stack. * - * If a breakpoint is being processed, and the debug stack is being used, - * if an NMI comes in and also hits a breakpoint, the stack pointer - * will be set to the same fixed address as the breakpoint that was - * interrupted, causing that stack to be corrupted. To handle this case, - * check if the stack that was interrupted is the debug stack, and if - * so, change the IDT so that new breakpoints will use the current stack - * and not switch to the fixed address. On return of the NMI, switch back - * to the original IDT. + * If a breakpoint is being processed, and the debug stack is being + * used, if an NMI comes in and also hits a breakpoint, the stack + * pointer will be set to the same fixed address as the breakpoint that + * was interrupted, causing that stack to be corrupted. To handle this + * case, check if the stack that was interrupted is the debug stack, and + * if so, change the IDT so that new breakpoints will use the current + * stack and not switch to the fixed address. On return of the NMI, + * switch back to the original IDT. */ static DEFINE_PER_CPU(int, update_debug_stack); +#endif -static inline void nmi_nesting_preprocess(struct pt_regs *regs) +dotraplinkage notrace void +do_nmi(struct pt_regs *regs, long error_code) { + if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) { + this_cpu_write(nmi_state, NMI_LATCHED); + return; + } + this_cpu_write(nmi_state, NMI_EXECUTING); + this_cpu_write(nmi_cr2, read_cr2()); +nmi_restart: + +#ifdef CONFIG_X86_64 /* * If we interrupted a breakpoint, it is possible that * the nmi handler will have breakpoints too. We need to @@ -514,22 +500,8 @@ static inline void nmi_nesting_preprocess(struct pt_regs *regs) debug_stack_set_zero(); this_cpu_write(update_debug_stack, 1); } -} - -static inline void nmi_nesting_postprocess(void) -{ - if (unlikely(this_cpu_read(update_debug_stack))) { - debug_stack_reset(); - this_cpu_write(update_debug_stack, 0); - } -} #endif -dotraplinkage notrace void -do_nmi(struct pt_regs *regs, long error_code) -{ - nmi_nesting_preprocess(regs); - nmi_enter(); inc_irq_stat(__nmi_count); @@ -539,8 +511,17 @@ do_nmi(struct pt_regs *regs, long error_code) nmi_exit(); - /* On i386, may loop back to preprocess */ - nmi_nesting_postprocess(); +#ifdef CONFIG_X86_64 + if (unlikely(this_cpu_read(update_debug_stack))) { + debug_stack_reset(); + this_cpu_write(update_debug_stack, 0); + } +#endif + + if (unlikely(this_cpu_read(nmi_cr2) != read_cr2())) + write_cr2(this_cpu_read(nmi_cr2)); + if (this_cpu_dec_return(nmi_state)) + goto nmi_restart; } NOKPROBE_SYMBOL(do_nmi); diff --git a/kernel/arch/x86/kernel/process.c b/kernel/arch/x86/kernel/process.c index 6e338e3b1..971743774 100644 --- a/kernel/arch/x86/kernel/process.c +++ b/kernel/arch/x86/kernel/process.c @@ -453,6 +453,7 @@ static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c) static void mwait_idle(void) { if (!current_set_polling_and_test()) { + trace_cpu_idle_rcuidle(1, smp_processor_id()); if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) { smp_mb(); /* quirk */ clflush((void *)¤t_thread_info()->flags); @@ -464,6 +465,7 @@ static void mwait_idle(void) __sti_mwait(0, 0); else local_irq_enable(); + trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); } else { local_irq_enable(); } diff --git a/kernel/arch/x86/kernel/signal.c b/kernel/arch/x86/kernel/signal.c index 74c44c4f0..12c28f79e 100644 --- a/kernel/arch/x86/kernel/signal.c +++ b/kernel/arch/x86/kernel/signal.c @@ -93,8 +93,15 @@ int restore_sigcontext(struct pt_regs *regs, struct sigcontext __user *sc) COPY(r15); #endif /* CONFIG_X86_64 */ +#ifdef CONFIG_X86_32 COPY_SEG_CPL3(cs); COPY_SEG_CPL3(ss); +#else /* !CONFIG_X86_32 */ + /* Kernel saves and restores only the CS segment register on signals, + * which is the bare minimum needed to allow mixed 32/64-bit code. + * App's signal handler can save/restore other segments if needed. */ + COPY_SEG_CPL3(cs); +#endif /* CONFIG_X86_32 */ get_user_ex(tmpflags, &sc->flags); regs->flags = (regs->flags & ~FIX_EFLAGS) | (tmpflags & FIX_EFLAGS); @@ -154,9 +161,8 @@ int setup_sigcontext(struct sigcontext __user *sc, void __user *fpstate, #else /* !CONFIG_X86_32 */ put_user_ex(regs->flags, &sc->flags); put_user_ex(regs->cs, &sc->cs); - put_user_ex(0, &sc->__pad2); - put_user_ex(0, &sc->__pad1); - put_user_ex(regs->ss, &sc->ss); + put_user_ex(0, &sc->gs); + put_user_ex(0, &sc->fs); #endif /* CONFIG_X86_32 */ put_user_ex(fpstate, &sc->fpstate); @@ -450,19 +456,9 @@ static int __setup_rt_frame(int sig, struct ksignal *ksig, regs->sp = (unsigned long)frame; - /* - * Set up the CS and SS registers to run signal handlers in - * 64-bit mode, even if the handler happens to be interrupting - * 32-bit or 16-bit code. - * - * SS is subtle. In 64-bit mode, we don't need any particular - * SS descriptor, but we do need SS to be valid. It's possible - * that the old SS is entirely bogus -- this can happen if the - * signal we're trying to deliver is #GP or #SS caused by a bad - * SS value. - */ + /* Set up the CS register to run signal handlers in 64-bit mode, + even if the handler happens to be interrupting 32-bit code. */ regs->cs = __USER_CS; - regs->ss = __USER_DS; return 0; } diff --git a/kernel/arch/x86/kvm/lapic.h b/kernel/arch/x86/kvm/lapic.h index 9d28383fc..c4ea87eed 100644 --- a/kernel/arch/x86/kvm/lapic.h +++ b/kernel/arch/x86/kvm/lapic.h @@ -150,7 +150,7 @@ static inline bool kvm_apic_vid_enabled(struct kvm *kvm) static inline bool kvm_apic_has_events(struct kvm_vcpu *vcpu) { - return vcpu->arch.apic->pending_events; + return kvm_vcpu_has_lapic(vcpu) && vcpu->arch.apic->pending_events; } bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector); diff --git a/kernel/arch/x86/mm/kasan_init_64.c b/kernel/arch/x86/mm/kasan_init_64.c index 4860906c6..9a54dbe98 100644 --- a/kernel/arch/x86/mm/kasan_init_64.c +++ b/kernel/arch/x86/mm/kasan_init_64.c @@ -11,7 +11,19 @@ extern pgd_t early_level4_pgt[PTRS_PER_PGD]; extern struct range pfn_mapped[E820_X_MAX]; -extern unsigned char kasan_zero_page[PAGE_SIZE]; +static pud_t kasan_zero_pud[PTRS_PER_PUD] __page_aligned_bss; +static pmd_t kasan_zero_pmd[PTRS_PER_PMD] __page_aligned_bss; +static pte_t kasan_zero_pte[PTRS_PER_PTE] __page_aligned_bss; + +/* + * This page used as early shadow. We don't use empty_zero_page + * at early stages, stack instrumentation could write some garbage + * to this page. + * Latter we reuse it as zero shadow for large ranges of memory + * that allowed to access, but not instrumented by kasan + * (vmalloc/vmemmap ...). + */ +static unsigned char kasan_zero_page[PAGE_SIZE] __page_aligned_bss; static int __init map_range(struct range *range) { @@ -36,7 +48,7 @@ static void __init clear_pgds(unsigned long start, pgd_clear(pgd_offset_k(start)); } -void __init kasan_map_early_shadow(pgd_t *pgd) +static void __init kasan_map_early_shadow(pgd_t *pgd) { int i; unsigned long start = KASAN_SHADOW_START; @@ -73,7 +85,7 @@ static int __init zero_pmd_populate(pud_t *pud, unsigned long addr, while (IS_ALIGNED(addr, PMD_SIZE) && addr + PMD_SIZE <= end) { WARN_ON(!pmd_none(*pmd)); set_pmd(pmd, __pmd(__pa_nodebug(kasan_zero_pte) - | __PAGE_KERNEL_RO)); + | _KERNPG_TABLE)); addr += PMD_SIZE; pmd = pmd_offset(pud, addr); } @@ -99,7 +111,7 @@ static int __init zero_pud_populate(pgd_t *pgd, unsigned long addr, while (IS_ALIGNED(addr, PUD_SIZE) && addr + PUD_SIZE <= end) { WARN_ON(!pud_none(*pud)); set_pud(pud, __pud(__pa_nodebug(kasan_zero_pmd) - | __PAGE_KERNEL_RO)); + | _KERNPG_TABLE)); addr += PUD_SIZE; pud = pud_offset(pgd, addr); } @@ -124,7 +136,7 @@ static int __init zero_pgd_populate(unsigned long addr, unsigned long end) while (IS_ALIGNED(addr, PGDIR_SIZE) && addr + PGDIR_SIZE <= end) { WARN_ON(!pgd_none(*pgd)); set_pgd(pgd, __pgd(__pa_nodebug(kasan_zero_pud) - | __PAGE_KERNEL_RO)); + | _KERNPG_TABLE)); addr += PGDIR_SIZE; pgd = pgd_offset_k(addr); } @@ -166,6 +178,26 @@ static struct notifier_block kasan_die_notifier = { }; #endif +void __init kasan_early_init(void) +{ + int i; + pteval_t pte_val = __pa_nodebug(kasan_zero_page) | __PAGE_KERNEL; + pmdval_t pmd_val = __pa_nodebug(kasan_zero_pte) | _KERNPG_TABLE; + pudval_t pud_val = __pa_nodebug(kasan_zero_pmd) | _KERNPG_TABLE; + + for (i = 0; i < PTRS_PER_PTE; i++) + kasan_zero_pte[i] = __pte(pte_val); + + for (i = 0; i < PTRS_PER_PMD; i++) + kasan_zero_pmd[i] = __pmd(pmd_val); + + for (i = 0; i < PTRS_PER_PUD; i++) + kasan_zero_pud[i] = __pud(pud_val); + + kasan_map_early_shadow(early_level4_pgt); + kasan_map_early_shadow(init_level4_pgt); +} + void __init kasan_init(void) { int i; @@ -176,6 +208,7 @@ void __init kasan_init(void) memcpy(early_level4_pgt, init_level4_pgt, sizeof(early_level4_pgt)); load_cr3(early_level4_pgt); + __flush_tlb_all(); clear_pgds(KASAN_SHADOW_START, KASAN_SHADOW_END); @@ -202,5 +235,6 @@ void __init kasan_init(void) memset(kasan_zero_page, 0, PAGE_SIZE); load_cr3(init_level4_pgt); + __flush_tlb_all(); init_task.kasan_depth = 0; } diff --git a/kernel/arch/x86/mm/mmap.c b/kernel/arch/x86/mm/mmap.c index 9d518d693..844b06d67 100644 --- a/kernel/arch/x86/mm/mmap.c +++ b/kernel/arch/x86/mm/mmap.c @@ -126,3 +126,10 @@ void arch_pick_mmap_layout(struct mm_struct *mm) mm->get_unmapped_area = arch_get_unmapped_area_topdown; } } + +const char *arch_vma_name(struct vm_area_struct *vma) +{ + if (vma->vm_flags & VM_MPX) + return "[mpx]"; + return NULL; +} diff --git a/kernel/arch/x86/mm/mpx.c b/kernel/arch/x86/mm/mpx.c index c439ec478..4d1c11c07 100644 --- a/kernel/arch/x86/mm/mpx.c +++ b/kernel/arch/x86/mm/mpx.c @@ -18,26 +18,9 @@ #include <asm/processor.h> #include <asm/fpu-internal.h> -static const char *mpx_mapping_name(struct vm_area_struct *vma) -{ - return "[mpx]"; -} - -static struct vm_operations_struct mpx_vma_ops = { - .name = mpx_mapping_name, -}; - -static int is_mpx_vma(struct vm_area_struct *vma) -{ - return (vma->vm_ops == &mpx_vma_ops); -} - /* * This is really a simplified "vm_mmap". it only handles MPX * bounds tables (the bounds directory is user-allocated). - * - * Later on, we use the vma->vm_ops to uniquely identify these - * VMAs. */ static unsigned long mpx_mmap(unsigned long len) { @@ -83,7 +66,6 @@ static unsigned long mpx_mmap(unsigned long len) ret = -ENOMEM; goto out; } - vma->vm_ops = &mpx_vma_ops; if (vm_flags & VM_LOCKED) { up_write(&mm->mmap_sem); @@ -661,7 +643,7 @@ static int zap_bt_entries(struct mm_struct *mm, * so stop immediately and return an error. This * probably results in a SIGSEGV. */ - if (!is_mpx_vma(vma)) + if (!(vma->vm_flags & VM_MPX)) return -EINVAL; len = min(vma->vm_end, end) - addr; diff --git a/kernel/arch/x86/mm/tlb.c b/kernel/arch/x86/mm/tlb.c index 3250f2371..90b924acd 100644 --- a/kernel/arch/x86/mm/tlb.c +++ b/kernel/arch/x86/mm/tlb.c @@ -117,7 +117,7 @@ static void flush_tlb_func(void *info) } else { unsigned long addr; unsigned long nr_pages = - f->flush_end - f->flush_start / PAGE_SIZE; + (f->flush_end - f->flush_start) / PAGE_SIZE; addr = f->flush_start; while (addr < f->flush_end) { __flush_tlb_single(addr); diff --git a/kernel/arch/x86/platform/efi/efi.c b/kernel/arch/x86/platform/efi/efi.c index 02744df57..841ea05e1 100644 --- a/kernel/arch/x86/platform/efi/efi.c +++ b/kernel/arch/x86/platform/efi/efi.c @@ -946,6 +946,11 @@ u64 efi_mem_attributes(unsigned long phys_addr) static int __init arch_parse_efi_cmdline(char *str) { + if (!str) { + pr_warn("need at least one option\n"); + return -EINVAL; + } + if (parse_option_str(str, "old_map")) set_bit(EFI_OLD_MEMMAP, &efi.flags); if (parse_option_str(str, "debug")) diff --git a/kernel/arch/x86/xen/Kconfig b/kernel/arch/x86/xen/Kconfig index e88fda867..484145368 100644 --- a/kernel/arch/x86/xen/Kconfig +++ b/kernel/arch/x86/xen/Kconfig @@ -8,7 +8,7 @@ config XEN select PARAVIRT_CLOCK select XEN_HAVE_PVMMU depends on X86_64 || (X86_32 && X86_PAE) - depends on X86_TSC + depends on X86_LOCAL_APIC && X86_TSC help This is the Linux Xen port. Enabling this will allow the kernel to boot in a paravirtualized environment under the @@ -17,7 +17,7 @@ config XEN config XEN_DOM0 def_bool y depends on XEN && PCI_XEN && SWIOTLB_XEN - depends on X86_LOCAL_APIC && X86_IO_APIC && ACPI && PCI + depends on X86_IO_APIC && ACPI && PCI config XEN_PVHVM def_bool y diff --git a/kernel/arch/x86/xen/Makefile b/kernel/arch/x86/xen/Makefile index 7322755f3..4b6e29ac0 100644 --- a/kernel/arch/x86/xen/Makefile +++ b/kernel/arch/x86/xen/Makefile @@ -13,13 +13,13 @@ CFLAGS_mmu.o := $(nostackp) obj-y := enlighten.o setup.o multicalls.o mmu.o irq.o \ time.o xen-asm.o xen-asm_$(BITS).o \ grant-table.o suspend.o platform-pci-unplug.o \ - p2m.o + p2m.o apic.o obj-$(CONFIG_EVENT_TRACING) += trace.o obj-$(CONFIG_SMP) += smp.o obj-$(CONFIG_PARAVIRT_SPINLOCKS)+= spinlock.o obj-$(CONFIG_XEN_DEBUG_FS) += debugfs.o -obj-$(CONFIG_XEN_DOM0) += apic.o vga.o +obj-$(CONFIG_XEN_DOM0) += vga.o obj-$(CONFIG_SWIOTLB_XEN) += pci-swiotlb-xen.o obj-$(CONFIG_XEN_EFI) += efi.o diff --git a/kernel/arch/x86/xen/enlighten.c b/kernel/arch/x86/xen/enlighten.c index 46957ead3..a671e8372 100644 --- a/kernel/arch/x86/xen/enlighten.c +++ b/kernel/arch/x86/xen/enlighten.c @@ -483,6 +483,7 @@ static void set_aliased_prot(void *v, pgprot_t prot) pte_t pte; unsigned long pfn; struct page *page; + unsigned char dummy; ptep = lookup_address((unsigned long)v, &level); BUG_ON(ptep == NULL); @@ -492,6 +493,32 @@ static void set_aliased_prot(void *v, pgprot_t prot) pte = pfn_pte(pfn, prot); + /* + * Careful: update_va_mapping() will fail if the virtual address + * we're poking isn't populated in the page tables. We don't + * need to worry about the direct map (that's always in the page + * tables), but we need to be careful about vmap space. In + * particular, the top level page table can lazily propagate + * entries between processes, so if we've switched mms since we + * vmapped the target in the first place, we might not have the + * top-level page table entry populated. + * + * We disable preemption because we want the same mm active when + * we probe the target and when we issue the hypercall. We'll + * have the same nominal mm, but if we're a kernel thread, lazy + * mm dropping could change our pgd. + * + * Out of an abundance of caution, this uses __get_user() to fault + * in the target address just in case there's some obscure case + * in which the target address isn't readable. + */ + + preempt_disable(); + + pagefault_disable(); /* Avoid warnings due to being atomic. */ + __get_user(dummy, (unsigned char __user __force *)v); + pagefault_enable(); + if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0)) BUG(); @@ -503,6 +530,8 @@ static void set_aliased_prot(void *v, pgprot_t prot) BUG(); } else kmap_flush_unused(); + + preempt_enable(); } static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries) @@ -510,6 +539,17 @@ static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries) const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; int i; + /* + * We need to mark the all aliases of the LDT pages RO. We + * don't need to call vm_flush_aliases(), though, since that's + * only responsible for flushing aliases out the TLBs, not the + * page tables, and Xen will flush the TLB for us if needed. + * + * To avoid confusing future readers: none of this is necessary + * to load the LDT. The hypervisor only checks this when the + * LDT is faulted in due to subsequent descriptor access. + */ + for(i = 0; i < entries; i += entries_per_page) set_aliased_prot(ldt + i, PAGE_KERNEL_RO); } diff --git a/kernel/arch/x86/xen/xen-ops.h b/kernel/arch/x86/xen/xen-ops.h index 9e195c683..bef30cbb5 100644 --- a/kernel/arch/x86/xen/xen-ops.h +++ b/kernel/arch/x86/xen/xen-ops.h @@ -101,17 +101,15 @@ struct dom0_vga_console_info; #ifdef CONFIG_XEN_DOM0 void __init xen_init_vga(const struct dom0_vga_console_info *, size_t size); -void __init xen_init_apic(void); #else static inline void __init xen_init_vga(const struct dom0_vga_console_info *info, size_t size) { } -static inline void __init xen_init_apic(void) -{ -} #endif +void __init xen_init_apic(void); + #ifdef CONFIG_XEN_EFI extern void xen_efi_init(void); #else |