summaryrefslogtreecommitdiffstats
path: root/kernel/arch/x86/kvm
diff options
context:
space:
mode:
authorYunhong Jiang <yunhong.jiang@intel.com>2015-08-04 12:17:53 -0700
committerYunhong Jiang <yunhong.jiang@intel.com>2015-08-04 15:44:42 -0700
commit9ca8dbcc65cfc63d6f5ef3312a33184e1d726e00 (patch)
tree1c9cafbcd35f783a87880a10f85d1a060db1a563 /kernel/arch/x86/kvm
parent98260f3884f4a202f9ca5eabed40b1354c489b29 (diff)
Add the rt linux 4.1.3-rt3 as base
Import the rt linux 4.1.3-rt3 as OPNFV kvm base. It's from git://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-rt-devel.git linux-4.1.y-rt and the base is: commit 0917f823c59692d751951bf5ea699a2d1e2f26a2 Author: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Date: Sat Jul 25 12:13:34 2015 +0200 Prepare v4.1.3-rt3 Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> We lose all the git history this way and it's not good. We should apply another opnfv project repo in future. Change-Id: I87543d81c9df70d99c5001fbdf646b202c19f423 Signed-off-by: Yunhong Jiang <yunhong.jiang@intel.com>
Diffstat (limited to 'kernel/arch/x86/kvm')
-rw-r--r--kernel/arch/x86/kvm/Kconfig104
-rw-r--r--kernel/arch/x86/kvm/Makefile22
-rw-r--r--kernel/arch/x86/kvm/assigned-dev.c1052
-rw-r--r--kernel/arch/x86/kvm/assigned-dev.h32
-rw-r--r--kernel/arch/x86/kvm/cpuid.c843
-rw-r--r--kernel/arch/x86/kvm/cpuid.h128
-rw-r--r--kernel/arch/x86/kvm/emulate.c5181
-rw-r--r--kernel/arch/x86/kvm/i8254.c781
-rw-r--r--kernel/arch/x86/kvm/i8254.h65
-rw-r--r--kernel/arch/x86/kvm/i8259.c665
-rw-r--r--kernel/arch/x86/kvm/ioapic.c675
-rw-r--r--kernel/arch/x86/kvm/ioapic.h126
-rw-r--r--kernel/arch/x86/kvm/iommu.c355
-rw-r--r--kernel/arch/x86/kvm/irq.c129
-rw-r--r--kernel/arch/x86/kvm/irq.h106
-rw-r--r--kernel/arch/x86/kvm/irq_comm.c332
-rw-r--r--kernel/arch/x86/kvm/kvm_cache_regs.h102
-rw-r--r--kernel/arch/x86/kvm/lapic.c2114
-rw-r--r--kernel/arch/x86/kvm/lapic.h160
-rw-r--r--kernel/arch/x86/kvm/mmu.c4920
-rw-r--r--kernel/arch/x86/kvm/mmu.h173
-rw-r--r--kernel/arch/x86/kvm/mmu_audit.c299
-rw-r--r--kernel/arch/x86/kvm/mmutrace.h333
-rw-r--r--kernel/arch/x86/kvm/paging_tmpl.h1011
-rw-r--r--kernel/arch/x86/kvm/pmu.c576
-rw-r--r--kernel/arch/x86/kvm/svm.c4461
-rw-r--r--kernel/arch/x86/kvm/trace.h963
-rw-r--r--kernel/arch/x86/kvm/tss.h59
-rw-r--r--kernel/arch/x86/kvm/vmx.c10286
-rw-r--r--kernel/arch/x86/kvm/x86.c7994
-rw-r--r--kernel/arch/x86/kvm/x86.h177
31 files changed, 44224 insertions, 0 deletions
diff --git a/kernel/arch/x86/kvm/Kconfig b/kernel/arch/x86/kvm/Kconfig
new file mode 100644
index 000000000..413a7bf9e
--- /dev/null
+++ b/kernel/arch/x86/kvm/Kconfig
@@ -0,0 +1,104 @@
+#
+# KVM configuration
+#
+
+source "virt/kvm/Kconfig"
+
+menuconfig VIRTUALIZATION
+ bool "Virtualization"
+ depends on HAVE_KVM || X86
+ default y
+ ---help---
+ Say Y here to get to see options for using your Linux host to run other
+ operating systems inside virtual machines (guests).
+ This option alone does not add any kernel code.
+
+ If you say N, all options in this submenu will be skipped and disabled.
+
+if VIRTUALIZATION
+
+config KVM
+ tristate "Kernel-based Virtual Machine (KVM) support"
+ depends on HAVE_KVM
+ depends on HIGH_RES_TIMERS
+ # for TASKSTATS/TASK_DELAY_ACCT:
+ depends on NET
+ select PREEMPT_NOTIFIERS
+ select MMU_NOTIFIER
+ select ANON_INODES
+ select HAVE_KVM_IRQCHIP
+ select HAVE_KVM_IRQFD
+ select HAVE_KVM_IRQ_ROUTING
+ select HAVE_KVM_EVENTFD
+ select KVM_APIC_ARCHITECTURE
+ select KVM_ASYNC_PF
+ select USER_RETURN_NOTIFIER
+ select KVM_MMIO
+ select TASKSTATS
+ select TASK_DELAY_ACCT
+ select PERF_EVENTS
+ select HAVE_KVM_MSI
+ select HAVE_KVM_CPU_RELAX_INTERCEPT
+ select KVM_GENERIC_DIRTYLOG_READ_PROTECT
+ select KVM_VFIO
+ select SRCU
+ ---help---
+ Support hosting fully virtualized guest machines using hardware
+ virtualization extensions. You will need a fairly recent
+ processor equipped with virtualization extensions. You will also
+ need to select one or more of the processor modules below.
+
+ This module provides access to the hardware capabilities through
+ a character device node named /dev/kvm.
+
+ To compile this as a module, choose M here: the module
+ will be called kvm.
+
+ If unsure, say N.
+
+config KVM_INTEL
+ tristate "KVM for Intel processors support"
+ depends on KVM
+ # for perf_guest_get_msrs():
+ depends on CPU_SUP_INTEL
+ ---help---
+ Provides support for KVM on Intel processors equipped with the VT
+ extensions.
+
+ To compile this as a module, choose M here: the module
+ will be called kvm-intel.
+
+config KVM_AMD
+ tristate "KVM for AMD processors support"
+ depends on KVM
+ ---help---
+ Provides support for KVM on AMD processors equipped with the AMD-V
+ (SVM) extensions.
+
+ To compile this as a module, choose M here: the module
+ will be called kvm-amd.
+
+config KVM_MMU_AUDIT
+ bool "Audit KVM MMU"
+ depends on KVM && TRACEPOINTS
+ ---help---
+ This option adds a R/W kVM module parameter 'mmu_audit', which allows
+ auditing of KVM MMU events at runtime.
+
+config KVM_DEVICE_ASSIGNMENT
+ bool "KVM legacy PCI device assignment support"
+ depends on KVM && PCI && IOMMU_API
+ default y
+ ---help---
+ Provide support for legacy PCI device assignment through KVM. The
+ kernel now also supports a full featured userspace device driver
+ framework through VFIO, which supersedes much of this support.
+
+ If unsure, say Y.
+
+# OK, it's a little counter-intuitive to do this, but it puts it neatly under
+# the virtualization menu.
+source drivers/vhost/Kconfig
+source drivers/lguest/Kconfig
+
+endif # VIRTUALIZATION
diff --git a/kernel/arch/x86/kvm/Makefile b/kernel/arch/x86/kvm/Makefile
new file mode 100644
index 000000000..16e8f962e
--- /dev/null
+++ b/kernel/arch/x86/kvm/Makefile
@@ -0,0 +1,22 @@
+
+ccflags-y += -Iarch/x86/kvm
+
+CFLAGS_x86.o := -I.
+CFLAGS_svm.o := -I.
+CFLAGS_vmx.o := -I.
+
+KVM := ../../../virt/kvm
+
+kvm-y += $(KVM)/kvm_main.o $(KVM)/coalesced_mmio.o \
+ $(KVM)/eventfd.o $(KVM)/irqchip.o $(KVM)/vfio.o
+kvm-$(CONFIG_KVM_ASYNC_PF) += $(KVM)/async_pf.o
+
+kvm-y += x86.o mmu.o emulate.o i8259.o irq.o lapic.o \
+ i8254.o ioapic.o irq_comm.o cpuid.o pmu.o
+kvm-$(CONFIG_KVM_DEVICE_ASSIGNMENT) += assigned-dev.o iommu.o
+kvm-intel-y += vmx.o
+kvm-amd-y += svm.o
+
+obj-$(CONFIG_KVM) += kvm.o
+obj-$(CONFIG_KVM_INTEL) += kvm-intel.o
+obj-$(CONFIG_KVM_AMD) += kvm-amd.o
diff --git a/kernel/arch/x86/kvm/assigned-dev.c b/kernel/arch/x86/kvm/assigned-dev.c
new file mode 100644
index 000000000..d090ecf08
--- /dev/null
+++ b/kernel/arch/x86/kvm/assigned-dev.c
@@ -0,0 +1,1052 @@
+/*
+ * Kernel-based Virtual Machine - device assignment support
+ *
+ * Copyright (C) 2010 Red Hat, Inc. and/or its affiliates.
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2. See
+ * the COPYING file in the top-level directory.
+ *
+ */
+
+#include <linux/kvm_host.h>
+#include <linux/kvm.h>
+#include <linux/uaccess.h>
+#include <linux/vmalloc.h>
+#include <linux/errno.h>
+#include <linux/spinlock.h>
+#include <linux/pci.h>
+#include <linux/interrupt.h>
+#include <linux/slab.h>
+#include <linux/namei.h>
+#include <linux/fs.h>
+#include "irq.h"
+#include "assigned-dev.h"
+
+struct kvm_assigned_dev_kernel {
+ struct kvm_irq_ack_notifier ack_notifier;
+ struct list_head list;
+ int assigned_dev_id;
+ int host_segnr;
+ int host_busnr;
+ int host_devfn;
+ unsigned int entries_nr;
+ int host_irq;
+ bool host_irq_disabled;
+ bool pci_2_3;
+ struct msix_entry *host_msix_entries;
+ int guest_irq;
+ struct msix_entry *guest_msix_entries;
+ unsigned long irq_requested_type;
+ int irq_source_id;
+ int flags;
+ struct pci_dev *dev;
+ struct kvm *kvm;
+ spinlock_t intx_lock;
+ spinlock_t intx_mask_lock;
+ char irq_name[32];
+ struct pci_saved_state *pci_saved_state;
+};
+
+static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
+ int assigned_dev_id)
+{
+ struct list_head *ptr;
+ struct kvm_assigned_dev_kernel *match;
+
+ list_for_each(ptr, head) {
+ match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
+ if (match->assigned_dev_id == assigned_dev_id)
+ return match;
+ }
+ return NULL;
+}
+
+static int find_index_from_host_irq(struct kvm_assigned_dev_kernel
+ *assigned_dev, int irq)
+{
+ int i, index;
+ struct msix_entry *host_msix_entries;
+
+ host_msix_entries = assigned_dev->host_msix_entries;
+
+ index = -1;
+ for (i = 0; i < assigned_dev->entries_nr; i++)
+ if (irq == host_msix_entries[i].vector) {
+ index = i;
+ break;
+ }
+ if (index < 0)
+ printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n");
+
+ return index;
+}
+
+static irqreturn_t kvm_assigned_dev_intx(int irq, void *dev_id)
+{
+ struct kvm_assigned_dev_kernel *assigned_dev = dev_id;
+ int ret;
+
+ spin_lock(&assigned_dev->intx_lock);
+ if (pci_check_and_mask_intx(assigned_dev->dev)) {
+ assigned_dev->host_irq_disabled = true;
+ ret = IRQ_WAKE_THREAD;
+ } else
+ ret = IRQ_NONE;
+ spin_unlock(&assigned_dev->intx_lock);
+
+ return ret;
+}
+
+static void
+kvm_assigned_dev_raise_guest_irq(struct kvm_assigned_dev_kernel *assigned_dev,
+ int vector)
+{
+ if (unlikely(assigned_dev->irq_requested_type &
+ KVM_DEV_IRQ_GUEST_INTX)) {
+ spin_lock(&assigned_dev->intx_mask_lock);
+ if (!(assigned_dev->flags & KVM_DEV_ASSIGN_MASK_INTX))
+ kvm_set_irq(assigned_dev->kvm,
+ assigned_dev->irq_source_id, vector, 1,
+ false);
+ spin_unlock(&assigned_dev->intx_mask_lock);
+ } else
+ kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
+ vector, 1, false);
+}
+
+static irqreturn_t kvm_assigned_dev_thread_intx(int irq, void *dev_id)
+{
+ struct kvm_assigned_dev_kernel *assigned_dev = dev_id;
+
+ if (!(assigned_dev->flags & KVM_DEV_ASSIGN_PCI_2_3)) {
+ spin_lock_irq(&assigned_dev->intx_lock);
+ disable_irq_nosync(irq);
+ assigned_dev->host_irq_disabled = true;
+ spin_unlock_irq(&assigned_dev->intx_lock);
+ }
+
+ kvm_assigned_dev_raise_guest_irq(assigned_dev,
+ assigned_dev->guest_irq);
+
+ return IRQ_HANDLED;
+}
+
+#ifdef __KVM_HAVE_MSI
+static irqreturn_t kvm_assigned_dev_msi(int irq, void *dev_id)
+{
+ struct kvm_assigned_dev_kernel *assigned_dev = dev_id;
+ int ret = kvm_set_irq_inatomic(assigned_dev->kvm,
+ assigned_dev->irq_source_id,
+ assigned_dev->guest_irq, 1);
+ return unlikely(ret == -EWOULDBLOCK) ? IRQ_WAKE_THREAD : IRQ_HANDLED;
+}
+
+static irqreturn_t kvm_assigned_dev_thread_msi(int irq, void *dev_id)
+{
+ struct kvm_assigned_dev_kernel *assigned_dev = dev_id;
+
+ kvm_assigned_dev_raise_guest_irq(assigned_dev,
+ assigned_dev->guest_irq);
+
+ return IRQ_HANDLED;
+}
+#endif
+
+#ifdef __KVM_HAVE_MSIX
+static irqreturn_t kvm_assigned_dev_msix(int irq, void *dev_id)
+{
+ struct kvm_assigned_dev_kernel *assigned_dev = dev_id;
+ int index = find_index_from_host_irq(assigned_dev, irq);
+ u32 vector;
+ int ret = 0;
+
+ if (index >= 0) {
+ vector = assigned_dev->guest_msix_entries[index].vector;
+ ret = kvm_set_irq_inatomic(assigned_dev->kvm,
+ assigned_dev->irq_source_id,
+ vector, 1);
+ }
+
+ return unlikely(ret == -EWOULDBLOCK) ? IRQ_WAKE_THREAD : IRQ_HANDLED;
+}
+
+static irqreturn_t kvm_assigned_dev_thread_msix(int irq, void *dev_id)
+{
+ struct kvm_assigned_dev_kernel *assigned_dev = dev_id;
+ int index = find_index_from_host_irq(assigned_dev, irq);
+ u32 vector;
+
+ if (index >= 0) {
+ vector = assigned_dev->guest_msix_entries[index].vector;
+ kvm_assigned_dev_raise_guest_irq(assigned_dev, vector);
+ }
+
+ return IRQ_HANDLED;
+}
+#endif
+
+/* Ack the irq line for an assigned device */
+static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
+{
+ struct kvm_assigned_dev_kernel *dev =
+ container_of(kian, struct kvm_assigned_dev_kernel,
+ ack_notifier);
+
+ kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0, false);
+
+ spin_lock(&dev->intx_mask_lock);
+
+ if (!(dev->flags & KVM_DEV_ASSIGN_MASK_INTX)) {
+ bool reassert = false;
+
+ spin_lock_irq(&dev->intx_lock);
+ /*
+ * The guest IRQ may be shared so this ack can come from an
+ * IRQ for another guest device.
+ */
+ if (dev->host_irq_disabled) {
+ if (!(dev->flags & KVM_DEV_ASSIGN_PCI_2_3))
+ enable_irq(dev->host_irq);
+ else if (!pci_check_and_unmask_intx(dev->dev))
+ reassert = true;
+ dev->host_irq_disabled = reassert;
+ }
+ spin_unlock_irq(&dev->intx_lock);
+
+ if (reassert)
+ kvm_set_irq(dev->kvm, dev->irq_source_id,
+ dev->guest_irq, 1, false);
+ }
+
+ spin_unlock(&dev->intx_mask_lock);
+}
+
+static void deassign_guest_irq(struct kvm *kvm,
+ struct kvm_assigned_dev_kernel *assigned_dev)
+{
+ if (assigned_dev->ack_notifier.gsi != -1)
+ kvm_unregister_irq_ack_notifier(kvm,
+ &assigned_dev->ack_notifier);
+
+ kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
+ assigned_dev->guest_irq, 0, false);
+
+ if (assigned_dev->irq_source_id != -1)
+ kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
+ assigned_dev->irq_source_id = -1;
+ assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK);
+}
+
+/* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
+static void deassign_host_irq(struct kvm *kvm,
+ struct kvm_assigned_dev_kernel *assigned_dev)
+{
+ /*
+ * We disable irq here to prevent further events.
+ *
+ * Notice this maybe result in nested disable if the interrupt type is
+ * INTx, but it's OK for we are going to free it.
+ *
+ * If this function is a part of VM destroy, please ensure that till
+ * now, the kvm state is still legal for probably we also have to wait
+ * on a currently running IRQ handler.
+ */
+ if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
+ int i;
+ for (i = 0; i < assigned_dev->entries_nr; i++)
+ disable_irq(assigned_dev->host_msix_entries[i].vector);
+
+ for (i = 0; i < assigned_dev->entries_nr; i++)
+ free_irq(assigned_dev->host_msix_entries[i].vector,
+ assigned_dev);
+
+ assigned_dev->entries_nr = 0;
+ kfree(assigned_dev->host_msix_entries);
+ kfree(assigned_dev->guest_msix_entries);
+ pci_disable_msix(assigned_dev->dev);
+ } else {
+ /* Deal with MSI and INTx */
+ if ((assigned_dev->irq_requested_type &
+ KVM_DEV_IRQ_HOST_INTX) &&
+ (assigned_dev->flags & KVM_DEV_ASSIGN_PCI_2_3)) {
+ spin_lock_irq(&assigned_dev->intx_lock);
+ pci_intx(assigned_dev->dev, false);
+ spin_unlock_irq(&assigned_dev->intx_lock);
+ synchronize_irq(assigned_dev->host_irq);
+ } else
+ disable_irq(assigned_dev->host_irq);
+
+ free_irq(assigned_dev->host_irq, assigned_dev);
+
+ if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI)
+ pci_disable_msi(assigned_dev->dev);
+ }
+
+ assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK);
+}
+
+static int kvm_deassign_irq(struct kvm *kvm,
+ struct kvm_assigned_dev_kernel *assigned_dev,
+ unsigned long irq_requested_type)
+{
+ unsigned long guest_irq_type, host_irq_type;
+
+ if (!irqchip_in_kernel(kvm))
+ return -EINVAL;
+ /* no irq assignment to deassign */
+ if (!assigned_dev->irq_requested_type)
+ return -ENXIO;
+
+ host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK;
+ guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK;
+
+ if (host_irq_type)
+ deassign_host_irq(kvm, assigned_dev);
+ if (guest_irq_type)
+ deassign_guest_irq(kvm, assigned_dev);
+
+ return 0;
+}
+
+static void kvm_free_assigned_irq(struct kvm *kvm,
+ struct kvm_assigned_dev_kernel *assigned_dev)
+{
+ kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type);
+}
+
+static void kvm_free_assigned_device(struct kvm *kvm,
+ struct kvm_assigned_dev_kernel
+ *assigned_dev)
+{
+ kvm_free_assigned_irq(kvm, assigned_dev);
+
+ pci_reset_function(assigned_dev->dev);
+ if (pci_load_and_free_saved_state(assigned_dev->dev,
+ &assigned_dev->pci_saved_state))
+ printk(KERN_INFO "%s: Couldn't reload %s saved state\n",
+ __func__, dev_name(&assigned_dev->dev->dev));
+ else
+ pci_restore_state(assigned_dev->dev);
+
+ pci_clear_dev_assigned(assigned_dev->dev);
+
+ pci_release_regions(assigned_dev->dev);
+ pci_disable_device(assigned_dev->dev);
+ pci_dev_put(assigned_dev->dev);
+
+ list_del(&assigned_dev->list);
+ kfree(assigned_dev);
+}
+
+void kvm_free_all_assigned_devices(struct kvm *kvm)
+{
+ struct list_head *ptr, *ptr2;
+ struct kvm_assigned_dev_kernel *assigned_dev;
+
+ list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
+ assigned_dev = list_entry(ptr,
+ struct kvm_assigned_dev_kernel,
+ list);
+
+ kvm_free_assigned_device(kvm, assigned_dev);
+ }
+}
+
+static int assigned_device_enable_host_intx(struct kvm *kvm,
+ struct kvm_assigned_dev_kernel *dev)
+{
+ irq_handler_t irq_handler;
+ unsigned long flags;
+
+ dev->host_irq = dev->dev->irq;
+
+ /*
+ * We can only share the IRQ line with other host devices if we are
+ * able to disable the IRQ source at device-level - independently of
+ * the guest driver. Otherwise host devices may suffer from unbounded
+ * IRQ latencies when the guest keeps the line asserted.
+ */
+ if (dev->flags & KVM_DEV_ASSIGN_PCI_2_3) {
+ irq_handler = kvm_assigned_dev_intx;
+ flags = IRQF_SHARED;
+ } else {
+ irq_handler = NULL;
+ flags = IRQF_ONESHOT;
+ }
+ if (request_threaded_irq(dev->host_irq, irq_handler,
+ kvm_assigned_dev_thread_intx, flags,
+ dev->irq_name, dev))
+ return -EIO;
+
+ if (dev->flags & KVM_DEV_ASSIGN_PCI_2_3) {
+ spin_lock_irq(&dev->intx_lock);
+ pci_intx(dev->dev, true);
+ spin_unlock_irq(&dev->intx_lock);
+ }
+ return 0;
+}
+
+#ifdef __KVM_HAVE_MSI
+static int assigned_device_enable_host_msi(struct kvm *kvm,
+ struct kvm_assigned_dev_kernel *dev)
+{
+ int r;
+
+ if (!dev->dev->msi_enabled) {
+ r = pci_enable_msi(dev->dev);
+ if (r)
+ return r;
+ }
+
+ dev->host_irq = dev->dev->irq;
+ if (request_threaded_irq(dev->host_irq, kvm_assigned_dev_msi,
+ kvm_assigned_dev_thread_msi, 0,
+ dev->irq_name, dev)) {
+ pci_disable_msi(dev->dev);
+ return -EIO;
+ }
+
+ return 0;
+}
+#endif
+
+#ifdef __KVM_HAVE_MSIX
+static int assigned_device_enable_host_msix(struct kvm *kvm,
+ struct kvm_assigned_dev_kernel *dev)
+{
+ int i, r = -EINVAL;
+
+ /* host_msix_entries and guest_msix_entries should have been
+ * initialized */
+ if (dev->entries_nr == 0)
+ return r;
+
+ r = pci_enable_msix_exact(dev->dev,
+ dev->host_msix_entries, dev->entries_nr);
+ if (r)
+ return r;
+
+ for (i = 0; i < dev->entries_nr; i++) {
+ r = request_threaded_irq(dev->host_msix_entries[i].vector,
+ kvm_assigned_dev_msix,
+ kvm_assigned_dev_thread_msix,
+ 0, dev->irq_name, dev);
+ if (r)
+ goto err;
+ }
+
+ return 0;
+err:
+ for (i -= 1; i >= 0; i--)
+ free_irq(dev->host_msix_entries[i].vector, dev);
+ pci_disable_msix(dev->dev);
+ return r;
+}
+
+#endif
+
+static int assigned_device_enable_guest_intx(struct kvm *kvm,
+ struct kvm_assigned_dev_kernel *dev,
+ struct kvm_assigned_irq *irq)
+{
+ dev->guest_irq = irq->guest_irq;
+ dev->ack_notifier.gsi = irq->guest_irq;
+ return 0;
+}
+
+#ifdef __KVM_HAVE_MSI
+static int assigned_device_enable_guest_msi(struct kvm *kvm,
+ struct kvm_assigned_dev_kernel *dev,
+ struct kvm_assigned_irq *irq)
+{
+ dev->guest_irq = irq->guest_irq;
+ dev->ack_notifier.gsi = -1;
+ return 0;
+}
+#endif
+
+#ifdef __KVM_HAVE_MSIX
+static int assigned_device_enable_guest_msix(struct kvm *kvm,
+ struct kvm_assigned_dev_kernel *dev,
+ struct kvm_assigned_irq *irq)
+{
+ dev->guest_irq = irq->guest_irq;
+ dev->ack_notifier.gsi = -1;
+ return 0;
+}
+#endif
+
+static int assign_host_irq(struct kvm *kvm,
+ struct kvm_assigned_dev_kernel *dev,
+ __u32 host_irq_type)
+{
+ int r = -EEXIST;
+
+ if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK)
+ return r;
+
+ snprintf(dev->irq_name, sizeof(dev->irq_name), "kvm:%s",
+ pci_name(dev->dev));
+
+ switch (host_irq_type) {
+ case KVM_DEV_IRQ_HOST_INTX:
+ r = assigned_device_enable_host_intx(kvm, dev);
+ break;
+#ifdef __KVM_HAVE_MSI
+ case KVM_DEV_IRQ_HOST_MSI:
+ r = assigned_device_enable_host_msi(kvm, dev);
+ break;
+#endif
+#ifdef __KVM_HAVE_MSIX
+ case KVM_DEV_IRQ_HOST_MSIX:
+ r = assigned_device_enable_host_msix(kvm, dev);
+ break;
+#endif
+ default:
+ r = -EINVAL;
+ }
+ dev->host_irq_disabled = false;
+
+ if (!r)
+ dev->irq_requested_type |= host_irq_type;
+
+ return r;
+}
+
+static int assign_guest_irq(struct kvm *kvm,
+ struct kvm_assigned_dev_kernel *dev,
+ struct kvm_assigned_irq *irq,
+ unsigned long guest_irq_type)
+{
+ int id;
+ int r = -EEXIST;
+
+ if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK)
+ return r;
+
+ id = kvm_request_irq_source_id(kvm);
+ if (id < 0)
+ return id;
+
+ dev->irq_source_id = id;
+
+ switch (guest_irq_type) {
+ case KVM_DEV_IRQ_GUEST_INTX:
+ r = assigned_device_enable_guest_intx(kvm, dev, irq);
+ break;
+#ifdef __KVM_HAVE_MSI
+ case KVM_DEV_IRQ_GUEST_MSI:
+ r = assigned_device_enable_guest_msi(kvm, dev, irq);
+ break;
+#endif
+#ifdef __KVM_HAVE_MSIX
+ case KVM_DEV_IRQ_GUEST_MSIX:
+ r = assigned_device_enable_guest_msix(kvm, dev, irq);
+ break;
+#endif
+ default:
+ r = -EINVAL;
+ }
+
+ if (!r) {
+ dev->irq_requested_type |= guest_irq_type;
+ if (dev->ack_notifier.gsi != -1)
+ kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier);
+ } else {
+ kvm_free_irq_source_id(kvm, dev->irq_source_id);
+ dev->irq_source_id = -1;
+ }
+
+ return r;
+}
+
+/* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */
+static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
+ struct kvm_assigned_irq *assigned_irq)
+{
+ int r = -EINVAL;
+ struct kvm_assigned_dev_kernel *match;
+ unsigned long host_irq_type, guest_irq_type;
+
+ if (!irqchip_in_kernel(kvm))
+ return r;
+
+ mutex_lock(&kvm->lock);
+ r = -ENODEV;
+ match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
+ assigned_irq->assigned_dev_id);
+ if (!match)
+ goto out;
+
+ host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK);
+ guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK);
+
+ r = -EINVAL;
+ /* can only assign one type at a time */
+ if (hweight_long(host_irq_type) > 1)
+ goto out;
+ if (hweight_long(guest_irq_type) > 1)
+ goto out;
+ if (host_irq_type == 0 && guest_irq_type == 0)
+ goto out;
+
+ r = 0;
+ if (host_irq_type)
+ r = assign_host_irq(kvm, match, host_irq_type);
+ if (r)
+ goto out;
+
+ if (guest_irq_type)
+ r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type);
+out:
+ mutex_unlock(&kvm->lock);
+ return r;
+}
+
+static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm,
+ struct kvm_assigned_irq
+ *assigned_irq)
+{
+ int r = -ENODEV;
+ struct kvm_assigned_dev_kernel *match;
+ unsigned long irq_type;
+
+ mutex_lock(&kvm->lock);
+
+ match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
+ assigned_irq->assigned_dev_id);
+ if (!match)
+ goto out;
+
+ irq_type = assigned_irq->flags & (KVM_DEV_IRQ_HOST_MASK |
+ KVM_DEV_IRQ_GUEST_MASK);
+ r = kvm_deassign_irq(kvm, match, irq_type);
+out:
+ mutex_unlock(&kvm->lock);
+ return r;
+}
+
+/*
+ * We want to test whether the caller has been granted permissions to
+ * use this device. To be able to configure and control the device,
+ * the user needs access to PCI configuration space and BAR resources.
+ * These are accessed through PCI sysfs. PCI config space is often
+ * passed to the process calling this ioctl via file descriptor, so we
+ * can't rely on access to that file. We can check for permissions
+ * on each of the BAR resource files, which is a pretty clear
+ * indicator that the user has been granted access to the device.
+ */
+static int probe_sysfs_permissions(struct pci_dev *dev)
+{
+#ifdef CONFIG_SYSFS
+ int i;
+ bool bar_found = false;
+
+ for (i = PCI_STD_RESOURCES; i <= PCI_STD_RESOURCE_END; i++) {
+ char *kpath, *syspath;
+ struct path path;
+ struct inode *inode;
+ int r;
+
+ if (!pci_resource_len(dev, i))
+ continue;
+
+ kpath = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
+ if (!kpath)
+ return -ENOMEM;
+
+ /* Per sysfs-rules, sysfs is always at /sys */
+ syspath = kasprintf(GFP_KERNEL, "/sys%s/resource%d", kpath, i);
+ kfree(kpath);
+ if (!syspath)
+ return -ENOMEM;
+
+ r = kern_path(syspath, LOOKUP_FOLLOW, &path);
+ kfree(syspath);
+ if (r)
+ return r;
+
+ inode = d_backing_inode(path.dentry);
+
+ r = inode_permission(inode, MAY_READ | MAY_WRITE | MAY_ACCESS);
+ path_put(&path);
+ if (r)
+ return r;
+
+ bar_found = true;
+ }
+
+ /* If no resources, probably something special */
+ if (!bar_found)
+ return -EPERM;
+
+ return 0;
+#else
+ return -EINVAL; /* No way to control the device without sysfs */
+#endif
+}
+
+static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
+ struct kvm_assigned_pci_dev *assigned_dev)
+{
+ int r = 0, idx;
+ struct kvm_assigned_dev_kernel *match;
+ struct pci_dev *dev;
+
+ if (!(assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU))
+ return -EINVAL;
+
+ mutex_lock(&kvm->lock);
+ idx = srcu_read_lock(&kvm->srcu);
+
+ match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
+ assigned_dev->assigned_dev_id);
+ if (match) {
+ /* device already assigned */
+ r = -EEXIST;
+ goto out;
+ }
+
+ match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
+ if (match == NULL) {
+ printk(KERN_INFO "%s: Couldn't allocate memory\n",
+ __func__);
+ r = -ENOMEM;
+ goto out;
+ }
+ dev = pci_get_domain_bus_and_slot(assigned_dev->segnr,
+ assigned_dev->busnr,
+ assigned_dev->devfn);
+ if (!dev) {
+ printk(KERN_INFO "%s: host device not found\n", __func__);
+ r = -EINVAL;
+ goto out_free;
+ }
+
+ /* Don't allow bridges to be assigned */
+ if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL) {
+ r = -EPERM;
+ goto out_put;
+ }
+
+ r = probe_sysfs_permissions(dev);
+ if (r)
+ goto out_put;
+
+ if (pci_enable_device(dev)) {
+ printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
+ r = -EBUSY;
+ goto out_put;
+ }
+ r = pci_request_regions(dev, "kvm_assigned_device");
+ if (r) {
+ printk(KERN_INFO "%s: Could not get access to device regions\n",
+ __func__);
+ goto out_disable;
+ }
+
+ pci_reset_function(dev);
+ pci_save_state(dev);
+ match->pci_saved_state = pci_store_saved_state(dev);
+ if (!match->pci_saved_state)
+ printk(KERN_DEBUG "%s: Couldn't store %s saved state\n",
+ __func__, dev_name(&dev->dev));
+
+ if (!pci_intx_mask_supported(dev))
+ assigned_dev->flags &= ~KVM_DEV_ASSIGN_PCI_2_3;
+
+ match->assigned_dev_id = assigned_dev->assigned_dev_id;
+ match->host_segnr = assigned_dev->segnr;
+ match->host_busnr = assigned_dev->busnr;
+ match->host_devfn = assigned_dev->devfn;
+ match->flags = assigned_dev->flags;
+ match->dev = dev;
+ spin_lock_init(&match->intx_lock);
+ spin_lock_init(&match->intx_mask_lock);
+ match->irq_source_id = -1;
+ match->kvm = kvm;
+ match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
+
+ list_add(&match->list, &kvm->arch.assigned_dev_head);
+
+ if (!kvm->arch.iommu_domain) {
+ r = kvm_iommu_map_guest(kvm);
+ if (r)
+ goto out_list_del;
+ }
+ r = kvm_assign_device(kvm, match->dev);
+ if (r)
+ goto out_list_del;
+
+out:
+ srcu_read_unlock(&kvm->srcu, idx);
+ mutex_unlock(&kvm->lock);
+ return r;
+out_list_del:
+ if (pci_load_and_free_saved_state(dev, &match->pci_saved_state))
+ printk(KERN_INFO "%s: Couldn't reload %s saved state\n",
+ __func__, dev_name(&dev->dev));
+ list_del(&match->list);
+ pci_release_regions(dev);
+out_disable:
+ pci_disable_device(dev);
+out_put:
+ pci_dev_put(dev);
+out_free:
+ kfree(match);
+ srcu_read_unlock(&kvm->srcu, idx);
+ mutex_unlock(&kvm->lock);
+ return r;
+}
+
+static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
+ struct kvm_assigned_pci_dev *assigned_dev)
+{
+ int r = 0;
+ struct kvm_assigned_dev_kernel *match;
+
+ mutex_lock(&kvm->lock);
+
+ match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
+ assigned_dev->assigned_dev_id);
+ if (!match) {
+ printk(KERN_INFO "%s: device hasn't been assigned before, "
+ "so cannot be deassigned\n", __func__);
+ r = -EINVAL;
+ goto out;
+ }
+
+ kvm_deassign_device(kvm, match->dev);
+
+ kvm_free_assigned_device(kvm, match);
+
+out:
+ mutex_unlock(&kvm->lock);
+ return r;
+}
+
+
+#ifdef __KVM_HAVE_MSIX
+static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
+ struct kvm_assigned_msix_nr *entry_nr)
+{
+ int r = 0;
+ struct kvm_assigned_dev_kernel *adev;
+
+ mutex_lock(&kvm->lock);
+
+ adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
+ entry_nr->assigned_dev_id);
+ if (!adev) {
+ r = -EINVAL;
+ goto msix_nr_out;
+ }
+
+ if (adev->entries_nr == 0) {
+ adev->entries_nr = entry_nr->entry_nr;
+ if (adev->entries_nr == 0 ||
+ adev->entries_nr > KVM_MAX_MSIX_PER_DEV) {
+ r = -EINVAL;
+ goto msix_nr_out;
+ }
+
+ adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
+ entry_nr->entry_nr,
+ GFP_KERNEL);
+ if (!adev->host_msix_entries) {
+ r = -ENOMEM;
+ goto msix_nr_out;
+ }
+ adev->guest_msix_entries =
+ kzalloc(sizeof(struct msix_entry) * entry_nr->entry_nr,
+ GFP_KERNEL);
+ if (!adev->guest_msix_entries) {
+ kfree(adev->host_msix_entries);
+ r = -ENOMEM;
+ goto msix_nr_out;
+ }
+ } else /* Not allowed set MSI-X number twice */
+ r = -EINVAL;
+msix_nr_out:
+ mutex_unlock(&kvm->lock);
+ return r;
+}
+
+static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
+ struct kvm_assigned_msix_entry *entry)
+{
+ int r = 0, i;
+ struct kvm_assigned_dev_kernel *adev;
+
+ mutex_lock(&kvm->lock);
+
+ adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
+ entry->assigned_dev_id);
+
+ if (!adev) {
+ r = -EINVAL;
+ goto msix_entry_out;
+ }
+
+ for (i = 0; i < adev->entries_nr; i++)
+ if (adev->guest_msix_entries[i].vector == 0 ||
+ adev->guest_msix_entries[i].entry == entry->entry) {
+ adev->guest_msix_entries[i].entry = entry->entry;
+ adev->guest_msix_entries[i].vector = entry->gsi;
+ adev->host_msix_entries[i].entry = entry->entry;
+ break;
+ }
+ if (i == adev->entries_nr) {
+ r = -ENOSPC;
+ goto msix_entry_out;
+ }
+
+msix_entry_out:
+ mutex_unlock(&kvm->lock);
+
+ return r;
+}
+#endif
+
+static int kvm_vm_ioctl_set_pci_irq_mask(struct kvm *kvm,
+ struct kvm_assigned_pci_dev *assigned_dev)
+{
+ int r = 0;
+ struct kvm_assigned_dev_kernel *match;
+
+ mutex_lock(&kvm->lock);
+
+ match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
+ assigned_dev->assigned_dev_id);
+ if (!match) {
+ r = -ENODEV;
+ goto out;
+ }
+
+ spin_lock(&match->intx_mask_lock);
+
+ match->flags &= ~KVM_DEV_ASSIGN_MASK_INTX;
+ match->flags |= assigned_dev->flags & KVM_DEV_ASSIGN_MASK_INTX;
+
+ if (match->irq_requested_type & KVM_DEV_IRQ_GUEST_INTX) {
+ if (assigned_dev->flags & KVM_DEV_ASSIGN_MASK_INTX) {
+ kvm_set_irq(match->kvm, match->irq_source_id,
+ match->guest_irq, 0, false);
+ /*
+ * Masking at hardware-level is performed on demand,
+ * i.e. when an IRQ actually arrives at the host.
+ */
+ } else if (!(assigned_dev->flags & KVM_DEV_ASSIGN_PCI_2_3)) {
+ /*
+ * Unmask the IRQ line if required. Unmasking at
+ * device level will be performed by user space.
+ */
+ spin_lock_irq(&match->intx_lock);
+ if (match->host_irq_disabled) {
+ enable_irq(match->host_irq);
+ match->host_irq_disabled = false;
+ }
+ spin_unlock_irq(&match->intx_lock);
+ }
+ }
+
+ spin_unlock(&match->intx_mask_lock);
+
+out:
+ mutex_unlock(&kvm->lock);
+ return r;
+}
+
+long kvm_vm_ioctl_assigned_device(struct kvm *kvm, unsigned ioctl,
+ unsigned long arg)
+{
+ void __user *argp = (void __user *)arg;
+ int r;
+
+ switch (ioctl) {
+ case KVM_ASSIGN_PCI_DEVICE: {
+ struct kvm_assigned_pci_dev assigned_dev;
+
+ r = -EFAULT;
+ if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
+ goto out;
+ r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
+ if (r)
+ goto out;
+ break;
+ }
+ case KVM_ASSIGN_IRQ: {
+ r = -EOPNOTSUPP;
+ break;
+ }
+ case KVM_ASSIGN_DEV_IRQ: {
+ struct kvm_assigned_irq assigned_irq;
+
+ r = -EFAULT;
+ if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
+ goto out;
+ r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
+ if (r)
+ goto out;
+ break;
+ }
+ case KVM_DEASSIGN_DEV_IRQ: {
+ struct kvm_assigned_irq assigned_irq;
+
+ r = -EFAULT;
+ if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
+ goto out;
+ r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq);
+ if (r)
+ goto out;
+ break;
+ }
+ case KVM_DEASSIGN_PCI_DEVICE: {
+ struct kvm_assigned_pci_dev assigned_dev;
+
+ r = -EFAULT;
+ if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
+ goto out;
+ r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
+ if (r)
+ goto out;
+ break;
+ }
+#ifdef __KVM_HAVE_MSIX
+ case KVM_ASSIGN_SET_MSIX_NR: {
+ struct kvm_assigned_msix_nr entry_nr;
+ r = -EFAULT;
+ if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
+ goto out;
+ r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
+ if (r)
+ goto out;
+ break;
+ }
+ case KVM_ASSIGN_SET_MSIX_ENTRY: {
+ struct kvm_assigned_msix_entry entry;
+ r = -EFAULT;
+ if (copy_from_user(&entry, argp, sizeof entry))
+ goto out;
+ r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
+ if (r)
+ goto out;
+ break;
+ }
+#endif
+ case KVM_ASSIGN_SET_INTX_MASK: {
+ struct kvm_assigned_pci_dev assigned_dev;
+
+ r = -EFAULT;
+ if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
+ goto out;
+ r = kvm_vm_ioctl_set_pci_irq_mask(kvm, &assigned_dev);
+ break;
+ }
+ default:
+ r = -ENOTTY;
+ break;
+ }
+out:
+ return r;
+}
diff --git a/kernel/arch/x86/kvm/assigned-dev.h b/kernel/arch/x86/kvm/assigned-dev.h
new file mode 100644
index 000000000..a428c1a21
--- /dev/null
+++ b/kernel/arch/x86/kvm/assigned-dev.h
@@ -0,0 +1,32 @@
+#ifndef ARCH_X86_KVM_ASSIGNED_DEV_H
+#define ARCH_X86_KVM_ASSIGNED_DEV_H
+
+#include <linux/kvm_host.h>
+
+#ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
+int kvm_assign_device(struct kvm *kvm, struct pci_dev *pdev);
+int kvm_deassign_device(struct kvm *kvm, struct pci_dev *pdev);
+
+int kvm_iommu_map_guest(struct kvm *kvm);
+int kvm_iommu_unmap_guest(struct kvm *kvm);
+
+long kvm_vm_ioctl_assigned_device(struct kvm *kvm, unsigned ioctl,
+ unsigned long arg);
+
+void kvm_free_all_assigned_devices(struct kvm *kvm);
+#else
+static inline int kvm_iommu_unmap_guest(struct kvm *kvm)
+{
+ return 0;
+}
+
+static inline long kvm_vm_ioctl_assigned_device(struct kvm *kvm, unsigned ioctl,
+ unsigned long arg)
+{
+ return -ENOTTY;
+}
+
+static inline void kvm_free_all_assigned_devices(struct kvm *kvm) {}
+#endif /* CONFIG_KVM_DEVICE_ASSIGNMENT */
+
+#endif /* ARCH_X86_KVM_ASSIGNED_DEV_H */
diff --git a/kernel/arch/x86/kvm/cpuid.c b/kernel/arch/x86/kvm/cpuid.c
new file mode 100644
index 000000000..1d08ad358
--- /dev/null
+++ b/kernel/arch/x86/kvm/cpuid.c
@@ -0,0 +1,843 @@
+/*
+ * Kernel-based Virtual Machine driver for Linux
+ * cpuid support routines
+ *
+ * derived from arch/x86/kvm/x86.c
+ *
+ * Copyright 2011 Red Hat, Inc. and/or its affiliates.
+ * Copyright IBM Corporation, 2008
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2. See
+ * the COPYING file in the top-level directory.
+ *
+ */
+
+#include <linux/kvm_host.h>
+#include <linux/module.h>
+#include <linux/vmalloc.h>
+#include <linux/uaccess.h>
+#include <asm/i387.h> /* For use_eager_fpu. Ugh! */
+#include <asm/fpu-internal.h> /* For use_eager_fpu. Ugh! */
+#include <asm/user.h>
+#include <asm/xsave.h>
+#include "cpuid.h"
+#include "lapic.h"
+#include "mmu.h"
+#include "trace.h"
+
+static u32 xstate_required_size(u64 xstate_bv, bool compacted)
+{
+ int feature_bit = 0;
+ u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
+
+ xstate_bv &= XSTATE_EXTEND_MASK;
+ while (xstate_bv) {
+ if (xstate_bv & 0x1) {
+ u32 eax, ebx, ecx, edx, offset;
+ cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
+ offset = compacted ? ret : ebx;
+ ret = max(ret, offset + eax);
+ }
+
+ xstate_bv >>= 1;
+ feature_bit++;
+ }
+
+ return ret;
+}
+
+u64 kvm_supported_xcr0(void)
+{
+ u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
+
+ if (!kvm_x86_ops->mpx_supported())
+ xcr0 &= ~(XSTATE_BNDREGS | XSTATE_BNDCSR);
+
+ return xcr0;
+}
+
+#define F(x) bit(X86_FEATURE_##x)
+
+int kvm_update_cpuid(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpuid_entry2 *best;
+ struct kvm_lapic *apic = vcpu->arch.apic;
+
+ best = kvm_find_cpuid_entry(vcpu, 1, 0);
+ if (!best)
+ return 0;
+
+ /* Update OSXSAVE bit */
+ if (cpu_has_xsave && best->function == 0x1) {
+ best->ecx &= ~F(OSXSAVE);
+ if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
+ best->ecx |= F(OSXSAVE);
+ }
+
+ if (apic) {
+ if (best->ecx & F(TSC_DEADLINE_TIMER))
+ apic->lapic_timer.timer_mode_mask = 3 << 17;
+ else
+ apic->lapic_timer.timer_mode_mask = 1 << 17;
+ }
+
+ best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
+ if (!best) {
+ vcpu->arch.guest_supported_xcr0 = 0;
+ vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
+ } else {
+ vcpu->arch.guest_supported_xcr0 =
+ (best->eax | ((u64)best->edx << 32)) &
+ kvm_supported_xcr0();
+ vcpu->arch.guest_xstate_size = best->ebx =
+ xstate_required_size(vcpu->arch.xcr0, false);
+ }
+
+ best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
+ if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
+ best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
+
+ vcpu->arch.eager_fpu = guest_cpuid_has_mpx(vcpu);
+
+ /*
+ * The existing code assumes virtual address is 48-bit in the canonical
+ * address checks; exit if it is ever changed.
+ */
+ best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
+ if (best && ((best->eax & 0xff00) >> 8) != 48 &&
+ ((best->eax & 0xff00) >> 8) != 0)
+ return -EINVAL;
+
+ /* Update physical-address width */
+ vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
+
+ kvm_pmu_cpuid_update(vcpu);
+ return 0;
+}
+
+static int is_efer_nx(void)
+{
+ unsigned long long efer = 0;
+
+ rdmsrl_safe(MSR_EFER, &efer);
+ return efer & EFER_NX;
+}
+
+static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
+{
+ int i;
+ struct kvm_cpuid_entry2 *e, *entry;
+
+ entry = NULL;
+ for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
+ e = &vcpu->arch.cpuid_entries[i];
+ if (e->function == 0x80000001) {
+ entry = e;
+ break;
+ }
+ }
+ if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
+ entry->edx &= ~F(NX);
+ printk(KERN_INFO "kvm: guest NX capability removed\n");
+ }
+}
+
+int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpuid_entry2 *best;
+
+ best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
+ if (!best || best->eax < 0x80000008)
+ goto not_found;
+ best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
+ if (best)
+ return best->eax & 0xff;
+not_found:
+ return 36;
+}
+EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
+
+/* when an old userspace process fills a new kernel module */
+int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
+ struct kvm_cpuid *cpuid,
+ struct kvm_cpuid_entry __user *entries)
+{
+ int r, i;
+ struct kvm_cpuid_entry *cpuid_entries;
+
+ r = -E2BIG;
+ if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
+ goto out;
+ r = -ENOMEM;
+ cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
+ if (!cpuid_entries)
+ goto out;
+ r = -EFAULT;
+ if (copy_from_user(cpuid_entries, entries,
+ cpuid->nent * sizeof(struct kvm_cpuid_entry)))
+ goto out_free;
+ for (i = 0; i < cpuid->nent; i++) {
+ vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
+ vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
+ vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
+ vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
+ vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
+ vcpu->arch.cpuid_entries[i].index = 0;
+ vcpu->arch.cpuid_entries[i].flags = 0;
+ vcpu->arch.cpuid_entries[i].padding[0] = 0;
+ vcpu->arch.cpuid_entries[i].padding[1] = 0;
+ vcpu->arch.cpuid_entries[i].padding[2] = 0;
+ }
+ vcpu->arch.cpuid_nent = cpuid->nent;
+ cpuid_fix_nx_cap(vcpu);
+ kvm_apic_set_version(vcpu);
+ kvm_x86_ops->cpuid_update(vcpu);
+ r = kvm_update_cpuid(vcpu);
+
+out_free:
+ vfree(cpuid_entries);
+out:
+ return r;
+}
+
+int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
+ struct kvm_cpuid2 *cpuid,
+ struct kvm_cpuid_entry2 __user *entries)
+{
+ int r;
+
+ r = -E2BIG;
+ if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
+ goto out;
+ r = -EFAULT;
+ if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
+ cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
+ goto out;
+ vcpu->arch.cpuid_nent = cpuid->nent;
+ kvm_apic_set_version(vcpu);
+ kvm_x86_ops->cpuid_update(vcpu);
+ r = kvm_update_cpuid(vcpu);
+out:
+ return r;
+}
+
+int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
+ struct kvm_cpuid2 *cpuid,
+ struct kvm_cpuid_entry2 __user *entries)
+{
+ int r;
+
+ r = -E2BIG;
+ if (cpuid->nent < vcpu->arch.cpuid_nent)
+ goto out;
+ r = -EFAULT;
+ if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
+ vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
+ goto out;
+ return 0;
+
+out:
+ cpuid->nent = vcpu->arch.cpuid_nent;
+ return r;
+}
+
+static void cpuid_mask(u32 *word, int wordnum)
+{
+ *word &= boot_cpu_data.x86_capability[wordnum];
+}
+
+static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
+ u32 index)
+{
+ entry->function = function;
+ entry->index = index;
+ cpuid_count(entry->function, entry->index,
+ &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
+ entry->flags = 0;
+}
+
+static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
+ u32 func, u32 index, int *nent, int maxnent)
+{
+ switch (func) {
+ case 0:
+ entry->eax = 1; /* only one leaf currently */
+ ++*nent;
+ break;
+ case 1:
+ entry->ecx = F(MOVBE);
+ ++*nent;
+ break;
+ default:
+ break;
+ }
+
+ entry->function = func;
+ entry->index = index;
+
+ return 0;
+}
+
+static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
+ u32 index, int *nent, int maxnent)
+{
+ int r;
+ unsigned f_nx = is_efer_nx() ? F(NX) : 0;
+#ifdef CONFIG_X86_64
+ unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
+ ? F(GBPAGES) : 0;
+ unsigned f_lm = F(LM);
+#else
+ unsigned f_gbpages = 0;
+ unsigned f_lm = 0;
+#endif
+ unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
+ unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
+ unsigned f_mpx = kvm_x86_ops->mpx_supported() ? F(MPX) : 0;
+ unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
+
+ /* cpuid 1.edx */
+ const u32 kvm_supported_word0_x86_features =
+ F(FPU) | F(VME) | F(DE) | F(PSE) |
+ F(TSC) | F(MSR) | F(PAE) | F(MCE) |
+ F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
+ F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
+ F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
+ 0 /* Reserved, DS, ACPI */ | F(MMX) |
+ F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
+ 0 /* HTT, TM, Reserved, PBE */;
+ /* cpuid 0x80000001.edx */
+ const u32 kvm_supported_word1_x86_features =
+ F(FPU) | F(VME) | F(DE) | F(PSE) |
+ F(TSC) | F(MSR) | F(PAE) | F(MCE) |
+ F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
+ F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
+ F(PAT) | F(PSE36) | 0 /* Reserved */ |
+ f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
+ F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
+ 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
+ /* cpuid 1.ecx */
+ const u32 kvm_supported_word4_x86_features =
+ /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
+ * but *not* advertised to guests via CPUID ! */
+ F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
+ 0 /* DS-CPL, VMX, SMX, EST */ |
+ 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
+ F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
+ F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
+ F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
+ 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
+ F(F16C) | F(RDRAND);
+ /* cpuid 0x80000001.ecx */
+ const u32 kvm_supported_word6_x86_features =
+ F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
+ F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
+ F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
+ 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
+
+ /* cpuid 0xC0000001.edx */
+ const u32 kvm_supported_word5_x86_features =
+ F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
+ F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
+ F(PMM) | F(PMM_EN);
+
+ /* cpuid 7.0.ebx */
+ const u32 kvm_supported_word9_x86_features =
+ F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
+ F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
+ F(ADX) | F(SMAP) | F(AVX512F) | F(AVX512PF) | F(AVX512ER) |
+ F(AVX512CD);
+
+ /* cpuid 0xD.1.eax */
+ const u32 kvm_supported_word10_x86_features =
+ F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
+
+ /* all calls to cpuid_count() should be made on the same cpu */
+ get_cpu();
+
+ r = -E2BIG;
+
+ if (*nent >= maxnent)
+ goto out;
+
+ do_cpuid_1_ent(entry, function, index);
+ ++*nent;
+
+ switch (function) {
+ case 0:
+ entry->eax = min(entry->eax, (u32)0xd);
+ break;
+ case 1:
+ entry->edx &= kvm_supported_word0_x86_features;
+ cpuid_mask(&entry->edx, 0);
+ entry->ecx &= kvm_supported_word4_x86_features;
+ cpuid_mask(&entry->ecx, 4);
+ /* we support x2apic emulation even if host does not support
+ * it since we emulate x2apic in software */
+ entry->ecx |= F(X2APIC);
+ break;
+ /* function 2 entries are STATEFUL. That is, repeated cpuid commands
+ * may return different values. This forces us to get_cpu() before
+ * issuing the first command, and also to emulate this annoying behavior
+ * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
+ case 2: {
+ int t, times = entry->eax & 0xff;
+
+ entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
+ entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
+ for (t = 1; t < times; ++t) {
+ if (*nent >= maxnent)
+ goto out;
+
+ do_cpuid_1_ent(&entry[t], function, 0);
+ entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
+ ++*nent;
+ }
+ break;
+ }
+ /* function 4 has additional index. */
+ case 4: {
+ int i, cache_type;
+
+ entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
+ /* read more entries until cache_type is zero */
+ for (i = 1; ; ++i) {
+ if (*nent >= maxnent)
+ goto out;
+
+ cache_type = entry[i - 1].eax & 0x1f;
+ if (!cache_type)
+ break;
+ do_cpuid_1_ent(&entry[i], function, i);
+ entry[i].flags |=
+ KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
+ ++*nent;
+ }
+ break;
+ }
+ case 7: {
+ entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
+ /* Mask ebx against host capability word 9 */
+ if (index == 0) {
+ entry->ebx &= kvm_supported_word9_x86_features;
+ cpuid_mask(&entry->ebx, 9);
+ // TSC_ADJUST is emulated
+ entry->ebx |= F(TSC_ADJUST);
+ } else
+ entry->ebx = 0;
+ entry->eax = 0;
+ entry->ecx = 0;
+ entry->edx = 0;
+ break;
+ }
+ case 9:
+ break;
+ case 0xa: { /* Architectural Performance Monitoring */
+ struct x86_pmu_capability cap;
+ union cpuid10_eax eax;
+ union cpuid10_edx edx;
+
+ perf_get_x86_pmu_capability(&cap);
+
+ /*
+ * Only support guest architectural pmu on a host
+ * with architectural pmu.
+ */
+ if (!cap.version)
+ memset(&cap, 0, sizeof(cap));
+
+ eax.split.version_id = min(cap.version, 2);
+ eax.split.num_counters = cap.num_counters_gp;
+ eax.split.bit_width = cap.bit_width_gp;
+ eax.split.mask_length = cap.events_mask_len;
+
+ edx.split.num_counters_fixed = cap.num_counters_fixed;
+ edx.split.bit_width_fixed = cap.bit_width_fixed;
+ edx.split.reserved = 0;
+
+ entry->eax = eax.full;
+ entry->ebx = cap.events_mask;
+ entry->ecx = 0;
+ entry->edx = edx.full;
+ break;
+ }
+ /* function 0xb has additional index. */
+ case 0xb: {
+ int i, level_type;
+
+ entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
+ /* read more entries until level_type is zero */
+ for (i = 1; ; ++i) {
+ if (*nent >= maxnent)
+ goto out;
+
+ level_type = entry[i - 1].ecx & 0xff00;
+ if (!level_type)
+ break;
+ do_cpuid_1_ent(&entry[i], function, i);
+ entry[i].flags |=
+ KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
+ ++*nent;
+ }
+ break;
+ }
+ case 0xd: {
+ int idx, i;
+ u64 supported = kvm_supported_xcr0();
+
+ entry->eax &= supported;
+ entry->ebx = xstate_required_size(supported, false);
+ entry->ecx = entry->ebx;
+ entry->edx &= supported >> 32;
+ entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
+ if (!supported)
+ break;
+
+ for (idx = 1, i = 1; idx < 64; ++idx) {
+ u64 mask = ((u64)1 << idx);
+ if (*nent >= maxnent)
+ goto out;
+
+ do_cpuid_1_ent(&entry[i], function, idx);
+ if (idx == 1) {
+ entry[i].eax &= kvm_supported_word10_x86_features;
+ entry[i].ebx = 0;
+ if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
+ entry[i].ebx =
+ xstate_required_size(supported,
+ true);
+ } else {
+ if (entry[i].eax == 0 || !(supported & mask))
+ continue;
+ if (WARN_ON_ONCE(entry[i].ecx & 1))
+ continue;
+ }
+ entry[i].ecx = 0;
+ entry[i].edx = 0;
+ entry[i].flags |=
+ KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
+ ++*nent;
+ ++i;
+ }
+ break;
+ }
+ case KVM_CPUID_SIGNATURE: {
+ static const char signature[12] = "KVMKVMKVM\0\0";
+ const u32 *sigptr = (const u32 *)signature;
+ entry->eax = KVM_CPUID_FEATURES;
+ entry->ebx = sigptr[0];
+ entry->ecx = sigptr[1];
+ entry->edx = sigptr[2];
+ break;
+ }
+ case KVM_CPUID_FEATURES:
+ entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
+ (1 << KVM_FEATURE_NOP_IO_DELAY) |
+ (1 << KVM_FEATURE_CLOCKSOURCE2) |
+ (1 << KVM_FEATURE_ASYNC_PF) |
+ (1 << KVM_FEATURE_PV_EOI) |
+ (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
+ (1 << KVM_FEATURE_PV_UNHALT);
+
+ if (sched_info_on())
+ entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
+
+ entry->ebx = 0;
+ entry->ecx = 0;
+ entry->edx = 0;
+ break;
+ case 0x80000000:
+ entry->eax = min(entry->eax, 0x8000001a);
+ break;
+ case 0x80000001:
+ entry->edx &= kvm_supported_word1_x86_features;
+ cpuid_mask(&entry->edx, 1);
+ entry->ecx &= kvm_supported_word6_x86_features;
+ cpuid_mask(&entry->ecx, 6);
+ break;
+ case 0x80000007: /* Advanced power management */
+ /* invariant TSC is CPUID.80000007H:EDX[8] */
+ entry->edx &= (1 << 8);
+ /* mask against host */
+ entry->edx &= boot_cpu_data.x86_power;
+ entry->eax = entry->ebx = entry->ecx = 0;
+ break;
+ case 0x80000008: {
+ unsigned g_phys_as = (entry->eax >> 16) & 0xff;
+ unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
+ unsigned phys_as = entry->eax & 0xff;
+
+ if (!g_phys_as)
+ g_phys_as = phys_as;
+ entry->eax = g_phys_as | (virt_as << 8);
+ entry->ebx = entry->edx = 0;
+ break;
+ }
+ case 0x80000019:
+ entry->ecx = entry->edx = 0;
+ break;
+ case 0x8000001a:
+ break;
+ case 0x8000001d:
+ break;
+ /*Add support for Centaur's CPUID instruction*/
+ case 0xC0000000:
+ /*Just support up to 0xC0000004 now*/
+ entry->eax = min(entry->eax, 0xC0000004);
+ break;
+ case 0xC0000001:
+ entry->edx &= kvm_supported_word5_x86_features;
+ cpuid_mask(&entry->edx, 5);
+ break;
+ case 3: /* Processor serial number */
+ case 5: /* MONITOR/MWAIT */
+ case 6: /* Thermal management */
+ case 0xC0000002:
+ case 0xC0000003:
+ case 0xC0000004:
+ default:
+ entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
+ break;
+ }
+
+ kvm_x86_ops->set_supported_cpuid(function, entry);
+
+ r = 0;
+
+out:
+ put_cpu();
+
+ return r;
+}
+
+static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
+ u32 idx, int *nent, int maxnent, unsigned int type)
+{
+ if (type == KVM_GET_EMULATED_CPUID)
+ return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
+
+ return __do_cpuid_ent(entry, func, idx, nent, maxnent);
+}
+
+#undef F
+
+struct kvm_cpuid_param {
+ u32 func;
+ u32 idx;
+ bool has_leaf_count;
+ bool (*qualifier)(const struct kvm_cpuid_param *param);
+};
+
+static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
+{
+ return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
+}
+
+static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
+ __u32 num_entries, unsigned int ioctl_type)
+{
+ int i;
+ __u32 pad[3];
+
+ if (ioctl_type != KVM_GET_EMULATED_CPUID)
+ return false;
+
+ /*
+ * We want to make sure that ->padding is being passed clean from
+ * userspace in case we want to use it for something in the future.
+ *
+ * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
+ * have to give ourselves satisfied only with the emulated side. /me
+ * sheds a tear.
+ */
+ for (i = 0; i < num_entries; i++) {
+ if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
+ return true;
+
+ if (pad[0] || pad[1] || pad[2])
+ return true;
+ }
+ return false;
+}
+
+int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
+ struct kvm_cpuid_entry2 __user *entries,
+ unsigned int type)
+{
+ struct kvm_cpuid_entry2 *cpuid_entries;
+ int limit, nent = 0, r = -E2BIG, i;
+ u32 func;
+ static const struct kvm_cpuid_param param[] = {
+ { .func = 0, .has_leaf_count = true },
+ { .func = 0x80000000, .has_leaf_count = true },
+ { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
+ { .func = KVM_CPUID_SIGNATURE },
+ { .func = KVM_CPUID_FEATURES },
+ };
+
+ if (cpuid->nent < 1)
+ goto out;
+ if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
+ cpuid->nent = KVM_MAX_CPUID_ENTRIES;
+
+ if (sanity_check_entries(entries, cpuid->nent, type))
+ return -EINVAL;
+
+ r = -ENOMEM;
+ cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
+ if (!cpuid_entries)
+ goto out;
+
+ r = 0;
+ for (i = 0; i < ARRAY_SIZE(param); i++) {
+ const struct kvm_cpuid_param *ent = &param[i];
+
+ if (ent->qualifier && !ent->qualifier(ent))
+ continue;
+
+ r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
+ &nent, cpuid->nent, type);
+
+ if (r)
+ goto out_free;
+
+ if (!ent->has_leaf_count)
+ continue;
+
+ limit = cpuid_entries[nent - 1].eax;
+ for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
+ r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
+ &nent, cpuid->nent, type);
+
+ if (r)
+ goto out_free;
+ }
+
+ r = -EFAULT;
+ if (copy_to_user(entries, cpuid_entries,
+ nent * sizeof(struct kvm_cpuid_entry2)))
+ goto out_free;
+ cpuid->nent = nent;
+ r = 0;
+
+out_free:
+ vfree(cpuid_entries);
+out:
+ return r;
+}
+
+static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
+{
+ struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
+ int j, nent = vcpu->arch.cpuid_nent;
+
+ e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
+ /* when no next entry is found, the current entry[i] is reselected */
+ for (j = i + 1; ; j = (j + 1) % nent) {
+ struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
+ if (ej->function == e->function) {
+ ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
+ return j;
+ }
+ }
+ return 0; /* silence gcc, even though control never reaches here */
+}
+
+/* find an entry with matching function, matching index (if needed), and that
+ * should be read next (if it's stateful) */
+static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
+ u32 function, u32 index)
+{
+ if (e->function != function)
+ return 0;
+ if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
+ return 0;
+ if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
+ !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
+ return 0;
+ return 1;
+}
+
+struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
+ u32 function, u32 index)
+{
+ int i;
+ struct kvm_cpuid_entry2 *best = NULL;
+
+ for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
+ struct kvm_cpuid_entry2 *e;
+
+ e = &vcpu->arch.cpuid_entries[i];
+ if (is_matching_cpuid_entry(e, function, index)) {
+ if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
+ move_to_next_stateful_cpuid_entry(vcpu, i);
+ best = e;
+ break;
+ }
+ }
+ return best;
+}
+EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
+
+/*
+ * If no match is found, check whether we exceed the vCPU's limit
+ * and return the content of the highest valid _standard_ leaf instead.
+ * This is to satisfy the CPUID specification.
+ */
+static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
+ u32 function, u32 index)
+{
+ struct kvm_cpuid_entry2 *maxlevel;
+
+ maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
+ if (!maxlevel || maxlevel->eax >= function)
+ return NULL;
+ if (function & 0x80000000) {
+ maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
+ if (!maxlevel)
+ return NULL;
+ }
+ return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
+}
+
+void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
+{
+ u32 function = *eax, index = *ecx;
+ struct kvm_cpuid_entry2 *best;
+
+ best = kvm_find_cpuid_entry(vcpu, function, index);
+
+ if (!best)
+ best = check_cpuid_limit(vcpu, function, index);
+
+ /*
+ * Perfmon not yet supported for L2 guest.
+ */
+ if (is_guest_mode(vcpu) && function == 0xa)
+ best = NULL;
+
+ if (best) {
+ *eax = best->eax;
+ *ebx = best->ebx;
+ *ecx = best->ecx;
+ *edx = best->edx;
+ } else
+ *eax = *ebx = *ecx = *edx = 0;
+ trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx);
+}
+EXPORT_SYMBOL_GPL(kvm_cpuid);
+
+void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
+{
+ u32 function, eax, ebx, ecx, edx;
+
+ function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
+ ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
+ kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
+ kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
+ kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
+ kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
+ kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
+ kvm_x86_ops->skip_emulated_instruction(vcpu);
+}
+EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
diff --git a/kernel/arch/x86/kvm/cpuid.h b/kernel/arch/x86/kvm/cpuid.h
new file mode 100644
index 000000000..496b3695d
--- /dev/null
+++ b/kernel/arch/x86/kvm/cpuid.h
@@ -0,0 +1,128 @@
+#ifndef ARCH_X86_KVM_CPUID_H
+#define ARCH_X86_KVM_CPUID_H
+
+#include "x86.h"
+
+int kvm_update_cpuid(struct kvm_vcpu *vcpu);
+struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
+ u32 function, u32 index);
+int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
+ struct kvm_cpuid_entry2 __user *entries,
+ unsigned int type);
+int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
+ struct kvm_cpuid *cpuid,
+ struct kvm_cpuid_entry __user *entries);
+int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
+ struct kvm_cpuid2 *cpuid,
+ struct kvm_cpuid_entry2 __user *entries);
+int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
+ struct kvm_cpuid2 *cpuid,
+ struct kvm_cpuid_entry2 __user *entries);
+void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx);
+
+int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu);
+
+static inline int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
+{
+ return vcpu->arch.maxphyaddr;
+}
+
+static inline bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpuid_entry2 *best;
+
+ if (!static_cpu_has(X86_FEATURE_XSAVE))
+ return false;
+
+ best = kvm_find_cpuid_entry(vcpu, 1, 0);
+ return best && (best->ecx & bit(X86_FEATURE_XSAVE));
+}
+
+static inline bool guest_cpuid_has_tsc_adjust(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpuid_entry2 *best;
+
+ best = kvm_find_cpuid_entry(vcpu, 7, 0);
+ return best && (best->ebx & bit(X86_FEATURE_TSC_ADJUST));
+}
+
+static inline bool guest_cpuid_has_smep(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpuid_entry2 *best;
+
+ best = kvm_find_cpuid_entry(vcpu, 7, 0);
+ return best && (best->ebx & bit(X86_FEATURE_SMEP));
+}
+
+static inline bool guest_cpuid_has_smap(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpuid_entry2 *best;
+
+ best = kvm_find_cpuid_entry(vcpu, 7, 0);
+ return best && (best->ebx & bit(X86_FEATURE_SMAP));
+}
+
+static inline bool guest_cpuid_has_fsgsbase(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpuid_entry2 *best;
+
+ best = kvm_find_cpuid_entry(vcpu, 7, 0);
+ return best && (best->ebx & bit(X86_FEATURE_FSGSBASE));
+}
+
+static inline bool guest_cpuid_has_osvw(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpuid_entry2 *best;
+
+ best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
+ return best && (best->ecx & bit(X86_FEATURE_OSVW));
+}
+
+static inline bool guest_cpuid_has_pcid(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpuid_entry2 *best;
+
+ best = kvm_find_cpuid_entry(vcpu, 1, 0);
+ return best && (best->ecx & bit(X86_FEATURE_PCID));
+}
+
+static inline bool guest_cpuid_has_x2apic(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpuid_entry2 *best;
+
+ best = kvm_find_cpuid_entry(vcpu, 1, 0);
+ return best && (best->ecx & bit(X86_FEATURE_X2APIC));
+}
+
+static inline bool guest_cpuid_is_amd(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpuid_entry2 *best;
+
+ best = kvm_find_cpuid_entry(vcpu, 0, 0);
+ return best && best->ebx == X86EMUL_CPUID_VENDOR_AuthenticAMD_ebx;
+}
+
+static inline bool guest_cpuid_has_gbpages(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpuid_entry2 *best;
+
+ best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
+ return best && (best->edx & bit(X86_FEATURE_GBPAGES));
+}
+
+static inline bool guest_cpuid_has_rtm(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpuid_entry2 *best;
+
+ best = kvm_find_cpuid_entry(vcpu, 7, 0);
+ return best && (best->ebx & bit(X86_FEATURE_RTM));
+}
+
+static inline bool guest_cpuid_has_mpx(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpuid_entry2 *best;
+
+ best = kvm_find_cpuid_entry(vcpu, 7, 0);
+ return best && (best->ebx & bit(X86_FEATURE_MPX));
+}
+#endif
diff --git a/kernel/arch/x86/kvm/emulate.c b/kernel/arch/x86/kvm/emulate.c
new file mode 100644
index 000000000..630bcb0d7
--- /dev/null
+++ b/kernel/arch/x86/kvm/emulate.c
@@ -0,0 +1,5181 @@
+/******************************************************************************
+ * emulate.c
+ *
+ * Generic x86 (32-bit and 64-bit) instruction decoder and emulator.
+ *
+ * Copyright (c) 2005 Keir Fraser
+ *
+ * Linux coding style, mod r/m decoder, segment base fixes, real-mode
+ * privileged instructions:
+ *
+ * Copyright (C) 2006 Qumranet
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
+ *
+ * Avi Kivity <avi@qumranet.com>
+ * Yaniv Kamay <yaniv@qumranet.com>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2. See
+ * the COPYING file in the top-level directory.
+ *
+ * From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4
+ */
+
+#include <linux/kvm_host.h>
+#include "kvm_cache_regs.h"
+#include <linux/module.h>
+#include <asm/kvm_emulate.h>
+#include <linux/stringify.h>
+
+#include "x86.h"
+#include "tss.h"
+
+/*
+ * Operand types
+ */
+#define OpNone 0ull
+#define OpImplicit 1ull /* No generic decode */
+#define OpReg 2ull /* Register */
+#define OpMem 3ull /* Memory */
+#define OpAcc 4ull /* Accumulator: AL/AX/EAX/RAX */
+#define OpDI 5ull /* ES:DI/EDI/RDI */
+#define OpMem64 6ull /* Memory, 64-bit */
+#define OpImmUByte 7ull /* Zero-extended 8-bit immediate */
+#define OpDX 8ull /* DX register */
+#define OpCL 9ull /* CL register (for shifts) */
+#define OpImmByte 10ull /* 8-bit sign extended immediate */
+#define OpOne 11ull /* Implied 1 */
+#define OpImm 12ull /* Sign extended up to 32-bit immediate */
+#define OpMem16 13ull /* Memory operand (16-bit). */
+#define OpMem32 14ull /* Memory operand (32-bit). */
+#define OpImmU 15ull /* Immediate operand, zero extended */
+#define OpSI 16ull /* SI/ESI/RSI */
+#define OpImmFAddr 17ull /* Immediate far address */
+#define OpMemFAddr 18ull /* Far address in memory */
+#define OpImmU16 19ull /* Immediate operand, 16 bits, zero extended */
+#define OpES 20ull /* ES */
+#define OpCS 21ull /* CS */
+#define OpSS 22ull /* SS */
+#define OpDS 23ull /* DS */
+#define OpFS 24ull /* FS */
+#define OpGS 25ull /* GS */
+#define OpMem8 26ull /* 8-bit zero extended memory operand */
+#define OpImm64 27ull /* Sign extended 16/32/64-bit immediate */
+#define OpXLat 28ull /* memory at BX/EBX/RBX + zero-extended AL */
+#define OpAccLo 29ull /* Low part of extended acc (AX/AX/EAX/RAX) */
+#define OpAccHi 30ull /* High part of extended acc (-/DX/EDX/RDX) */
+
+#define OpBits 5 /* Width of operand field */
+#define OpMask ((1ull << OpBits) - 1)
+
+/*
+ * Opcode effective-address decode tables.
+ * Note that we only emulate instructions that have at least one memory
+ * operand (excluding implicit stack references). We assume that stack
+ * references and instruction fetches will never occur in special memory
+ * areas that require emulation. So, for example, 'mov <imm>,<reg>' need
+ * not be handled.
+ */
+
+/* Operand sizes: 8-bit operands or specified/overridden size. */
+#define ByteOp (1<<0) /* 8-bit operands. */
+/* Destination operand type. */
+#define DstShift 1
+#define ImplicitOps (OpImplicit << DstShift)
+#define DstReg (OpReg << DstShift)
+#define DstMem (OpMem << DstShift)
+#define DstAcc (OpAcc << DstShift)
+#define DstDI (OpDI << DstShift)
+#define DstMem64 (OpMem64 << DstShift)
+#define DstMem16 (OpMem16 << DstShift)
+#define DstImmUByte (OpImmUByte << DstShift)
+#define DstDX (OpDX << DstShift)
+#define DstAccLo (OpAccLo << DstShift)
+#define DstMask (OpMask << DstShift)
+/* Source operand type. */
+#define SrcShift 6
+#define SrcNone (OpNone << SrcShift)
+#define SrcReg (OpReg << SrcShift)
+#define SrcMem (OpMem << SrcShift)
+#define SrcMem16 (OpMem16 << SrcShift)
+#define SrcMem32 (OpMem32 << SrcShift)
+#define SrcImm (OpImm << SrcShift)
+#define SrcImmByte (OpImmByte << SrcShift)
+#define SrcOne (OpOne << SrcShift)
+#define SrcImmUByte (OpImmUByte << SrcShift)
+#define SrcImmU (OpImmU << SrcShift)
+#define SrcSI (OpSI << SrcShift)
+#define SrcXLat (OpXLat << SrcShift)
+#define SrcImmFAddr (OpImmFAddr << SrcShift)
+#define SrcMemFAddr (OpMemFAddr << SrcShift)
+#define SrcAcc (OpAcc << SrcShift)
+#define SrcImmU16 (OpImmU16 << SrcShift)
+#define SrcImm64 (OpImm64 << SrcShift)
+#define SrcDX (OpDX << SrcShift)
+#define SrcMem8 (OpMem8 << SrcShift)
+#define SrcAccHi (OpAccHi << SrcShift)
+#define SrcMask (OpMask << SrcShift)
+#define BitOp (1<<11)
+#define MemAbs (1<<12) /* Memory operand is absolute displacement */
+#define String (1<<13) /* String instruction (rep capable) */
+#define Stack (1<<14) /* Stack instruction (push/pop) */
+#define GroupMask (7<<15) /* Opcode uses one of the group mechanisms */
+#define Group (1<<15) /* Bits 3:5 of modrm byte extend opcode */
+#define GroupDual (2<<15) /* Alternate decoding of mod == 3 */
+#define Prefix (3<<15) /* Instruction varies with 66/f2/f3 prefix */
+#define RMExt (4<<15) /* Opcode extension in ModRM r/m if mod == 3 */
+#define Escape (5<<15) /* Escape to coprocessor instruction */
+#define InstrDual (6<<15) /* Alternate instruction decoding of mod == 3 */
+#define ModeDual (7<<15) /* Different instruction for 32/64 bit */
+#define Sse (1<<18) /* SSE Vector instruction */
+/* Generic ModRM decode. */
+#define ModRM (1<<19)
+/* Destination is only written; never read. */
+#define Mov (1<<20)
+/* Misc flags */
+#define Prot (1<<21) /* instruction generates #UD if not in prot-mode */
+#define EmulateOnUD (1<<22) /* Emulate if unsupported by the host */
+#define NoAccess (1<<23) /* Don't access memory (lea/invlpg/verr etc) */
+#define Op3264 (1<<24) /* Operand is 64b in long mode, 32b otherwise */
+#define Undefined (1<<25) /* No Such Instruction */
+#define Lock (1<<26) /* lock prefix is allowed for the instruction */
+#define Priv (1<<27) /* instruction generates #GP if current CPL != 0 */
+#define No64 (1<<28)
+#define PageTable (1 << 29) /* instruction used to write page table */
+#define NotImpl (1 << 30) /* instruction is not implemented */
+/* Source 2 operand type */
+#define Src2Shift (31)
+#define Src2None (OpNone << Src2Shift)
+#define Src2Mem (OpMem << Src2Shift)
+#define Src2CL (OpCL << Src2Shift)
+#define Src2ImmByte (OpImmByte << Src2Shift)
+#define Src2One (OpOne << Src2Shift)
+#define Src2Imm (OpImm << Src2Shift)
+#define Src2ES (OpES << Src2Shift)
+#define Src2CS (OpCS << Src2Shift)
+#define Src2SS (OpSS << Src2Shift)
+#define Src2DS (OpDS << Src2Shift)
+#define Src2FS (OpFS << Src2Shift)
+#define Src2GS (OpGS << Src2Shift)
+#define Src2Mask (OpMask << Src2Shift)
+#define Mmx ((u64)1 << 40) /* MMX Vector instruction */
+#define Aligned ((u64)1 << 41) /* Explicitly aligned (e.g. MOVDQA) */
+#define Unaligned ((u64)1 << 42) /* Explicitly unaligned (e.g. MOVDQU) */
+#define Avx ((u64)1 << 43) /* Advanced Vector Extensions */
+#define Fastop ((u64)1 << 44) /* Use opcode::u.fastop */
+#define NoWrite ((u64)1 << 45) /* No writeback */
+#define SrcWrite ((u64)1 << 46) /* Write back src operand */
+#define NoMod ((u64)1 << 47) /* Mod field is ignored */
+#define Intercept ((u64)1 << 48) /* Has valid intercept field */
+#define CheckPerm ((u64)1 << 49) /* Has valid check_perm field */
+#define PrivUD ((u64)1 << 51) /* #UD instead of #GP on CPL > 0 */
+#define NearBranch ((u64)1 << 52) /* Near branches */
+#define No16 ((u64)1 << 53) /* No 16 bit operand */
+#define IncSP ((u64)1 << 54) /* SP is incremented before ModRM calc */
+
+#define DstXacc (DstAccLo | SrcAccHi | SrcWrite)
+
+#define X2(x...) x, x
+#define X3(x...) X2(x), x
+#define X4(x...) X2(x), X2(x)
+#define X5(x...) X4(x), x
+#define X6(x...) X4(x), X2(x)
+#define X7(x...) X4(x), X3(x)
+#define X8(x...) X4(x), X4(x)
+#define X16(x...) X8(x), X8(x)
+
+#define NR_FASTOP (ilog2(sizeof(ulong)) + 1)
+#define FASTOP_SIZE 8
+
+/*
+ * fastop functions have a special calling convention:
+ *
+ * dst: rax (in/out)
+ * src: rdx (in/out)
+ * src2: rcx (in)
+ * flags: rflags (in/out)
+ * ex: rsi (in:fastop pointer, out:zero if exception)
+ *
+ * Moreover, they are all exactly FASTOP_SIZE bytes long, so functions for
+ * different operand sizes can be reached by calculation, rather than a jump
+ * table (which would be bigger than the code).
+ *
+ * fastop functions are declared as taking a never-defined fastop parameter,
+ * so they can't be called from C directly.
+ */
+
+struct fastop;
+
+struct opcode {
+ u64 flags : 56;
+ u64 intercept : 8;
+ union {
+ int (*execute)(struct x86_emulate_ctxt *ctxt);
+ const struct opcode *group;
+ const struct group_dual *gdual;
+ const struct gprefix *gprefix;
+ const struct escape *esc;
+ const struct instr_dual *idual;
+ const struct mode_dual *mdual;
+ void (*fastop)(struct fastop *fake);
+ } u;
+ int (*check_perm)(struct x86_emulate_ctxt *ctxt);
+};
+
+struct group_dual {
+ struct opcode mod012[8];
+ struct opcode mod3[8];
+};
+
+struct gprefix {
+ struct opcode pfx_no;
+ struct opcode pfx_66;
+ struct opcode pfx_f2;
+ struct opcode pfx_f3;
+};
+
+struct escape {
+ struct opcode op[8];
+ struct opcode high[64];
+};
+
+struct instr_dual {
+ struct opcode mod012;
+ struct opcode mod3;
+};
+
+struct mode_dual {
+ struct opcode mode32;
+ struct opcode mode64;
+};
+
+#define EFLG_RESERVED_ZEROS_MASK 0xffc0802a
+
+enum x86_transfer_type {
+ X86_TRANSFER_NONE,
+ X86_TRANSFER_CALL_JMP,
+ X86_TRANSFER_RET,
+ X86_TRANSFER_TASK_SWITCH,
+};
+
+static ulong reg_read(struct x86_emulate_ctxt *ctxt, unsigned nr)
+{
+ if (!(ctxt->regs_valid & (1 << nr))) {
+ ctxt->regs_valid |= 1 << nr;
+ ctxt->_regs[nr] = ctxt->ops->read_gpr(ctxt, nr);
+ }
+ return ctxt->_regs[nr];
+}
+
+static ulong *reg_write(struct x86_emulate_ctxt *ctxt, unsigned nr)
+{
+ ctxt->regs_valid |= 1 << nr;
+ ctxt->regs_dirty |= 1 << nr;
+ return &ctxt->_regs[nr];
+}
+
+static ulong *reg_rmw(struct x86_emulate_ctxt *ctxt, unsigned nr)
+{
+ reg_read(ctxt, nr);
+ return reg_write(ctxt, nr);
+}
+
+static void writeback_registers(struct x86_emulate_ctxt *ctxt)
+{
+ unsigned reg;
+
+ for_each_set_bit(reg, (ulong *)&ctxt->regs_dirty, 16)
+ ctxt->ops->write_gpr(ctxt, reg, ctxt->_regs[reg]);
+}
+
+static void invalidate_registers(struct x86_emulate_ctxt *ctxt)
+{
+ ctxt->regs_dirty = 0;
+ ctxt->regs_valid = 0;
+}
+
+/*
+ * These EFLAGS bits are restored from saved value during emulation, and
+ * any changes are written back to the saved value after emulation.
+ */
+#define EFLAGS_MASK (X86_EFLAGS_OF|X86_EFLAGS_SF|X86_EFLAGS_ZF|X86_EFLAGS_AF|\
+ X86_EFLAGS_PF|X86_EFLAGS_CF)
+
+#ifdef CONFIG_X86_64
+#define ON64(x) x
+#else
+#define ON64(x)
+#endif
+
+static int fastop(struct x86_emulate_ctxt *ctxt, void (*fop)(struct fastop *));
+
+#define FOP_ALIGN ".align " __stringify(FASTOP_SIZE) " \n\t"
+#define FOP_RET "ret \n\t"
+
+#define FOP_START(op) \
+ extern void em_##op(struct fastop *fake); \
+ asm(".pushsection .text, \"ax\" \n\t" \
+ ".global em_" #op " \n\t" \
+ FOP_ALIGN \
+ "em_" #op ": \n\t"
+
+#define FOP_END \
+ ".popsection")
+
+#define FOPNOP() FOP_ALIGN FOP_RET
+
+#define FOP1E(op, dst) \
+ FOP_ALIGN "10: " #op " %" #dst " \n\t" FOP_RET
+
+#define FOP1EEX(op, dst) \
+ FOP1E(op, dst) _ASM_EXTABLE(10b, kvm_fastop_exception)
+
+#define FASTOP1(op) \
+ FOP_START(op) \
+ FOP1E(op##b, al) \
+ FOP1E(op##w, ax) \
+ FOP1E(op##l, eax) \
+ ON64(FOP1E(op##q, rax)) \
+ FOP_END
+
+/* 1-operand, using src2 (for MUL/DIV r/m) */
+#define FASTOP1SRC2(op, name) \
+ FOP_START(name) \
+ FOP1E(op, cl) \
+ FOP1E(op, cx) \
+ FOP1E(op, ecx) \
+ ON64(FOP1E(op, rcx)) \
+ FOP_END
+
+/* 1-operand, using src2 (for MUL/DIV r/m), with exceptions */
+#define FASTOP1SRC2EX(op, name) \
+ FOP_START(name) \
+ FOP1EEX(op, cl) \
+ FOP1EEX(op, cx) \
+ FOP1EEX(op, ecx) \
+ ON64(FOP1EEX(op, rcx)) \
+ FOP_END
+
+#define FOP2E(op, dst, src) \
+ FOP_ALIGN #op " %" #src ", %" #dst " \n\t" FOP_RET
+
+#define FASTOP2(op) \
+ FOP_START(op) \
+ FOP2E(op##b, al, dl) \
+ FOP2E(op##w, ax, dx) \
+ FOP2E(op##l, eax, edx) \
+ ON64(FOP2E(op##q, rax, rdx)) \
+ FOP_END
+
+/* 2 operand, word only */
+#define FASTOP2W(op) \
+ FOP_START(op) \
+ FOPNOP() \
+ FOP2E(op##w, ax, dx) \
+ FOP2E(op##l, eax, edx) \
+ ON64(FOP2E(op##q, rax, rdx)) \
+ FOP_END
+
+/* 2 operand, src is CL */
+#define FASTOP2CL(op) \
+ FOP_START(op) \
+ FOP2E(op##b, al, cl) \
+ FOP2E(op##w, ax, cl) \
+ FOP2E(op##l, eax, cl) \
+ ON64(FOP2E(op##q, rax, cl)) \
+ FOP_END
+
+/* 2 operand, src and dest are reversed */
+#define FASTOP2R(op, name) \
+ FOP_START(name) \
+ FOP2E(op##b, dl, al) \
+ FOP2E(op##w, dx, ax) \
+ FOP2E(op##l, edx, eax) \
+ ON64(FOP2E(op##q, rdx, rax)) \
+ FOP_END
+
+#define FOP3E(op, dst, src, src2) \
+ FOP_ALIGN #op " %" #src2 ", %" #src ", %" #dst " \n\t" FOP_RET
+
+/* 3-operand, word-only, src2=cl */
+#define FASTOP3WCL(op) \
+ FOP_START(op) \
+ FOPNOP() \
+ FOP3E(op##w, ax, dx, cl) \
+ FOP3E(op##l, eax, edx, cl) \
+ ON64(FOP3E(op##q, rax, rdx, cl)) \
+ FOP_END
+
+/* Special case for SETcc - 1 instruction per cc */
+#define FOP_SETCC(op) ".align 4; " #op " %al; ret \n\t"
+
+asm(".global kvm_fastop_exception \n"
+ "kvm_fastop_exception: xor %esi, %esi; ret");
+
+FOP_START(setcc)
+FOP_SETCC(seto)
+FOP_SETCC(setno)
+FOP_SETCC(setc)
+FOP_SETCC(setnc)
+FOP_SETCC(setz)
+FOP_SETCC(setnz)
+FOP_SETCC(setbe)
+FOP_SETCC(setnbe)
+FOP_SETCC(sets)
+FOP_SETCC(setns)
+FOP_SETCC(setp)
+FOP_SETCC(setnp)
+FOP_SETCC(setl)
+FOP_SETCC(setnl)
+FOP_SETCC(setle)
+FOP_SETCC(setnle)
+FOP_END;
+
+FOP_START(salc) "pushf; sbb %al, %al; popf \n\t" FOP_RET
+FOP_END;
+
+static int emulator_check_intercept(struct x86_emulate_ctxt *ctxt,
+ enum x86_intercept intercept,
+ enum x86_intercept_stage stage)
+{
+ struct x86_instruction_info info = {
+ .intercept = intercept,
+ .rep_prefix = ctxt->rep_prefix,
+ .modrm_mod = ctxt->modrm_mod,
+ .modrm_reg = ctxt->modrm_reg,
+ .modrm_rm = ctxt->modrm_rm,
+ .src_val = ctxt->src.val64,
+ .dst_val = ctxt->dst.val64,
+ .src_bytes = ctxt->src.bytes,
+ .dst_bytes = ctxt->dst.bytes,
+ .ad_bytes = ctxt->ad_bytes,
+ .next_rip = ctxt->eip,
+ };
+
+ return ctxt->ops->intercept(ctxt, &info, stage);
+}
+
+static void assign_masked(ulong *dest, ulong src, ulong mask)
+{
+ *dest = (*dest & ~mask) | (src & mask);
+}
+
+static void assign_register(unsigned long *reg, u64 val, int bytes)
+{
+ /* The 4-byte case *is* correct: in 64-bit mode we zero-extend. */
+ switch (bytes) {
+ case 1:
+ *(u8 *)reg = (u8)val;
+ break;
+ case 2:
+ *(u16 *)reg = (u16)val;
+ break;
+ case 4:
+ *reg = (u32)val;
+ break; /* 64b: zero-extend */
+ case 8:
+ *reg = val;
+ break;
+ }
+}
+
+static inline unsigned long ad_mask(struct x86_emulate_ctxt *ctxt)
+{
+ return (1UL << (ctxt->ad_bytes << 3)) - 1;
+}
+
+static ulong stack_mask(struct x86_emulate_ctxt *ctxt)
+{
+ u16 sel;
+ struct desc_struct ss;
+
+ if (ctxt->mode == X86EMUL_MODE_PROT64)
+ return ~0UL;
+ ctxt->ops->get_segment(ctxt, &sel, &ss, NULL, VCPU_SREG_SS);
+ return ~0U >> ((ss.d ^ 1) * 16); /* d=0: 0xffff; d=1: 0xffffffff */
+}
+
+static int stack_size(struct x86_emulate_ctxt *ctxt)
+{
+ return (__fls(stack_mask(ctxt)) + 1) >> 3;
+}
+
+/* Access/update address held in a register, based on addressing mode. */
+static inline unsigned long
+address_mask(struct x86_emulate_ctxt *ctxt, unsigned long reg)
+{
+ if (ctxt->ad_bytes == sizeof(unsigned long))
+ return reg;
+ else
+ return reg & ad_mask(ctxt);
+}
+
+static inline unsigned long
+register_address(struct x86_emulate_ctxt *ctxt, int reg)
+{
+ return address_mask(ctxt, reg_read(ctxt, reg));
+}
+
+static void masked_increment(ulong *reg, ulong mask, int inc)
+{
+ assign_masked(reg, *reg + inc, mask);
+}
+
+static inline void
+register_address_increment(struct x86_emulate_ctxt *ctxt, int reg, int inc)
+{
+ ulong mask;
+
+ if (ctxt->ad_bytes == sizeof(unsigned long))
+ mask = ~0UL;
+ else
+ mask = ad_mask(ctxt);
+ masked_increment(reg_rmw(ctxt, reg), mask, inc);
+}
+
+static void rsp_increment(struct x86_emulate_ctxt *ctxt, int inc)
+{
+ masked_increment(reg_rmw(ctxt, VCPU_REGS_RSP), stack_mask(ctxt), inc);
+}
+
+static u32 desc_limit_scaled(struct desc_struct *desc)
+{
+ u32 limit = get_desc_limit(desc);
+
+ return desc->g ? (limit << 12) | 0xfff : limit;
+}
+
+static unsigned long seg_base(struct x86_emulate_ctxt *ctxt, int seg)
+{
+ if (ctxt->mode == X86EMUL_MODE_PROT64 && seg < VCPU_SREG_FS)
+ return 0;
+
+ return ctxt->ops->get_cached_segment_base(ctxt, seg);
+}
+
+static int emulate_exception(struct x86_emulate_ctxt *ctxt, int vec,
+ u32 error, bool valid)
+{
+ WARN_ON(vec > 0x1f);
+ ctxt->exception.vector = vec;
+ ctxt->exception.error_code = error;
+ ctxt->exception.error_code_valid = valid;
+ return X86EMUL_PROPAGATE_FAULT;
+}
+
+static int emulate_db(struct x86_emulate_ctxt *ctxt)
+{
+ return emulate_exception(ctxt, DB_VECTOR, 0, false);
+}
+
+static int emulate_gp(struct x86_emulate_ctxt *ctxt, int err)
+{
+ return emulate_exception(ctxt, GP_VECTOR, err, true);
+}
+
+static int emulate_ss(struct x86_emulate_ctxt *ctxt, int err)
+{
+ return emulate_exception(ctxt, SS_VECTOR, err, true);
+}
+
+static int emulate_ud(struct x86_emulate_ctxt *ctxt)
+{
+ return emulate_exception(ctxt, UD_VECTOR, 0, false);
+}
+
+static int emulate_ts(struct x86_emulate_ctxt *ctxt, int err)
+{
+ return emulate_exception(ctxt, TS_VECTOR, err, true);
+}
+
+static int emulate_de(struct x86_emulate_ctxt *ctxt)
+{
+ return emulate_exception(ctxt, DE_VECTOR, 0, false);
+}
+
+static int emulate_nm(struct x86_emulate_ctxt *ctxt)
+{
+ return emulate_exception(ctxt, NM_VECTOR, 0, false);
+}
+
+static u16 get_segment_selector(struct x86_emulate_ctxt *ctxt, unsigned seg)
+{
+ u16 selector;
+ struct desc_struct desc;
+
+ ctxt->ops->get_segment(ctxt, &selector, &desc, NULL, seg);
+ return selector;
+}
+
+static void set_segment_selector(struct x86_emulate_ctxt *ctxt, u16 selector,
+ unsigned seg)
+{
+ u16 dummy;
+ u32 base3;
+ struct desc_struct desc;
+
+ ctxt->ops->get_segment(ctxt, &dummy, &desc, &base3, seg);
+ ctxt->ops->set_segment(ctxt, selector, &desc, base3, seg);
+}
+
+/*
+ * x86 defines three classes of vector instructions: explicitly
+ * aligned, explicitly unaligned, and the rest, which change behaviour
+ * depending on whether they're AVX encoded or not.
+ *
+ * Also included is CMPXCHG16B which is not a vector instruction, yet it is
+ * subject to the same check.
+ */
+static bool insn_aligned(struct x86_emulate_ctxt *ctxt, unsigned size)
+{
+ if (likely(size < 16))
+ return false;
+
+ if (ctxt->d & Aligned)
+ return true;
+ else if (ctxt->d & Unaligned)
+ return false;
+ else if (ctxt->d & Avx)
+ return false;
+ else
+ return true;
+}
+
+static __always_inline int __linearize(struct x86_emulate_ctxt *ctxt,
+ struct segmented_address addr,
+ unsigned *max_size, unsigned size,
+ bool write, bool fetch,
+ enum x86emul_mode mode, ulong *linear)
+{
+ struct desc_struct desc;
+ bool usable;
+ ulong la;
+ u32 lim;
+ u16 sel;
+
+ la = seg_base(ctxt, addr.seg) + addr.ea;
+ *max_size = 0;
+ switch (mode) {
+ case X86EMUL_MODE_PROT64:
+ if (is_noncanonical_address(la))
+ goto bad;
+
+ *max_size = min_t(u64, ~0u, (1ull << 48) - la);
+ if (size > *max_size)
+ goto bad;
+ break;
+ default:
+ usable = ctxt->ops->get_segment(ctxt, &sel, &desc, NULL,
+ addr.seg);
+ if (!usable)
+ goto bad;
+ /* code segment in protected mode or read-only data segment */
+ if ((((ctxt->mode != X86EMUL_MODE_REAL) && (desc.type & 8))
+ || !(desc.type & 2)) && write)
+ goto bad;
+ /* unreadable code segment */
+ if (!fetch && (desc.type & 8) && !(desc.type & 2))
+ goto bad;
+ lim = desc_limit_scaled(&desc);
+ if (!(desc.type & 8) && (desc.type & 4)) {
+ /* expand-down segment */
+ if (addr.ea <= lim)
+ goto bad;
+ lim = desc.d ? 0xffffffff : 0xffff;
+ }
+ if (addr.ea > lim)
+ goto bad;
+ if (lim == 0xffffffff)
+ *max_size = ~0u;
+ else {
+ *max_size = (u64)lim + 1 - addr.ea;
+ if (size > *max_size)
+ goto bad;
+ }
+ la &= (u32)-1;
+ break;
+ }
+ if (insn_aligned(ctxt, size) && ((la & (size - 1)) != 0))
+ return emulate_gp(ctxt, 0);
+ *linear = la;
+ return X86EMUL_CONTINUE;
+bad:
+ if (addr.seg == VCPU_SREG_SS)
+ return emulate_ss(ctxt, 0);
+ else
+ return emulate_gp(ctxt, 0);
+}
+
+static int linearize(struct x86_emulate_ctxt *ctxt,
+ struct segmented_address addr,
+ unsigned size, bool write,
+ ulong *linear)
+{
+ unsigned max_size;
+ return __linearize(ctxt, addr, &max_size, size, write, false,
+ ctxt->mode, linear);
+}
+
+static inline int assign_eip(struct x86_emulate_ctxt *ctxt, ulong dst,
+ enum x86emul_mode mode)
+{
+ ulong linear;
+ int rc;
+ unsigned max_size;
+ struct segmented_address addr = { .seg = VCPU_SREG_CS,
+ .ea = dst };
+
+ if (ctxt->op_bytes != sizeof(unsigned long))
+ addr.ea = dst & ((1UL << (ctxt->op_bytes << 3)) - 1);
+ rc = __linearize(ctxt, addr, &max_size, 1, false, true, mode, &linear);
+ if (rc == X86EMUL_CONTINUE)
+ ctxt->_eip = addr.ea;
+ return rc;
+}
+
+static inline int assign_eip_near(struct x86_emulate_ctxt *ctxt, ulong dst)
+{
+ return assign_eip(ctxt, dst, ctxt->mode);
+}
+
+static int assign_eip_far(struct x86_emulate_ctxt *ctxt, ulong dst,
+ const struct desc_struct *cs_desc)
+{
+ enum x86emul_mode mode = ctxt->mode;
+ int rc;
+
+#ifdef CONFIG_X86_64
+ if (ctxt->mode >= X86EMUL_MODE_PROT16) {
+ if (cs_desc->l) {
+ u64 efer = 0;
+
+ ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
+ if (efer & EFER_LMA)
+ mode = X86EMUL_MODE_PROT64;
+ } else
+ mode = X86EMUL_MODE_PROT32; /* temporary value */
+ }
+#endif
+ if (mode == X86EMUL_MODE_PROT16 || mode == X86EMUL_MODE_PROT32)
+ mode = cs_desc->d ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
+ rc = assign_eip(ctxt, dst, mode);
+ if (rc == X86EMUL_CONTINUE)
+ ctxt->mode = mode;
+ return rc;
+}
+
+static inline int jmp_rel(struct x86_emulate_ctxt *ctxt, int rel)
+{
+ return assign_eip_near(ctxt, ctxt->_eip + rel);
+}
+
+static int segmented_read_std(struct x86_emulate_ctxt *ctxt,
+ struct segmented_address addr,
+ void *data,
+ unsigned size)
+{
+ int rc;
+ ulong linear;
+
+ rc = linearize(ctxt, addr, size, false, &linear);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+ return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception);
+}
+
+/*
+ * Prefetch the remaining bytes of the instruction without crossing page
+ * boundary if they are not in fetch_cache yet.
+ */
+static int __do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt, int op_size)
+{
+ int rc;
+ unsigned size, max_size;
+ unsigned long linear;
+ int cur_size = ctxt->fetch.end - ctxt->fetch.data;
+ struct segmented_address addr = { .seg = VCPU_SREG_CS,
+ .ea = ctxt->eip + cur_size };
+
+ /*
+ * We do not know exactly how many bytes will be needed, and
+ * __linearize is expensive, so fetch as much as possible. We
+ * just have to avoid going beyond the 15 byte limit, the end
+ * of the segment, or the end of the page.
+ *
+ * __linearize is called with size 0 so that it does not do any
+ * boundary check itself. Instead, we use max_size to check
+ * against op_size.
+ */
+ rc = __linearize(ctxt, addr, &max_size, 0, false, true, ctxt->mode,
+ &linear);
+ if (unlikely(rc != X86EMUL_CONTINUE))
+ return rc;
+
+ size = min_t(unsigned, 15UL ^ cur_size, max_size);
+ size = min_t(unsigned, size, PAGE_SIZE - offset_in_page(linear));
+
+ /*
+ * One instruction can only straddle two pages,
+ * and one has been loaded at the beginning of
+ * x86_decode_insn. So, if not enough bytes
+ * still, we must have hit the 15-byte boundary.
+ */
+ if (unlikely(size < op_size))
+ return emulate_gp(ctxt, 0);
+
+ rc = ctxt->ops->fetch(ctxt, linear, ctxt->fetch.end,
+ size, &ctxt->exception);
+ if (unlikely(rc != X86EMUL_CONTINUE))
+ return rc;
+ ctxt->fetch.end += size;
+ return X86EMUL_CONTINUE;
+}
+
+static __always_inline int do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt,
+ unsigned size)
+{
+ unsigned done_size = ctxt->fetch.end - ctxt->fetch.ptr;
+
+ if (unlikely(done_size < size))
+ return __do_insn_fetch_bytes(ctxt, size - done_size);
+ else
+ return X86EMUL_CONTINUE;
+}
+
+/* Fetch next part of the instruction being emulated. */
+#define insn_fetch(_type, _ctxt) \
+({ _type _x; \
+ \
+ rc = do_insn_fetch_bytes(_ctxt, sizeof(_type)); \
+ if (rc != X86EMUL_CONTINUE) \
+ goto done; \
+ ctxt->_eip += sizeof(_type); \
+ _x = *(_type __aligned(1) *) ctxt->fetch.ptr; \
+ ctxt->fetch.ptr += sizeof(_type); \
+ _x; \
+})
+
+#define insn_fetch_arr(_arr, _size, _ctxt) \
+({ \
+ rc = do_insn_fetch_bytes(_ctxt, _size); \
+ if (rc != X86EMUL_CONTINUE) \
+ goto done; \
+ ctxt->_eip += (_size); \
+ memcpy(_arr, ctxt->fetch.ptr, _size); \
+ ctxt->fetch.ptr += (_size); \
+})
+
+/*
+ * Given the 'reg' portion of a ModRM byte, and a register block, return a
+ * pointer into the block that addresses the relevant register.
+ * @highbyte_regs specifies whether to decode AH,CH,DH,BH.
+ */
+static void *decode_register(struct x86_emulate_ctxt *ctxt, u8 modrm_reg,
+ int byteop)
+{
+ void *p;
+ int highbyte_regs = (ctxt->rex_prefix == 0) && byteop;
+
+ if (highbyte_regs && modrm_reg >= 4 && modrm_reg < 8)
+ p = (unsigned char *)reg_rmw(ctxt, modrm_reg & 3) + 1;
+ else
+ p = reg_rmw(ctxt, modrm_reg);
+ return p;
+}
+
+static int read_descriptor(struct x86_emulate_ctxt *ctxt,
+ struct segmented_address addr,
+ u16 *size, unsigned long *address, int op_bytes)
+{
+ int rc;
+
+ if (op_bytes == 2)
+ op_bytes = 3;
+ *address = 0;
+ rc = segmented_read_std(ctxt, addr, size, 2);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+ addr.ea += 2;
+ rc = segmented_read_std(ctxt, addr, address, op_bytes);
+ return rc;
+}
+
+FASTOP2(add);
+FASTOP2(or);
+FASTOP2(adc);
+FASTOP2(sbb);
+FASTOP2(and);
+FASTOP2(sub);
+FASTOP2(xor);
+FASTOP2(cmp);
+FASTOP2(test);
+
+FASTOP1SRC2(mul, mul_ex);
+FASTOP1SRC2(imul, imul_ex);
+FASTOP1SRC2EX(div, div_ex);
+FASTOP1SRC2EX(idiv, idiv_ex);
+
+FASTOP3WCL(shld);
+FASTOP3WCL(shrd);
+
+FASTOP2W(imul);
+
+FASTOP1(not);
+FASTOP1(neg);
+FASTOP1(inc);
+FASTOP1(dec);
+
+FASTOP2CL(rol);
+FASTOP2CL(ror);
+FASTOP2CL(rcl);
+FASTOP2CL(rcr);
+FASTOP2CL(shl);
+FASTOP2CL(shr);
+FASTOP2CL(sar);
+
+FASTOP2W(bsf);
+FASTOP2W(bsr);
+FASTOP2W(bt);
+FASTOP2W(bts);
+FASTOP2W(btr);
+FASTOP2W(btc);
+
+FASTOP2(xadd);
+
+FASTOP2R(cmp, cmp_r);
+
+static int em_bsf_c(struct x86_emulate_ctxt *ctxt)
+{
+ /* If src is zero, do not writeback, but update flags */
+ if (ctxt->src.val == 0)
+ ctxt->dst.type = OP_NONE;
+ return fastop(ctxt, em_bsf);
+}
+
+static int em_bsr_c(struct x86_emulate_ctxt *ctxt)
+{
+ /* If src is zero, do not writeback, but update flags */
+ if (ctxt->src.val == 0)
+ ctxt->dst.type = OP_NONE;
+ return fastop(ctxt, em_bsr);
+}
+
+static u8 test_cc(unsigned int condition, unsigned long flags)
+{
+ u8 rc;
+ void (*fop)(void) = (void *)em_setcc + 4 * (condition & 0xf);
+
+ flags = (flags & EFLAGS_MASK) | X86_EFLAGS_IF;
+ asm("push %[flags]; popf; call *%[fastop]"
+ : "=a"(rc) : [fastop]"r"(fop), [flags]"r"(flags));
+ return rc;
+}
+
+static void fetch_register_operand(struct operand *op)
+{
+ switch (op->bytes) {
+ case 1:
+ op->val = *(u8 *)op->addr.reg;
+ break;
+ case 2:
+ op->val = *(u16 *)op->addr.reg;
+ break;
+ case 4:
+ op->val = *(u32 *)op->addr.reg;
+ break;
+ case 8:
+ op->val = *(u64 *)op->addr.reg;
+ break;
+ }
+}
+
+static void read_sse_reg(struct x86_emulate_ctxt *ctxt, sse128_t *data, int reg)
+{
+ ctxt->ops->get_fpu(ctxt);
+ switch (reg) {
+ case 0: asm("movdqa %%xmm0, %0" : "=m"(*data)); break;
+ case 1: asm("movdqa %%xmm1, %0" : "=m"(*data)); break;
+ case 2: asm("movdqa %%xmm2, %0" : "=m"(*data)); break;
+ case 3: asm("movdqa %%xmm3, %0" : "=m"(*data)); break;
+ case 4: asm("movdqa %%xmm4, %0" : "=m"(*data)); break;
+ case 5: asm("movdqa %%xmm5, %0" : "=m"(*data)); break;
+ case 6: asm("movdqa %%xmm6, %0" : "=m"(*data)); break;
+ case 7: asm("movdqa %%xmm7, %0" : "=m"(*data)); break;
+#ifdef CONFIG_X86_64
+ case 8: asm("movdqa %%xmm8, %0" : "=m"(*data)); break;
+ case 9: asm("movdqa %%xmm9, %0" : "=m"(*data)); break;
+ case 10: asm("movdqa %%xmm10, %0" : "=m"(*data)); break;
+ case 11: asm("movdqa %%xmm11, %0" : "=m"(*data)); break;
+ case 12: asm("movdqa %%xmm12, %0" : "=m"(*data)); break;
+ case 13: asm("movdqa %%xmm13, %0" : "=m"(*data)); break;
+ case 14: asm("movdqa %%xmm14, %0" : "=m"(*data)); break;
+ case 15: asm("movdqa %%xmm15, %0" : "=m"(*data)); break;
+#endif
+ default: BUG();
+ }
+ ctxt->ops->put_fpu(ctxt);
+}
+
+static void write_sse_reg(struct x86_emulate_ctxt *ctxt, sse128_t *data,
+ int reg)
+{
+ ctxt->ops->get_fpu(ctxt);
+ switch (reg) {
+ case 0: asm("movdqa %0, %%xmm0" : : "m"(*data)); break;
+ case 1: asm("movdqa %0, %%xmm1" : : "m"(*data)); break;
+ case 2: asm("movdqa %0, %%xmm2" : : "m"(*data)); break;
+ case 3: asm("movdqa %0, %%xmm3" : : "m"(*data)); break;
+ case 4: asm("movdqa %0, %%xmm4" : : "m"(*data)); break;
+ case 5: asm("movdqa %0, %%xmm5" : : "m"(*data)); break;
+ case 6: asm("movdqa %0, %%xmm6" : : "m"(*data)); break;
+ case 7: asm("movdqa %0, %%xmm7" : : "m"(*data)); break;
+#ifdef CONFIG_X86_64
+ case 8: asm("movdqa %0, %%xmm8" : : "m"(*data)); break;
+ case 9: asm("movdqa %0, %%xmm9" : : "m"(*data)); break;
+ case 10: asm("movdqa %0, %%xmm10" : : "m"(*data)); break;
+ case 11: asm("movdqa %0, %%xmm11" : : "m"(*data)); break;
+ case 12: asm("movdqa %0, %%xmm12" : : "m"(*data)); break;
+ case 13: asm("movdqa %0, %%xmm13" : : "m"(*data)); break;
+ case 14: asm("movdqa %0, %%xmm14" : : "m"(*data)); break;
+ case 15: asm("movdqa %0, %%xmm15" : : "m"(*data)); break;
+#endif
+ default: BUG();
+ }
+ ctxt->ops->put_fpu(ctxt);
+}
+
+static void read_mmx_reg(struct x86_emulate_ctxt *ctxt, u64 *data, int reg)
+{
+ ctxt->ops->get_fpu(ctxt);
+ switch (reg) {
+ case 0: asm("movq %%mm0, %0" : "=m"(*data)); break;
+ case 1: asm("movq %%mm1, %0" : "=m"(*data)); break;
+ case 2: asm("movq %%mm2, %0" : "=m"(*data)); break;
+ case 3: asm("movq %%mm3, %0" : "=m"(*data)); break;
+ case 4: asm("movq %%mm4, %0" : "=m"(*data)); break;
+ case 5: asm("movq %%mm5, %0" : "=m"(*data)); break;
+ case 6: asm("movq %%mm6, %0" : "=m"(*data)); break;
+ case 7: asm("movq %%mm7, %0" : "=m"(*data)); break;
+ default: BUG();
+ }
+ ctxt->ops->put_fpu(ctxt);
+}
+
+static void write_mmx_reg(struct x86_emulate_ctxt *ctxt, u64 *data, int reg)
+{
+ ctxt->ops->get_fpu(ctxt);
+ switch (reg) {
+ case 0: asm("movq %0, %%mm0" : : "m"(*data)); break;
+ case 1: asm("movq %0, %%mm1" : : "m"(*data)); break;
+ case 2: asm("movq %0, %%mm2" : : "m"(*data)); break;
+ case 3: asm("movq %0, %%mm3" : : "m"(*data)); break;
+ case 4: asm("movq %0, %%mm4" : : "m"(*data)); break;
+ case 5: asm("movq %0, %%mm5" : : "m"(*data)); break;
+ case 6: asm("movq %0, %%mm6" : : "m"(*data)); break;
+ case 7: asm("movq %0, %%mm7" : : "m"(*data)); break;
+ default: BUG();
+ }
+ ctxt->ops->put_fpu(ctxt);
+}
+
+static int em_fninit(struct x86_emulate_ctxt *ctxt)
+{
+ if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
+ return emulate_nm(ctxt);
+
+ ctxt->ops->get_fpu(ctxt);
+ asm volatile("fninit");
+ ctxt->ops->put_fpu(ctxt);
+ return X86EMUL_CONTINUE;
+}
+
+static int em_fnstcw(struct x86_emulate_ctxt *ctxt)
+{
+ u16 fcw;
+
+ if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
+ return emulate_nm(ctxt);
+
+ ctxt->ops->get_fpu(ctxt);
+ asm volatile("fnstcw %0": "+m"(fcw));
+ ctxt->ops->put_fpu(ctxt);
+
+ ctxt->dst.val = fcw;
+
+ return X86EMUL_CONTINUE;
+}
+
+static int em_fnstsw(struct x86_emulate_ctxt *ctxt)
+{
+ u16 fsw;
+
+ if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
+ return emulate_nm(ctxt);
+
+ ctxt->ops->get_fpu(ctxt);
+ asm volatile("fnstsw %0": "+m"(fsw));
+ ctxt->ops->put_fpu(ctxt);
+
+ ctxt->dst.val = fsw;
+
+ return X86EMUL_CONTINUE;
+}
+
+static void decode_register_operand(struct x86_emulate_ctxt *ctxt,
+ struct operand *op)
+{
+ unsigned reg = ctxt->modrm_reg;
+
+ if (!(ctxt->d & ModRM))
+ reg = (ctxt->b & 7) | ((ctxt->rex_prefix & 1) << 3);
+
+ if (ctxt->d & Sse) {
+ op->type = OP_XMM;
+ op->bytes = 16;
+ op->addr.xmm = reg;
+ read_sse_reg(ctxt, &op->vec_val, reg);
+ return;
+ }
+ if (ctxt->d & Mmx) {
+ reg &= 7;
+ op->type = OP_MM;
+ op->bytes = 8;
+ op->addr.mm = reg;
+ return;
+ }
+
+ op->type = OP_REG;
+ op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
+ op->addr.reg = decode_register(ctxt, reg, ctxt->d & ByteOp);
+
+ fetch_register_operand(op);
+ op->orig_val = op->val;
+}
+
+static void adjust_modrm_seg(struct x86_emulate_ctxt *ctxt, int base_reg)
+{
+ if (base_reg == VCPU_REGS_RSP || base_reg == VCPU_REGS_RBP)
+ ctxt->modrm_seg = VCPU_SREG_SS;
+}
+
+static int decode_modrm(struct x86_emulate_ctxt *ctxt,
+ struct operand *op)
+{
+ u8 sib;
+ int index_reg, base_reg, scale;
+ int rc = X86EMUL_CONTINUE;
+ ulong modrm_ea = 0;
+
+ ctxt->modrm_reg = ((ctxt->rex_prefix << 1) & 8); /* REX.R */
+ index_reg = (ctxt->rex_prefix << 2) & 8; /* REX.X */
+ base_reg = (ctxt->rex_prefix << 3) & 8; /* REX.B */
+
+ ctxt->modrm_mod = (ctxt->modrm & 0xc0) >> 6;
+ ctxt->modrm_reg |= (ctxt->modrm & 0x38) >> 3;
+ ctxt->modrm_rm = base_reg | (ctxt->modrm & 0x07);
+ ctxt->modrm_seg = VCPU_SREG_DS;
+
+ if (ctxt->modrm_mod == 3 || (ctxt->d & NoMod)) {
+ op->type = OP_REG;
+ op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
+ op->addr.reg = decode_register(ctxt, ctxt->modrm_rm,
+ ctxt->d & ByteOp);
+ if (ctxt->d & Sse) {
+ op->type = OP_XMM;
+ op->bytes = 16;
+ op->addr.xmm = ctxt->modrm_rm;
+ read_sse_reg(ctxt, &op->vec_val, ctxt->modrm_rm);
+ return rc;
+ }
+ if (ctxt->d & Mmx) {
+ op->type = OP_MM;
+ op->bytes = 8;
+ op->addr.mm = ctxt->modrm_rm & 7;
+ return rc;
+ }
+ fetch_register_operand(op);
+ return rc;
+ }
+
+ op->type = OP_MEM;
+
+ if (ctxt->ad_bytes == 2) {
+ unsigned bx = reg_read(ctxt, VCPU_REGS_RBX);
+ unsigned bp = reg_read(ctxt, VCPU_REGS_RBP);
+ unsigned si = reg_read(ctxt, VCPU_REGS_RSI);
+ unsigned di = reg_read(ctxt, VCPU_REGS_RDI);
+
+ /* 16-bit ModR/M decode. */
+ switch (ctxt->modrm_mod) {
+ case 0:
+ if (ctxt->modrm_rm == 6)
+ modrm_ea += insn_fetch(u16, ctxt);
+ break;
+ case 1:
+ modrm_ea += insn_fetch(s8, ctxt);
+ break;
+ case 2:
+ modrm_ea += insn_fetch(u16, ctxt);
+ break;
+ }
+ switch (ctxt->modrm_rm) {
+ case 0:
+ modrm_ea += bx + si;
+ break;
+ case 1:
+ modrm_ea += bx + di;
+ break;
+ case 2:
+ modrm_ea += bp + si;
+ break;
+ case 3:
+ modrm_ea += bp + di;
+ break;
+ case 4:
+ modrm_ea += si;
+ break;
+ case 5:
+ modrm_ea += di;
+ break;
+ case 6:
+ if (ctxt->modrm_mod != 0)
+ modrm_ea += bp;
+ break;
+ case 7:
+ modrm_ea += bx;
+ break;
+ }
+ if (ctxt->modrm_rm == 2 || ctxt->modrm_rm == 3 ||
+ (ctxt->modrm_rm == 6 && ctxt->modrm_mod != 0))
+ ctxt->modrm_seg = VCPU_SREG_SS;
+ modrm_ea = (u16)modrm_ea;
+ } else {
+ /* 32/64-bit ModR/M decode. */
+ if ((ctxt->modrm_rm & 7) == 4) {
+ sib = insn_fetch(u8, ctxt);
+ index_reg |= (sib >> 3) & 7;
+ base_reg |= sib & 7;
+ scale = sib >> 6;
+
+ if ((base_reg & 7) == 5 && ctxt->modrm_mod == 0)
+ modrm_ea += insn_fetch(s32, ctxt);
+ else {
+ modrm_ea += reg_read(ctxt, base_reg);
+ adjust_modrm_seg(ctxt, base_reg);
+ /* Increment ESP on POP [ESP] */
+ if ((ctxt->d & IncSP) &&
+ base_reg == VCPU_REGS_RSP)
+ modrm_ea += ctxt->op_bytes;
+ }
+ if (index_reg != 4)
+ modrm_ea += reg_read(ctxt, index_reg) << scale;
+ } else if ((ctxt->modrm_rm & 7) == 5 && ctxt->modrm_mod == 0) {
+ modrm_ea += insn_fetch(s32, ctxt);
+ if (ctxt->mode == X86EMUL_MODE_PROT64)
+ ctxt->rip_relative = 1;
+ } else {
+ base_reg = ctxt->modrm_rm;
+ modrm_ea += reg_read(ctxt, base_reg);
+ adjust_modrm_seg(ctxt, base_reg);
+ }
+ switch (ctxt->modrm_mod) {
+ case 1:
+ modrm_ea += insn_fetch(s8, ctxt);
+ break;
+ case 2:
+ modrm_ea += insn_fetch(s32, ctxt);
+ break;
+ }
+ }
+ op->addr.mem.ea = modrm_ea;
+ if (ctxt->ad_bytes != 8)
+ ctxt->memop.addr.mem.ea = (u32)ctxt->memop.addr.mem.ea;
+
+done:
+ return rc;
+}
+
+static int decode_abs(struct x86_emulate_ctxt *ctxt,
+ struct operand *op)
+{
+ int rc = X86EMUL_CONTINUE;
+
+ op->type = OP_MEM;
+ switch (ctxt->ad_bytes) {
+ case 2:
+ op->addr.mem.ea = insn_fetch(u16, ctxt);
+ break;
+ case 4:
+ op->addr.mem.ea = insn_fetch(u32, ctxt);
+ break;
+ case 8:
+ op->addr.mem.ea = insn_fetch(u64, ctxt);
+ break;
+ }
+done:
+ return rc;
+}
+
+static void fetch_bit_operand(struct x86_emulate_ctxt *ctxt)
+{
+ long sv = 0, mask;
+
+ if (ctxt->dst.type == OP_MEM && ctxt->src.type == OP_REG) {
+ mask = ~((long)ctxt->dst.bytes * 8 - 1);
+
+ if (ctxt->src.bytes == 2)
+ sv = (s16)ctxt->src.val & (s16)mask;
+ else if (ctxt->src.bytes == 4)
+ sv = (s32)ctxt->src.val & (s32)mask;
+ else
+ sv = (s64)ctxt->src.val & (s64)mask;
+
+ ctxt->dst.addr.mem.ea = address_mask(ctxt,
+ ctxt->dst.addr.mem.ea + (sv >> 3));
+ }
+
+ /* only subword offset */
+ ctxt->src.val &= (ctxt->dst.bytes << 3) - 1;
+}
+
+static int read_emulated(struct x86_emulate_ctxt *ctxt,
+ unsigned long addr, void *dest, unsigned size)
+{
+ int rc;
+ struct read_cache *mc = &ctxt->mem_read;
+
+ if (mc->pos < mc->end)
+ goto read_cached;
+
+ WARN_ON((mc->end + size) >= sizeof(mc->data));
+
+ rc = ctxt->ops->read_emulated(ctxt, addr, mc->data + mc->end, size,
+ &ctxt->exception);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+
+ mc->end += size;
+
+read_cached:
+ memcpy(dest, mc->data + mc->pos, size);
+ mc->pos += size;
+ return X86EMUL_CONTINUE;
+}
+
+static int segmented_read(struct x86_emulate_ctxt *ctxt,
+ struct segmented_address addr,
+ void *data,
+ unsigned size)
+{
+ int rc;
+ ulong linear;
+
+ rc = linearize(ctxt, addr, size, false, &linear);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+ return read_emulated(ctxt, linear, data, size);
+}
+
+static int segmented_write(struct x86_emulate_ctxt *ctxt,
+ struct segmented_address addr,
+ const void *data,
+ unsigned size)
+{
+ int rc;
+ ulong linear;
+
+ rc = linearize(ctxt, addr, size, true, &linear);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+ return ctxt->ops->write_emulated(ctxt, linear, data, size,
+ &ctxt->exception);
+}
+
+static int segmented_cmpxchg(struct x86_emulate_ctxt *ctxt,
+ struct segmented_address addr,
+ const void *orig_data, const void *data,
+ unsigned size)
+{
+ int rc;
+ ulong linear;
+
+ rc = linearize(ctxt, addr, size, true, &linear);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+ return ctxt->ops->cmpxchg_emulated(ctxt, linear, orig_data, data,
+ size, &ctxt->exception);
+}
+
+static int pio_in_emulated(struct x86_emulate_ctxt *ctxt,
+ unsigned int size, unsigned short port,
+ void *dest)
+{
+ struct read_cache *rc = &ctxt->io_read;
+
+ if (rc->pos == rc->end) { /* refill pio read ahead */
+ unsigned int in_page, n;
+ unsigned int count = ctxt->rep_prefix ?
+ address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) : 1;
+ in_page = (ctxt->eflags & X86_EFLAGS_DF) ?
+ offset_in_page(reg_read(ctxt, VCPU_REGS_RDI)) :
+ PAGE_SIZE - offset_in_page(reg_read(ctxt, VCPU_REGS_RDI));
+ n = min3(in_page, (unsigned int)sizeof(rc->data) / size, count);
+ if (n == 0)
+ n = 1;
+ rc->pos = rc->end = 0;
+ if (!ctxt->ops->pio_in_emulated(ctxt, size, port, rc->data, n))
+ return 0;
+ rc->end = n * size;
+ }
+
+ if (ctxt->rep_prefix && (ctxt->d & String) &&
+ !(ctxt->eflags & X86_EFLAGS_DF)) {
+ ctxt->dst.data = rc->data + rc->pos;
+ ctxt->dst.type = OP_MEM_STR;
+ ctxt->dst.count = (rc->end - rc->pos) / size;
+ rc->pos = rc->end;
+ } else {
+ memcpy(dest, rc->data + rc->pos, size);
+ rc->pos += size;
+ }
+ return 1;
+}
+
+static int read_interrupt_descriptor(struct x86_emulate_ctxt *ctxt,
+ u16 index, struct desc_struct *desc)
+{
+ struct desc_ptr dt;
+ ulong addr;
+
+ ctxt->ops->get_idt(ctxt, &dt);
+
+ if (dt.size < index * 8 + 7)
+ return emulate_gp(ctxt, index << 3 | 0x2);
+
+ addr = dt.address + index * 8;
+ return ctxt->ops->read_std(ctxt, addr, desc, sizeof *desc,
+ &ctxt->exception);
+}
+
+static void get_descriptor_table_ptr(struct x86_emulate_ctxt *ctxt,
+ u16 selector, struct desc_ptr *dt)
+{
+ const struct x86_emulate_ops *ops = ctxt->ops;
+ u32 base3 = 0;
+
+ if (selector & 1 << 2) {
+ struct desc_struct desc;
+ u16 sel;
+
+ memset (dt, 0, sizeof *dt);
+ if (!ops->get_segment(ctxt, &sel, &desc, &base3,
+ VCPU_SREG_LDTR))
+ return;
+
+ dt->size = desc_limit_scaled(&desc); /* what if limit > 65535? */
+ dt->address = get_desc_base(&desc) | ((u64)base3 << 32);
+ } else
+ ops->get_gdt(ctxt, dt);
+}
+
+static int get_descriptor_ptr(struct x86_emulate_ctxt *ctxt,
+ u16 selector, ulong *desc_addr_p)
+{
+ struct desc_ptr dt;
+ u16 index = selector >> 3;
+ ulong addr;
+
+ get_descriptor_table_ptr(ctxt, selector, &dt);
+
+ if (dt.size < index * 8 + 7)
+ return emulate_gp(ctxt, selector & 0xfffc);
+
+ addr = dt.address + index * 8;
+
+#ifdef CONFIG_X86_64
+ if (addr >> 32 != 0) {
+ u64 efer = 0;
+
+ ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
+ if (!(efer & EFER_LMA))
+ addr &= (u32)-1;
+ }
+#endif
+
+ *desc_addr_p = addr;
+ return X86EMUL_CONTINUE;
+}
+
+/* allowed just for 8 bytes segments */
+static int read_segment_descriptor(struct x86_emulate_ctxt *ctxt,
+ u16 selector, struct desc_struct *desc,
+ ulong *desc_addr_p)
+{
+ int rc;
+
+ rc = get_descriptor_ptr(ctxt, selector, desc_addr_p);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+
+ return ctxt->ops->read_std(ctxt, *desc_addr_p, desc, sizeof(*desc),
+ &ctxt->exception);
+}
+
+/* allowed just for 8 bytes segments */
+static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt,
+ u16 selector, struct desc_struct *desc)
+{
+ int rc;
+ ulong addr;
+
+ rc = get_descriptor_ptr(ctxt, selector, &addr);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+
+ return ctxt->ops->write_std(ctxt, addr, desc, sizeof *desc,
+ &ctxt->exception);
+}
+
+/* Does not support long mode */
+static int __load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
+ u16 selector, int seg, u8 cpl,
+ enum x86_transfer_type transfer,
+ struct desc_struct *desc)
+{
+ struct desc_struct seg_desc, old_desc;
+ u8 dpl, rpl;
+ unsigned err_vec = GP_VECTOR;
+ u32 err_code = 0;
+ bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
+ ulong desc_addr;
+ int ret;
+ u16 dummy;
+ u32 base3 = 0;
+
+ memset(&seg_desc, 0, sizeof seg_desc);
+
+ if (ctxt->mode == X86EMUL_MODE_REAL) {
+ /* set real mode segment descriptor (keep limit etc. for
+ * unreal mode) */
+ ctxt->ops->get_segment(ctxt, &dummy, &seg_desc, NULL, seg);
+ set_desc_base(&seg_desc, selector << 4);
+ goto load;
+ } else if (seg <= VCPU_SREG_GS && ctxt->mode == X86EMUL_MODE_VM86) {
+ /* VM86 needs a clean new segment descriptor */
+ set_desc_base(&seg_desc, selector << 4);
+ set_desc_limit(&seg_desc, 0xffff);
+ seg_desc.type = 3;
+ seg_desc.p = 1;
+ seg_desc.s = 1;
+ seg_desc.dpl = 3;
+ goto load;
+ }
+
+ rpl = selector & 3;
+
+ /* NULL selector is not valid for TR, CS and SS (except for long mode) */
+ if ((seg == VCPU_SREG_CS
+ || (seg == VCPU_SREG_SS
+ && (ctxt->mode != X86EMUL_MODE_PROT64 || rpl != cpl))
+ || seg == VCPU_SREG_TR)
+ && null_selector)
+ goto exception;
+
+ /* TR should be in GDT only */
+ if (seg == VCPU_SREG_TR && (selector & (1 << 2)))
+ goto exception;
+
+ if (null_selector) /* for NULL selector skip all following checks */
+ goto load;
+
+ ret = read_segment_descriptor(ctxt, selector, &seg_desc, &desc_addr);
+ if (ret != X86EMUL_CONTINUE)
+ return ret;
+
+ err_code = selector & 0xfffc;
+ err_vec = (transfer == X86_TRANSFER_TASK_SWITCH) ? TS_VECTOR :
+ GP_VECTOR;
+
+ /* can't load system descriptor into segment selector */
+ if (seg <= VCPU_SREG_GS && !seg_desc.s) {
+ if (transfer == X86_TRANSFER_CALL_JMP)
+ return X86EMUL_UNHANDLEABLE;
+ goto exception;
+ }
+
+ if (!seg_desc.p) {
+ err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR;
+ goto exception;
+ }
+
+ dpl = seg_desc.dpl;
+
+ switch (seg) {
+ case VCPU_SREG_SS:
+ /*
+ * segment is not a writable data segment or segment
+ * selector's RPL != CPL or segment selector's RPL != CPL
+ */
+ if (rpl != cpl || (seg_desc.type & 0xa) != 0x2 || dpl != cpl)
+ goto exception;
+ break;
+ case VCPU_SREG_CS:
+ if (!(seg_desc.type & 8))
+ goto exception;
+
+ if (seg_desc.type & 4) {
+ /* conforming */
+ if (dpl > cpl)
+ goto exception;
+ } else {
+ /* nonconforming */
+ if (rpl > cpl || dpl != cpl)
+ goto exception;
+ }
+ /* in long-mode d/b must be clear if l is set */
+ if (seg_desc.d && seg_desc.l) {
+ u64 efer = 0;
+
+ ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
+ if (efer & EFER_LMA)
+ goto exception;
+ }
+
+ /* CS(RPL) <- CPL */
+ selector = (selector & 0xfffc) | cpl;
+ break;
+ case VCPU_SREG_TR:
+ if (seg_desc.s || (seg_desc.type != 1 && seg_desc.type != 9))
+ goto exception;
+ old_desc = seg_desc;
+ seg_desc.type |= 2; /* busy */
+ ret = ctxt->ops->cmpxchg_emulated(ctxt, desc_addr, &old_desc, &seg_desc,
+ sizeof(seg_desc), &ctxt->exception);
+ if (ret != X86EMUL_CONTINUE)
+ return ret;
+ break;
+ case VCPU_SREG_LDTR:
+ if (seg_desc.s || seg_desc.type != 2)
+ goto exception;
+ break;
+ default: /* DS, ES, FS, or GS */
+ /*
+ * segment is not a data or readable code segment or
+ * ((segment is a data or nonconforming code segment)
+ * and (both RPL and CPL > DPL))
+ */
+ if ((seg_desc.type & 0xa) == 0x8 ||
+ (((seg_desc.type & 0xc) != 0xc) &&
+ (rpl > dpl && cpl > dpl)))
+ goto exception;
+ break;
+ }
+
+ if (seg_desc.s) {
+ /* mark segment as accessed */
+ if (!(seg_desc.type & 1)) {
+ seg_desc.type |= 1;
+ ret = write_segment_descriptor(ctxt, selector,
+ &seg_desc);
+ if (ret != X86EMUL_CONTINUE)
+ return ret;
+ }
+ } else if (ctxt->mode == X86EMUL_MODE_PROT64) {
+ ret = ctxt->ops->read_std(ctxt, desc_addr+8, &base3,
+ sizeof(base3), &ctxt->exception);
+ if (ret != X86EMUL_CONTINUE)
+ return ret;
+ if (is_noncanonical_address(get_desc_base(&seg_desc) |
+ ((u64)base3 << 32)))
+ return emulate_gp(ctxt, 0);
+ }
+load:
+ ctxt->ops->set_segment(ctxt, selector, &seg_desc, base3, seg);
+ if (desc)
+ *desc = seg_desc;
+ return X86EMUL_CONTINUE;
+exception:
+ return emulate_exception(ctxt, err_vec, err_code, true);
+}
+
+static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
+ u16 selector, int seg)
+{
+ u8 cpl = ctxt->ops->cpl(ctxt);
+ return __load_segment_descriptor(ctxt, selector, seg, cpl,
+ X86_TRANSFER_NONE, NULL);
+}
+
+static void write_register_operand(struct operand *op)
+{
+ return assign_register(op->addr.reg, op->val, op->bytes);
+}
+
+static int writeback(struct x86_emulate_ctxt *ctxt, struct operand *op)
+{
+ switch (op->type) {
+ case OP_REG:
+ write_register_operand(op);
+ break;
+ case OP_MEM:
+ if (ctxt->lock_prefix)
+ return segmented_cmpxchg(ctxt,
+ op->addr.mem,
+ &op->orig_val,
+ &op->val,
+ op->bytes);
+ else
+ return segmented_write(ctxt,
+ op->addr.mem,
+ &op->val,
+ op->bytes);
+ break;
+ case OP_MEM_STR:
+ return segmented_write(ctxt,
+ op->addr.mem,
+ op->data,
+ op->bytes * op->count);
+ break;
+ case OP_XMM:
+ write_sse_reg(ctxt, &op->vec_val, op->addr.xmm);
+ break;
+ case OP_MM:
+ write_mmx_reg(ctxt, &op->mm_val, op->addr.mm);
+ break;
+ case OP_NONE:
+ /* no writeback */
+ break;
+ default:
+ break;
+ }
+ return X86EMUL_CONTINUE;
+}
+
+static int push(struct x86_emulate_ctxt *ctxt, void *data, int bytes)
+{
+ struct segmented_address addr;
+
+ rsp_increment(ctxt, -bytes);
+ addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
+ addr.seg = VCPU_SREG_SS;
+
+ return segmented_write(ctxt, addr, data, bytes);
+}
+
+static int em_push(struct x86_emulate_ctxt *ctxt)
+{
+ /* Disable writeback. */
+ ctxt->dst.type = OP_NONE;
+ return push(ctxt, &ctxt->src.val, ctxt->op_bytes);
+}
+
+static int emulate_pop(struct x86_emulate_ctxt *ctxt,
+ void *dest, int len)
+{
+ int rc;
+ struct segmented_address addr;
+
+ addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
+ addr.seg = VCPU_SREG_SS;
+ rc = segmented_read(ctxt, addr, dest, len);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+
+ rsp_increment(ctxt, len);
+ return rc;
+}
+
+static int em_pop(struct x86_emulate_ctxt *ctxt)
+{
+ return emulate_pop(ctxt, &ctxt->dst.val, ctxt->op_bytes);
+}
+
+static int emulate_popf(struct x86_emulate_ctxt *ctxt,
+ void *dest, int len)
+{
+ int rc;
+ unsigned long val, change_mask;
+ int iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT;
+ int cpl = ctxt->ops->cpl(ctxt);
+
+ rc = emulate_pop(ctxt, &val, len);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+
+ change_mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
+ X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF |
+ X86_EFLAGS_TF | X86_EFLAGS_DF | X86_EFLAGS_NT |
+ X86_EFLAGS_AC | X86_EFLAGS_ID;
+
+ switch(ctxt->mode) {
+ case X86EMUL_MODE_PROT64:
+ case X86EMUL_MODE_PROT32:
+ case X86EMUL_MODE_PROT16:
+ if (cpl == 0)
+ change_mask |= X86_EFLAGS_IOPL;
+ if (cpl <= iopl)
+ change_mask |= X86_EFLAGS_IF;
+ break;
+ case X86EMUL_MODE_VM86:
+ if (iopl < 3)
+ return emulate_gp(ctxt, 0);
+ change_mask |= X86_EFLAGS_IF;
+ break;
+ default: /* real mode */
+ change_mask |= (X86_EFLAGS_IOPL | X86_EFLAGS_IF);
+ break;
+ }
+
+ *(unsigned long *)dest =
+ (ctxt->eflags & ~change_mask) | (val & change_mask);
+
+ return rc;
+}
+
+static int em_popf(struct x86_emulate_ctxt *ctxt)
+{
+ ctxt->dst.type = OP_REG;
+ ctxt->dst.addr.reg = &ctxt->eflags;
+ ctxt->dst.bytes = ctxt->op_bytes;
+ return emulate_popf(ctxt, &ctxt->dst.val, ctxt->op_bytes);
+}
+
+static int em_enter(struct x86_emulate_ctxt *ctxt)
+{
+ int rc;
+ unsigned frame_size = ctxt->src.val;
+ unsigned nesting_level = ctxt->src2.val & 31;
+ ulong rbp;
+
+ if (nesting_level)
+ return X86EMUL_UNHANDLEABLE;
+
+ rbp = reg_read(ctxt, VCPU_REGS_RBP);
+ rc = push(ctxt, &rbp, stack_size(ctxt));
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+ assign_masked(reg_rmw(ctxt, VCPU_REGS_RBP), reg_read(ctxt, VCPU_REGS_RSP),
+ stack_mask(ctxt));
+ assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP),
+ reg_read(ctxt, VCPU_REGS_RSP) - frame_size,
+ stack_mask(ctxt));
+ return X86EMUL_CONTINUE;
+}
+
+static int em_leave(struct x86_emulate_ctxt *ctxt)
+{
+ assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP), reg_read(ctxt, VCPU_REGS_RBP),
+ stack_mask(ctxt));
+ return emulate_pop(ctxt, reg_rmw(ctxt, VCPU_REGS_RBP), ctxt->op_bytes);
+}
+
+static int em_push_sreg(struct x86_emulate_ctxt *ctxt)
+{
+ int seg = ctxt->src2.val;
+
+ ctxt->src.val = get_segment_selector(ctxt, seg);
+ if (ctxt->op_bytes == 4) {
+ rsp_increment(ctxt, -2);
+ ctxt->op_bytes = 2;
+ }
+
+ return em_push(ctxt);
+}
+
+static int em_pop_sreg(struct x86_emulate_ctxt *ctxt)
+{
+ int seg = ctxt->src2.val;
+ unsigned long selector;
+ int rc;
+
+ rc = emulate_pop(ctxt, &selector, 2);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+
+ if (ctxt->modrm_reg == VCPU_SREG_SS)
+ ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
+ if (ctxt->op_bytes > 2)
+ rsp_increment(ctxt, ctxt->op_bytes - 2);
+
+ rc = load_segment_descriptor(ctxt, (u16)selector, seg);
+ return rc;
+}
+
+static int em_pusha(struct x86_emulate_ctxt *ctxt)
+{
+ unsigned long old_esp = reg_read(ctxt, VCPU_REGS_RSP);
+ int rc = X86EMUL_CONTINUE;
+ int reg = VCPU_REGS_RAX;
+
+ while (reg <= VCPU_REGS_RDI) {
+ (reg == VCPU_REGS_RSP) ?
+ (ctxt->src.val = old_esp) : (ctxt->src.val = reg_read(ctxt, reg));
+
+ rc = em_push(ctxt);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+
+ ++reg;
+ }
+
+ return rc;
+}
+
+static int em_pushf(struct x86_emulate_ctxt *ctxt)
+{
+ ctxt->src.val = (unsigned long)ctxt->eflags & ~X86_EFLAGS_VM;
+ return em_push(ctxt);
+}
+
+static int em_popa(struct x86_emulate_ctxt *ctxt)
+{
+ int rc = X86EMUL_CONTINUE;
+ int reg = VCPU_REGS_RDI;
+ u32 val;
+
+ while (reg >= VCPU_REGS_RAX) {
+ if (reg == VCPU_REGS_RSP) {
+ rsp_increment(ctxt, ctxt->op_bytes);
+ --reg;
+ }
+
+ rc = emulate_pop(ctxt, &val, ctxt->op_bytes);
+ if (rc != X86EMUL_CONTINUE)
+ break;
+ assign_register(reg_rmw(ctxt, reg), val, ctxt->op_bytes);
+ --reg;
+ }
+ return rc;
+}
+
+static int __emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
+{
+ const struct x86_emulate_ops *ops = ctxt->ops;
+ int rc;
+ struct desc_ptr dt;
+ gva_t cs_addr;
+ gva_t eip_addr;
+ u16 cs, eip;
+
+ /* TODO: Add limit checks */
+ ctxt->src.val = ctxt->eflags;
+ rc = em_push(ctxt);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+
+ ctxt->eflags &= ~(X86_EFLAGS_IF | X86_EFLAGS_TF | X86_EFLAGS_AC);
+
+ ctxt->src.val = get_segment_selector(ctxt, VCPU_SREG_CS);
+ rc = em_push(ctxt);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+
+ ctxt->src.val = ctxt->_eip;
+ rc = em_push(ctxt);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+
+ ops->get_idt(ctxt, &dt);
+
+ eip_addr = dt.address + (irq << 2);
+ cs_addr = dt.address + (irq << 2) + 2;
+
+ rc = ops->read_std(ctxt, cs_addr, &cs, 2, &ctxt->exception);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+
+ rc = ops->read_std(ctxt, eip_addr, &eip, 2, &ctxt->exception);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+
+ rc = load_segment_descriptor(ctxt, cs, VCPU_SREG_CS);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+
+ ctxt->_eip = eip;
+
+ return rc;
+}
+
+int emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
+{
+ int rc;
+
+ invalidate_registers(ctxt);
+ rc = __emulate_int_real(ctxt, irq);
+ if (rc == X86EMUL_CONTINUE)
+ writeback_registers(ctxt);
+ return rc;
+}
+
+static int emulate_int(struct x86_emulate_ctxt *ctxt, int irq)
+{
+ switch(ctxt->mode) {
+ case X86EMUL_MODE_REAL:
+ return __emulate_int_real(ctxt, irq);
+ case X86EMUL_MODE_VM86:
+ case X86EMUL_MODE_PROT16:
+ case X86EMUL_MODE_PROT32:
+ case X86EMUL_MODE_PROT64:
+ default:
+ /* Protected mode interrupts unimplemented yet */
+ return X86EMUL_UNHANDLEABLE;
+ }
+}
+
+static int emulate_iret_real(struct x86_emulate_ctxt *ctxt)
+{
+ int rc = X86EMUL_CONTINUE;
+ unsigned long temp_eip = 0;
+ unsigned long temp_eflags = 0;
+ unsigned long cs = 0;
+ unsigned long mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
+ X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_TF |
+ X86_EFLAGS_IF | X86_EFLAGS_DF | X86_EFLAGS_OF |
+ X86_EFLAGS_IOPL | X86_EFLAGS_NT | X86_EFLAGS_RF |
+ X86_EFLAGS_AC | X86_EFLAGS_ID |
+ X86_EFLAGS_FIXED;
+ unsigned long vm86_mask = X86_EFLAGS_VM | X86_EFLAGS_VIF |
+ X86_EFLAGS_VIP;
+
+ /* TODO: Add stack limit check */
+
+ rc = emulate_pop(ctxt, &temp_eip, ctxt->op_bytes);
+
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+
+ if (temp_eip & ~0xffff)
+ return emulate_gp(ctxt, 0);
+
+ rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
+
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+
+ rc = emulate_pop(ctxt, &temp_eflags, ctxt->op_bytes);
+
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+
+ rc = load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS);
+
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+
+ ctxt->_eip = temp_eip;
+
+ if (ctxt->op_bytes == 4)
+ ctxt->eflags = ((temp_eflags & mask) | (ctxt->eflags & vm86_mask));
+ else if (ctxt->op_bytes == 2) {
+ ctxt->eflags &= ~0xffff;
+ ctxt->eflags |= temp_eflags;
+ }
+
+ ctxt->eflags &= ~EFLG_RESERVED_ZEROS_MASK; /* Clear reserved zeros */
+ ctxt->eflags |= X86_EFLAGS_FIXED;
+ ctxt->ops->set_nmi_mask(ctxt, false);
+
+ return rc;
+}
+
+static int em_iret(struct x86_emulate_ctxt *ctxt)
+{
+ switch(ctxt->mode) {
+ case X86EMUL_MODE_REAL:
+ return emulate_iret_real(ctxt);
+ case X86EMUL_MODE_VM86:
+ case X86EMUL_MODE_PROT16:
+ case X86EMUL_MODE_PROT32:
+ case X86EMUL_MODE_PROT64:
+ default:
+ /* iret from protected mode unimplemented yet */
+ return X86EMUL_UNHANDLEABLE;
+ }
+}
+
+static int em_jmp_far(struct x86_emulate_ctxt *ctxt)
+{
+ int rc;
+ unsigned short sel, old_sel;
+ struct desc_struct old_desc, new_desc;
+ const struct x86_emulate_ops *ops = ctxt->ops;
+ u8 cpl = ctxt->ops->cpl(ctxt);
+
+ /* Assignment of RIP may only fail in 64-bit mode */
+ if (ctxt->mode == X86EMUL_MODE_PROT64)
+ ops->get_segment(ctxt, &old_sel, &old_desc, NULL,
+ VCPU_SREG_CS);
+
+ memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
+
+ rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
+ X86_TRANSFER_CALL_JMP,
+ &new_desc);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+
+ rc = assign_eip_far(ctxt, ctxt->src.val, &new_desc);
+ if (rc != X86EMUL_CONTINUE) {
+ WARN_ON(ctxt->mode != X86EMUL_MODE_PROT64);
+ /* assigning eip failed; restore the old cs */
+ ops->set_segment(ctxt, old_sel, &old_desc, 0, VCPU_SREG_CS);
+ return rc;
+ }
+ return rc;
+}
+
+static int em_jmp_abs(struct x86_emulate_ctxt *ctxt)
+{
+ return assign_eip_near(ctxt, ctxt->src.val);
+}
+
+static int em_call_near_abs(struct x86_emulate_ctxt *ctxt)
+{
+ int rc;
+ long int old_eip;
+
+ old_eip = ctxt->_eip;
+ rc = assign_eip_near(ctxt, ctxt->src.val);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+ ctxt->src.val = old_eip;
+ rc = em_push(ctxt);
+ return rc;
+}
+
+static int em_cmpxchg8b(struct x86_emulate_ctxt *ctxt)
+{
+ u64 old = ctxt->dst.orig_val64;
+
+ if (ctxt->dst.bytes == 16)
+ return X86EMUL_UNHANDLEABLE;
+
+ if (((u32) (old >> 0) != (u32) reg_read(ctxt, VCPU_REGS_RAX)) ||
+ ((u32) (old >> 32) != (u32) reg_read(ctxt, VCPU_REGS_RDX))) {
+ *reg_write(ctxt, VCPU_REGS_RAX) = (u32) (old >> 0);
+ *reg_write(ctxt, VCPU_REGS_RDX) = (u32) (old >> 32);
+ ctxt->eflags &= ~X86_EFLAGS_ZF;
+ } else {
+ ctxt->dst.val64 = ((u64)reg_read(ctxt, VCPU_REGS_RCX) << 32) |
+ (u32) reg_read(ctxt, VCPU_REGS_RBX);
+
+ ctxt->eflags |= X86_EFLAGS_ZF;
+ }
+ return X86EMUL_CONTINUE;
+}
+
+static int em_ret(struct x86_emulate_ctxt *ctxt)
+{
+ int rc;
+ unsigned long eip;
+
+ rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+
+ return assign_eip_near(ctxt, eip);
+}
+
+static int em_ret_far(struct x86_emulate_ctxt *ctxt)
+{
+ int rc;
+ unsigned long eip, cs;
+ u16 old_cs;
+ int cpl = ctxt->ops->cpl(ctxt);
+ struct desc_struct old_desc, new_desc;
+ const struct x86_emulate_ops *ops = ctxt->ops;
+
+ if (ctxt->mode == X86EMUL_MODE_PROT64)
+ ops->get_segment(ctxt, &old_cs, &old_desc, NULL,
+ VCPU_SREG_CS);
+
+ rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+ rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+ /* Outer-privilege level return is not implemented */
+ if (ctxt->mode >= X86EMUL_MODE_PROT16 && (cs & 3) > cpl)
+ return X86EMUL_UNHANDLEABLE;
+ rc = __load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS, cpl,
+ X86_TRANSFER_RET,
+ &new_desc);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+ rc = assign_eip_far(ctxt, eip, &new_desc);
+ if (rc != X86EMUL_CONTINUE) {
+ WARN_ON(ctxt->mode != X86EMUL_MODE_PROT64);
+ ops->set_segment(ctxt, old_cs, &old_desc, 0, VCPU_SREG_CS);
+ }
+ return rc;
+}
+
+static int em_ret_far_imm(struct x86_emulate_ctxt *ctxt)
+{
+ int rc;
+
+ rc = em_ret_far(ctxt);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+ rsp_increment(ctxt, ctxt->src.val);
+ return X86EMUL_CONTINUE;
+}
+
+static int em_cmpxchg(struct x86_emulate_ctxt *ctxt)
+{
+ /* Save real source value, then compare EAX against destination. */
+ ctxt->dst.orig_val = ctxt->dst.val;
+ ctxt->dst.val = reg_read(ctxt, VCPU_REGS_RAX);
+ ctxt->src.orig_val = ctxt->src.val;
+ ctxt->src.val = ctxt->dst.orig_val;
+ fastop(ctxt, em_cmp);
+
+ if (ctxt->eflags & X86_EFLAGS_ZF) {
+ /* Success: write back to memory; no update of EAX */
+ ctxt->src.type = OP_NONE;
+ ctxt->dst.val = ctxt->src.orig_val;
+ } else {
+ /* Failure: write the value we saw to EAX. */
+ ctxt->src.type = OP_REG;
+ ctxt->src.addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
+ ctxt->src.val = ctxt->dst.orig_val;
+ /* Create write-cycle to dest by writing the same value */
+ ctxt->dst.val = ctxt->dst.orig_val;
+ }
+ return X86EMUL_CONTINUE;
+}
+
+static int em_lseg(struct x86_emulate_ctxt *ctxt)
+{
+ int seg = ctxt->src2.val;
+ unsigned short sel;
+ int rc;
+
+ memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
+
+ rc = load_segment_descriptor(ctxt, sel, seg);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+
+ ctxt->dst.val = ctxt->src.val;
+ return rc;
+}
+
+static void
+setup_syscalls_segments(struct x86_emulate_ctxt *ctxt,
+ struct desc_struct *cs, struct desc_struct *ss)
+{
+ cs->l = 0; /* will be adjusted later */
+ set_desc_base(cs, 0); /* flat segment */
+ cs->g = 1; /* 4kb granularity */
+ set_desc_limit(cs, 0xfffff); /* 4GB limit */
+ cs->type = 0x0b; /* Read, Execute, Accessed */
+ cs->s = 1;
+ cs->dpl = 0; /* will be adjusted later */
+ cs->p = 1;
+ cs->d = 1;
+ cs->avl = 0;
+
+ set_desc_base(ss, 0); /* flat segment */
+ set_desc_limit(ss, 0xfffff); /* 4GB limit */
+ ss->g = 1; /* 4kb granularity */
+ ss->s = 1;
+ ss->type = 0x03; /* Read/Write, Accessed */
+ ss->d = 1; /* 32bit stack segment */
+ ss->dpl = 0;
+ ss->p = 1;
+ ss->l = 0;
+ ss->avl = 0;
+}
+
+static bool vendor_intel(struct x86_emulate_ctxt *ctxt)
+{
+ u32 eax, ebx, ecx, edx;
+
+ eax = ecx = 0;
+ ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx);
+ return ebx == X86EMUL_CPUID_VENDOR_GenuineIntel_ebx
+ && ecx == X86EMUL_CPUID_VENDOR_GenuineIntel_ecx
+ && edx == X86EMUL_CPUID_VENDOR_GenuineIntel_edx;
+}
+
+static bool em_syscall_is_enabled(struct x86_emulate_ctxt *ctxt)
+{
+ const struct x86_emulate_ops *ops = ctxt->ops;
+ u32 eax, ebx, ecx, edx;
+
+ /*
+ * syscall should always be enabled in longmode - so only become
+ * vendor specific (cpuid) if other modes are active...
+ */
+ if (ctxt->mode == X86EMUL_MODE_PROT64)
+ return true;
+
+ eax = 0x00000000;
+ ecx = 0x00000000;
+ ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx);
+ /*
+ * Intel ("GenuineIntel")
+ * remark: Intel CPUs only support "syscall" in 64bit
+ * longmode. Also an 64bit guest with a
+ * 32bit compat-app running will #UD !! While this
+ * behaviour can be fixed (by emulating) into AMD
+ * response - CPUs of AMD can't behave like Intel.
+ */
+ if (ebx == X86EMUL_CPUID_VENDOR_GenuineIntel_ebx &&
+ ecx == X86EMUL_CPUID_VENDOR_GenuineIntel_ecx &&
+ edx == X86EMUL_CPUID_VENDOR_GenuineIntel_edx)
+ return false;
+
+ /* AMD ("AuthenticAMD") */
+ if (ebx == X86EMUL_CPUID_VENDOR_AuthenticAMD_ebx &&
+ ecx == X86EMUL_CPUID_VENDOR_AuthenticAMD_ecx &&
+ edx == X86EMUL_CPUID_VENDOR_AuthenticAMD_edx)
+ return true;
+
+ /* AMD ("AMDisbetter!") */
+ if (ebx == X86EMUL_CPUID_VENDOR_AMDisbetterI_ebx &&
+ ecx == X86EMUL_CPUID_VENDOR_AMDisbetterI_ecx &&
+ edx == X86EMUL_CPUID_VENDOR_AMDisbetterI_edx)
+ return true;
+
+ /* default: (not Intel, not AMD), apply Intel's stricter rules... */
+ return false;
+}
+
+static int em_syscall(struct x86_emulate_ctxt *ctxt)
+{
+ const struct x86_emulate_ops *ops = ctxt->ops;
+ struct desc_struct cs, ss;
+ u64 msr_data;
+ u16 cs_sel, ss_sel;
+ u64 efer = 0;
+
+ /* syscall is not available in real mode */
+ if (ctxt->mode == X86EMUL_MODE_REAL ||
+ ctxt->mode == X86EMUL_MODE_VM86)
+ return emulate_ud(ctxt);
+
+ if (!(em_syscall_is_enabled(ctxt)))
+ return emulate_ud(ctxt);
+
+ ops->get_msr(ctxt, MSR_EFER, &efer);
+ setup_syscalls_segments(ctxt, &cs, &ss);
+
+ if (!(efer & EFER_SCE))
+ return emulate_ud(ctxt);
+
+ ops->get_msr(ctxt, MSR_STAR, &msr_data);
+ msr_data >>= 32;
+ cs_sel = (u16)(msr_data & 0xfffc);
+ ss_sel = (u16)(msr_data + 8);
+
+ if (efer & EFER_LMA) {
+ cs.d = 0;
+ cs.l = 1;
+ }
+ ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
+ ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
+
+ *reg_write(ctxt, VCPU_REGS_RCX) = ctxt->_eip;
+ if (efer & EFER_LMA) {
+#ifdef CONFIG_X86_64
+ *reg_write(ctxt, VCPU_REGS_R11) = ctxt->eflags;
+
+ ops->get_msr(ctxt,
+ ctxt->mode == X86EMUL_MODE_PROT64 ?
+ MSR_LSTAR : MSR_CSTAR, &msr_data);
+ ctxt->_eip = msr_data;
+
+ ops->get_msr(ctxt, MSR_SYSCALL_MASK, &msr_data);
+ ctxt->eflags &= ~msr_data;
+ ctxt->eflags |= X86_EFLAGS_FIXED;
+#endif
+ } else {
+ /* legacy mode */
+ ops->get_msr(ctxt, MSR_STAR, &msr_data);
+ ctxt->_eip = (u32)msr_data;
+
+ ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF);
+ }
+
+ return X86EMUL_CONTINUE;
+}
+
+static int em_sysenter(struct x86_emulate_ctxt *ctxt)
+{
+ const struct x86_emulate_ops *ops = ctxt->ops;
+ struct desc_struct cs, ss;
+ u64 msr_data;
+ u16 cs_sel, ss_sel;
+ u64 efer = 0;
+
+ ops->get_msr(ctxt, MSR_EFER, &efer);
+ /* inject #GP if in real mode */
+ if (ctxt->mode == X86EMUL_MODE_REAL)
+ return emulate_gp(ctxt, 0);
+
+ /*
+ * Not recognized on AMD in compat mode (but is recognized in legacy
+ * mode).
+ */
+ if ((ctxt->mode != X86EMUL_MODE_PROT64) && (efer & EFER_LMA)
+ && !vendor_intel(ctxt))
+ return emulate_ud(ctxt);
+
+ /* sysenter/sysexit have not been tested in 64bit mode. */
+ if (ctxt->mode == X86EMUL_MODE_PROT64)
+ return X86EMUL_UNHANDLEABLE;
+
+ setup_syscalls_segments(ctxt, &cs, &ss);
+
+ ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
+ if ((msr_data & 0xfffc) == 0x0)
+ return emulate_gp(ctxt, 0);
+
+ ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF);
+ cs_sel = (u16)msr_data & ~SEGMENT_RPL_MASK;
+ ss_sel = cs_sel + 8;
+ if (efer & EFER_LMA) {
+ cs.d = 0;
+ cs.l = 1;
+ }
+
+ ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
+ ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
+
+ ops->get_msr(ctxt, MSR_IA32_SYSENTER_EIP, &msr_data);
+ ctxt->_eip = (efer & EFER_LMA) ? msr_data : (u32)msr_data;
+
+ ops->get_msr(ctxt, MSR_IA32_SYSENTER_ESP, &msr_data);
+ *reg_write(ctxt, VCPU_REGS_RSP) = (efer & EFER_LMA) ? msr_data :
+ (u32)msr_data;
+
+ return X86EMUL_CONTINUE;
+}
+
+static int em_sysexit(struct x86_emulate_ctxt *ctxt)
+{
+ const struct x86_emulate_ops *ops = ctxt->ops;
+ struct desc_struct cs, ss;
+ u64 msr_data, rcx, rdx;
+ int usermode;
+ u16 cs_sel = 0, ss_sel = 0;
+
+ /* inject #GP if in real mode or Virtual 8086 mode */
+ if (ctxt->mode == X86EMUL_MODE_REAL ||
+ ctxt->mode == X86EMUL_MODE_VM86)
+ return emulate_gp(ctxt, 0);
+
+ setup_syscalls_segments(ctxt, &cs, &ss);
+
+ if ((ctxt->rex_prefix & 0x8) != 0x0)
+ usermode = X86EMUL_MODE_PROT64;
+ else
+ usermode = X86EMUL_MODE_PROT32;
+
+ rcx = reg_read(ctxt, VCPU_REGS_RCX);
+ rdx = reg_read(ctxt, VCPU_REGS_RDX);
+
+ cs.dpl = 3;
+ ss.dpl = 3;
+ ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
+ switch (usermode) {
+ case X86EMUL_MODE_PROT32:
+ cs_sel = (u16)(msr_data + 16);
+ if ((msr_data & 0xfffc) == 0x0)
+ return emulate_gp(ctxt, 0);
+ ss_sel = (u16)(msr_data + 24);
+ rcx = (u32)rcx;
+ rdx = (u32)rdx;
+ break;
+ case X86EMUL_MODE_PROT64:
+ cs_sel = (u16)(msr_data + 32);
+ if (msr_data == 0x0)
+ return emulate_gp(ctxt, 0);
+ ss_sel = cs_sel + 8;
+ cs.d = 0;
+ cs.l = 1;
+ if (is_noncanonical_address(rcx) ||
+ is_noncanonical_address(rdx))
+ return emulate_gp(ctxt, 0);
+ break;
+ }
+ cs_sel |= SEGMENT_RPL_MASK;
+ ss_sel |= SEGMENT_RPL_MASK;
+
+ ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
+ ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
+
+ ctxt->_eip = rdx;
+ *reg_write(ctxt, VCPU_REGS_RSP) = rcx;
+
+ return X86EMUL_CONTINUE;
+}
+
+static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt)
+{
+ int iopl;
+ if (ctxt->mode == X86EMUL_MODE_REAL)
+ return false;
+ if (ctxt->mode == X86EMUL_MODE_VM86)
+ return true;
+ iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT;
+ return ctxt->ops->cpl(ctxt) > iopl;
+}
+
+static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt,
+ u16 port, u16 len)
+{
+ const struct x86_emulate_ops *ops = ctxt->ops;
+ struct desc_struct tr_seg;
+ u32 base3;
+ int r;
+ u16 tr, io_bitmap_ptr, perm, bit_idx = port & 0x7;
+ unsigned mask = (1 << len) - 1;
+ unsigned long base;
+
+ ops->get_segment(ctxt, &tr, &tr_seg, &base3, VCPU_SREG_TR);
+ if (!tr_seg.p)
+ return false;
+ if (desc_limit_scaled(&tr_seg) < 103)
+ return false;
+ base = get_desc_base(&tr_seg);
+#ifdef CONFIG_X86_64
+ base |= ((u64)base3) << 32;
+#endif
+ r = ops->read_std(ctxt, base + 102, &io_bitmap_ptr, 2, NULL);
+ if (r != X86EMUL_CONTINUE)
+ return false;
+ if (io_bitmap_ptr + port/8 > desc_limit_scaled(&tr_seg))
+ return false;
+ r = ops->read_std(ctxt, base + io_bitmap_ptr + port/8, &perm, 2, NULL);
+ if (r != X86EMUL_CONTINUE)
+ return false;
+ if ((perm >> bit_idx) & mask)
+ return false;
+ return true;
+}
+
+static bool emulator_io_permited(struct x86_emulate_ctxt *ctxt,
+ u16 port, u16 len)
+{
+ if (ctxt->perm_ok)
+ return true;
+
+ if (emulator_bad_iopl(ctxt))
+ if (!emulator_io_port_access_allowed(ctxt, port, len))
+ return false;
+
+ ctxt->perm_ok = true;
+
+ return true;
+}
+
+static void save_state_to_tss16(struct x86_emulate_ctxt *ctxt,
+ struct tss_segment_16 *tss)
+{
+ tss->ip = ctxt->_eip;
+ tss->flag = ctxt->eflags;
+ tss->ax = reg_read(ctxt, VCPU_REGS_RAX);
+ tss->cx = reg_read(ctxt, VCPU_REGS_RCX);
+ tss->dx = reg_read(ctxt, VCPU_REGS_RDX);
+ tss->bx = reg_read(ctxt, VCPU_REGS_RBX);
+ tss->sp = reg_read(ctxt, VCPU_REGS_RSP);
+ tss->bp = reg_read(ctxt, VCPU_REGS_RBP);
+ tss->si = reg_read(ctxt, VCPU_REGS_RSI);
+ tss->di = reg_read(ctxt, VCPU_REGS_RDI);
+
+ tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
+ tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
+ tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
+ tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
+ tss->ldt = get_segment_selector(ctxt, VCPU_SREG_LDTR);
+}
+
+static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt,
+ struct tss_segment_16 *tss)
+{
+ int ret;
+ u8 cpl;
+
+ ctxt->_eip = tss->ip;
+ ctxt->eflags = tss->flag | 2;
+ *reg_write(ctxt, VCPU_REGS_RAX) = tss->ax;
+ *reg_write(ctxt, VCPU_REGS_RCX) = tss->cx;
+ *reg_write(ctxt, VCPU_REGS_RDX) = tss->dx;
+ *reg_write(ctxt, VCPU_REGS_RBX) = tss->bx;
+ *reg_write(ctxt, VCPU_REGS_RSP) = tss->sp;
+ *reg_write(ctxt, VCPU_REGS_RBP) = tss->bp;
+ *reg_write(ctxt, VCPU_REGS_RSI) = tss->si;
+ *reg_write(ctxt, VCPU_REGS_RDI) = tss->di;
+
+ /*
+ * SDM says that segment selectors are loaded before segment
+ * descriptors
+ */
+ set_segment_selector(ctxt, tss->ldt, VCPU_SREG_LDTR);
+ set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
+ set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
+ set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
+ set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
+
+ cpl = tss->cs & 3;
+
+ /*
+ * Now load segment descriptors. If fault happens at this stage
+ * it is handled in a context of new task
+ */
+ ret = __load_segment_descriptor(ctxt, tss->ldt, VCPU_SREG_LDTR, cpl,
+ X86_TRANSFER_TASK_SWITCH, NULL);
+ if (ret != X86EMUL_CONTINUE)
+ return ret;
+ ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
+ X86_TRANSFER_TASK_SWITCH, NULL);
+ if (ret != X86EMUL_CONTINUE)
+ return ret;
+ ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
+ X86_TRANSFER_TASK_SWITCH, NULL);
+ if (ret != X86EMUL_CONTINUE)
+ return ret;
+ ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
+ X86_TRANSFER_TASK_SWITCH, NULL);
+ if (ret != X86EMUL_CONTINUE)
+ return ret;
+ ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
+ X86_TRANSFER_TASK_SWITCH, NULL);
+ if (ret != X86EMUL_CONTINUE)
+ return ret;
+
+ return X86EMUL_CONTINUE;
+}
+
+static int task_switch_16(struct x86_emulate_ctxt *ctxt,
+ u16 tss_selector, u16 old_tss_sel,
+ ulong old_tss_base, struct desc_struct *new_desc)
+{
+ const struct x86_emulate_ops *ops = ctxt->ops;
+ struct tss_segment_16 tss_seg;
+ int ret;
+ u32 new_tss_base = get_desc_base(new_desc);
+
+ ret = ops->read_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg,
+ &ctxt->exception);
+ if (ret != X86EMUL_CONTINUE)
+ return ret;
+
+ save_state_to_tss16(ctxt, &tss_seg);
+
+ ret = ops->write_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg,
+ &ctxt->exception);
+ if (ret != X86EMUL_CONTINUE)
+ return ret;
+
+ ret = ops->read_std(ctxt, new_tss_base, &tss_seg, sizeof tss_seg,
+ &ctxt->exception);
+ if (ret != X86EMUL_CONTINUE)
+ return ret;
+
+ if (old_tss_sel != 0xffff) {
+ tss_seg.prev_task_link = old_tss_sel;
+
+ ret = ops->write_std(ctxt, new_tss_base,
+ &tss_seg.prev_task_link,
+ sizeof tss_seg.prev_task_link,
+ &ctxt->exception);
+ if (ret != X86EMUL_CONTINUE)
+ return ret;
+ }
+
+ return load_state_from_tss16(ctxt, &tss_seg);
+}
+
+static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt,
+ struct tss_segment_32 *tss)
+{
+ /* CR3 and ldt selector are not saved intentionally */
+ tss->eip = ctxt->_eip;
+ tss->eflags = ctxt->eflags;
+ tss->eax = reg_read(ctxt, VCPU_REGS_RAX);
+ tss->ecx = reg_read(ctxt, VCPU_REGS_RCX);
+ tss->edx = reg_read(ctxt, VCPU_REGS_RDX);
+ tss->ebx = reg_read(ctxt, VCPU_REGS_RBX);
+ tss->esp = reg_read(ctxt, VCPU_REGS_RSP);
+ tss->ebp = reg_read(ctxt, VCPU_REGS_RBP);
+ tss->esi = reg_read(ctxt, VCPU_REGS_RSI);
+ tss->edi = reg_read(ctxt, VCPU_REGS_RDI);
+
+ tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
+ tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
+ tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
+ tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
+ tss->fs = get_segment_selector(ctxt, VCPU_SREG_FS);
+ tss->gs = get_segment_selector(ctxt, VCPU_SREG_GS);
+}
+
+static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt,
+ struct tss_segment_32 *tss)
+{
+ int ret;
+ u8 cpl;
+
+ if (ctxt->ops->set_cr(ctxt, 3, tss->cr3))
+ return emulate_gp(ctxt, 0);
+ ctxt->_eip = tss->eip;
+ ctxt->eflags = tss->eflags | 2;
+
+ /* General purpose registers */
+ *reg_write(ctxt, VCPU_REGS_RAX) = tss->eax;
+ *reg_write(ctxt, VCPU_REGS_RCX) = tss->ecx;
+ *reg_write(ctxt, VCPU_REGS_RDX) = tss->edx;
+ *reg_write(ctxt, VCPU_REGS_RBX) = tss->ebx;
+ *reg_write(ctxt, VCPU_REGS_RSP) = tss->esp;
+ *reg_write(ctxt, VCPU_REGS_RBP) = tss->ebp;
+ *reg_write(ctxt, VCPU_REGS_RSI) = tss->esi;
+ *reg_write(ctxt, VCPU_REGS_RDI) = tss->edi;
+
+ /*
+ * SDM says that segment selectors are loaded before segment
+ * descriptors. This is important because CPL checks will
+ * use CS.RPL.
+ */
+ set_segment_selector(ctxt, tss->ldt_selector, VCPU_SREG_LDTR);
+ set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
+ set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
+ set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
+ set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
+ set_segment_selector(ctxt, tss->fs, VCPU_SREG_FS);
+ set_segment_selector(ctxt, tss->gs, VCPU_SREG_GS);
+
+ /*
+ * If we're switching between Protected Mode and VM86, we need to make
+ * sure to update the mode before loading the segment descriptors so
+ * that the selectors are interpreted correctly.
+ */
+ if (ctxt->eflags & X86_EFLAGS_VM) {
+ ctxt->mode = X86EMUL_MODE_VM86;
+ cpl = 3;
+ } else {
+ ctxt->mode = X86EMUL_MODE_PROT32;
+ cpl = tss->cs & 3;
+ }
+
+ /*
+ * Now load segment descriptors. If fault happenes at this stage
+ * it is handled in a context of new task
+ */
+ ret = __load_segment_descriptor(ctxt, tss->ldt_selector, VCPU_SREG_LDTR,
+ cpl, X86_TRANSFER_TASK_SWITCH, NULL);
+ if (ret != X86EMUL_CONTINUE)
+ return ret;
+ ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
+ X86_TRANSFER_TASK_SWITCH, NULL);
+ if (ret != X86EMUL_CONTINUE)
+ return ret;
+ ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
+ X86_TRANSFER_TASK_SWITCH, NULL);
+ if (ret != X86EMUL_CONTINUE)
+ return ret;
+ ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
+ X86_TRANSFER_TASK_SWITCH, NULL);
+ if (ret != X86EMUL_CONTINUE)
+ return ret;
+ ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
+ X86_TRANSFER_TASK_SWITCH, NULL);
+ if (ret != X86EMUL_CONTINUE)
+ return ret;
+ ret = __load_segment_descriptor(ctxt, tss->fs, VCPU_SREG_FS, cpl,
+ X86_TRANSFER_TASK_SWITCH, NULL);
+ if (ret != X86EMUL_CONTINUE)
+ return ret;
+ ret = __load_segment_descriptor(ctxt, tss->gs, VCPU_SREG_GS, cpl,
+ X86_TRANSFER_TASK_SWITCH, NULL);
+
+ return ret;
+}
+
+static int task_switch_32(struct x86_emulate_ctxt *ctxt,
+ u16 tss_selector, u16 old_tss_sel,
+ ulong old_tss_base, struct desc_struct *new_desc)
+{
+ const struct x86_emulate_ops *ops = ctxt->ops;
+ struct tss_segment_32 tss_seg;
+ int ret;
+ u32 new_tss_base = get_desc_base(new_desc);
+ u32 eip_offset = offsetof(struct tss_segment_32, eip);
+ u32 ldt_sel_offset = offsetof(struct tss_segment_32, ldt_selector);
+
+ ret = ops->read_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg,
+ &ctxt->exception);
+ if (ret != X86EMUL_CONTINUE)
+ return ret;
+
+ save_state_to_tss32(ctxt, &tss_seg);
+
+ /* Only GP registers and segment selectors are saved */
+ ret = ops->write_std(ctxt, old_tss_base + eip_offset, &tss_seg.eip,
+ ldt_sel_offset - eip_offset, &ctxt->exception);
+ if (ret != X86EMUL_CONTINUE)
+ return ret;
+
+ ret = ops->read_std(ctxt, new_tss_base, &tss_seg, sizeof tss_seg,
+ &ctxt->exception);
+ if (ret != X86EMUL_CONTINUE)
+ return ret;
+
+ if (old_tss_sel != 0xffff) {
+ tss_seg.prev_task_link = old_tss_sel;
+
+ ret = ops->write_std(ctxt, new_tss_base,
+ &tss_seg.prev_task_link,
+ sizeof tss_seg.prev_task_link,
+ &ctxt->exception);
+ if (ret != X86EMUL_CONTINUE)
+ return ret;
+ }
+
+ return load_state_from_tss32(ctxt, &tss_seg);
+}
+
+static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt,
+ u16 tss_selector, int idt_index, int reason,
+ bool has_error_code, u32 error_code)
+{
+ const struct x86_emulate_ops *ops = ctxt->ops;
+ struct desc_struct curr_tss_desc, next_tss_desc;
+ int ret;
+ u16 old_tss_sel = get_segment_selector(ctxt, VCPU_SREG_TR);
+ ulong old_tss_base =
+ ops->get_cached_segment_base(ctxt, VCPU_SREG_TR);
+ u32 desc_limit;
+ ulong desc_addr;
+
+ /* FIXME: old_tss_base == ~0 ? */
+
+ ret = read_segment_descriptor(ctxt, tss_selector, &next_tss_desc, &desc_addr);
+ if (ret != X86EMUL_CONTINUE)
+ return ret;
+ ret = read_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc, &desc_addr);
+ if (ret != X86EMUL_CONTINUE)
+ return ret;
+
+ /* FIXME: check that next_tss_desc is tss */
+
+ /*
+ * Check privileges. The three cases are task switch caused by...
+ *
+ * 1. jmp/call/int to task gate: Check against DPL of the task gate
+ * 2. Exception/IRQ/iret: No check is performed
+ * 3. jmp/call to TSS/task-gate: No check is performed since the
+ * hardware checks it before exiting.
+ */
+ if (reason == TASK_SWITCH_GATE) {
+ if (idt_index != -1) {
+ /* Software interrupts */
+ struct desc_struct task_gate_desc;
+ int dpl;
+
+ ret = read_interrupt_descriptor(ctxt, idt_index,
+ &task_gate_desc);
+ if (ret != X86EMUL_CONTINUE)
+ return ret;
+
+ dpl = task_gate_desc.dpl;
+ if ((tss_selector & 3) > dpl || ops->cpl(ctxt) > dpl)
+ return emulate_gp(ctxt, (idt_index << 3) | 0x2);
+ }
+ }
+
+ desc_limit = desc_limit_scaled(&next_tss_desc);
+ if (!next_tss_desc.p ||
+ ((desc_limit < 0x67 && (next_tss_desc.type & 8)) ||
+ desc_limit < 0x2b)) {
+ return emulate_ts(ctxt, tss_selector & 0xfffc);
+ }
+
+ if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
+ curr_tss_desc.type &= ~(1 << 1); /* clear busy flag */
+ write_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc);
+ }
+
+ if (reason == TASK_SWITCH_IRET)
+ ctxt->eflags = ctxt->eflags & ~X86_EFLAGS_NT;
+
+ /* set back link to prev task only if NT bit is set in eflags
+ note that old_tss_sel is not used after this point */
+ if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
+ old_tss_sel = 0xffff;
+
+ if (next_tss_desc.type & 8)
+ ret = task_switch_32(ctxt, tss_selector, old_tss_sel,
+ old_tss_base, &next_tss_desc);
+ else
+ ret = task_switch_16(ctxt, tss_selector, old_tss_sel,
+ old_tss_base, &next_tss_desc);
+ if (ret != X86EMUL_CONTINUE)
+ return ret;
+
+ if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE)
+ ctxt->eflags = ctxt->eflags | X86_EFLAGS_NT;
+
+ if (reason != TASK_SWITCH_IRET) {
+ next_tss_desc.type |= (1 << 1); /* set busy flag */
+ write_segment_descriptor(ctxt, tss_selector, &next_tss_desc);
+ }
+
+ ops->set_cr(ctxt, 0, ops->get_cr(ctxt, 0) | X86_CR0_TS);
+ ops->set_segment(ctxt, tss_selector, &next_tss_desc, 0, VCPU_SREG_TR);
+
+ if (has_error_code) {
+ ctxt->op_bytes = ctxt->ad_bytes = (next_tss_desc.type & 8) ? 4 : 2;
+ ctxt->lock_prefix = 0;
+ ctxt->src.val = (unsigned long) error_code;
+ ret = em_push(ctxt);
+ }
+
+ return ret;
+}
+
+int emulator_task_switch(struct x86_emulate_ctxt *ctxt,
+ u16 tss_selector, int idt_index, int reason,
+ bool has_error_code, u32 error_code)
+{
+ int rc;
+
+ invalidate_registers(ctxt);
+ ctxt->_eip = ctxt->eip;
+ ctxt->dst.type = OP_NONE;
+
+ rc = emulator_do_task_switch(ctxt, tss_selector, idt_index, reason,
+ has_error_code, error_code);
+
+ if (rc == X86EMUL_CONTINUE) {
+ ctxt->eip = ctxt->_eip;
+ writeback_registers(ctxt);
+ }
+
+ return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
+}
+
+static void string_addr_inc(struct x86_emulate_ctxt *ctxt, int reg,
+ struct operand *op)
+{
+ int df = (ctxt->eflags & X86_EFLAGS_DF) ? -op->count : op->count;
+
+ register_address_increment(ctxt, reg, df * op->bytes);
+ op->addr.mem.ea = register_address(ctxt, reg);
+}
+
+static int em_das(struct x86_emulate_ctxt *ctxt)
+{
+ u8 al, old_al;
+ bool af, cf, old_cf;
+
+ cf = ctxt->eflags & X86_EFLAGS_CF;
+ al = ctxt->dst.val;
+
+ old_al = al;
+ old_cf = cf;
+ cf = false;
+ af = ctxt->eflags & X86_EFLAGS_AF;
+ if ((al & 0x0f) > 9 || af) {
+ al -= 6;
+ cf = old_cf | (al >= 250);
+ af = true;
+ } else {
+ af = false;
+ }
+ if (old_al > 0x99 || old_cf) {
+ al -= 0x60;
+ cf = true;
+ }
+
+ ctxt->dst.val = al;
+ /* Set PF, ZF, SF */
+ ctxt->src.type = OP_IMM;
+ ctxt->src.val = 0;
+ ctxt->src.bytes = 1;
+ fastop(ctxt, em_or);
+ ctxt->eflags &= ~(X86_EFLAGS_AF | X86_EFLAGS_CF);
+ if (cf)
+ ctxt->eflags |= X86_EFLAGS_CF;
+ if (af)
+ ctxt->eflags |= X86_EFLAGS_AF;
+ return X86EMUL_CONTINUE;
+}
+
+static int em_aam(struct x86_emulate_ctxt *ctxt)
+{
+ u8 al, ah;
+
+ if (ctxt->src.val == 0)
+ return emulate_de(ctxt);
+
+ al = ctxt->dst.val & 0xff;
+ ah = al / ctxt->src.val;
+ al %= ctxt->src.val;
+
+ ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al | (ah << 8);
+
+ /* Set PF, ZF, SF */
+ ctxt->src.type = OP_IMM;
+ ctxt->src.val = 0;
+ ctxt->src.bytes = 1;
+ fastop(ctxt, em_or);
+
+ return X86EMUL_CONTINUE;
+}
+
+static int em_aad(struct x86_emulate_ctxt *ctxt)
+{
+ u8 al = ctxt->dst.val & 0xff;
+ u8 ah = (ctxt->dst.val >> 8) & 0xff;
+
+ al = (al + (ah * ctxt->src.val)) & 0xff;
+
+ ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al;
+
+ /* Set PF, ZF, SF */
+ ctxt->src.type = OP_IMM;
+ ctxt->src.val = 0;
+ ctxt->src.bytes = 1;
+ fastop(ctxt, em_or);
+
+ return X86EMUL_CONTINUE;
+}
+
+static int em_call(struct x86_emulate_ctxt *ctxt)
+{
+ int rc;
+ long rel = ctxt->src.val;
+
+ ctxt->src.val = (unsigned long)ctxt->_eip;
+ rc = jmp_rel(ctxt, rel);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+ return em_push(ctxt);
+}
+
+static int em_call_far(struct x86_emulate_ctxt *ctxt)
+{
+ u16 sel, old_cs;
+ ulong old_eip;
+ int rc;
+ struct desc_struct old_desc, new_desc;
+ const struct x86_emulate_ops *ops = ctxt->ops;
+ int cpl = ctxt->ops->cpl(ctxt);
+ enum x86emul_mode prev_mode = ctxt->mode;
+
+ old_eip = ctxt->_eip;
+ ops->get_segment(ctxt, &old_cs, &old_desc, NULL, VCPU_SREG_CS);
+
+ memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
+ rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
+ X86_TRANSFER_CALL_JMP, &new_desc);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+
+ rc = assign_eip_far(ctxt, ctxt->src.val, &new_desc);
+ if (rc != X86EMUL_CONTINUE)
+ goto fail;
+
+ ctxt->src.val = old_cs;
+ rc = em_push(ctxt);
+ if (rc != X86EMUL_CONTINUE)
+ goto fail;
+
+ ctxt->src.val = old_eip;
+ rc = em_push(ctxt);
+ /* If we failed, we tainted the memory, but the very least we should
+ restore cs */
+ if (rc != X86EMUL_CONTINUE) {
+ pr_warn_once("faulting far call emulation tainted memory\n");
+ goto fail;
+ }
+ return rc;
+fail:
+ ops->set_segment(ctxt, old_cs, &old_desc, 0, VCPU_SREG_CS);
+ ctxt->mode = prev_mode;
+ return rc;
+
+}
+
+static int em_ret_near_imm(struct x86_emulate_ctxt *ctxt)
+{
+ int rc;
+ unsigned long eip;
+
+ rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+ rc = assign_eip_near(ctxt, eip);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+ rsp_increment(ctxt, ctxt->src.val);
+ return X86EMUL_CONTINUE;
+}
+
+static int em_xchg(struct x86_emulate_ctxt *ctxt)
+{
+ /* Write back the register source. */
+ ctxt->src.val = ctxt->dst.val;
+ write_register_operand(&ctxt->src);
+
+ /* Write back the memory destination with implicit LOCK prefix. */
+ ctxt->dst.val = ctxt->src.orig_val;
+ ctxt->lock_prefix = 1;
+ return X86EMUL_CONTINUE;
+}
+
+static int em_imul_3op(struct x86_emulate_ctxt *ctxt)
+{
+ ctxt->dst.val = ctxt->src2.val;
+ return fastop(ctxt, em_imul);
+}
+
+static int em_cwd(struct x86_emulate_ctxt *ctxt)
+{
+ ctxt->dst.type = OP_REG;
+ ctxt->dst.bytes = ctxt->src.bytes;
+ ctxt->dst.addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
+ ctxt->dst.val = ~((ctxt->src.val >> (ctxt->src.bytes * 8 - 1)) - 1);
+
+ return X86EMUL_CONTINUE;
+}
+
+static int em_rdtsc(struct x86_emulate_ctxt *ctxt)
+{
+ u64 tsc = 0;
+
+ ctxt->ops->get_msr(ctxt, MSR_IA32_TSC, &tsc);
+ *reg_write(ctxt, VCPU_REGS_RAX) = (u32)tsc;
+ *reg_write(ctxt, VCPU_REGS_RDX) = tsc >> 32;
+ return X86EMUL_CONTINUE;
+}
+
+static int em_rdpmc(struct x86_emulate_ctxt *ctxt)
+{
+ u64 pmc;
+
+ if (ctxt->ops->read_pmc(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &pmc))
+ return emulate_gp(ctxt, 0);
+ *reg_write(ctxt, VCPU_REGS_RAX) = (u32)pmc;
+ *reg_write(ctxt, VCPU_REGS_RDX) = pmc >> 32;
+ return X86EMUL_CONTINUE;
+}
+
+static int em_mov(struct x86_emulate_ctxt *ctxt)
+{
+ memcpy(ctxt->dst.valptr, ctxt->src.valptr, sizeof(ctxt->src.valptr));
+ return X86EMUL_CONTINUE;
+}
+
+#define FFL(x) bit(X86_FEATURE_##x)
+
+static int em_movbe(struct x86_emulate_ctxt *ctxt)
+{
+ u32 ebx, ecx, edx, eax = 1;
+ u16 tmp;
+
+ /*
+ * Check MOVBE is set in the guest-visible CPUID leaf.
+ */
+ ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx);
+ if (!(ecx & FFL(MOVBE)))
+ return emulate_ud(ctxt);
+
+ switch (ctxt->op_bytes) {
+ case 2:
+ /*
+ * From MOVBE definition: "...When the operand size is 16 bits,
+ * the upper word of the destination register remains unchanged
+ * ..."
+ *
+ * Both casting ->valptr and ->val to u16 breaks strict aliasing
+ * rules so we have to do the operation almost per hand.
+ */
+ tmp = (u16)ctxt->src.val;
+ ctxt->dst.val &= ~0xffffUL;
+ ctxt->dst.val |= (unsigned long)swab16(tmp);
+ break;
+ case 4:
+ ctxt->dst.val = swab32((u32)ctxt->src.val);
+ break;
+ case 8:
+ ctxt->dst.val = swab64(ctxt->src.val);
+ break;
+ default:
+ BUG();
+ }
+ return X86EMUL_CONTINUE;
+}
+
+static int em_cr_write(struct x86_emulate_ctxt *ctxt)
+{
+ if (ctxt->ops->set_cr(ctxt, ctxt->modrm_reg, ctxt->src.val))
+ return emulate_gp(ctxt, 0);
+
+ /* Disable writeback. */
+ ctxt->dst.type = OP_NONE;
+ return X86EMUL_CONTINUE;
+}
+
+static int em_dr_write(struct x86_emulate_ctxt *ctxt)
+{
+ unsigned long val;
+
+ if (ctxt->mode == X86EMUL_MODE_PROT64)
+ val = ctxt->src.val & ~0ULL;
+ else
+ val = ctxt->src.val & ~0U;
+
+ /* #UD condition is already handled. */
+ if (ctxt->ops->set_dr(ctxt, ctxt->modrm_reg, val) < 0)
+ return emulate_gp(ctxt, 0);
+
+ /* Disable writeback. */
+ ctxt->dst.type = OP_NONE;
+ return X86EMUL_CONTINUE;
+}
+
+static int em_wrmsr(struct x86_emulate_ctxt *ctxt)
+{
+ u64 msr_data;
+
+ msr_data = (u32)reg_read(ctxt, VCPU_REGS_RAX)
+ | ((u64)reg_read(ctxt, VCPU_REGS_RDX) << 32);
+ if (ctxt->ops->set_msr(ctxt, reg_read(ctxt, VCPU_REGS_RCX), msr_data))
+ return emulate_gp(ctxt, 0);
+
+ return X86EMUL_CONTINUE;
+}
+
+static int em_rdmsr(struct x86_emulate_ctxt *ctxt)
+{
+ u64 msr_data;
+
+ if (ctxt->ops->get_msr(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &msr_data))
+ return emulate_gp(ctxt, 0);
+
+ *reg_write(ctxt, VCPU_REGS_RAX) = (u32)msr_data;
+ *reg_write(ctxt, VCPU_REGS_RDX) = msr_data >> 32;
+ return X86EMUL_CONTINUE;
+}
+
+static int em_mov_rm_sreg(struct x86_emulate_ctxt *ctxt)
+{
+ if (ctxt->modrm_reg > VCPU_SREG_GS)
+ return emulate_ud(ctxt);
+
+ ctxt->dst.val = get_segment_selector(ctxt, ctxt->modrm_reg);
+ if (ctxt->dst.bytes == 4 && ctxt->dst.type == OP_MEM)
+ ctxt->dst.bytes = 2;
+ return X86EMUL_CONTINUE;
+}
+
+static int em_mov_sreg_rm(struct x86_emulate_ctxt *ctxt)
+{
+ u16 sel = ctxt->src.val;
+
+ if (ctxt->modrm_reg == VCPU_SREG_CS || ctxt->modrm_reg > VCPU_SREG_GS)
+ return emulate_ud(ctxt);
+
+ if (ctxt->modrm_reg == VCPU_SREG_SS)
+ ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
+
+ /* Disable writeback. */
+ ctxt->dst.type = OP_NONE;
+ return load_segment_descriptor(ctxt, sel, ctxt->modrm_reg);
+}
+
+static int em_lldt(struct x86_emulate_ctxt *ctxt)
+{
+ u16 sel = ctxt->src.val;
+
+ /* Disable writeback. */
+ ctxt->dst.type = OP_NONE;
+ return load_segment_descriptor(ctxt, sel, VCPU_SREG_LDTR);
+}
+
+static int em_ltr(struct x86_emulate_ctxt *ctxt)
+{
+ u16 sel = ctxt->src.val;
+
+ /* Disable writeback. */
+ ctxt->dst.type = OP_NONE;
+ return load_segment_descriptor(ctxt, sel, VCPU_SREG_TR);
+}
+
+static int em_invlpg(struct x86_emulate_ctxt *ctxt)
+{
+ int rc;
+ ulong linear;
+
+ rc = linearize(ctxt, ctxt->src.addr.mem, 1, false, &linear);
+ if (rc == X86EMUL_CONTINUE)
+ ctxt->ops->invlpg(ctxt, linear);
+ /* Disable writeback. */
+ ctxt->dst.type = OP_NONE;
+ return X86EMUL_CONTINUE;
+}
+
+static int em_clts(struct x86_emulate_ctxt *ctxt)
+{
+ ulong cr0;
+
+ cr0 = ctxt->ops->get_cr(ctxt, 0);
+ cr0 &= ~X86_CR0_TS;
+ ctxt->ops->set_cr(ctxt, 0, cr0);
+ return X86EMUL_CONTINUE;
+}
+
+static int em_hypercall(struct x86_emulate_ctxt *ctxt)
+{
+ int rc = ctxt->ops->fix_hypercall(ctxt);
+
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+
+ /* Let the processor re-execute the fixed hypercall */
+ ctxt->_eip = ctxt->eip;
+ /* Disable writeback. */
+ ctxt->dst.type = OP_NONE;
+ return X86EMUL_CONTINUE;
+}
+
+static int emulate_store_desc_ptr(struct x86_emulate_ctxt *ctxt,
+ void (*get)(struct x86_emulate_ctxt *ctxt,
+ struct desc_ptr *ptr))
+{
+ struct desc_ptr desc_ptr;
+
+ if (ctxt->mode == X86EMUL_MODE_PROT64)
+ ctxt->op_bytes = 8;
+ get(ctxt, &desc_ptr);
+ if (ctxt->op_bytes == 2) {
+ ctxt->op_bytes = 4;
+ desc_ptr.address &= 0x00ffffff;
+ }
+ /* Disable writeback. */
+ ctxt->dst.type = OP_NONE;
+ return segmented_write(ctxt, ctxt->dst.addr.mem,
+ &desc_ptr, 2 + ctxt->op_bytes);
+}
+
+static int em_sgdt(struct x86_emulate_ctxt *ctxt)
+{
+ return emulate_store_desc_ptr(ctxt, ctxt->ops->get_gdt);
+}
+
+static int em_sidt(struct x86_emulate_ctxt *ctxt)
+{
+ return emulate_store_desc_ptr(ctxt, ctxt->ops->get_idt);
+}
+
+static int em_lgdt_lidt(struct x86_emulate_ctxt *ctxt, bool lgdt)
+{
+ struct desc_ptr desc_ptr;
+ int rc;
+
+ if (ctxt->mode == X86EMUL_MODE_PROT64)
+ ctxt->op_bytes = 8;
+ rc = read_descriptor(ctxt, ctxt->src.addr.mem,
+ &desc_ptr.size, &desc_ptr.address,
+ ctxt->op_bytes);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+ if (ctxt->mode == X86EMUL_MODE_PROT64 &&
+ is_noncanonical_address(desc_ptr.address))
+ return emulate_gp(ctxt, 0);
+ if (lgdt)
+ ctxt->ops->set_gdt(ctxt, &desc_ptr);
+ else
+ ctxt->ops->set_idt(ctxt, &desc_ptr);
+ /* Disable writeback. */
+ ctxt->dst.type = OP_NONE;
+ return X86EMUL_CONTINUE;
+}
+
+static int em_lgdt(struct x86_emulate_ctxt *ctxt)
+{
+ return em_lgdt_lidt(ctxt, true);
+}
+
+static int em_lidt(struct x86_emulate_ctxt *ctxt)
+{
+ return em_lgdt_lidt(ctxt, false);
+}
+
+static int em_smsw(struct x86_emulate_ctxt *ctxt)
+{
+ if (ctxt->dst.type == OP_MEM)
+ ctxt->dst.bytes = 2;
+ ctxt->dst.val = ctxt->ops->get_cr(ctxt, 0);
+ return X86EMUL_CONTINUE;
+}
+
+static int em_lmsw(struct x86_emulate_ctxt *ctxt)
+{
+ ctxt->ops->set_cr(ctxt, 0, (ctxt->ops->get_cr(ctxt, 0) & ~0x0eul)
+ | (ctxt->src.val & 0x0f));
+ ctxt->dst.type = OP_NONE;
+ return X86EMUL_CONTINUE;
+}
+
+static int em_loop(struct x86_emulate_ctxt *ctxt)
+{
+ int rc = X86EMUL_CONTINUE;
+
+ register_address_increment(ctxt, VCPU_REGS_RCX, -1);
+ if ((address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) != 0) &&
+ (ctxt->b == 0xe2 || test_cc(ctxt->b ^ 0x5, ctxt->eflags)))
+ rc = jmp_rel(ctxt, ctxt->src.val);
+
+ return rc;
+}
+
+static int em_jcxz(struct x86_emulate_ctxt *ctxt)
+{
+ int rc = X86EMUL_CONTINUE;
+
+ if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0)
+ rc = jmp_rel(ctxt, ctxt->src.val);
+
+ return rc;
+}
+
+static int em_in(struct x86_emulate_ctxt *ctxt)
+{
+ if (!pio_in_emulated(ctxt, ctxt->dst.bytes, ctxt->src.val,
+ &ctxt->dst.val))
+ return X86EMUL_IO_NEEDED;
+
+ return X86EMUL_CONTINUE;
+}
+
+static int em_out(struct x86_emulate_ctxt *ctxt)
+{
+ ctxt->ops->pio_out_emulated(ctxt, ctxt->src.bytes, ctxt->dst.val,
+ &ctxt->src.val, 1);
+ /* Disable writeback. */
+ ctxt->dst.type = OP_NONE;
+ return X86EMUL_CONTINUE;
+}
+
+static int em_cli(struct x86_emulate_ctxt *ctxt)
+{
+ if (emulator_bad_iopl(ctxt))
+ return emulate_gp(ctxt, 0);
+
+ ctxt->eflags &= ~X86_EFLAGS_IF;
+ return X86EMUL_CONTINUE;
+}
+
+static int em_sti(struct x86_emulate_ctxt *ctxt)
+{
+ if (emulator_bad_iopl(ctxt))
+ return emulate_gp(ctxt, 0);
+
+ ctxt->interruptibility = KVM_X86_SHADOW_INT_STI;
+ ctxt->eflags |= X86_EFLAGS_IF;
+ return X86EMUL_CONTINUE;
+}
+
+static int em_cpuid(struct x86_emulate_ctxt *ctxt)
+{
+ u32 eax, ebx, ecx, edx;
+
+ eax = reg_read(ctxt, VCPU_REGS_RAX);
+ ecx = reg_read(ctxt, VCPU_REGS_RCX);
+ ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx);
+ *reg_write(ctxt, VCPU_REGS_RAX) = eax;
+ *reg_write(ctxt, VCPU_REGS_RBX) = ebx;
+ *reg_write(ctxt, VCPU_REGS_RCX) = ecx;
+ *reg_write(ctxt, VCPU_REGS_RDX) = edx;
+ return X86EMUL_CONTINUE;
+}
+
+static int em_sahf(struct x86_emulate_ctxt *ctxt)
+{
+ u32 flags;
+
+ flags = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
+ X86_EFLAGS_SF;
+ flags &= *reg_rmw(ctxt, VCPU_REGS_RAX) >> 8;
+
+ ctxt->eflags &= ~0xffUL;
+ ctxt->eflags |= flags | X86_EFLAGS_FIXED;
+ return X86EMUL_CONTINUE;
+}
+
+static int em_lahf(struct x86_emulate_ctxt *ctxt)
+{
+ *reg_rmw(ctxt, VCPU_REGS_RAX) &= ~0xff00UL;
+ *reg_rmw(ctxt, VCPU_REGS_RAX) |= (ctxt->eflags & 0xff) << 8;
+ return X86EMUL_CONTINUE;
+}
+
+static int em_bswap(struct x86_emulate_ctxt *ctxt)
+{
+ switch (ctxt->op_bytes) {
+#ifdef CONFIG_X86_64
+ case 8:
+ asm("bswap %0" : "+r"(ctxt->dst.val));
+ break;
+#endif
+ default:
+ asm("bswap %0" : "+r"(*(u32 *)&ctxt->dst.val));
+ break;
+ }
+ return X86EMUL_CONTINUE;
+}
+
+static int em_clflush(struct x86_emulate_ctxt *ctxt)
+{
+ /* emulating clflush regardless of cpuid */
+ return X86EMUL_CONTINUE;
+}
+
+static int em_movsxd(struct x86_emulate_ctxt *ctxt)
+{
+ ctxt->dst.val = (s32) ctxt->src.val;
+ return X86EMUL_CONTINUE;
+}
+
+static bool valid_cr(int nr)
+{
+ switch (nr) {
+ case 0:
+ case 2 ... 4:
+ case 8:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static int check_cr_read(struct x86_emulate_ctxt *ctxt)
+{
+ if (!valid_cr(ctxt->modrm_reg))
+ return emulate_ud(ctxt);
+
+ return X86EMUL_CONTINUE;
+}
+
+static int check_cr_write(struct x86_emulate_ctxt *ctxt)
+{
+ u64 new_val = ctxt->src.val64;
+ int cr = ctxt->modrm_reg;
+ u64 efer = 0;
+
+ static u64 cr_reserved_bits[] = {
+ 0xffffffff00000000ULL,
+ 0, 0, 0, /* CR3 checked later */
+ CR4_RESERVED_BITS,
+ 0, 0, 0,
+ CR8_RESERVED_BITS,
+ };
+
+ if (!valid_cr(cr))
+ return emulate_ud(ctxt);
+
+ if (new_val & cr_reserved_bits[cr])
+ return emulate_gp(ctxt, 0);
+
+ switch (cr) {
+ case 0: {
+ u64 cr4;
+ if (((new_val & X86_CR0_PG) && !(new_val & X86_CR0_PE)) ||
+ ((new_val & X86_CR0_NW) && !(new_val & X86_CR0_CD)))
+ return emulate_gp(ctxt, 0);
+
+ cr4 = ctxt->ops->get_cr(ctxt, 4);
+ ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
+
+ if ((new_val & X86_CR0_PG) && (efer & EFER_LME) &&
+ !(cr4 & X86_CR4_PAE))
+ return emulate_gp(ctxt, 0);
+
+ break;
+ }
+ case 3: {
+ u64 rsvd = 0;
+
+ ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
+ if (efer & EFER_LMA)
+ rsvd = CR3_L_MODE_RESERVED_BITS & ~CR3_PCID_INVD;
+
+ if (new_val & rsvd)
+ return emulate_gp(ctxt, 0);
+
+ break;
+ }
+ case 4: {
+ ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
+
+ if ((efer & EFER_LMA) && !(new_val & X86_CR4_PAE))
+ return emulate_gp(ctxt, 0);
+
+ break;
+ }
+ }
+
+ return X86EMUL_CONTINUE;
+}
+
+static int check_dr7_gd(struct x86_emulate_ctxt *ctxt)
+{
+ unsigned long dr7;
+
+ ctxt->ops->get_dr(ctxt, 7, &dr7);
+
+ /* Check if DR7.Global_Enable is set */
+ return dr7 & (1 << 13);
+}
+
+static int check_dr_read(struct x86_emulate_ctxt *ctxt)
+{
+ int dr = ctxt->modrm_reg;
+ u64 cr4;
+
+ if (dr > 7)
+ return emulate_ud(ctxt);
+
+ cr4 = ctxt->ops->get_cr(ctxt, 4);
+ if ((cr4 & X86_CR4_DE) && (dr == 4 || dr == 5))
+ return emulate_ud(ctxt);
+
+ if (check_dr7_gd(ctxt)) {
+ ulong dr6;
+
+ ctxt->ops->get_dr(ctxt, 6, &dr6);
+ dr6 &= ~15;
+ dr6 |= DR6_BD | DR6_RTM;
+ ctxt->ops->set_dr(ctxt, 6, dr6);
+ return emulate_db(ctxt);
+ }
+
+ return X86EMUL_CONTINUE;
+}
+
+static int check_dr_write(struct x86_emulate_ctxt *ctxt)
+{
+ u64 new_val = ctxt->src.val64;
+ int dr = ctxt->modrm_reg;
+
+ if ((dr == 6 || dr == 7) && (new_val & 0xffffffff00000000ULL))
+ return emulate_gp(ctxt, 0);
+
+ return check_dr_read(ctxt);
+}
+
+static int check_svme(struct x86_emulate_ctxt *ctxt)
+{
+ u64 efer;
+
+ ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
+
+ if (!(efer & EFER_SVME))
+ return emulate_ud(ctxt);
+
+ return X86EMUL_CONTINUE;
+}
+
+static int check_svme_pa(struct x86_emulate_ctxt *ctxt)
+{
+ u64 rax = reg_read(ctxt, VCPU_REGS_RAX);
+
+ /* Valid physical address? */
+ if (rax & 0xffff000000000000ULL)
+ return emulate_gp(ctxt, 0);
+
+ return check_svme(ctxt);
+}
+
+static int check_rdtsc(struct x86_emulate_ctxt *ctxt)
+{
+ u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
+
+ if (cr4 & X86_CR4_TSD && ctxt->ops->cpl(ctxt))
+ return emulate_ud(ctxt);
+
+ return X86EMUL_CONTINUE;
+}
+
+static int check_rdpmc(struct x86_emulate_ctxt *ctxt)
+{
+ u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
+ u64 rcx = reg_read(ctxt, VCPU_REGS_RCX);
+
+ if ((!(cr4 & X86_CR4_PCE) && ctxt->ops->cpl(ctxt)) ||
+ ctxt->ops->check_pmc(ctxt, rcx))
+ return emulate_gp(ctxt, 0);
+
+ return X86EMUL_CONTINUE;
+}
+
+static int check_perm_in(struct x86_emulate_ctxt *ctxt)
+{
+ ctxt->dst.bytes = min(ctxt->dst.bytes, 4u);
+ if (!emulator_io_permited(ctxt, ctxt->src.val, ctxt->dst.bytes))
+ return emulate_gp(ctxt, 0);
+
+ return X86EMUL_CONTINUE;
+}
+
+static int check_perm_out(struct x86_emulate_ctxt *ctxt)
+{
+ ctxt->src.bytes = min(ctxt->src.bytes, 4u);
+ if (!emulator_io_permited(ctxt, ctxt->dst.val, ctxt->src.bytes))
+ return emulate_gp(ctxt, 0);
+
+ return X86EMUL_CONTINUE;
+}
+
+#define D(_y) { .flags = (_y) }
+#define DI(_y, _i) { .flags = (_y)|Intercept, .intercept = x86_intercept_##_i }
+#define DIP(_y, _i, _p) { .flags = (_y)|Intercept|CheckPerm, \
+ .intercept = x86_intercept_##_i, .check_perm = (_p) }
+#define N D(NotImpl)
+#define EXT(_f, _e) { .flags = ((_f) | RMExt), .u.group = (_e) }
+#define G(_f, _g) { .flags = ((_f) | Group | ModRM), .u.group = (_g) }
+#define GD(_f, _g) { .flags = ((_f) | GroupDual | ModRM), .u.gdual = (_g) }
+#define ID(_f, _i) { .flags = ((_f) | InstrDual | ModRM), .u.idual = (_i) }
+#define MD(_f, _m) { .flags = ((_f) | ModeDual), .u.mdual = (_m) }
+#define E(_f, _e) { .flags = ((_f) | Escape | ModRM), .u.esc = (_e) }
+#define I(_f, _e) { .flags = (_f), .u.execute = (_e) }
+#define F(_f, _e) { .flags = (_f) | Fastop, .u.fastop = (_e) }
+#define II(_f, _e, _i) \
+ { .flags = (_f)|Intercept, .u.execute = (_e), .intercept = x86_intercept_##_i }
+#define IIP(_f, _e, _i, _p) \
+ { .flags = (_f)|Intercept|CheckPerm, .u.execute = (_e), \
+ .intercept = x86_intercept_##_i, .check_perm = (_p) }
+#define GP(_f, _g) { .flags = ((_f) | Prefix), .u.gprefix = (_g) }
+
+#define D2bv(_f) D((_f) | ByteOp), D(_f)
+#define D2bvIP(_f, _i, _p) DIP((_f) | ByteOp, _i, _p), DIP(_f, _i, _p)
+#define I2bv(_f, _e) I((_f) | ByteOp, _e), I(_f, _e)
+#define F2bv(_f, _e) F((_f) | ByteOp, _e), F(_f, _e)
+#define I2bvIP(_f, _e, _i, _p) \
+ IIP((_f) | ByteOp, _e, _i, _p), IIP(_f, _e, _i, _p)
+
+#define F6ALU(_f, _e) F2bv((_f) | DstMem | SrcReg | ModRM, _e), \
+ F2bv(((_f) | DstReg | SrcMem | ModRM) & ~Lock, _e), \
+ F2bv(((_f) & ~Lock) | DstAcc | SrcImm, _e)
+
+static const struct opcode group7_rm0[] = {
+ N,
+ I(SrcNone | Priv | EmulateOnUD, em_hypercall),
+ N, N, N, N, N, N,
+};
+
+static const struct opcode group7_rm1[] = {
+ DI(SrcNone | Priv, monitor),
+ DI(SrcNone | Priv, mwait),
+ N, N, N, N, N, N,
+};
+
+static const struct opcode group7_rm3[] = {
+ DIP(SrcNone | Prot | Priv, vmrun, check_svme_pa),
+ II(SrcNone | Prot | EmulateOnUD, em_hypercall, vmmcall),
+ DIP(SrcNone | Prot | Priv, vmload, check_svme_pa),
+ DIP(SrcNone | Prot | Priv, vmsave, check_svme_pa),
+ DIP(SrcNone | Prot | Priv, stgi, check_svme),
+ DIP(SrcNone | Prot | Priv, clgi, check_svme),
+ DIP(SrcNone | Prot | Priv, skinit, check_svme),
+ DIP(SrcNone | Prot | Priv, invlpga, check_svme),
+};
+
+static const struct opcode group7_rm7[] = {
+ N,
+ DIP(SrcNone, rdtscp, check_rdtsc),
+ N, N, N, N, N, N,
+};
+
+static const struct opcode group1[] = {
+ F(Lock, em_add),
+ F(Lock | PageTable, em_or),
+ F(Lock, em_adc),
+ F(Lock, em_sbb),
+ F(Lock | PageTable, em_and),
+ F(Lock, em_sub),
+ F(Lock, em_xor),
+ F(NoWrite, em_cmp),
+};
+
+static const struct opcode group1A[] = {
+ I(DstMem | SrcNone | Mov | Stack | IncSP, em_pop), N, N, N, N, N, N, N,
+};
+
+static const struct opcode group2[] = {
+ F(DstMem | ModRM, em_rol),
+ F(DstMem | ModRM, em_ror),
+ F(DstMem | ModRM, em_rcl),
+ F(DstMem | ModRM, em_rcr),
+ F(DstMem | ModRM, em_shl),
+ F(DstMem | ModRM, em_shr),
+ F(DstMem | ModRM, em_shl),
+ F(DstMem | ModRM, em_sar),
+};
+
+static const struct opcode group3[] = {
+ F(DstMem | SrcImm | NoWrite, em_test),
+ F(DstMem | SrcImm | NoWrite, em_test),
+ F(DstMem | SrcNone | Lock, em_not),
+ F(DstMem | SrcNone | Lock, em_neg),
+ F(DstXacc | Src2Mem, em_mul_ex),
+ F(DstXacc | Src2Mem, em_imul_ex),
+ F(DstXacc | Src2Mem, em_div_ex),
+ F(DstXacc | Src2Mem, em_idiv_ex),
+};
+
+static const struct opcode group4[] = {
+ F(ByteOp | DstMem | SrcNone | Lock, em_inc),
+ F(ByteOp | DstMem | SrcNone | Lock, em_dec),
+ N, N, N, N, N, N,
+};
+
+static const struct opcode group5[] = {
+ F(DstMem | SrcNone | Lock, em_inc),
+ F(DstMem | SrcNone | Lock, em_dec),
+ I(SrcMem | NearBranch, em_call_near_abs),
+ I(SrcMemFAddr | ImplicitOps | Stack, em_call_far),
+ I(SrcMem | NearBranch, em_jmp_abs),
+ I(SrcMemFAddr | ImplicitOps, em_jmp_far),
+ I(SrcMem | Stack, em_push), D(Undefined),
+};
+
+static const struct opcode group6[] = {
+ DI(Prot | DstMem, sldt),
+ DI(Prot | DstMem, str),
+ II(Prot | Priv | SrcMem16, em_lldt, lldt),
+ II(Prot | Priv | SrcMem16, em_ltr, ltr),
+ N, N, N, N,
+};
+
+static const struct group_dual group7 = { {
+ II(Mov | DstMem, em_sgdt, sgdt),
+ II(Mov | DstMem, em_sidt, sidt),
+ II(SrcMem | Priv, em_lgdt, lgdt),
+ II(SrcMem | Priv, em_lidt, lidt),
+ II(SrcNone | DstMem | Mov, em_smsw, smsw), N,
+ II(SrcMem16 | Mov | Priv, em_lmsw, lmsw),
+ II(SrcMem | ByteOp | Priv | NoAccess, em_invlpg, invlpg),
+}, {
+ EXT(0, group7_rm0),
+ EXT(0, group7_rm1),
+ N, EXT(0, group7_rm3),
+ II(SrcNone | DstMem | Mov, em_smsw, smsw), N,
+ II(SrcMem16 | Mov | Priv, em_lmsw, lmsw),
+ EXT(0, group7_rm7),
+} };
+
+static const struct opcode group8[] = {
+ N, N, N, N,
+ F(DstMem | SrcImmByte | NoWrite, em_bt),
+ F(DstMem | SrcImmByte | Lock | PageTable, em_bts),
+ F(DstMem | SrcImmByte | Lock, em_btr),
+ F(DstMem | SrcImmByte | Lock | PageTable, em_btc),
+};
+
+static const struct group_dual group9 = { {
+ N, I(DstMem64 | Lock | PageTable, em_cmpxchg8b), N, N, N, N, N, N,
+}, {
+ N, N, N, N, N, N, N, N,
+} };
+
+static const struct opcode group11[] = {
+ I(DstMem | SrcImm | Mov | PageTable, em_mov),
+ X7(D(Undefined)),
+};
+
+static const struct gprefix pfx_0f_ae_7 = {
+ I(SrcMem | ByteOp, em_clflush), N, N, N,
+};
+
+static const struct group_dual group15 = { {
+ N, N, N, N, N, N, N, GP(0, &pfx_0f_ae_7),
+}, {
+ N, N, N, N, N, N, N, N,
+} };
+
+static const struct gprefix pfx_0f_6f_0f_7f = {
+ I(Mmx, em_mov), I(Sse | Aligned, em_mov), N, I(Sse | Unaligned, em_mov),
+};
+
+static const struct instr_dual instr_dual_0f_2b = {
+ I(0, em_mov), N
+};
+
+static const struct gprefix pfx_0f_2b = {
+ ID(0, &instr_dual_0f_2b), ID(0, &instr_dual_0f_2b), N, N,
+};
+
+static const struct gprefix pfx_0f_28_0f_29 = {
+ I(Aligned, em_mov), I(Aligned, em_mov), N, N,
+};
+
+static const struct gprefix pfx_0f_e7 = {
+ N, I(Sse, em_mov), N, N,
+};
+
+static const struct escape escape_d9 = { {
+ N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstcw),
+}, {
+ /* 0xC0 - 0xC7 */
+ N, N, N, N, N, N, N, N,
+ /* 0xC8 - 0xCF */
+ N, N, N, N, N, N, N, N,
+ /* 0xD0 - 0xC7 */
+ N, N, N, N, N, N, N, N,
+ /* 0xD8 - 0xDF */
+ N, N, N, N, N, N, N, N,
+ /* 0xE0 - 0xE7 */
+ N, N, N, N, N, N, N, N,
+ /* 0xE8 - 0xEF */
+ N, N, N, N, N, N, N, N,
+ /* 0xF0 - 0xF7 */
+ N, N, N, N, N, N, N, N,
+ /* 0xF8 - 0xFF */
+ N, N, N, N, N, N, N, N,
+} };
+
+static const struct escape escape_db = { {
+ N, N, N, N, N, N, N, N,
+}, {
+ /* 0xC0 - 0xC7 */
+ N, N, N, N, N, N, N, N,
+ /* 0xC8 - 0xCF */
+ N, N, N, N, N, N, N, N,
+ /* 0xD0 - 0xC7 */
+ N, N, N, N, N, N, N, N,
+ /* 0xD8 - 0xDF */
+ N, N, N, N, N, N, N, N,
+ /* 0xE0 - 0xE7 */
+ N, N, N, I(ImplicitOps, em_fninit), N, N, N, N,
+ /* 0xE8 - 0xEF */
+ N, N, N, N, N, N, N, N,
+ /* 0xF0 - 0xF7 */
+ N, N, N, N, N, N, N, N,
+ /* 0xF8 - 0xFF */
+ N, N, N, N, N, N, N, N,
+} };
+
+static const struct escape escape_dd = { {
+ N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstsw),
+}, {
+ /* 0xC0 - 0xC7 */
+ N, N, N, N, N, N, N, N,
+ /* 0xC8 - 0xCF */
+ N, N, N, N, N, N, N, N,
+ /* 0xD0 - 0xC7 */
+ N, N, N, N, N, N, N, N,
+ /* 0xD8 - 0xDF */
+ N, N, N, N, N, N, N, N,
+ /* 0xE0 - 0xE7 */
+ N, N, N, N, N, N, N, N,
+ /* 0xE8 - 0xEF */
+ N, N, N, N, N, N, N, N,
+ /* 0xF0 - 0xF7 */
+ N, N, N, N, N, N, N, N,
+ /* 0xF8 - 0xFF */
+ N, N, N, N, N, N, N, N,
+} };
+
+static const struct instr_dual instr_dual_0f_c3 = {
+ I(DstMem | SrcReg | ModRM | No16 | Mov, em_mov), N
+};
+
+static const struct mode_dual mode_dual_63 = {
+ N, I(DstReg | SrcMem32 | ModRM | Mov, em_movsxd)
+};
+
+static const struct opcode opcode_table[256] = {
+ /* 0x00 - 0x07 */
+ F6ALU(Lock, em_add),
+ I(ImplicitOps | Stack | No64 | Src2ES, em_push_sreg),
+ I(ImplicitOps | Stack | No64 | Src2ES, em_pop_sreg),
+ /* 0x08 - 0x0F */
+ F6ALU(Lock | PageTable, em_or),
+ I(ImplicitOps | Stack | No64 | Src2CS, em_push_sreg),
+ N,
+ /* 0x10 - 0x17 */
+ F6ALU(Lock, em_adc),
+ I(ImplicitOps | Stack | No64 | Src2SS, em_push_sreg),
+ I(ImplicitOps | Stack | No64 | Src2SS, em_pop_sreg),
+ /* 0x18 - 0x1F */
+ F6ALU(Lock, em_sbb),
+ I(ImplicitOps | Stack | No64 | Src2DS, em_push_sreg),
+ I(ImplicitOps | Stack | No64 | Src2DS, em_pop_sreg),
+ /* 0x20 - 0x27 */
+ F6ALU(Lock | PageTable, em_and), N, N,
+ /* 0x28 - 0x2F */
+ F6ALU(Lock, em_sub), N, I(ByteOp | DstAcc | No64, em_das),
+ /* 0x30 - 0x37 */
+ F6ALU(Lock, em_xor), N, N,
+ /* 0x38 - 0x3F */
+ F6ALU(NoWrite, em_cmp), N, N,
+ /* 0x40 - 0x4F */
+ X8(F(DstReg, em_inc)), X8(F(DstReg, em_dec)),
+ /* 0x50 - 0x57 */
+ X8(I(SrcReg | Stack, em_push)),
+ /* 0x58 - 0x5F */
+ X8(I(DstReg | Stack, em_pop)),
+ /* 0x60 - 0x67 */
+ I(ImplicitOps | Stack | No64, em_pusha),
+ I(ImplicitOps | Stack | No64, em_popa),
+ N, MD(ModRM, &mode_dual_63),
+ N, N, N, N,
+ /* 0x68 - 0x6F */
+ I(SrcImm | Mov | Stack, em_push),
+ I(DstReg | SrcMem | ModRM | Src2Imm, em_imul_3op),
+ I(SrcImmByte | Mov | Stack, em_push),
+ I(DstReg | SrcMem | ModRM | Src2ImmByte, em_imul_3op),
+ I2bvIP(DstDI | SrcDX | Mov | String | Unaligned, em_in, ins, check_perm_in), /* insb, insw/insd */
+ I2bvIP(SrcSI | DstDX | String, em_out, outs, check_perm_out), /* outsb, outsw/outsd */
+ /* 0x70 - 0x7F */
+ X16(D(SrcImmByte | NearBranch)),
+ /* 0x80 - 0x87 */
+ G(ByteOp | DstMem | SrcImm, group1),
+ G(DstMem | SrcImm, group1),
+ G(ByteOp | DstMem | SrcImm | No64, group1),
+ G(DstMem | SrcImmByte, group1),
+ F2bv(DstMem | SrcReg | ModRM | NoWrite, em_test),
+ I2bv(DstMem | SrcReg | ModRM | Lock | PageTable, em_xchg),
+ /* 0x88 - 0x8F */
+ I2bv(DstMem | SrcReg | ModRM | Mov | PageTable, em_mov),
+ I2bv(DstReg | SrcMem | ModRM | Mov, em_mov),
+ I(DstMem | SrcNone | ModRM | Mov | PageTable, em_mov_rm_sreg),
+ D(ModRM | SrcMem | NoAccess | DstReg),
+ I(ImplicitOps | SrcMem16 | ModRM, em_mov_sreg_rm),
+ G(0, group1A),
+ /* 0x90 - 0x97 */
+ DI(SrcAcc | DstReg, pause), X7(D(SrcAcc | DstReg)),
+ /* 0x98 - 0x9F */
+ D(DstAcc | SrcNone), I(ImplicitOps | SrcAcc, em_cwd),
+ I(SrcImmFAddr | No64, em_call_far), N,
+ II(ImplicitOps | Stack, em_pushf, pushf),
+ II(ImplicitOps | Stack, em_popf, popf),
+ I(ImplicitOps, em_sahf), I(ImplicitOps, em_lahf),
+ /* 0xA0 - 0xA7 */
+ I2bv(DstAcc | SrcMem | Mov | MemAbs, em_mov),
+ I2bv(DstMem | SrcAcc | Mov | MemAbs | PageTable, em_mov),
+ I2bv(SrcSI | DstDI | Mov | String, em_mov),
+ F2bv(SrcSI | DstDI | String | NoWrite, em_cmp_r),
+ /* 0xA8 - 0xAF */
+ F2bv(DstAcc | SrcImm | NoWrite, em_test),
+ I2bv(SrcAcc | DstDI | Mov | String, em_mov),
+ I2bv(SrcSI | DstAcc | Mov | String, em_mov),
+ F2bv(SrcAcc | DstDI | String | NoWrite, em_cmp_r),
+ /* 0xB0 - 0xB7 */
+ X8(I(ByteOp | DstReg | SrcImm | Mov, em_mov)),
+ /* 0xB8 - 0xBF */
+ X8(I(DstReg | SrcImm64 | Mov, em_mov)),
+ /* 0xC0 - 0xC7 */
+ G(ByteOp | Src2ImmByte, group2), G(Src2ImmByte, group2),
+ I(ImplicitOps | NearBranch | SrcImmU16, em_ret_near_imm),
+ I(ImplicitOps | NearBranch, em_ret),
+ I(DstReg | SrcMemFAddr | ModRM | No64 | Src2ES, em_lseg),
+ I(DstReg | SrcMemFAddr | ModRM | No64 | Src2DS, em_lseg),
+ G(ByteOp, group11), G(0, group11),
+ /* 0xC8 - 0xCF */
+ I(Stack | SrcImmU16 | Src2ImmByte, em_enter), I(Stack, em_leave),
+ I(ImplicitOps | SrcImmU16, em_ret_far_imm),
+ I(ImplicitOps, em_ret_far),
+ D(ImplicitOps), DI(SrcImmByte, intn),
+ D(ImplicitOps | No64), II(ImplicitOps, em_iret, iret),
+ /* 0xD0 - 0xD7 */
+ G(Src2One | ByteOp, group2), G(Src2One, group2),
+ G(Src2CL | ByteOp, group2), G(Src2CL, group2),
+ I(DstAcc | SrcImmUByte | No64, em_aam),
+ I(DstAcc | SrcImmUByte | No64, em_aad),
+ F(DstAcc | ByteOp | No64, em_salc),
+ I(DstAcc | SrcXLat | ByteOp, em_mov),
+ /* 0xD8 - 0xDF */
+ N, E(0, &escape_d9), N, E(0, &escape_db), N, E(0, &escape_dd), N, N,
+ /* 0xE0 - 0xE7 */
+ X3(I(SrcImmByte | NearBranch, em_loop)),
+ I(SrcImmByte | NearBranch, em_jcxz),
+ I2bvIP(SrcImmUByte | DstAcc, em_in, in, check_perm_in),
+ I2bvIP(SrcAcc | DstImmUByte, em_out, out, check_perm_out),
+ /* 0xE8 - 0xEF */
+ I(SrcImm | NearBranch, em_call), D(SrcImm | ImplicitOps | NearBranch),
+ I(SrcImmFAddr | No64, em_jmp_far),
+ D(SrcImmByte | ImplicitOps | NearBranch),
+ I2bvIP(SrcDX | DstAcc, em_in, in, check_perm_in),
+ I2bvIP(SrcAcc | DstDX, em_out, out, check_perm_out),
+ /* 0xF0 - 0xF7 */
+ N, DI(ImplicitOps, icebp), N, N,
+ DI(ImplicitOps | Priv, hlt), D(ImplicitOps),
+ G(ByteOp, group3), G(0, group3),
+ /* 0xF8 - 0xFF */
+ D(ImplicitOps), D(ImplicitOps),
+ I(ImplicitOps, em_cli), I(ImplicitOps, em_sti),
+ D(ImplicitOps), D(ImplicitOps), G(0, group4), G(0, group5),
+};
+
+static const struct opcode twobyte_table[256] = {
+ /* 0x00 - 0x0F */
+ G(0, group6), GD(0, &group7), N, N,
+ N, I(ImplicitOps | EmulateOnUD, em_syscall),
+ II(ImplicitOps | Priv, em_clts, clts), N,
+ DI(ImplicitOps | Priv, invd), DI(ImplicitOps | Priv, wbinvd), N, N,
+ N, D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N,
+ /* 0x10 - 0x1F */
+ N, N, N, N, N, N, N, N,
+ D(ImplicitOps | ModRM | SrcMem | NoAccess),
+ N, N, N, N, N, N, D(ImplicitOps | ModRM | SrcMem | NoAccess),
+ /* 0x20 - 0x2F */
+ DIP(ModRM | DstMem | Priv | Op3264 | NoMod, cr_read, check_cr_read),
+ DIP(ModRM | DstMem | Priv | Op3264 | NoMod, dr_read, check_dr_read),
+ IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_cr_write, cr_write,
+ check_cr_write),
+ IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_dr_write, dr_write,
+ check_dr_write),
+ N, N, N, N,
+ GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_28_0f_29),
+ GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_28_0f_29),
+ N, GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_2b),
+ N, N, N, N,
+ /* 0x30 - 0x3F */
+ II(ImplicitOps | Priv, em_wrmsr, wrmsr),
+ IIP(ImplicitOps, em_rdtsc, rdtsc, check_rdtsc),
+ II(ImplicitOps | Priv, em_rdmsr, rdmsr),
+ IIP(ImplicitOps, em_rdpmc, rdpmc, check_rdpmc),
+ I(ImplicitOps | EmulateOnUD, em_sysenter),
+ I(ImplicitOps | Priv | EmulateOnUD, em_sysexit),
+ N, N,
+ N, N, N, N, N, N, N, N,
+ /* 0x40 - 0x4F */
+ X16(D(DstReg | SrcMem | ModRM)),
+ /* 0x50 - 0x5F */
+ N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
+ /* 0x60 - 0x6F */
+ N, N, N, N,
+ N, N, N, N,
+ N, N, N, N,
+ N, N, N, GP(SrcMem | DstReg | ModRM | Mov, &pfx_0f_6f_0f_7f),
+ /* 0x70 - 0x7F */
+ N, N, N, N,
+ N, N, N, N,
+ N, N, N, N,
+ N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_6f_0f_7f),
+ /* 0x80 - 0x8F */
+ X16(D(SrcImm | NearBranch)),
+ /* 0x90 - 0x9F */
+ X16(D(ByteOp | DstMem | SrcNone | ModRM| Mov)),
+ /* 0xA0 - 0xA7 */
+ I(Stack | Src2FS, em_push_sreg), I(Stack | Src2FS, em_pop_sreg),
+ II(ImplicitOps, em_cpuid, cpuid),
+ F(DstMem | SrcReg | ModRM | BitOp | NoWrite, em_bt),
+ F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shld),
+ F(DstMem | SrcReg | Src2CL | ModRM, em_shld), N, N,
+ /* 0xA8 - 0xAF */
+ I(Stack | Src2GS, em_push_sreg), I(Stack | Src2GS, em_pop_sreg),
+ DI(ImplicitOps, rsm),
+ F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_bts),
+ F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shrd),
+ F(DstMem | SrcReg | Src2CL | ModRM, em_shrd),
+ GD(0, &group15), F(DstReg | SrcMem | ModRM, em_imul),
+ /* 0xB0 - 0xB7 */
+ I2bv(DstMem | SrcReg | ModRM | Lock | PageTable | SrcWrite, em_cmpxchg),
+ I(DstReg | SrcMemFAddr | ModRM | Src2SS, em_lseg),
+ F(DstMem | SrcReg | ModRM | BitOp | Lock, em_btr),
+ I(DstReg | SrcMemFAddr | ModRM | Src2FS, em_lseg),
+ I(DstReg | SrcMemFAddr | ModRM | Src2GS, em_lseg),
+ D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
+ /* 0xB8 - 0xBF */
+ N, N,
+ G(BitOp, group8),
+ F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_btc),
+ I(DstReg | SrcMem | ModRM, em_bsf_c),
+ I(DstReg | SrcMem | ModRM, em_bsr_c),
+ D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
+ /* 0xC0 - 0xC7 */
+ F2bv(DstMem | SrcReg | ModRM | SrcWrite | Lock, em_xadd),
+ N, ID(0, &instr_dual_0f_c3),
+ N, N, N, GD(0, &group9),
+ /* 0xC8 - 0xCF */
+ X8(I(DstReg, em_bswap)),
+ /* 0xD0 - 0xDF */
+ N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
+ /* 0xE0 - 0xEF */
+ N, N, N, N, N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_e7),
+ N, N, N, N, N, N, N, N,
+ /* 0xF0 - 0xFF */
+ N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N
+};
+
+static const struct instr_dual instr_dual_0f_38_f0 = {
+ I(DstReg | SrcMem | Mov, em_movbe), N
+};
+
+static const struct instr_dual instr_dual_0f_38_f1 = {
+ I(DstMem | SrcReg | Mov, em_movbe), N
+};
+
+static const struct gprefix three_byte_0f_38_f0 = {
+ ID(0, &instr_dual_0f_38_f0), N, N, N
+};
+
+static const struct gprefix three_byte_0f_38_f1 = {
+ ID(0, &instr_dual_0f_38_f1), N, N, N
+};
+
+/*
+ * Insns below are selected by the prefix which indexed by the third opcode
+ * byte.
+ */
+static const struct opcode opcode_map_0f_38[256] = {
+ /* 0x00 - 0x7f */
+ X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
+ /* 0x80 - 0xef */
+ X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
+ /* 0xf0 - 0xf1 */
+ GP(EmulateOnUD | ModRM, &three_byte_0f_38_f0),
+ GP(EmulateOnUD | ModRM, &three_byte_0f_38_f1),
+ /* 0xf2 - 0xff */
+ N, N, X4(N), X8(N)
+};
+
+#undef D
+#undef N
+#undef G
+#undef GD
+#undef I
+#undef GP
+#undef EXT
+#undef MD
+#undef ID
+
+#undef D2bv
+#undef D2bvIP
+#undef I2bv
+#undef I2bvIP
+#undef I6ALU
+
+static unsigned imm_size(struct x86_emulate_ctxt *ctxt)
+{
+ unsigned size;
+
+ size = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
+ if (size == 8)
+ size = 4;
+ return size;
+}
+
+static int decode_imm(struct x86_emulate_ctxt *ctxt, struct operand *op,
+ unsigned size, bool sign_extension)
+{
+ int rc = X86EMUL_CONTINUE;
+
+ op->type = OP_IMM;
+ op->bytes = size;
+ op->addr.mem.ea = ctxt->_eip;
+ /* NB. Immediates are sign-extended as necessary. */
+ switch (op->bytes) {
+ case 1:
+ op->val = insn_fetch(s8, ctxt);
+ break;
+ case 2:
+ op->val = insn_fetch(s16, ctxt);
+ break;
+ case 4:
+ op->val = insn_fetch(s32, ctxt);
+ break;
+ case 8:
+ op->val = insn_fetch(s64, ctxt);
+ break;
+ }
+ if (!sign_extension) {
+ switch (op->bytes) {
+ case 1:
+ op->val &= 0xff;
+ break;
+ case 2:
+ op->val &= 0xffff;
+ break;
+ case 4:
+ op->val &= 0xffffffff;
+ break;
+ }
+ }
+done:
+ return rc;
+}
+
+static int decode_operand(struct x86_emulate_ctxt *ctxt, struct operand *op,
+ unsigned d)
+{
+ int rc = X86EMUL_CONTINUE;
+
+ switch (d) {
+ case OpReg:
+ decode_register_operand(ctxt, op);
+ break;
+ case OpImmUByte:
+ rc = decode_imm(ctxt, op, 1, false);
+ break;
+ case OpMem:
+ ctxt->memop.bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
+ mem_common:
+ *op = ctxt->memop;
+ ctxt->memopp = op;
+ if (ctxt->d & BitOp)
+ fetch_bit_operand(ctxt);
+ op->orig_val = op->val;
+ break;
+ case OpMem64:
+ ctxt->memop.bytes = (ctxt->op_bytes == 8) ? 16 : 8;
+ goto mem_common;
+ case OpAcc:
+ op->type = OP_REG;
+ op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
+ op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
+ fetch_register_operand(op);
+ op->orig_val = op->val;
+ break;
+ case OpAccLo:
+ op->type = OP_REG;
+ op->bytes = (ctxt->d & ByteOp) ? 2 : ctxt->op_bytes;
+ op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
+ fetch_register_operand(op);
+ op->orig_val = op->val;
+ break;
+ case OpAccHi:
+ if (ctxt->d & ByteOp) {
+ op->type = OP_NONE;
+ break;
+ }
+ op->type = OP_REG;
+ op->bytes = ctxt->op_bytes;
+ op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
+ fetch_register_operand(op);
+ op->orig_val = op->val;
+ break;
+ case OpDI:
+ op->type = OP_MEM;
+ op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
+ op->addr.mem.ea =
+ register_address(ctxt, VCPU_REGS_RDI);
+ op->addr.mem.seg = VCPU_SREG_ES;
+ op->val = 0;
+ op->count = 1;
+ break;
+ case OpDX:
+ op->type = OP_REG;
+ op->bytes = 2;
+ op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
+ fetch_register_operand(op);
+ break;
+ case OpCL:
+ op->type = OP_IMM;
+ op->bytes = 1;
+ op->val = reg_read(ctxt, VCPU_REGS_RCX) & 0xff;
+ break;
+ case OpImmByte:
+ rc = decode_imm(ctxt, op, 1, true);
+ break;
+ case OpOne:
+ op->type = OP_IMM;
+ op->bytes = 1;
+ op->val = 1;
+ break;
+ case OpImm:
+ rc = decode_imm(ctxt, op, imm_size(ctxt), true);
+ break;
+ case OpImm64:
+ rc = decode_imm(ctxt, op, ctxt->op_bytes, true);
+ break;
+ case OpMem8:
+ ctxt->memop.bytes = 1;
+ if (ctxt->memop.type == OP_REG) {
+ ctxt->memop.addr.reg = decode_register(ctxt,
+ ctxt->modrm_rm, true);
+ fetch_register_operand(&ctxt->memop);
+ }
+ goto mem_common;
+ case OpMem16:
+ ctxt->memop.bytes = 2;
+ goto mem_common;
+ case OpMem32:
+ ctxt->memop.bytes = 4;
+ goto mem_common;
+ case OpImmU16:
+ rc = decode_imm(ctxt, op, 2, false);
+ break;
+ case OpImmU:
+ rc = decode_imm(ctxt, op, imm_size(ctxt), false);
+ break;
+ case OpSI:
+ op->type = OP_MEM;
+ op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
+ op->addr.mem.ea =
+ register_address(ctxt, VCPU_REGS_RSI);
+ op->addr.mem.seg = ctxt->seg_override;
+ op->val = 0;
+ op->count = 1;
+ break;
+ case OpXLat:
+ op->type = OP_MEM;
+ op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
+ op->addr.mem.ea =
+ address_mask(ctxt,
+ reg_read(ctxt, VCPU_REGS_RBX) +
+ (reg_read(ctxt, VCPU_REGS_RAX) & 0xff));
+ op->addr.mem.seg = ctxt->seg_override;
+ op->val = 0;
+ break;
+ case OpImmFAddr:
+ op->type = OP_IMM;
+ op->addr.mem.ea = ctxt->_eip;
+ op->bytes = ctxt->op_bytes + 2;
+ insn_fetch_arr(op->valptr, op->bytes, ctxt);
+ break;
+ case OpMemFAddr:
+ ctxt->memop.bytes = ctxt->op_bytes + 2;
+ goto mem_common;
+ case OpES:
+ op->type = OP_IMM;
+ op->val = VCPU_SREG_ES;
+ break;
+ case OpCS:
+ op->type = OP_IMM;
+ op->val = VCPU_SREG_CS;
+ break;
+ case OpSS:
+ op->type = OP_IMM;
+ op->val = VCPU_SREG_SS;
+ break;
+ case OpDS:
+ op->type = OP_IMM;
+ op->val = VCPU_SREG_DS;
+ break;
+ case OpFS:
+ op->type = OP_IMM;
+ op->val = VCPU_SREG_FS;
+ break;
+ case OpGS:
+ op->type = OP_IMM;
+ op->val = VCPU_SREG_GS;
+ break;
+ case OpImplicit:
+ /* Special instructions do their own operand decoding. */
+ default:
+ op->type = OP_NONE; /* Disable writeback. */
+ break;
+ }
+
+done:
+ return rc;
+}
+
+int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len)
+{
+ int rc = X86EMUL_CONTINUE;
+ int mode = ctxt->mode;
+ int def_op_bytes, def_ad_bytes, goffset, simd_prefix;
+ bool op_prefix = false;
+ bool has_seg_override = false;
+ struct opcode opcode;
+
+ ctxt->memop.type = OP_NONE;
+ ctxt->memopp = NULL;
+ ctxt->_eip = ctxt->eip;
+ ctxt->fetch.ptr = ctxt->fetch.data;
+ ctxt->fetch.end = ctxt->fetch.data + insn_len;
+ ctxt->opcode_len = 1;
+ if (insn_len > 0)
+ memcpy(ctxt->fetch.data, insn, insn_len);
+ else {
+ rc = __do_insn_fetch_bytes(ctxt, 1);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+ }
+
+ switch (mode) {
+ case X86EMUL_MODE_REAL:
+ case X86EMUL_MODE_VM86:
+ case X86EMUL_MODE_PROT16:
+ def_op_bytes = def_ad_bytes = 2;
+ break;
+ case X86EMUL_MODE_PROT32:
+ def_op_bytes = def_ad_bytes = 4;
+ break;
+#ifdef CONFIG_X86_64
+ case X86EMUL_MODE_PROT64:
+ def_op_bytes = 4;
+ def_ad_bytes = 8;
+ break;
+#endif
+ default:
+ return EMULATION_FAILED;
+ }
+
+ ctxt->op_bytes = def_op_bytes;
+ ctxt->ad_bytes = def_ad_bytes;
+
+ /* Legacy prefixes. */
+ for (;;) {
+ switch (ctxt->b = insn_fetch(u8, ctxt)) {
+ case 0x66: /* operand-size override */
+ op_prefix = true;
+ /* switch between 2/4 bytes */
+ ctxt->op_bytes = def_op_bytes ^ 6;
+ break;
+ case 0x67: /* address-size override */
+ if (mode == X86EMUL_MODE_PROT64)
+ /* switch between 4/8 bytes */
+ ctxt->ad_bytes = def_ad_bytes ^ 12;
+ else
+ /* switch between 2/4 bytes */
+ ctxt->ad_bytes = def_ad_bytes ^ 6;
+ break;
+ case 0x26: /* ES override */
+ case 0x2e: /* CS override */
+ case 0x36: /* SS override */
+ case 0x3e: /* DS override */
+ has_seg_override = true;
+ ctxt->seg_override = (ctxt->b >> 3) & 3;
+ break;
+ case 0x64: /* FS override */
+ case 0x65: /* GS override */
+ has_seg_override = true;
+ ctxt->seg_override = ctxt->b & 7;
+ break;
+ case 0x40 ... 0x4f: /* REX */
+ if (mode != X86EMUL_MODE_PROT64)
+ goto done_prefixes;
+ ctxt->rex_prefix = ctxt->b;
+ continue;
+ case 0xf0: /* LOCK */
+ ctxt->lock_prefix = 1;
+ break;
+ case 0xf2: /* REPNE/REPNZ */
+ case 0xf3: /* REP/REPE/REPZ */
+ ctxt->rep_prefix = ctxt->b;
+ break;
+ default:
+ goto done_prefixes;
+ }
+
+ /* Any legacy prefix after a REX prefix nullifies its effect. */
+
+ ctxt->rex_prefix = 0;
+ }
+
+done_prefixes:
+
+ /* REX prefix. */
+ if (ctxt->rex_prefix & 8)
+ ctxt->op_bytes = 8; /* REX.W */
+
+ /* Opcode byte(s). */
+ opcode = opcode_table[ctxt->b];
+ /* Two-byte opcode? */
+ if (ctxt->b == 0x0f) {
+ ctxt->opcode_len = 2;
+ ctxt->b = insn_fetch(u8, ctxt);
+ opcode = twobyte_table[ctxt->b];
+
+ /* 0F_38 opcode map */
+ if (ctxt->b == 0x38) {
+ ctxt->opcode_len = 3;
+ ctxt->b = insn_fetch(u8, ctxt);
+ opcode = opcode_map_0f_38[ctxt->b];
+ }
+ }
+ ctxt->d = opcode.flags;
+
+ if (ctxt->d & ModRM)
+ ctxt->modrm = insn_fetch(u8, ctxt);
+
+ /* vex-prefix instructions are not implemented */
+ if (ctxt->opcode_len == 1 && (ctxt->b == 0xc5 || ctxt->b == 0xc4) &&
+ (mode == X86EMUL_MODE_PROT64 || (ctxt->modrm & 0xc0) == 0xc0)) {
+ ctxt->d = NotImpl;
+ }
+
+ while (ctxt->d & GroupMask) {
+ switch (ctxt->d & GroupMask) {
+ case Group:
+ goffset = (ctxt->modrm >> 3) & 7;
+ opcode = opcode.u.group[goffset];
+ break;
+ case GroupDual:
+ goffset = (ctxt->modrm >> 3) & 7;
+ if ((ctxt->modrm >> 6) == 3)
+ opcode = opcode.u.gdual->mod3[goffset];
+ else
+ opcode = opcode.u.gdual->mod012[goffset];
+ break;
+ case RMExt:
+ goffset = ctxt->modrm & 7;
+ opcode = opcode.u.group[goffset];
+ break;
+ case Prefix:
+ if (ctxt->rep_prefix && op_prefix)
+ return EMULATION_FAILED;
+ simd_prefix = op_prefix ? 0x66 : ctxt->rep_prefix;
+ switch (simd_prefix) {
+ case 0x00: opcode = opcode.u.gprefix->pfx_no; break;
+ case 0x66: opcode = opcode.u.gprefix->pfx_66; break;
+ case 0xf2: opcode = opcode.u.gprefix->pfx_f2; break;
+ case 0xf3: opcode = opcode.u.gprefix->pfx_f3; break;
+ }
+ break;
+ case Escape:
+ if (ctxt->modrm > 0xbf)
+ opcode = opcode.u.esc->high[ctxt->modrm - 0xc0];
+ else
+ opcode = opcode.u.esc->op[(ctxt->modrm >> 3) & 7];
+ break;
+ case InstrDual:
+ if ((ctxt->modrm >> 6) == 3)
+ opcode = opcode.u.idual->mod3;
+ else
+ opcode = opcode.u.idual->mod012;
+ break;
+ case ModeDual:
+ if (ctxt->mode == X86EMUL_MODE_PROT64)
+ opcode = opcode.u.mdual->mode64;
+ else
+ opcode = opcode.u.mdual->mode32;
+ break;
+ default:
+ return EMULATION_FAILED;
+ }
+
+ ctxt->d &= ~(u64)GroupMask;
+ ctxt->d |= opcode.flags;
+ }
+
+ /* Unrecognised? */
+ if (ctxt->d == 0)
+ return EMULATION_FAILED;
+
+ ctxt->execute = opcode.u.execute;
+
+ if (unlikely(ctxt->ud) && likely(!(ctxt->d & EmulateOnUD)))
+ return EMULATION_FAILED;
+
+ if (unlikely(ctxt->d &
+ (NotImpl|Stack|Op3264|Sse|Mmx|Intercept|CheckPerm|NearBranch|
+ No16))) {
+ /*
+ * These are copied unconditionally here, and checked unconditionally
+ * in x86_emulate_insn.
+ */
+ ctxt->check_perm = opcode.check_perm;
+ ctxt->intercept = opcode.intercept;
+
+ if (ctxt->d & NotImpl)
+ return EMULATION_FAILED;
+
+ if (mode == X86EMUL_MODE_PROT64) {
+ if (ctxt->op_bytes == 4 && (ctxt->d & Stack))
+ ctxt->op_bytes = 8;
+ else if (ctxt->d & NearBranch)
+ ctxt->op_bytes = 8;
+ }
+
+ if (ctxt->d & Op3264) {
+ if (mode == X86EMUL_MODE_PROT64)
+ ctxt->op_bytes = 8;
+ else
+ ctxt->op_bytes = 4;
+ }
+
+ if ((ctxt->d & No16) && ctxt->op_bytes == 2)
+ ctxt->op_bytes = 4;
+
+ if (ctxt->d & Sse)
+ ctxt->op_bytes = 16;
+ else if (ctxt->d & Mmx)
+ ctxt->op_bytes = 8;
+ }
+
+ /* ModRM and SIB bytes. */
+ if (ctxt->d & ModRM) {
+ rc = decode_modrm(ctxt, &ctxt->memop);
+ if (!has_seg_override) {
+ has_seg_override = true;
+ ctxt->seg_override = ctxt->modrm_seg;
+ }
+ } else if (ctxt->d & MemAbs)
+ rc = decode_abs(ctxt, &ctxt->memop);
+ if (rc != X86EMUL_CONTINUE)
+ goto done;
+
+ if (!has_seg_override)
+ ctxt->seg_override = VCPU_SREG_DS;
+
+ ctxt->memop.addr.mem.seg = ctxt->seg_override;
+
+ /*
+ * Decode and fetch the source operand: register, memory
+ * or immediate.
+ */
+ rc = decode_operand(ctxt, &ctxt->src, (ctxt->d >> SrcShift) & OpMask);
+ if (rc != X86EMUL_CONTINUE)
+ goto done;
+
+ /*
+ * Decode and fetch the second source operand: register, memory
+ * or immediate.
+ */
+ rc = decode_operand(ctxt, &ctxt->src2, (ctxt->d >> Src2Shift) & OpMask);
+ if (rc != X86EMUL_CONTINUE)
+ goto done;
+
+ /* Decode and fetch the destination operand: register or memory. */
+ rc = decode_operand(ctxt, &ctxt->dst, (ctxt->d >> DstShift) & OpMask);
+
+ if (ctxt->rip_relative)
+ ctxt->memopp->addr.mem.ea = address_mask(ctxt,
+ ctxt->memopp->addr.mem.ea + ctxt->_eip);
+
+done:
+ return (rc != X86EMUL_CONTINUE) ? EMULATION_FAILED : EMULATION_OK;
+}
+
+bool x86_page_table_writing_insn(struct x86_emulate_ctxt *ctxt)
+{
+ return ctxt->d & PageTable;
+}
+
+static bool string_insn_completed(struct x86_emulate_ctxt *ctxt)
+{
+ /* The second termination condition only applies for REPE
+ * and REPNE. Test if the repeat string operation prefix is
+ * REPE/REPZ or REPNE/REPNZ and if it's the case it tests the
+ * corresponding termination condition according to:
+ * - if REPE/REPZ and ZF = 0 then done
+ * - if REPNE/REPNZ and ZF = 1 then done
+ */
+ if (((ctxt->b == 0xa6) || (ctxt->b == 0xa7) ||
+ (ctxt->b == 0xae) || (ctxt->b == 0xaf))
+ && (((ctxt->rep_prefix == REPE_PREFIX) &&
+ ((ctxt->eflags & X86_EFLAGS_ZF) == 0))
+ || ((ctxt->rep_prefix == REPNE_PREFIX) &&
+ ((ctxt->eflags & X86_EFLAGS_ZF) == X86_EFLAGS_ZF))))
+ return true;
+
+ return false;
+}
+
+static int flush_pending_x87_faults(struct x86_emulate_ctxt *ctxt)
+{
+ bool fault = false;
+
+ ctxt->ops->get_fpu(ctxt);
+ asm volatile("1: fwait \n\t"
+ "2: \n\t"
+ ".pushsection .fixup,\"ax\" \n\t"
+ "3: \n\t"
+ "movb $1, %[fault] \n\t"
+ "jmp 2b \n\t"
+ ".popsection \n\t"
+ _ASM_EXTABLE(1b, 3b)
+ : [fault]"+qm"(fault));
+ ctxt->ops->put_fpu(ctxt);
+
+ if (unlikely(fault))
+ return emulate_exception(ctxt, MF_VECTOR, 0, false);
+
+ return X86EMUL_CONTINUE;
+}
+
+static void fetch_possible_mmx_operand(struct x86_emulate_ctxt *ctxt,
+ struct operand *op)
+{
+ if (op->type == OP_MM)
+ read_mmx_reg(ctxt, &op->mm_val, op->addr.mm);
+}
+
+static int fastop(struct x86_emulate_ctxt *ctxt, void (*fop)(struct fastop *))
+{
+ ulong flags = (ctxt->eflags & EFLAGS_MASK) | X86_EFLAGS_IF;
+ if (!(ctxt->d & ByteOp))
+ fop += __ffs(ctxt->dst.bytes) * FASTOP_SIZE;
+ asm("push %[flags]; popf; call *%[fastop]; pushf; pop %[flags]\n"
+ : "+a"(ctxt->dst.val), "+d"(ctxt->src.val), [flags]"+D"(flags),
+ [fastop]"+S"(fop)
+ : "c"(ctxt->src2.val));
+ ctxt->eflags = (ctxt->eflags & ~EFLAGS_MASK) | (flags & EFLAGS_MASK);
+ if (!fop) /* exception is returned in fop variable */
+ return emulate_de(ctxt);
+ return X86EMUL_CONTINUE;
+}
+
+void init_decode_cache(struct x86_emulate_ctxt *ctxt)
+{
+ memset(&ctxt->rip_relative, 0,
+ (void *)&ctxt->modrm - (void *)&ctxt->rip_relative);
+
+ ctxt->io_read.pos = 0;
+ ctxt->io_read.end = 0;
+ ctxt->mem_read.end = 0;
+}
+
+int x86_emulate_insn(struct x86_emulate_ctxt *ctxt)
+{
+ const struct x86_emulate_ops *ops = ctxt->ops;
+ int rc = X86EMUL_CONTINUE;
+ int saved_dst_type = ctxt->dst.type;
+
+ ctxt->mem_read.pos = 0;
+
+ /* LOCK prefix is allowed only with some instructions */
+ if (ctxt->lock_prefix && (!(ctxt->d & Lock) || ctxt->dst.type != OP_MEM)) {
+ rc = emulate_ud(ctxt);
+ goto done;
+ }
+
+ if ((ctxt->d & SrcMask) == SrcMemFAddr && ctxt->src.type != OP_MEM) {
+ rc = emulate_ud(ctxt);
+ goto done;
+ }
+
+ if (unlikely(ctxt->d &
+ (No64|Undefined|Sse|Mmx|Intercept|CheckPerm|Priv|Prot|String))) {
+ if ((ctxt->mode == X86EMUL_MODE_PROT64 && (ctxt->d & No64)) ||
+ (ctxt->d & Undefined)) {
+ rc = emulate_ud(ctxt);
+ goto done;
+ }
+
+ if (((ctxt->d & (Sse|Mmx)) && ((ops->get_cr(ctxt, 0) & X86_CR0_EM)))
+ || ((ctxt->d & Sse) && !(ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR))) {
+ rc = emulate_ud(ctxt);
+ goto done;
+ }
+
+ if ((ctxt->d & (Sse|Mmx)) && (ops->get_cr(ctxt, 0) & X86_CR0_TS)) {
+ rc = emulate_nm(ctxt);
+ goto done;
+ }
+
+ if (ctxt->d & Mmx) {
+ rc = flush_pending_x87_faults(ctxt);
+ if (rc != X86EMUL_CONTINUE)
+ goto done;
+ /*
+ * Now that we know the fpu is exception safe, we can fetch
+ * operands from it.
+ */
+ fetch_possible_mmx_operand(ctxt, &ctxt->src);
+ fetch_possible_mmx_operand(ctxt, &ctxt->src2);
+ if (!(ctxt->d & Mov))
+ fetch_possible_mmx_operand(ctxt, &ctxt->dst);
+ }
+
+ if (unlikely(ctxt->guest_mode) && (ctxt->d & Intercept)) {
+ rc = emulator_check_intercept(ctxt, ctxt->intercept,
+ X86_ICPT_PRE_EXCEPT);
+ if (rc != X86EMUL_CONTINUE)
+ goto done;
+ }
+
+ /* Instruction can only be executed in protected mode */
+ if ((ctxt->d & Prot) && ctxt->mode < X86EMUL_MODE_PROT16) {
+ rc = emulate_ud(ctxt);
+ goto done;
+ }
+
+ /* Privileged instruction can be executed only in CPL=0 */
+ if ((ctxt->d & Priv) && ops->cpl(ctxt)) {
+ if (ctxt->d & PrivUD)
+ rc = emulate_ud(ctxt);
+ else
+ rc = emulate_gp(ctxt, 0);
+ goto done;
+ }
+
+ /* Do instruction specific permission checks */
+ if (ctxt->d & CheckPerm) {
+ rc = ctxt->check_perm(ctxt);
+ if (rc != X86EMUL_CONTINUE)
+ goto done;
+ }
+
+ if (unlikely(ctxt->guest_mode) && (ctxt->d & Intercept)) {
+ rc = emulator_check_intercept(ctxt, ctxt->intercept,
+ X86_ICPT_POST_EXCEPT);
+ if (rc != X86EMUL_CONTINUE)
+ goto done;
+ }
+
+ if (ctxt->rep_prefix && (ctxt->d & String)) {
+ /* All REP prefixes have the same first termination condition */
+ if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0) {
+ ctxt->eip = ctxt->_eip;
+ ctxt->eflags &= ~X86_EFLAGS_RF;
+ goto done;
+ }
+ }
+ }
+
+ if ((ctxt->src.type == OP_MEM) && !(ctxt->d & NoAccess)) {
+ rc = segmented_read(ctxt, ctxt->src.addr.mem,
+ ctxt->src.valptr, ctxt->src.bytes);
+ if (rc != X86EMUL_CONTINUE)
+ goto done;
+ ctxt->src.orig_val64 = ctxt->src.val64;
+ }
+
+ if (ctxt->src2.type == OP_MEM) {
+ rc = segmented_read(ctxt, ctxt->src2.addr.mem,
+ &ctxt->src2.val, ctxt->src2.bytes);
+ if (rc != X86EMUL_CONTINUE)
+ goto done;
+ }
+
+ if ((ctxt->d & DstMask) == ImplicitOps)
+ goto special_insn;
+
+
+ if ((ctxt->dst.type == OP_MEM) && !(ctxt->d & Mov)) {
+ /* optimisation - avoid slow emulated read if Mov */
+ rc = segmented_read(ctxt, ctxt->dst.addr.mem,
+ &ctxt->dst.val, ctxt->dst.bytes);
+ if (rc != X86EMUL_CONTINUE) {
+ if (!(ctxt->d & NoWrite) &&
+ rc == X86EMUL_PROPAGATE_FAULT &&
+ ctxt->exception.vector == PF_VECTOR)
+ ctxt->exception.error_code |= PFERR_WRITE_MASK;
+ goto done;
+ }
+ }
+ /* Copy full 64-bit value for CMPXCHG8B. */
+ ctxt->dst.orig_val64 = ctxt->dst.val64;
+
+special_insn:
+
+ if (unlikely(ctxt->guest_mode) && (ctxt->d & Intercept)) {
+ rc = emulator_check_intercept(ctxt, ctxt->intercept,
+ X86_ICPT_POST_MEMACCESS);
+ if (rc != X86EMUL_CONTINUE)
+ goto done;
+ }
+
+ if (ctxt->rep_prefix && (ctxt->d & String))
+ ctxt->eflags |= X86_EFLAGS_RF;
+ else
+ ctxt->eflags &= ~X86_EFLAGS_RF;
+
+ if (ctxt->execute) {
+ if (ctxt->d & Fastop) {
+ void (*fop)(struct fastop *) = (void *)ctxt->execute;
+ rc = fastop(ctxt, fop);
+ if (rc != X86EMUL_CONTINUE)
+ goto done;
+ goto writeback;
+ }
+ rc = ctxt->execute(ctxt);
+ if (rc != X86EMUL_CONTINUE)
+ goto done;
+ goto writeback;
+ }
+
+ if (ctxt->opcode_len == 2)
+ goto twobyte_insn;
+ else if (ctxt->opcode_len == 3)
+ goto threebyte_insn;
+
+ switch (ctxt->b) {
+ case 0x70 ... 0x7f: /* jcc (short) */
+ if (test_cc(ctxt->b, ctxt->eflags))
+ rc = jmp_rel(ctxt, ctxt->src.val);
+ break;
+ case 0x8d: /* lea r16/r32, m */
+ ctxt->dst.val = ctxt->src.addr.mem.ea;
+ break;
+ case 0x90 ... 0x97: /* nop / xchg reg, rax */
+ if (ctxt->dst.addr.reg == reg_rmw(ctxt, VCPU_REGS_RAX))
+ ctxt->dst.type = OP_NONE;
+ else
+ rc = em_xchg(ctxt);
+ break;
+ case 0x98: /* cbw/cwde/cdqe */
+ switch (ctxt->op_bytes) {
+ case 2: ctxt->dst.val = (s8)ctxt->dst.val; break;
+ case 4: ctxt->dst.val = (s16)ctxt->dst.val; break;
+ case 8: ctxt->dst.val = (s32)ctxt->dst.val; break;
+ }
+ break;
+ case 0xcc: /* int3 */
+ rc = emulate_int(ctxt, 3);
+ break;
+ case 0xcd: /* int n */
+ rc = emulate_int(ctxt, ctxt->src.val);
+ break;
+ case 0xce: /* into */
+ if (ctxt->eflags & X86_EFLAGS_OF)
+ rc = emulate_int(ctxt, 4);
+ break;
+ case 0xe9: /* jmp rel */
+ case 0xeb: /* jmp rel short */
+ rc = jmp_rel(ctxt, ctxt->src.val);
+ ctxt->dst.type = OP_NONE; /* Disable writeback. */
+ break;
+ case 0xf4: /* hlt */
+ ctxt->ops->halt(ctxt);
+ break;
+ case 0xf5: /* cmc */
+ /* complement carry flag from eflags reg */
+ ctxt->eflags ^= X86_EFLAGS_CF;
+ break;
+ case 0xf8: /* clc */
+ ctxt->eflags &= ~X86_EFLAGS_CF;
+ break;
+ case 0xf9: /* stc */
+ ctxt->eflags |= X86_EFLAGS_CF;
+ break;
+ case 0xfc: /* cld */
+ ctxt->eflags &= ~X86_EFLAGS_DF;
+ break;
+ case 0xfd: /* std */
+ ctxt->eflags |= X86_EFLAGS_DF;
+ break;
+ default:
+ goto cannot_emulate;
+ }
+
+ if (rc != X86EMUL_CONTINUE)
+ goto done;
+
+writeback:
+ if (ctxt->d & SrcWrite) {
+ BUG_ON(ctxt->src.type == OP_MEM || ctxt->src.type == OP_MEM_STR);
+ rc = writeback(ctxt, &ctxt->src);
+ if (rc != X86EMUL_CONTINUE)
+ goto done;
+ }
+ if (!(ctxt->d & NoWrite)) {
+ rc = writeback(ctxt, &ctxt->dst);
+ if (rc != X86EMUL_CONTINUE)
+ goto done;
+ }
+
+ /*
+ * restore dst type in case the decoding will be reused
+ * (happens for string instruction )
+ */
+ ctxt->dst.type = saved_dst_type;
+
+ if ((ctxt->d & SrcMask) == SrcSI)
+ string_addr_inc(ctxt, VCPU_REGS_RSI, &ctxt->src);
+
+ if ((ctxt->d & DstMask) == DstDI)
+ string_addr_inc(ctxt, VCPU_REGS_RDI, &ctxt->dst);
+
+ if (ctxt->rep_prefix && (ctxt->d & String)) {
+ unsigned int count;
+ struct read_cache *r = &ctxt->io_read;
+ if ((ctxt->d & SrcMask) == SrcSI)
+ count = ctxt->src.count;
+ else
+ count = ctxt->dst.count;
+ register_address_increment(ctxt, VCPU_REGS_RCX, -count);
+
+ if (!string_insn_completed(ctxt)) {
+ /*
+ * Re-enter guest when pio read ahead buffer is empty
+ * or, if it is not used, after each 1024 iteration.
+ */
+ if ((r->end != 0 || reg_read(ctxt, VCPU_REGS_RCX) & 0x3ff) &&
+ (r->end == 0 || r->end != r->pos)) {
+ /*
+ * Reset read cache. Usually happens before
+ * decode, but since instruction is restarted
+ * we have to do it here.
+ */
+ ctxt->mem_read.end = 0;
+ writeback_registers(ctxt);
+ return EMULATION_RESTART;
+ }
+ goto done; /* skip rip writeback */
+ }
+ ctxt->eflags &= ~X86_EFLAGS_RF;
+ }
+
+ ctxt->eip = ctxt->_eip;
+
+done:
+ if (rc == X86EMUL_PROPAGATE_FAULT) {
+ WARN_ON(ctxt->exception.vector > 0x1f);
+ ctxt->have_exception = true;
+ }
+ if (rc == X86EMUL_INTERCEPTED)
+ return EMULATION_INTERCEPTED;
+
+ if (rc == X86EMUL_CONTINUE)
+ writeback_registers(ctxt);
+
+ return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
+
+twobyte_insn:
+ switch (ctxt->b) {
+ case 0x09: /* wbinvd */
+ (ctxt->ops->wbinvd)(ctxt);
+ break;
+ case 0x08: /* invd */
+ case 0x0d: /* GrpP (prefetch) */
+ case 0x18: /* Grp16 (prefetch/nop) */
+ case 0x1f: /* nop */
+ break;
+ case 0x20: /* mov cr, reg */
+ ctxt->dst.val = ops->get_cr(ctxt, ctxt->modrm_reg);
+ break;
+ case 0x21: /* mov from dr to reg */
+ ops->get_dr(ctxt, ctxt->modrm_reg, &ctxt->dst.val);
+ break;
+ case 0x40 ... 0x4f: /* cmov */
+ if (test_cc(ctxt->b, ctxt->eflags))
+ ctxt->dst.val = ctxt->src.val;
+ else if (ctxt->op_bytes != 4)
+ ctxt->dst.type = OP_NONE; /* no writeback */
+ break;
+ case 0x80 ... 0x8f: /* jnz rel, etc*/
+ if (test_cc(ctxt->b, ctxt->eflags))
+ rc = jmp_rel(ctxt, ctxt->src.val);
+ break;
+ case 0x90 ... 0x9f: /* setcc r/m8 */
+ ctxt->dst.val = test_cc(ctxt->b, ctxt->eflags);
+ break;
+ case 0xb6 ... 0xb7: /* movzx */
+ ctxt->dst.bytes = ctxt->op_bytes;
+ ctxt->dst.val = (ctxt->src.bytes == 1) ? (u8) ctxt->src.val
+ : (u16) ctxt->src.val;
+ break;
+ case 0xbe ... 0xbf: /* movsx */
+ ctxt->dst.bytes = ctxt->op_bytes;
+ ctxt->dst.val = (ctxt->src.bytes == 1) ? (s8) ctxt->src.val :
+ (s16) ctxt->src.val;
+ break;
+ default:
+ goto cannot_emulate;
+ }
+
+threebyte_insn:
+
+ if (rc != X86EMUL_CONTINUE)
+ goto done;
+
+ goto writeback;
+
+cannot_emulate:
+ return EMULATION_FAILED;
+}
+
+void emulator_invalidate_register_cache(struct x86_emulate_ctxt *ctxt)
+{
+ invalidate_registers(ctxt);
+}
+
+void emulator_writeback_register_cache(struct x86_emulate_ctxt *ctxt)
+{
+ writeback_registers(ctxt);
+}
diff --git a/kernel/arch/x86/kvm/i8254.c b/kernel/arch/x86/kvm/i8254.c
new file mode 100644
index 000000000..f90952f64
--- /dev/null
+++ b/kernel/arch/x86/kvm/i8254.c
@@ -0,0 +1,781 @@
+/*
+ * 8253/8254 interval timer emulation
+ *
+ * Copyright (c) 2003-2004 Fabrice Bellard
+ * Copyright (c) 2006 Intel Corporation
+ * Copyright (c) 2007 Keir Fraser, XenSource Inc
+ * Copyright (c) 2008 Intel Corporation
+ * Copyright 2009 Red Hat, Inc. and/or its affiliates.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ *
+ * Authors:
+ * Sheng Yang <sheng.yang@intel.com>
+ * Based on QEMU and Xen.
+ */
+
+#define pr_fmt(fmt) "pit: " fmt
+
+#include <linux/kvm_host.h>
+#include <linux/slab.h>
+
+#include "irq.h"
+#include "i8254.h"
+#include "x86.h"
+
+#ifndef CONFIG_X86_64
+#define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
+#else
+#define mod_64(x, y) ((x) % (y))
+#endif
+
+#define RW_STATE_LSB 1
+#define RW_STATE_MSB 2
+#define RW_STATE_WORD0 3
+#define RW_STATE_WORD1 4
+
+/* Compute with 96 bit intermediate result: (a*b)/c */
+static u64 muldiv64(u64 a, u32 b, u32 c)
+{
+ union {
+ u64 ll;
+ struct {
+ u32 low, high;
+ } l;
+ } u, res;
+ u64 rl, rh;
+
+ u.ll = a;
+ rl = (u64)u.l.low * (u64)b;
+ rh = (u64)u.l.high * (u64)b;
+ rh += (rl >> 32);
+ res.l.high = div64_u64(rh, c);
+ res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
+ return res.ll;
+}
+
+static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
+{
+ struct kvm_kpit_channel_state *c =
+ &kvm->arch.vpit->pit_state.channels[channel];
+
+ WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
+
+ switch (c->mode) {
+ default:
+ case 0:
+ case 4:
+ /* XXX: just disable/enable counting */
+ break;
+ case 1:
+ case 2:
+ case 3:
+ case 5:
+ /* Restart counting on rising edge. */
+ if (c->gate < val)
+ c->count_load_time = ktime_get();
+ break;
+ }
+
+ c->gate = val;
+}
+
+static int pit_get_gate(struct kvm *kvm, int channel)
+{
+ WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
+
+ return kvm->arch.vpit->pit_state.channels[channel].gate;
+}
+
+static s64 __kpit_elapsed(struct kvm *kvm)
+{
+ s64 elapsed;
+ ktime_t remaining;
+ struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
+
+ if (!ps->period)
+ return 0;
+
+ /*
+ * The Counter does not stop when it reaches zero. In
+ * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
+ * the highest count, either FFFF hex for binary counting
+ * or 9999 for BCD counting, and continues counting.
+ * Modes 2 and 3 are periodic; the Counter reloads
+ * itself with the initial count and continues counting
+ * from there.
+ */
+ remaining = hrtimer_get_remaining(&ps->timer);
+ elapsed = ps->period - ktime_to_ns(remaining);
+
+ return elapsed;
+}
+
+static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
+ int channel)
+{
+ if (channel == 0)
+ return __kpit_elapsed(kvm);
+
+ return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
+}
+
+static int pit_get_count(struct kvm *kvm, int channel)
+{
+ struct kvm_kpit_channel_state *c =
+ &kvm->arch.vpit->pit_state.channels[channel];
+ s64 d, t;
+ int counter;
+
+ WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
+
+ t = kpit_elapsed(kvm, c, channel);
+ d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
+
+ switch (c->mode) {
+ case 0:
+ case 1:
+ case 4:
+ case 5:
+ counter = (c->count - d) & 0xffff;
+ break;
+ case 3:
+ /* XXX: may be incorrect for odd counts */
+ counter = c->count - (mod_64((2 * d), c->count));
+ break;
+ default:
+ counter = c->count - mod_64(d, c->count);
+ break;
+ }
+ return counter;
+}
+
+static int pit_get_out(struct kvm *kvm, int channel)
+{
+ struct kvm_kpit_channel_state *c =
+ &kvm->arch.vpit->pit_state.channels[channel];
+ s64 d, t;
+ int out;
+
+ WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
+
+ t = kpit_elapsed(kvm, c, channel);
+ d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
+
+ switch (c->mode) {
+ default:
+ case 0:
+ out = (d >= c->count);
+ break;
+ case 1:
+ out = (d < c->count);
+ break;
+ case 2:
+ out = ((mod_64(d, c->count) == 0) && (d != 0));
+ break;
+ case 3:
+ out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
+ break;
+ case 4:
+ case 5:
+ out = (d == c->count);
+ break;
+ }
+
+ return out;
+}
+
+static void pit_latch_count(struct kvm *kvm, int channel)
+{
+ struct kvm_kpit_channel_state *c =
+ &kvm->arch.vpit->pit_state.channels[channel];
+
+ WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
+
+ if (!c->count_latched) {
+ c->latched_count = pit_get_count(kvm, channel);
+ c->count_latched = c->rw_mode;
+ }
+}
+
+static void pit_latch_status(struct kvm *kvm, int channel)
+{
+ struct kvm_kpit_channel_state *c =
+ &kvm->arch.vpit->pit_state.channels[channel];
+
+ WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
+
+ if (!c->status_latched) {
+ /* TODO: Return NULL COUNT (bit 6). */
+ c->status = ((pit_get_out(kvm, channel) << 7) |
+ (c->rw_mode << 4) |
+ (c->mode << 1) |
+ c->bcd);
+ c->status_latched = 1;
+ }
+}
+
+static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
+{
+ struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
+ irq_ack_notifier);
+ int value;
+
+ spin_lock(&ps->inject_lock);
+ value = atomic_dec_return(&ps->pending);
+ if (value < 0)
+ /* spurious acks can be generated if, for example, the
+ * PIC is being reset. Handle it gracefully here
+ */
+ atomic_inc(&ps->pending);
+ else if (value > 0)
+ /* in this case, we had multiple outstanding pit interrupts
+ * that we needed to inject. Reinject
+ */
+ queue_kthread_work(&ps->pit->worker, &ps->pit->expired);
+ ps->irq_ack = 1;
+ spin_unlock(&ps->inject_lock);
+}
+
+void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
+{
+ struct kvm_pit *pit = vcpu->kvm->arch.vpit;
+ struct hrtimer *timer;
+
+ if (!kvm_vcpu_is_bsp(vcpu) || !pit)
+ return;
+
+ timer = &pit->pit_state.timer;
+ mutex_lock(&pit->pit_state.lock);
+ if (hrtimer_cancel(timer))
+ hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
+ mutex_unlock(&pit->pit_state.lock);
+}
+
+static void destroy_pit_timer(struct kvm_pit *pit)
+{
+ hrtimer_cancel(&pit->pit_state.timer);
+ flush_kthread_work(&pit->expired);
+}
+
+static void pit_do_work(struct kthread_work *work)
+{
+ struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
+ struct kvm *kvm = pit->kvm;
+ struct kvm_vcpu *vcpu;
+ int i;
+ struct kvm_kpit_state *ps = &pit->pit_state;
+ int inject = 0;
+
+ /* Try to inject pending interrupts when
+ * last one has been acked.
+ */
+ spin_lock(&ps->inject_lock);
+ if (ps->irq_ack) {
+ ps->irq_ack = 0;
+ inject = 1;
+ }
+ spin_unlock(&ps->inject_lock);
+ if (inject) {
+ kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1, false);
+ kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0, false);
+
+ /*
+ * Provides NMI watchdog support via Virtual Wire mode.
+ * The route is: PIT -> PIC -> LVT0 in NMI mode.
+ *
+ * Note: Our Virtual Wire implementation is simplified, only
+ * propagating PIT interrupts to all VCPUs when they have set
+ * LVT0 to NMI delivery. Other PIC interrupts are just sent to
+ * VCPU0, and only if its LVT0 is in EXTINT mode.
+ */
+ if (atomic_read(&kvm->arch.vapics_in_nmi_mode) > 0)
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ kvm_apic_nmi_wd_deliver(vcpu);
+ }
+}
+
+static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
+{
+ struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer);
+ struct kvm_pit *pt = ps->kvm->arch.vpit;
+
+ if (ps->reinject || !atomic_read(&ps->pending)) {
+ atomic_inc(&ps->pending);
+ queue_kthread_work(&pt->worker, &pt->expired);
+ }
+
+ if (ps->is_periodic) {
+ hrtimer_add_expires_ns(&ps->timer, ps->period);
+ return HRTIMER_RESTART;
+ } else
+ return HRTIMER_NORESTART;
+}
+
+static void create_pit_timer(struct kvm *kvm, u32 val, int is_period)
+{
+ struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
+ s64 interval;
+
+ if (!irqchip_in_kernel(kvm) || ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
+ return;
+
+ interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
+
+ pr_debug("create pit timer, interval is %llu nsec\n", interval);
+
+ /* TODO The new value only affected after the retriggered */
+ hrtimer_cancel(&ps->timer);
+ flush_kthread_work(&ps->pit->expired);
+ ps->period = interval;
+ ps->is_periodic = is_period;
+
+ ps->timer.function = pit_timer_fn;
+ ps->kvm = ps->pit->kvm;
+
+ atomic_set(&ps->pending, 0);
+ ps->irq_ack = 1;
+
+ /*
+ * Do not allow the guest to program periodic timers with small
+ * interval, since the hrtimers are not throttled by the host
+ * scheduler.
+ */
+ if (ps->is_periodic) {
+ s64 min_period = min_timer_period_us * 1000LL;
+
+ if (ps->period < min_period) {
+ pr_info_ratelimited(
+ "kvm: requested %lld ns "
+ "i8254 timer period limited to %lld ns\n",
+ ps->period, min_period);
+ ps->period = min_period;
+ }
+ }
+
+ hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval),
+ HRTIMER_MODE_ABS);
+}
+
+static void pit_load_count(struct kvm *kvm, int channel, u32 val)
+{
+ struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
+
+ WARN_ON(!mutex_is_locked(&ps->lock));
+
+ pr_debug("load_count val is %d, channel is %d\n", val, channel);
+
+ /*
+ * The largest possible initial count is 0; this is equivalent
+ * to 216 for binary counting and 104 for BCD counting.
+ */
+ if (val == 0)
+ val = 0x10000;
+
+ ps->channels[channel].count = val;
+
+ if (channel != 0) {
+ ps->channels[channel].count_load_time = ktime_get();
+ return;
+ }
+
+ /* Two types of timer
+ * mode 1 is one shot, mode 2 is period, otherwise del timer */
+ switch (ps->channels[0].mode) {
+ case 0:
+ case 1:
+ /* FIXME: enhance mode 4 precision */
+ case 4:
+ create_pit_timer(kvm, val, 0);
+ break;
+ case 2:
+ case 3:
+ create_pit_timer(kvm, val, 1);
+ break;
+ default:
+ destroy_pit_timer(kvm->arch.vpit);
+ }
+}
+
+void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start)
+{
+ u8 saved_mode;
+ if (hpet_legacy_start) {
+ /* save existing mode for later reenablement */
+ saved_mode = kvm->arch.vpit->pit_state.channels[0].mode;
+ kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */
+ pit_load_count(kvm, channel, val);
+ kvm->arch.vpit->pit_state.channels[0].mode = saved_mode;
+ } else {
+ pit_load_count(kvm, channel, val);
+ }
+}
+
+static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
+{
+ return container_of(dev, struct kvm_pit, dev);
+}
+
+static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
+{
+ return container_of(dev, struct kvm_pit, speaker_dev);
+}
+
+static inline int pit_in_range(gpa_t addr)
+{
+ return ((addr >= KVM_PIT_BASE_ADDRESS) &&
+ (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
+}
+
+static int pit_ioport_write(struct kvm_vcpu *vcpu,
+ struct kvm_io_device *this,
+ gpa_t addr, int len, const void *data)
+{
+ struct kvm_pit *pit = dev_to_pit(this);
+ struct kvm_kpit_state *pit_state = &pit->pit_state;
+ struct kvm *kvm = pit->kvm;
+ int channel, access;
+ struct kvm_kpit_channel_state *s;
+ u32 val = *(u32 *) data;
+ if (!pit_in_range(addr))
+ return -EOPNOTSUPP;
+
+ val &= 0xff;
+ addr &= KVM_PIT_CHANNEL_MASK;
+
+ mutex_lock(&pit_state->lock);
+
+ if (val != 0)
+ pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
+ (unsigned int)addr, len, val);
+
+ if (addr == 3) {
+ channel = val >> 6;
+ if (channel == 3) {
+ /* Read-Back Command. */
+ for (channel = 0; channel < 3; channel++) {
+ s = &pit_state->channels[channel];
+ if (val & (2 << channel)) {
+ if (!(val & 0x20))
+ pit_latch_count(kvm, channel);
+ if (!(val & 0x10))
+ pit_latch_status(kvm, channel);
+ }
+ }
+ } else {
+ /* Select Counter <channel>. */
+ s = &pit_state->channels[channel];
+ access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
+ if (access == 0) {
+ pit_latch_count(kvm, channel);
+ } else {
+ s->rw_mode = access;
+ s->read_state = access;
+ s->write_state = access;
+ s->mode = (val >> 1) & 7;
+ if (s->mode > 5)
+ s->mode -= 4;
+ s->bcd = val & 1;
+ }
+ }
+ } else {
+ /* Write Count. */
+ s = &pit_state->channels[addr];
+ switch (s->write_state) {
+ default:
+ case RW_STATE_LSB:
+ pit_load_count(kvm, addr, val);
+ break;
+ case RW_STATE_MSB:
+ pit_load_count(kvm, addr, val << 8);
+ break;
+ case RW_STATE_WORD0:
+ s->write_latch = val;
+ s->write_state = RW_STATE_WORD1;
+ break;
+ case RW_STATE_WORD1:
+ pit_load_count(kvm, addr, s->write_latch | (val << 8));
+ s->write_state = RW_STATE_WORD0;
+ break;
+ }
+ }
+
+ mutex_unlock(&pit_state->lock);
+ return 0;
+}
+
+static int pit_ioport_read(struct kvm_vcpu *vcpu,
+ struct kvm_io_device *this,
+ gpa_t addr, int len, void *data)
+{
+ struct kvm_pit *pit = dev_to_pit(this);
+ struct kvm_kpit_state *pit_state = &pit->pit_state;
+ struct kvm *kvm = pit->kvm;
+ int ret, count;
+ struct kvm_kpit_channel_state *s;
+ if (!pit_in_range(addr))
+ return -EOPNOTSUPP;
+
+ addr &= KVM_PIT_CHANNEL_MASK;
+ if (addr == 3)
+ return 0;
+
+ s = &pit_state->channels[addr];
+
+ mutex_lock(&pit_state->lock);
+
+ if (s->status_latched) {
+ s->status_latched = 0;
+ ret = s->status;
+ } else if (s->count_latched) {
+ switch (s->count_latched) {
+ default:
+ case RW_STATE_LSB:
+ ret = s->latched_count & 0xff;
+ s->count_latched = 0;
+ break;
+ case RW_STATE_MSB:
+ ret = s->latched_count >> 8;
+ s->count_latched = 0;
+ break;
+ case RW_STATE_WORD0:
+ ret = s->latched_count & 0xff;
+ s->count_latched = RW_STATE_MSB;
+ break;
+ }
+ } else {
+ switch (s->read_state) {
+ default:
+ case RW_STATE_LSB:
+ count = pit_get_count(kvm, addr);
+ ret = count & 0xff;
+ break;
+ case RW_STATE_MSB:
+ count = pit_get_count(kvm, addr);
+ ret = (count >> 8) & 0xff;
+ break;
+ case RW_STATE_WORD0:
+ count = pit_get_count(kvm, addr);
+ ret = count & 0xff;
+ s->read_state = RW_STATE_WORD1;
+ break;
+ case RW_STATE_WORD1:
+ count = pit_get_count(kvm, addr);
+ ret = (count >> 8) & 0xff;
+ s->read_state = RW_STATE_WORD0;
+ break;
+ }
+ }
+
+ if (len > sizeof(ret))
+ len = sizeof(ret);
+ memcpy(data, (char *)&ret, len);
+
+ mutex_unlock(&pit_state->lock);
+ return 0;
+}
+
+static int speaker_ioport_write(struct kvm_vcpu *vcpu,
+ struct kvm_io_device *this,
+ gpa_t addr, int len, const void *data)
+{
+ struct kvm_pit *pit = speaker_to_pit(this);
+ struct kvm_kpit_state *pit_state = &pit->pit_state;
+ struct kvm *kvm = pit->kvm;
+ u32 val = *(u32 *) data;
+ if (addr != KVM_SPEAKER_BASE_ADDRESS)
+ return -EOPNOTSUPP;
+
+ mutex_lock(&pit_state->lock);
+ pit_state->speaker_data_on = (val >> 1) & 1;
+ pit_set_gate(kvm, 2, val & 1);
+ mutex_unlock(&pit_state->lock);
+ return 0;
+}
+
+static int speaker_ioport_read(struct kvm_vcpu *vcpu,
+ struct kvm_io_device *this,
+ gpa_t addr, int len, void *data)
+{
+ struct kvm_pit *pit = speaker_to_pit(this);
+ struct kvm_kpit_state *pit_state = &pit->pit_state;
+ struct kvm *kvm = pit->kvm;
+ unsigned int refresh_clock;
+ int ret;
+ if (addr != KVM_SPEAKER_BASE_ADDRESS)
+ return -EOPNOTSUPP;
+
+ /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
+ refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
+
+ mutex_lock(&pit_state->lock);
+ ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
+ (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
+ if (len > sizeof(ret))
+ len = sizeof(ret);
+ memcpy(data, (char *)&ret, len);
+ mutex_unlock(&pit_state->lock);
+ return 0;
+}
+
+void kvm_pit_reset(struct kvm_pit *pit)
+{
+ int i;
+ struct kvm_kpit_channel_state *c;
+
+ mutex_lock(&pit->pit_state.lock);
+ pit->pit_state.flags = 0;
+ for (i = 0; i < 3; i++) {
+ c = &pit->pit_state.channels[i];
+ c->mode = 0xff;
+ c->gate = (i != 2);
+ pit_load_count(pit->kvm, i, 0);
+ }
+ mutex_unlock(&pit->pit_state.lock);
+
+ atomic_set(&pit->pit_state.pending, 0);
+ pit->pit_state.irq_ack = 1;
+}
+
+static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
+{
+ struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
+
+ if (!mask) {
+ atomic_set(&pit->pit_state.pending, 0);
+ pit->pit_state.irq_ack = 1;
+ }
+}
+
+static const struct kvm_io_device_ops pit_dev_ops = {
+ .read = pit_ioport_read,
+ .write = pit_ioport_write,
+};
+
+static const struct kvm_io_device_ops speaker_dev_ops = {
+ .read = speaker_ioport_read,
+ .write = speaker_ioport_write,
+};
+
+/* Caller must hold slots_lock */
+struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
+{
+ struct kvm_pit *pit;
+ struct kvm_kpit_state *pit_state;
+ struct pid *pid;
+ pid_t pid_nr;
+ int ret;
+
+ pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
+ if (!pit)
+ return NULL;
+
+ pit->irq_source_id = kvm_request_irq_source_id(kvm);
+ if (pit->irq_source_id < 0) {
+ kfree(pit);
+ return NULL;
+ }
+
+ mutex_init(&pit->pit_state.lock);
+ mutex_lock(&pit->pit_state.lock);
+ spin_lock_init(&pit->pit_state.inject_lock);
+
+ pid = get_pid(task_tgid(current));
+ pid_nr = pid_vnr(pid);
+ put_pid(pid);
+
+ init_kthread_worker(&pit->worker);
+ pit->worker_task = kthread_run(kthread_worker_fn, &pit->worker,
+ "kvm-pit/%d", pid_nr);
+ if (IS_ERR(pit->worker_task)) {
+ mutex_unlock(&pit->pit_state.lock);
+ kvm_free_irq_source_id(kvm, pit->irq_source_id);
+ kfree(pit);
+ return NULL;
+ }
+ init_kthread_work(&pit->expired, pit_do_work);
+
+ kvm->arch.vpit = pit;
+ pit->kvm = kvm;
+
+ pit_state = &pit->pit_state;
+ pit_state->pit = pit;
+ hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
+ pit_state->irq_ack_notifier.gsi = 0;
+ pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
+ kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
+ pit_state->reinject = true;
+ mutex_unlock(&pit->pit_state.lock);
+
+ kvm_pit_reset(pit);
+
+ pit->mask_notifier.func = pit_mask_notifer;
+ kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
+
+ kvm_iodevice_init(&pit->dev, &pit_dev_ops);
+ ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
+ KVM_PIT_MEM_LENGTH, &pit->dev);
+ if (ret < 0)
+ goto fail;
+
+ if (flags & KVM_PIT_SPEAKER_DUMMY) {
+ kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
+ ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
+ KVM_SPEAKER_BASE_ADDRESS, 4,
+ &pit->speaker_dev);
+ if (ret < 0)
+ goto fail_unregister;
+ }
+
+ return pit;
+
+fail_unregister:
+ kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
+
+fail:
+ kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
+ kvm_unregister_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
+ kvm_free_irq_source_id(kvm, pit->irq_source_id);
+ kthread_stop(pit->worker_task);
+ kfree(pit);
+ return NULL;
+}
+
+void kvm_free_pit(struct kvm *kvm)
+{
+ struct hrtimer *timer;
+
+ if (kvm->arch.vpit) {
+ kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &kvm->arch.vpit->dev);
+ kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
+ &kvm->arch.vpit->speaker_dev);
+ kvm_unregister_irq_mask_notifier(kvm, 0,
+ &kvm->arch.vpit->mask_notifier);
+ kvm_unregister_irq_ack_notifier(kvm,
+ &kvm->arch.vpit->pit_state.irq_ack_notifier);
+ mutex_lock(&kvm->arch.vpit->pit_state.lock);
+ timer = &kvm->arch.vpit->pit_state.timer;
+ hrtimer_cancel(timer);
+ flush_kthread_work(&kvm->arch.vpit->expired);
+ kthread_stop(kvm->arch.vpit->worker_task);
+ kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
+ mutex_unlock(&kvm->arch.vpit->pit_state.lock);
+ kfree(kvm->arch.vpit);
+ }
+}
diff --git a/kernel/arch/x86/kvm/i8254.h b/kernel/arch/x86/kvm/i8254.h
new file mode 100644
index 000000000..c84990b42
--- /dev/null
+++ b/kernel/arch/x86/kvm/i8254.h
@@ -0,0 +1,65 @@
+#ifndef __I8254_H
+#define __I8254_H
+
+#include <linux/kthread.h>
+
+#include <kvm/iodev.h>
+
+struct kvm_kpit_channel_state {
+ u32 count; /* can be 65536 */
+ u16 latched_count;
+ u8 count_latched;
+ u8 status_latched;
+ u8 status;
+ u8 read_state;
+ u8 write_state;
+ u8 write_latch;
+ u8 rw_mode;
+ u8 mode;
+ u8 bcd; /* not supported */
+ u8 gate; /* timer start */
+ ktime_t count_load_time;
+};
+
+struct kvm_kpit_state {
+ struct kvm_kpit_channel_state channels[3];
+ u32 flags;
+ bool is_periodic;
+ s64 period; /* unit: ns */
+ struct hrtimer timer;
+ atomic_t pending; /* accumulated triggered timers */
+ bool reinject;
+ struct kvm *kvm;
+ u32 speaker_data_on;
+ struct mutex lock;
+ struct kvm_pit *pit;
+ spinlock_t inject_lock;
+ unsigned long irq_ack;
+ struct kvm_irq_ack_notifier irq_ack_notifier;
+};
+
+struct kvm_pit {
+ struct kvm_io_device dev;
+ struct kvm_io_device speaker_dev;
+ struct kvm *kvm;
+ struct kvm_kpit_state pit_state;
+ int irq_source_id;
+ struct kvm_irq_mask_notifier mask_notifier;
+ struct kthread_worker worker;
+ struct task_struct *worker_task;
+ struct kthread_work expired;
+};
+
+#define KVM_PIT_BASE_ADDRESS 0x40
+#define KVM_SPEAKER_BASE_ADDRESS 0x61
+#define KVM_PIT_MEM_LENGTH 4
+#define KVM_PIT_FREQ 1193181
+#define KVM_MAX_PIT_INTR_INTERVAL HZ / 100
+#define KVM_PIT_CHANNEL_MASK 0x3
+
+void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start);
+struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags);
+void kvm_free_pit(struct kvm *kvm);
+void kvm_pit_reset(struct kvm_pit *pit);
+
+#endif
diff --git a/kernel/arch/x86/kvm/i8259.c b/kernel/arch/x86/kvm/i8259.c
new file mode 100644
index 000000000..fef922ff2
--- /dev/null
+++ b/kernel/arch/x86/kvm/i8259.c
@@ -0,0 +1,665 @@
+/*
+ * 8259 interrupt controller emulation
+ *
+ * Copyright (c) 2003-2004 Fabrice Bellard
+ * Copyright (c) 2007 Intel Corporation
+ * Copyright 2009 Red Hat, Inc. and/or its affiliates.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ * Authors:
+ * Yaozu (Eddie) Dong <Eddie.dong@intel.com>
+ * Port from Qemu.
+ */
+#include <linux/mm.h>
+#include <linux/slab.h>
+#include <linux/bitops.h>
+#include "irq.h"
+
+#include <linux/kvm_host.h>
+#include "trace.h"
+
+#define pr_pic_unimpl(fmt, ...) \
+ pr_err_ratelimited("kvm: pic: " fmt, ## __VA_ARGS__)
+
+static void pic_irq_request(struct kvm *kvm, int level);
+
+static void pic_lock(struct kvm_pic *s)
+ __acquires(&s->lock)
+{
+ spin_lock(&s->lock);
+}
+
+static void pic_unlock(struct kvm_pic *s)
+ __releases(&s->lock)
+{
+ bool wakeup = s->wakeup_needed;
+ struct kvm_vcpu *vcpu, *found = NULL;
+ int i;
+
+ s->wakeup_needed = false;
+
+ spin_unlock(&s->lock);
+
+ if (wakeup) {
+ kvm_for_each_vcpu(i, vcpu, s->kvm) {
+ if (kvm_apic_accept_pic_intr(vcpu)) {
+ found = vcpu;
+ break;
+ }
+ }
+
+ if (!found)
+ return;
+
+ kvm_make_request(KVM_REQ_EVENT, found);
+ kvm_vcpu_kick(found);
+ }
+}
+
+static void pic_clear_isr(struct kvm_kpic_state *s, int irq)
+{
+ s->isr &= ~(1 << irq);
+ if (s != &s->pics_state->pics[0])
+ irq += 8;
+ /*
+ * We are dropping lock while calling ack notifiers since ack
+ * notifier callbacks for assigned devices call into PIC recursively.
+ * Other interrupt may be delivered to PIC while lock is dropped but
+ * it should be safe since PIC state is already updated at this stage.
+ */
+ pic_unlock(s->pics_state);
+ kvm_notify_acked_irq(s->pics_state->kvm, SELECT_PIC(irq), irq);
+ pic_lock(s->pics_state);
+}
+
+/*
+ * set irq level. If an edge is detected, then the IRR is set to 1
+ */
+static inline int pic_set_irq1(struct kvm_kpic_state *s, int irq, int level)
+{
+ int mask, ret = 1;
+ mask = 1 << irq;
+ if (s->elcr & mask) /* level triggered */
+ if (level) {
+ ret = !(s->irr & mask);
+ s->irr |= mask;
+ s->last_irr |= mask;
+ } else {
+ s->irr &= ~mask;
+ s->last_irr &= ~mask;
+ }
+ else /* edge triggered */
+ if (level) {
+ if ((s->last_irr & mask) == 0) {
+ ret = !(s->irr & mask);
+ s->irr |= mask;
+ }
+ s->last_irr |= mask;
+ } else
+ s->last_irr &= ~mask;
+
+ return (s->imr & mask) ? -1 : ret;
+}
+
+/*
+ * return the highest priority found in mask (highest = smallest
+ * number). Return 8 if no irq
+ */
+static inline int get_priority(struct kvm_kpic_state *s, int mask)
+{
+ int priority;
+ if (mask == 0)
+ return 8;
+ priority = 0;
+ while ((mask & (1 << ((priority + s->priority_add) & 7))) == 0)
+ priority++;
+ return priority;
+}
+
+/*
+ * return the pic wanted interrupt. return -1 if none
+ */
+static int pic_get_irq(struct kvm_kpic_state *s)
+{
+ int mask, cur_priority, priority;
+
+ mask = s->irr & ~s->imr;
+ priority = get_priority(s, mask);
+ if (priority == 8)
+ return -1;
+ /*
+ * compute current priority. If special fully nested mode on the
+ * master, the IRQ coming from the slave is not taken into account
+ * for the priority computation.
+ */
+ mask = s->isr;
+ if (s->special_fully_nested_mode && s == &s->pics_state->pics[0])
+ mask &= ~(1 << 2);
+ cur_priority = get_priority(s, mask);
+ if (priority < cur_priority)
+ /*
+ * higher priority found: an irq should be generated
+ */
+ return (priority + s->priority_add) & 7;
+ else
+ return -1;
+}
+
+/*
+ * raise irq to CPU if necessary. must be called every time the active
+ * irq may change
+ */
+static void pic_update_irq(struct kvm_pic *s)
+{
+ int irq2, irq;
+
+ irq2 = pic_get_irq(&s->pics[1]);
+ if (irq2 >= 0) {
+ /*
+ * if irq request by slave pic, signal master PIC
+ */
+ pic_set_irq1(&s->pics[0], 2, 1);
+ pic_set_irq1(&s->pics[0], 2, 0);
+ }
+ irq = pic_get_irq(&s->pics[0]);
+ pic_irq_request(s->kvm, irq >= 0);
+}
+
+void kvm_pic_update_irq(struct kvm_pic *s)
+{
+ pic_lock(s);
+ pic_update_irq(s);
+ pic_unlock(s);
+}
+
+int kvm_pic_set_irq(struct kvm_pic *s, int irq, int irq_source_id, int level)
+{
+ int ret, irq_level;
+
+ BUG_ON(irq < 0 || irq >= PIC_NUM_PINS);
+
+ pic_lock(s);
+ irq_level = __kvm_irq_line_state(&s->irq_states[irq],
+ irq_source_id, level);
+ ret = pic_set_irq1(&s->pics[irq >> 3], irq & 7, irq_level);
+ pic_update_irq(s);
+ trace_kvm_pic_set_irq(irq >> 3, irq & 7, s->pics[irq >> 3].elcr,
+ s->pics[irq >> 3].imr, ret == 0);
+ pic_unlock(s);
+
+ return ret;
+}
+
+void kvm_pic_clear_all(struct kvm_pic *s, int irq_source_id)
+{
+ int i;
+
+ pic_lock(s);
+ for (i = 0; i < PIC_NUM_PINS; i++)
+ __clear_bit(irq_source_id, &s->irq_states[i]);
+ pic_unlock(s);
+}
+
+/*
+ * acknowledge interrupt 'irq'
+ */
+static inline void pic_intack(struct kvm_kpic_state *s, int irq)
+{
+ s->isr |= 1 << irq;
+ /*
+ * We don't clear a level sensitive interrupt here
+ */
+ if (!(s->elcr & (1 << irq)))
+ s->irr &= ~(1 << irq);
+
+ if (s->auto_eoi) {
+ if (s->rotate_on_auto_eoi)
+ s->priority_add = (irq + 1) & 7;
+ pic_clear_isr(s, irq);
+ }
+
+}
+
+int kvm_pic_read_irq(struct kvm *kvm)
+{
+ int irq, irq2, intno;
+ struct kvm_pic *s = pic_irqchip(kvm);
+
+ s->output = 0;
+
+ pic_lock(s);
+ irq = pic_get_irq(&s->pics[0]);
+ if (irq >= 0) {
+ pic_intack(&s->pics[0], irq);
+ if (irq == 2) {
+ irq2 = pic_get_irq(&s->pics[1]);
+ if (irq2 >= 0)
+ pic_intack(&s->pics[1], irq2);
+ else
+ /*
+ * spurious IRQ on slave controller
+ */
+ irq2 = 7;
+ intno = s->pics[1].irq_base + irq2;
+ irq = irq2 + 8;
+ } else
+ intno = s->pics[0].irq_base + irq;
+ } else {
+ /*
+ * spurious IRQ on host controller
+ */
+ irq = 7;
+ intno = s->pics[0].irq_base + irq;
+ }
+ pic_update_irq(s);
+ pic_unlock(s);
+
+ return intno;
+}
+
+void kvm_pic_reset(struct kvm_kpic_state *s)
+{
+ int irq, i;
+ struct kvm_vcpu *vcpu;
+ u8 edge_irr = s->irr & ~s->elcr;
+ bool found = false;
+
+ s->last_irr = 0;
+ s->irr &= s->elcr;
+ s->imr = 0;
+ s->priority_add = 0;
+ s->special_mask = 0;
+ s->read_reg_select = 0;
+ if (!s->init4) {
+ s->special_fully_nested_mode = 0;
+ s->auto_eoi = 0;
+ }
+ s->init_state = 1;
+
+ kvm_for_each_vcpu(i, vcpu, s->pics_state->kvm)
+ if (kvm_apic_accept_pic_intr(vcpu)) {
+ found = true;
+ break;
+ }
+
+
+ if (!found)
+ return;
+
+ for (irq = 0; irq < PIC_NUM_PINS/2; irq++)
+ if (edge_irr & (1 << irq))
+ pic_clear_isr(s, irq);
+}
+
+static void pic_ioport_write(void *opaque, u32 addr, u32 val)
+{
+ struct kvm_kpic_state *s = opaque;
+ int priority, cmd, irq;
+
+ addr &= 1;
+ if (addr == 0) {
+ if (val & 0x10) {
+ s->init4 = val & 1;
+ if (val & 0x02)
+ pr_pic_unimpl("single mode not supported");
+ if (val & 0x08)
+ pr_pic_unimpl(
+ "level sensitive irq not supported");
+ kvm_pic_reset(s);
+ } else if (val & 0x08) {
+ if (val & 0x04)
+ s->poll = 1;
+ if (val & 0x02)
+ s->read_reg_select = val & 1;
+ if (val & 0x40)
+ s->special_mask = (val >> 5) & 1;
+ } else {
+ cmd = val >> 5;
+ switch (cmd) {
+ case 0:
+ case 4:
+ s->rotate_on_auto_eoi = cmd >> 2;
+ break;
+ case 1: /* end of interrupt */
+ case 5:
+ priority = get_priority(s, s->isr);
+ if (priority != 8) {
+ irq = (priority + s->priority_add) & 7;
+ if (cmd == 5)
+ s->priority_add = (irq + 1) & 7;
+ pic_clear_isr(s, irq);
+ pic_update_irq(s->pics_state);
+ }
+ break;
+ case 3:
+ irq = val & 7;
+ pic_clear_isr(s, irq);
+ pic_update_irq(s->pics_state);
+ break;
+ case 6:
+ s->priority_add = (val + 1) & 7;
+ pic_update_irq(s->pics_state);
+ break;
+ case 7:
+ irq = val & 7;
+ s->priority_add = (irq + 1) & 7;
+ pic_clear_isr(s, irq);
+ pic_update_irq(s->pics_state);
+ break;
+ default:
+ break; /* no operation */
+ }
+ }
+ } else
+ switch (s->init_state) {
+ case 0: { /* normal mode */
+ u8 imr_diff = s->imr ^ val,
+ off = (s == &s->pics_state->pics[0]) ? 0 : 8;
+ s->imr = val;
+ for (irq = 0; irq < PIC_NUM_PINS/2; irq++)
+ if (imr_diff & (1 << irq))
+ kvm_fire_mask_notifiers(
+ s->pics_state->kvm,
+ SELECT_PIC(irq + off),
+ irq + off,
+ !!(s->imr & (1 << irq)));
+ pic_update_irq(s->pics_state);
+ break;
+ }
+ case 1:
+ s->irq_base = val & 0xf8;
+ s->init_state = 2;
+ break;
+ case 2:
+ if (s->init4)
+ s->init_state = 3;
+ else
+ s->init_state = 0;
+ break;
+ case 3:
+ s->special_fully_nested_mode = (val >> 4) & 1;
+ s->auto_eoi = (val >> 1) & 1;
+ s->init_state = 0;
+ break;
+ }
+}
+
+static u32 pic_poll_read(struct kvm_kpic_state *s, u32 addr1)
+{
+ int ret;
+
+ ret = pic_get_irq(s);
+ if (ret >= 0) {
+ if (addr1 >> 7) {
+ s->pics_state->pics[0].isr &= ~(1 << 2);
+ s->pics_state->pics[0].irr &= ~(1 << 2);
+ }
+ s->irr &= ~(1 << ret);
+ pic_clear_isr(s, ret);
+ if (addr1 >> 7 || ret != 2)
+ pic_update_irq(s->pics_state);
+ } else {
+ ret = 0x07;
+ pic_update_irq(s->pics_state);
+ }
+
+ return ret;
+}
+
+static u32 pic_ioport_read(void *opaque, u32 addr1)
+{
+ struct kvm_kpic_state *s = opaque;
+ unsigned int addr;
+ int ret;
+
+ addr = addr1;
+ addr &= 1;
+ if (s->poll) {
+ ret = pic_poll_read(s, addr1);
+ s->poll = 0;
+ } else
+ if (addr == 0)
+ if (s->read_reg_select)
+ ret = s->isr;
+ else
+ ret = s->irr;
+ else
+ ret = s->imr;
+ return ret;
+}
+
+static void elcr_ioport_write(void *opaque, u32 addr, u32 val)
+{
+ struct kvm_kpic_state *s = opaque;
+ s->elcr = val & s->elcr_mask;
+}
+
+static u32 elcr_ioport_read(void *opaque, u32 addr1)
+{
+ struct kvm_kpic_state *s = opaque;
+ return s->elcr;
+}
+
+static int picdev_in_range(gpa_t addr)
+{
+ switch (addr) {
+ case 0x20:
+ case 0x21:
+ case 0xa0:
+ case 0xa1:
+ case 0x4d0:
+ case 0x4d1:
+ return 1;
+ default:
+ return 0;
+ }
+}
+
+static int picdev_write(struct kvm_pic *s,
+ gpa_t addr, int len, const void *val)
+{
+ unsigned char data = *(unsigned char *)val;
+ if (!picdev_in_range(addr))
+ return -EOPNOTSUPP;
+
+ if (len != 1) {
+ pr_pic_unimpl("non byte write\n");
+ return 0;
+ }
+ pic_lock(s);
+ switch (addr) {
+ case 0x20:
+ case 0x21:
+ case 0xa0:
+ case 0xa1:
+ pic_ioport_write(&s->pics[addr >> 7], addr, data);
+ break;
+ case 0x4d0:
+ case 0x4d1:
+ elcr_ioport_write(&s->pics[addr & 1], addr, data);
+ break;
+ }
+ pic_unlock(s);
+ return 0;
+}
+
+static int picdev_read(struct kvm_pic *s,
+ gpa_t addr, int len, void *val)
+{
+ unsigned char data = 0;
+ if (!picdev_in_range(addr))
+ return -EOPNOTSUPP;
+
+ if (len != 1) {
+ memset(val, 0, len);
+ pr_pic_unimpl("non byte read\n");
+ return 0;
+ }
+ pic_lock(s);
+ switch (addr) {
+ case 0x20:
+ case 0x21:
+ case 0xa0:
+ case 0xa1:
+ data = pic_ioport_read(&s->pics[addr >> 7], addr);
+ break;
+ case 0x4d0:
+ case 0x4d1:
+ data = elcr_ioport_read(&s->pics[addr & 1], addr);
+ break;
+ }
+ *(unsigned char *)val = data;
+ pic_unlock(s);
+ return 0;
+}
+
+static int picdev_master_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
+ gpa_t addr, int len, const void *val)
+{
+ return picdev_write(container_of(dev, struct kvm_pic, dev_master),
+ addr, len, val);
+}
+
+static int picdev_master_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
+ gpa_t addr, int len, void *val)
+{
+ return picdev_read(container_of(dev, struct kvm_pic, dev_master),
+ addr, len, val);
+}
+
+static int picdev_slave_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
+ gpa_t addr, int len, const void *val)
+{
+ return picdev_write(container_of(dev, struct kvm_pic, dev_slave),
+ addr, len, val);
+}
+
+static int picdev_slave_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
+ gpa_t addr, int len, void *val)
+{
+ return picdev_read(container_of(dev, struct kvm_pic, dev_slave),
+ addr, len, val);
+}
+
+static int picdev_eclr_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
+ gpa_t addr, int len, const void *val)
+{
+ return picdev_write(container_of(dev, struct kvm_pic, dev_eclr),
+ addr, len, val);
+}
+
+static int picdev_eclr_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
+ gpa_t addr, int len, void *val)
+{
+ return picdev_read(container_of(dev, struct kvm_pic, dev_eclr),
+ addr, len, val);
+}
+
+/*
+ * callback when PIC0 irq status changed
+ */
+static void pic_irq_request(struct kvm *kvm, int level)
+{
+ struct kvm_pic *s = pic_irqchip(kvm);
+
+ if (!s->output)
+ s->wakeup_needed = true;
+ s->output = level;
+}
+
+static const struct kvm_io_device_ops picdev_master_ops = {
+ .read = picdev_master_read,
+ .write = picdev_master_write,
+};
+
+static const struct kvm_io_device_ops picdev_slave_ops = {
+ .read = picdev_slave_read,
+ .write = picdev_slave_write,
+};
+
+static const struct kvm_io_device_ops picdev_eclr_ops = {
+ .read = picdev_eclr_read,
+ .write = picdev_eclr_write,
+};
+
+struct kvm_pic *kvm_create_pic(struct kvm *kvm)
+{
+ struct kvm_pic *s;
+ int ret;
+
+ s = kzalloc(sizeof(struct kvm_pic), GFP_KERNEL);
+ if (!s)
+ return NULL;
+ spin_lock_init(&s->lock);
+ s->kvm = kvm;
+ s->pics[0].elcr_mask = 0xf8;
+ s->pics[1].elcr_mask = 0xde;
+ s->pics[0].pics_state = s;
+ s->pics[1].pics_state = s;
+
+ /*
+ * Initialize PIO device
+ */
+ kvm_iodevice_init(&s->dev_master, &picdev_master_ops);
+ kvm_iodevice_init(&s->dev_slave, &picdev_slave_ops);
+ kvm_iodevice_init(&s->dev_eclr, &picdev_eclr_ops);
+ mutex_lock(&kvm->slots_lock);
+ ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, 0x20, 2,
+ &s->dev_master);
+ if (ret < 0)
+ goto fail_unlock;
+
+ ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, 0xa0, 2, &s->dev_slave);
+ if (ret < 0)
+ goto fail_unreg_2;
+
+ ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, 0x4d0, 2, &s->dev_eclr);
+ if (ret < 0)
+ goto fail_unreg_1;
+
+ mutex_unlock(&kvm->slots_lock);
+
+ return s;
+
+fail_unreg_1:
+ kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &s->dev_slave);
+
+fail_unreg_2:
+ kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &s->dev_master);
+
+fail_unlock:
+ mutex_unlock(&kvm->slots_lock);
+
+ kfree(s);
+
+ return NULL;
+}
+
+void kvm_destroy_pic(struct kvm *kvm)
+{
+ struct kvm_pic *vpic = kvm->arch.vpic;
+
+ if (vpic) {
+ kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &vpic->dev_master);
+ kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &vpic->dev_slave);
+ kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &vpic->dev_eclr);
+ kvm->arch.vpic = NULL;
+ kfree(vpic);
+ }
+}
diff --git a/kernel/arch/x86/kvm/ioapic.c b/kernel/arch/x86/kvm/ioapic.c
new file mode 100644
index 000000000..28146f03c
--- /dev/null
+++ b/kernel/arch/x86/kvm/ioapic.c
@@ -0,0 +1,675 @@
+/*
+ * Copyright (C) 2001 MandrakeSoft S.A.
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
+ *
+ * MandrakeSoft S.A.
+ * 43, rue d'Aboukir
+ * 75002 Paris - France
+ * http://www.linux-mandrake.com/
+ * http://www.mandrakesoft.com/
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ *
+ * Yunhong Jiang <yunhong.jiang@intel.com>
+ * Yaozu (Eddie) Dong <eddie.dong@intel.com>
+ * Based on Xen 3.1 code.
+ */
+
+#include <linux/kvm_host.h>
+#include <linux/kvm.h>
+#include <linux/mm.h>
+#include <linux/highmem.h>
+#include <linux/smp.h>
+#include <linux/hrtimer.h>
+#include <linux/io.h>
+#include <linux/slab.h>
+#include <linux/export.h>
+#include <asm/processor.h>
+#include <asm/page.h>
+#include <asm/current.h>
+#include <trace/events/kvm.h>
+
+#include "ioapic.h"
+#include "lapic.h"
+#include "irq.h"
+
+#if 0
+#define ioapic_debug(fmt,arg...) printk(KERN_WARNING fmt,##arg)
+#else
+#define ioapic_debug(fmt, arg...)
+#endif
+static int ioapic_service(struct kvm_ioapic *vioapic, int irq,
+ bool line_status);
+
+static unsigned long ioapic_read_indirect(struct kvm_ioapic *ioapic,
+ unsigned long addr,
+ unsigned long length)
+{
+ unsigned long result = 0;
+
+ switch (ioapic->ioregsel) {
+ case IOAPIC_REG_VERSION:
+ result = ((((IOAPIC_NUM_PINS - 1) & 0xff) << 16)
+ | (IOAPIC_VERSION_ID & 0xff));
+ break;
+
+ case IOAPIC_REG_APIC_ID:
+ case IOAPIC_REG_ARB_ID:
+ result = ((ioapic->id & 0xf) << 24);
+ break;
+
+ default:
+ {
+ u32 redir_index = (ioapic->ioregsel - 0x10) >> 1;
+ u64 redir_content;
+
+ if (redir_index < IOAPIC_NUM_PINS)
+ redir_content =
+ ioapic->redirtbl[redir_index].bits;
+ else
+ redir_content = ~0ULL;
+
+ result = (ioapic->ioregsel & 0x1) ?
+ (redir_content >> 32) & 0xffffffff :
+ redir_content & 0xffffffff;
+ break;
+ }
+ }
+
+ return result;
+}
+
+static void rtc_irq_eoi_tracking_reset(struct kvm_ioapic *ioapic)
+{
+ ioapic->rtc_status.pending_eoi = 0;
+ bitmap_zero(ioapic->rtc_status.dest_map, KVM_MAX_VCPUS);
+}
+
+static void kvm_rtc_eoi_tracking_restore_all(struct kvm_ioapic *ioapic);
+
+static void rtc_status_pending_eoi_check_valid(struct kvm_ioapic *ioapic)
+{
+ if (WARN_ON(ioapic->rtc_status.pending_eoi < 0))
+ kvm_rtc_eoi_tracking_restore_all(ioapic);
+}
+
+static void __rtc_irq_eoi_tracking_restore_one(struct kvm_vcpu *vcpu)
+{
+ bool new_val, old_val;
+ struct kvm_ioapic *ioapic = vcpu->kvm->arch.vioapic;
+ union kvm_ioapic_redirect_entry *e;
+
+ e = &ioapic->redirtbl[RTC_GSI];
+ if (!kvm_apic_match_dest(vcpu, NULL, 0, e->fields.dest_id,
+ e->fields.dest_mode))
+ return;
+
+ new_val = kvm_apic_pending_eoi(vcpu, e->fields.vector);
+ old_val = test_bit(vcpu->vcpu_id, ioapic->rtc_status.dest_map);
+
+ if (new_val == old_val)
+ return;
+
+ if (new_val) {
+ __set_bit(vcpu->vcpu_id, ioapic->rtc_status.dest_map);
+ ioapic->rtc_status.pending_eoi++;
+ } else {
+ __clear_bit(vcpu->vcpu_id, ioapic->rtc_status.dest_map);
+ ioapic->rtc_status.pending_eoi--;
+ rtc_status_pending_eoi_check_valid(ioapic);
+ }
+}
+
+void kvm_rtc_eoi_tracking_restore_one(struct kvm_vcpu *vcpu)
+{
+ struct kvm_ioapic *ioapic = vcpu->kvm->arch.vioapic;
+
+ spin_lock(&ioapic->lock);
+ __rtc_irq_eoi_tracking_restore_one(vcpu);
+ spin_unlock(&ioapic->lock);
+}
+
+static void kvm_rtc_eoi_tracking_restore_all(struct kvm_ioapic *ioapic)
+{
+ struct kvm_vcpu *vcpu;
+ int i;
+
+ if (RTC_GSI >= IOAPIC_NUM_PINS)
+ return;
+
+ rtc_irq_eoi_tracking_reset(ioapic);
+ kvm_for_each_vcpu(i, vcpu, ioapic->kvm)
+ __rtc_irq_eoi_tracking_restore_one(vcpu);
+}
+
+static void rtc_irq_eoi(struct kvm_ioapic *ioapic, struct kvm_vcpu *vcpu)
+{
+ if (test_and_clear_bit(vcpu->vcpu_id, ioapic->rtc_status.dest_map)) {
+ --ioapic->rtc_status.pending_eoi;
+ rtc_status_pending_eoi_check_valid(ioapic);
+ }
+}
+
+static bool rtc_irq_check_coalesced(struct kvm_ioapic *ioapic)
+{
+ if (ioapic->rtc_status.pending_eoi > 0)
+ return true; /* coalesced */
+
+ return false;
+}
+
+static int ioapic_set_irq(struct kvm_ioapic *ioapic, unsigned int irq,
+ int irq_level, bool line_status)
+{
+ union kvm_ioapic_redirect_entry entry;
+ u32 mask = 1 << irq;
+ u32 old_irr;
+ int edge, ret;
+
+ entry = ioapic->redirtbl[irq];
+ edge = (entry.fields.trig_mode == IOAPIC_EDGE_TRIG);
+
+ if (!irq_level) {
+ ioapic->irr &= ~mask;
+ ret = 1;
+ goto out;
+ }
+
+ /*
+ * Return 0 for coalesced interrupts; for edge-triggered interrupts,
+ * this only happens if a previous edge has not been delivered due
+ * do masking. For level interrupts, the remote_irr field tells
+ * us if the interrupt is waiting for an EOI.
+ *
+ * RTC is special: it is edge-triggered, but userspace likes to know
+ * if it has been already ack-ed via EOI because coalesced RTC
+ * interrupts lead to time drift in Windows guests. So we track
+ * EOI manually for the RTC interrupt.
+ */
+ if (irq == RTC_GSI && line_status &&
+ rtc_irq_check_coalesced(ioapic)) {
+ ret = 0;
+ goto out;
+ }
+
+ old_irr = ioapic->irr;
+ ioapic->irr |= mask;
+ if (edge)
+ ioapic->irr_delivered &= ~mask;
+ if ((edge && old_irr == ioapic->irr) ||
+ (!edge && entry.fields.remote_irr)) {
+ ret = 0;
+ goto out;
+ }
+
+ ret = ioapic_service(ioapic, irq, line_status);
+
+out:
+ trace_kvm_ioapic_set_irq(entry.bits, irq, ret == 0);
+ return ret;
+}
+
+static void kvm_ioapic_inject_all(struct kvm_ioapic *ioapic, unsigned long irr)
+{
+ u32 idx;
+
+ rtc_irq_eoi_tracking_reset(ioapic);
+ for_each_set_bit(idx, &irr, IOAPIC_NUM_PINS)
+ ioapic_set_irq(ioapic, idx, 1, true);
+
+ kvm_rtc_eoi_tracking_restore_all(ioapic);
+}
+
+
+static void update_handled_vectors(struct kvm_ioapic *ioapic)
+{
+ DECLARE_BITMAP(handled_vectors, 256);
+ int i;
+
+ memset(handled_vectors, 0, sizeof(handled_vectors));
+ for (i = 0; i < IOAPIC_NUM_PINS; ++i)
+ __set_bit(ioapic->redirtbl[i].fields.vector, handled_vectors);
+ memcpy(ioapic->handled_vectors, handled_vectors,
+ sizeof(handled_vectors));
+ smp_wmb();
+}
+
+void kvm_ioapic_scan_entry(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap,
+ u32 *tmr)
+{
+ struct kvm_ioapic *ioapic = vcpu->kvm->arch.vioapic;
+ union kvm_ioapic_redirect_entry *e;
+ int index;
+
+ spin_lock(&ioapic->lock);
+ for (index = 0; index < IOAPIC_NUM_PINS; index++) {
+ e = &ioapic->redirtbl[index];
+ if (e->fields.trig_mode == IOAPIC_LEVEL_TRIG ||
+ kvm_irq_has_notifier(ioapic->kvm, KVM_IRQCHIP_IOAPIC, index) ||
+ index == RTC_GSI) {
+ if (kvm_apic_match_dest(vcpu, NULL, 0,
+ e->fields.dest_id, e->fields.dest_mode)) {
+ __set_bit(e->fields.vector,
+ (unsigned long *)eoi_exit_bitmap);
+ if (e->fields.trig_mode == IOAPIC_LEVEL_TRIG)
+ __set_bit(e->fields.vector,
+ (unsigned long *)tmr);
+ }
+ }
+ }
+ spin_unlock(&ioapic->lock);
+}
+
+void kvm_vcpu_request_scan_ioapic(struct kvm *kvm)
+{
+ struct kvm_ioapic *ioapic = kvm->arch.vioapic;
+
+ if (!ioapic)
+ return;
+ kvm_make_scan_ioapic_request(kvm);
+}
+
+static void ioapic_write_indirect(struct kvm_ioapic *ioapic, u32 val)
+{
+ unsigned index;
+ bool mask_before, mask_after;
+ union kvm_ioapic_redirect_entry *e;
+
+ switch (ioapic->ioregsel) {
+ case IOAPIC_REG_VERSION:
+ /* Writes are ignored. */
+ break;
+
+ case IOAPIC_REG_APIC_ID:
+ ioapic->id = (val >> 24) & 0xf;
+ break;
+
+ case IOAPIC_REG_ARB_ID:
+ break;
+
+ default:
+ index = (ioapic->ioregsel - 0x10) >> 1;
+
+ ioapic_debug("change redir index %x val %x\n", index, val);
+ if (index >= IOAPIC_NUM_PINS)
+ return;
+ e = &ioapic->redirtbl[index];
+ mask_before = e->fields.mask;
+ if (ioapic->ioregsel & 1) {
+ e->bits &= 0xffffffff;
+ e->bits |= (u64) val << 32;
+ } else {
+ e->bits &= ~0xffffffffULL;
+ e->bits |= (u32) val;
+ e->fields.remote_irr = 0;
+ }
+ update_handled_vectors(ioapic);
+ mask_after = e->fields.mask;
+ if (mask_before != mask_after)
+ kvm_fire_mask_notifiers(ioapic->kvm, KVM_IRQCHIP_IOAPIC, index, mask_after);
+ if (e->fields.trig_mode == IOAPIC_LEVEL_TRIG
+ && ioapic->irr & (1 << index))
+ ioapic_service(ioapic, index, false);
+ kvm_vcpu_request_scan_ioapic(ioapic->kvm);
+ break;
+ }
+}
+
+static int ioapic_service(struct kvm_ioapic *ioapic, int irq, bool line_status)
+{
+ union kvm_ioapic_redirect_entry *entry = &ioapic->redirtbl[irq];
+ struct kvm_lapic_irq irqe;
+ int ret;
+
+ if (entry->fields.mask)
+ return -1;
+
+ ioapic_debug("dest=%x dest_mode=%x delivery_mode=%x "
+ "vector=%x trig_mode=%x\n",
+ entry->fields.dest_id, entry->fields.dest_mode,
+ entry->fields.delivery_mode, entry->fields.vector,
+ entry->fields.trig_mode);
+
+ irqe.dest_id = entry->fields.dest_id;
+ irqe.vector = entry->fields.vector;
+ irqe.dest_mode = entry->fields.dest_mode;
+ irqe.trig_mode = entry->fields.trig_mode;
+ irqe.delivery_mode = entry->fields.delivery_mode << 8;
+ irqe.level = 1;
+ irqe.shorthand = 0;
+
+ if (irqe.trig_mode == IOAPIC_EDGE_TRIG)
+ ioapic->irr_delivered |= 1 << irq;
+
+ if (irq == RTC_GSI && line_status) {
+ /*
+ * pending_eoi cannot ever become negative (see
+ * rtc_status_pending_eoi_check_valid) and the caller
+ * ensures that it is only called if it is >= zero, namely
+ * if rtc_irq_check_coalesced returns false).
+ */
+ BUG_ON(ioapic->rtc_status.pending_eoi != 0);
+ ret = kvm_irq_delivery_to_apic(ioapic->kvm, NULL, &irqe,
+ ioapic->rtc_status.dest_map);
+ ioapic->rtc_status.pending_eoi = (ret < 0 ? 0 : ret);
+ } else
+ ret = kvm_irq_delivery_to_apic(ioapic->kvm, NULL, &irqe, NULL);
+
+ if (ret && irqe.trig_mode == IOAPIC_LEVEL_TRIG)
+ entry->fields.remote_irr = 1;
+
+ return ret;
+}
+
+int kvm_ioapic_set_irq(struct kvm_ioapic *ioapic, int irq, int irq_source_id,
+ int level, bool line_status)
+{
+ int ret, irq_level;
+
+ BUG_ON(irq < 0 || irq >= IOAPIC_NUM_PINS);
+
+ spin_lock(&ioapic->lock);
+ irq_level = __kvm_irq_line_state(&ioapic->irq_states[irq],
+ irq_source_id, level);
+ ret = ioapic_set_irq(ioapic, irq, irq_level, line_status);
+
+ spin_unlock(&ioapic->lock);
+
+ return ret;
+}
+
+void kvm_ioapic_clear_all(struct kvm_ioapic *ioapic, int irq_source_id)
+{
+ int i;
+
+ spin_lock(&ioapic->lock);
+ for (i = 0; i < KVM_IOAPIC_NUM_PINS; i++)
+ __clear_bit(irq_source_id, &ioapic->irq_states[i]);
+ spin_unlock(&ioapic->lock);
+}
+
+static void kvm_ioapic_eoi_inject_work(struct work_struct *work)
+{
+ int i;
+ struct kvm_ioapic *ioapic = container_of(work, struct kvm_ioapic,
+ eoi_inject.work);
+ spin_lock(&ioapic->lock);
+ for (i = 0; i < IOAPIC_NUM_PINS; i++) {
+ union kvm_ioapic_redirect_entry *ent = &ioapic->redirtbl[i];
+
+ if (ent->fields.trig_mode != IOAPIC_LEVEL_TRIG)
+ continue;
+
+ if (ioapic->irr & (1 << i) && !ent->fields.remote_irr)
+ ioapic_service(ioapic, i, false);
+ }
+ spin_unlock(&ioapic->lock);
+}
+
+#define IOAPIC_SUCCESSIVE_IRQ_MAX_COUNT 10000
+
+static void __kvm_ioapic_update_eoi(struct kvm_vcpu *vcpu,
+ struct kvm_ioapic *ioapic, int vector, int trigger_mode)
+{
+ int i;
+ struct kvm_lapic *apic = vcpu->arch.apic;
+
+ for (i = 0; i < IOAPIC_NUM_PINS; i++) {
+ union kvm_ioapic_redirect_entry *ent = &ioapic->redirtbl[i];
+
+ if (ent->fields.vector != vector)
+ continue;
+
+ if (i == RTC_GSI)
+ rtc_irq_eoi(ioapic, vcpu);
+ /*
+ * We are dropping lock while calling ack notifiers because ack
+ * notifier callbacks for assigned devices call into IOAPIC
+ * recursively. Since remote_irr is cleared only after call
+ * to notifiers if the same vector will be delivered while lock
+ * is dropped it will be put into irr and will be delivered
+ * after ack notifier returns.
+ */
+ spin_unlock(&ioapic->lock);
+ kvm_notify_acked_irq(ioapic->kvm, KVM_IRQCHIP_IOAPIC, i);
+ spin_lock(&ioapic->lock);
+
+ if (trigger_mode != IOAPIC_LEVEL_TRIG ||
+ kvm_apic_get_reg(apic, APIC_SPIV) & APIC_SPIV_DIRECTED_EOI)
+ continue;
+
+ ASSERT(ent->fields.trig_mode == IOAPIC_LEVEL_TRIG);
+ ent->fields.remote_irr = 0;
+ if (!ent->fields.mask && (ioapic->irr & (1 << i))) {
+ ++ioapic->irq_eoi[i];
+ if (ioapic->irq_eoi[i] == IOAPIC_SUCCESSIVE_IRQ_MAX_COUNT) {
+ /*
+ * Real hardware does not deliver the interrupt
+ * immediately during eoi broadcast, and this
+ * lets a buggy guest make slow progress
+ * even if it does not correctly handle a
+ * level-triggered interrupt. Emulate this
+ * behavior if we detect an interrupt storm.
+ */
+ schedule_delayed_work(&ioapic->eoi_inject, HZ / 100);
+ ioapic->irq_eoi[i] = 0;
+ trace_kvm_ioapic_delayed_eoi_inj(ent->bits);
+ } else {
+ ioapic_service(ioapic, i, false);
+ }
+ } else {
+ ioapic->irq_eoi[i] = 0;
+ }
+ }
+}
+
+void kvm_ioapic_update_eoi(struct kvm_vcpu *vcpu, int vector, int trigger_mode)
+{
+ struct kvm_ioapic *ioapic = vcpu->kvm->arch.vioapic;
+
+ spin_lock(&ioapic->lock);
+ __kvm_ioapic_update_eoi(vcpu, ioapic, vector, trigger_mode);
+ spin_unlock(&ioapic->lock);
+}
+
+static inline struct kvm_ioapic *to_ioapic(struct kvm_io_device *dev)
+{
+ return container_of(dev, struct kvm_ioapic, dev);
+}
+
+static inline int ioapic_in_range(struct kvm_ioapic *ioapic, gpa_t addr)
+{
+ return ((addr >= ioapic->base_address &&
+ (addr < ioapic->base_address + IOAPIC_MEM_LENGTH)));
+}
+
+static int ioapic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
+ gpa_t addr, int len, void *val)
+{
+ struct kvm_ioapic *ioapic = to_ioapic(this);
+ u32 result;
+ if (!ioapic_in_range(ioapic, addr))
+ return -EOPNOTSUPP;
+
+ ioapic_debug("addr %lx\n", (unsigned long)addr);
+ ASSERT(!(addr & 0xf)); /* check alignment */
+
+ addr &= 0xff;
+ spin_lock(&ioapic->lock);
+ switch (addr) {
+ case IOAPIC_REG_SELECT:
+ result = ioapic->ioregsel;
+ break;
+
+ case IOAPIC_REG_WINDOW:
+ result = ioapic_read_indirect(ioapic, addr, len);
+ break;
+
+ default:
+ result = 0;
+ break;
+ }
+ spin_unlock(&ioapic->lock);
+
+ switch (len) {
+ case 8:
+ *(u64 *) val = result;
+ break;
+ case 1:
+ case 2:
+ case 4:
+ memcpy(val, (char *)&result, len);
+ break;
+ default:
+ printk(KERN_WARNING "ioapic: wrong length %d\n", len);
+ }
+ return 0;
+}
+
+static int ioapic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
+ gpa_t addr, int len, const void *val)
+{
+ struct kvm_ioapic *ioapic = to_ioapic(this);
+ u32 data;
+ if (!ioapic_in_range(ioapic, addr))
+ return -EOPNOTSUPP;
+
+ ioapic_debug("ioapic_mmio_write addr=%p len=%d val=%p\n",
+ (void*)addr, len, val);
+ ASSERT(!(addr & 0xf)); /* check alignment */
+
+ switch (len) {
+ case 8:
+ case 4:
+ data = *(u32 *) val;
+ break;
+ case 2:
+ data = *(u16 *) val;
+ break;
+ case 1:
+ data = *(u8 *) val;
+ break;
+ default:
+ printk(KERN_WARNING "ioapic: Unsupported size %d\n", len);
+ return 0;
+ }
+
+ addr &= 0xff;
+ spin_lock(&ioapic->lock);
+ switch (addr) {
+ case IOAPIC_REG_SELECT:
+ ioapic->ioregsel = data & 0xFF; /* 8-bit register */
+ break;
+
+ case IOAPIC_REG_WINDOW:
+ ioapic_write_indirect(ioapic, data);
+ break;
+
+ default:
+ break;
+ }
+ spin_unlock(&ioapic->lock);
+ return 0;
+}
+
+static void kvm_ioapic_reset(struct kvm_ioapic *ioapic)
+{
+ int i;
+
+ cancel_delayed_work_sync(&ioapic->eoi_inject);
+ for (i = 0; i < IOAPIC_NUM_PINS; i++)
+ ioapic->redirtbl[i].fields.mask = 1;
+ ioapic->base_address = IOAPIC_DEFAULT_BASE_ADDRESS;
+ ioapic->ioregsel = 0;
+ ioapic->irr = 0;
+ ioapic->irr_delivered = 0;
+ ioapic->id = 0;
+ memset(ioapic->irq_eoi, 0x00, IOAPIC_NUM_PINS);
+ rtc_irq_eoi_tracking_reset(ioapic);
+ update_handled_vectors(ioapic);
+}
+
+static const struct kvm_io_device_ops ioapic_mmio_ops = {
+ .read = ioapic_mmio_read,
+ .write = ioapic_mmio_write,
+};
+
+int kvm_ioapic_init(struct kvm *kvm)
+{
+ struct kvm_ioapic *ioapic;
+ int ret;
+
+ ioapic = kzalloc(sizeof(struct kvm_ioapic), GFP_KERNEL);
+ if (!ioapic)
+ return -ENOMEM;
+ spin_lock_init(&ioapic->lock);
+ INIT_DELAYED_WORK(&ioapic->eoi_inject, kvm_ioapic_eoi_inject_work);
+ kvm->arch.vioapic = ioapic;
+ kvm_ioapic_reset(ioapic);
+ kvm_iodevice_init(&ioapic->dev, &ioapic_mmio_ops);
+ ioapic->kvm = kvm;
+ mutex_lock(&kvm->slots_lock);
+ ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, ioapic->base_address,
+ IOAPIC_MEM_LENGTH, &ioapic->dev);
+ mutex_unlock(&kvm->slots_lock);
+ if (ret < 0) {
+ kvm->arch.vioapic = NULL;
+ kfree(ioapic);
+ }
+
+ return ret;
+}
+
+void kvm_ioapic_destroy(struct kvm *kvm)
+{
+ struct kvm_ioapic *ioapic = kvm->arch.vioapic;
+
+ cancel_delayed_work_sync(&ioapic->eoi_inject);
+ if (ioapic) {
+ kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS, &ioapic->dev);
+ kvm->arch.vioapic = NULL;
+ kfree(ioapic);
+ }
+}
+
+int kvm_get_ioapic(struct kvm *kvm, struct kvm_ioapic_state *state)
+{
+ struct kvm_ioapic *ioapic = ioapic_irqchip(kvm);
+ if (!ioapic)
+ return -EINVAL;
+
+ spin_lock(&ioapic->lock);
+ memcpy(state, ioapic, sizeof(struct kvm_ioapic_state));
+ state->irr &= ~ioapic->irr_delivered;
+ spin_unlock(&ioapic->lock);
+ return 0;
+}
+
+int kvm_set_ioapic(struct kvm *kvm, struct kvm_ioapic_state *state)
+{
+ struct kvm_ioapic *ioapic = ioapic_irqchip(kvm);
+ if (!ioapic)
+ return -EINVAL;
+
+ spin_lock(&ioapic->lock);
+ memcpy(ioapic, state, sizeof(struct kvm_ioapic_state));
+ ioapic->irr = 0;
+ ioapic->irr_delivered = 0;
+ update_handled_vectors(ioapic);
+ kvm_vcpu_request_scan_ioapic(kvm);
+ kvm_ioapic_inject_all(ioapic, state->irr);
+ spin_unlock(&ioapic->lock);
+ return 0;
+}
diff --git a/kernel/arch/x86/kvm/ioapic.h b/kernel/arch/x86/kvm/ioapic.h
new file mode 100644
index 000000000..ca0b0b4e6
--- /dev/null
+++ b/kernel/arch/x86/kvm/ioapic.h
@@ -0,0 +1,126 @@
+#ifndef __KVM_IO_APIC_H
+#define __KVM_IO_APIC_H
+
+#include <linux/kvm_host.h>
+
+#include <kvm/iodev.h>
+
+struct kvm;
+struct kvm_vcpu;
+
+#define IOAPIC_NUM_PINS KVM_IOAPIC_NUM_PINS
+#define IOAPIC_VERSION_ID 0x11 /* IOAPIC version */
+#define IOAPIC_EDGE_TRIG 0
+#define IOAPIC_LEVEL_TRIG 1
+
+#define IOAPIC_DEFAULT_BASE_ADDRESS 0xfec00000
+#define IOAPIC_MEM_LENGTH 0x100
+
+/* Direct registers. */
+#define IOAPIC_REG_SELECT 0x00
+#define IOAPIC_REG_WINDOW 0x10
+
+/* Indirect registers. */
+#define IOAPIC_REG_APIC_ID 0x00 /* x86 IOAPIC only */
+#define IOAPIC_REG_VERSION 0x01
+#define IOAPIC_REG_ARB_ID 0x02 /* x86 IOAPIC only */
+
+/*ioapic delivery mode*/
+#define IOAPIC_FIXED 0x0
+#define IOAPIC_LOWEST_PRIORITY 0x1
+#define IOAPIC_PMI 0x2
+#define IOAPIC_NMI 0x4
+#define IOAPIC_INIT 0x5
+#define IOAPIC_EXTINT 0x7
+
+#ifdef CONFIG_X86
+#define RTC_GSI 8
+#else
+#define RTC_GSI -1U
+#endif
+
+struct rtc_status {
+ int pending_eoi;
+ DECLARE_BITMAP(dest_map, KVM_MAX_VCPUS);
+};
+
+union kvm_ioapic_redirect_entry {
+ u64 bits;
+ struct {
+ u8 vector;
+ u8 delivery_mode:3;
+ u8 dest_mode:1;
+ u8 delivery_status:1;
+ u8 polarity:1;
+ u8 remote_irr:1;
+ u8 trig_mode:1;
+ u8 mask:1;
+ u8 reserve:7;
+ u8 reserved[4];
+ u8 dest_id;
+ } fields;
+};
+
+struct kvm_ioapic {
+ u64 base_address;
+ u32 ioregsel;
+ u32 id;
+ u32 irr;
+ u32 pad;
+ union kvm_ioapic_redirect_entry redirtbl[IOAPIC_NUM_PINS];
+ unsigned long irq_states[IOAPIC_NUM_PINS];
+ struct kvm_io_device dev;
+ struct kvm *kvm;
+ void (*ack_notifier)(void *opaque, int irq);
+ spinlock_t lock;
+ DECLARE_BITMAP(handled_vectors, 256);
+ struct rtc_status rtc_status;
+ struct delayed_work eoi_inject;
+ u32 irq_eoi[IOAPIC_NUM_PINS];
+ u32 irr_delivered;
+};
+
+#ifdef DEBUG
+#define ASSERT(x) \
+do { \
+ if (!(x)) { \
+ printk(KERN_EMERG "assertion failed %s: %d: %s\n", \
+ __FILE__, __LINE__, #x); \
+ BUG(); \
+ } \
+} while (0)
+#else
+#define ASSERT(x) do { } while (0)
+#endif
+
+static inline struct kvm_ioapic *ioapic_irqchip(struct kvm *kvm)
+{
+ return kvm->arch.vioapic;
+}
+
+static inline bool kvm_ioapic_handles_vector(struct kvm *kvm, int vector)
+{
+ struct kvm_ioapic *ioapic = kvm->arch.vioapic;
+ smp_rmb();
+ return test_bit(vector, ioapic->handled_vectors);
+}
+
+void kvm_rtc_eoi_tracking_restore_one(struct kvm_vcpu *vcpu);
+bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
+ int short_hand, unsigned int dest, int dest_mode);
+int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2);
+void kvm_ioapic_update_eoi(struct kvm_vcpu *vcpu, int vector,
+ int trigger_mode);
+int kvm_ioapic_init(struct kvm *kvm);
+void kvm_ioapic_destroy(struct kvm *kvm);
+int kvm_ioapic_set_irq(struct kvm_ioapic *ioapic, int irq, int irq_source_id,
+ int level, bool line_status);
+void kvm_ioapic_clear_all(struct kvm_ioapic *ioapic, int irq_source_id);
+int kvm_irq_delivery_to_apic(struct kvm *kvm, struct kvm_lapic *src,
+ struct kvm_lapic_irq *irq, unsigned long *dest_map);
+int kvm_get_ioapic(struct kvm *kvm, struct kvm_ioapic_state *state);
+int kvm_set_ioapic(struct kvm *kvm, struct kvm_ioapic_state *state);
+void kvm_ioapic_scan_entry(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap,
+ u32 *tmr);
+
+#endif
diff --git a/kernel/arch/x86/kvm/iommu.c b/kernel/arch/x86/kvm/iommu.c
new file mode 100644
index 000000000..7dbced309
--- /dev/null
+++ b/kernel/arch/x86/kvm/iommu.c
@@ -0,0 +1,355 @@
+/*
+ * Copyright (c) 2006, Intel Corporation.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
+ * Place - Suite 330, Boston, MA 02111-1307 USA.
+ *
+ * Copyright (C) 2006-2008 Intel Corporation
+ * Copyright IBM Corporation, 2008
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
+ *
+ * Author: Allen M. Kay <allen.m.kay@intel.com>
+ * Author: Weidong Han <weidong.han@intel.com>
+ * Author: Ben-Ami Yassour <benami@il.ibm.com>
+ */
+
+#include <linux/list.h>
+#include <linux/kvm_host.h>
+#include <linux/module.h>
+#include <linux/pci.h>
+#include <linux/stat.h>
+#include <linux/dmar.h>
+#include <linux/iommu.h>
+#include <linux/intel-iommu.h>
+#include "assigned-dev.h"
+
+static bool allow_unsafe_assigned_interrupts;
+module_param_named(allow_unsafe_assigned_interrupts,
+ allow_unsafe_assigned_interrupts, bool, S_IRUGO | S_IWUSR);
+MODULE_PARM_DESC(allow_unsafe_assigned_interrupts,
+ "Enable device assignment on platforms without interrupt remapping support.");
+
+static int kvm_iommu_unmap_memslots(struct kvm *kvm);
+static void kvm_iommu_put_pages(struct kvm *kvm,
+ gfn_t base_gfn, unsigned long npages);
+
+static pfn_t kvm_pin_pages(struct kvm_memory_slot *slot, gfn_t gfn,
+ unsigned long npages)
+{
+ gfn_t end_gfn;
+ pfn_t pfn;
+
+ pfn = gfn_to_pfn_memslot(slot, gfn);
+ end_gfn = gfn + npages;
+ gfn += 1;
+
+ if (is_error_noslot_pfn(pfn))
+ return pfn;
+
+ while (gfn < end_gfn)
+ gfn_to_pfn_memslot(slot, gfn++);
+
+ return pfn;
+}
+
+static void kvm_unpin_pages(struct kvm *kvm, pfn_t pfn, unsigned long npages)
+{
+ unsigned long i;
+
+ for (i = 0; i < npages; ++i)
+ kvm_release_pfn_clean(pfn + i);
+}
+
+int kvm_iommu_map_pages(struct kvm *kvm, struct kvm_memory_slot *slot)
+{
+ gfn_t gfn, end_gfn;
+ pfn_t pfn;
+ int r = 0;
+ struct iommu_domain *domain = kvm->arch.iommu_domain;
+ int flags;
+
+ /* check if iommu exists and in use */
+ if (!domain)
+ return 0;
+
+ gfn = slot->base_gfn;
+ end_gfn = gfn + slot->npages;
+
+ flags = IOMMU_READ;
+ if (!(slot->flags & KVM_MEM_READONLY))
+ flags |= IOMMU_WRITE;
+ if (!kvm->arch.iommu_noncoherent)
+ flags |= IOMMU_CACHE;
+
+
+ while (gfn < end_gfn) {
+ unsigned long page_size;
+
+ /* Check if already mapped */
+ if (iommu_iova_to_phys(domain, gfn_to_gpa(gfn))) {
+ gfn += 1;
+ continue;
+ }
+
+ /* Get the page size we could use to map */
+ page_size = kvm_host_page_size(kvm, gfn);
+
+ /* Make sure the page_size does not exceed the memslot */
+ while ((gfn + (page_size >> PAGE_SHIFT)) > end_gfn)
+ page_size >>= 1;
+
+ /* Make sure gfn is aligned to the page size we want to map */
+ while ((gfn << PAGE_SHIFT) & (page_size - 1))
+ page_size >>= 1;
+
+ /* Make sure hva is aligned to the page size we want to map */
+ while (__gfn_to_hva_memslot(slot, gfn) & (page_size - 1))
+ page_size >>= 1;
+
+ /*
+ * Pin all pages we are about to map in memory. This is
+ * important because we unmap and unpin in 4kb steps later.
+ */
+ pfn = kvm_pin_pages(slot, gfn, page_size >> PAGE_SHIFT);
+ if (is_error_noslot_pfn(pfn)) {
+ gfn += 1;
+ continue;
+ }
+
+ /* Map into IO address space */
+ r = iommu_map(domain, gfn_to_gpa(gfn), pfn_to_hpa(pfn),
+ page_size, flags);
+ if (r) {
+ printk(KERN_ERR "kvm_iommu_map_address:"
+ "iommu failed to map pfn=%llx\n", pfn);
+ kvm_unpin_pages(kvm, pfn, page_size >> PAGE_SHIFT);
+ goto unmap_pages;
+ }
+
+ gfn += page_size >> PAGE_SHIFT;
+
+ cond_resched();
+ }
+
+ return 0;
+
+unmap_pages:
+ kvm_iommu_put_pages(kvm, slot->base_gfn, gfn - slot->base_gfn);
+ return r;
+}
+
+static int kvm_iommu_map_memslots(struct kvm *kvm)
+{
+ int idx, r = 0;
+ struct kvm_memslots *slots;
+ struct kvm_memory_slot *memslot;
+
+ if (kvm->arch.iommu_noncoherent)
+ kvm_arch_register_noncoherent_dma(kvm);
+
+ idx = srcu_read_lock(&kvm->srcu);
+ slots = kvm_memslots(kvm);
+
+ kvm_for_each_memslot(memslot, slots) {
+ r = kvm_iommu_map_pages(kvm, memslot);
+ if (r)
+ break;
+ }
+ srcu_read_unlock(&kvm->srcu, idx);
+
+ return r;
+}
+
+int kvm_assign_device(struct kvm *kvm, struct pci_dev *pdev)
+{
+ struct iommu_domain *domain = kvm->arch.iommu_domain;
+ int r;
+ bool noncoherent;
+
+ /* check if iommu exists and in use */
+ if (!domain)
+ return 0;
+
+ if (pdev == NULL)
+ return -ENODEV;
+
+ r = iommu_attach_device(domain, &pdev->dev);
+ if (r) {
+ dev_err(&pdev->dev, "kvm assign device failed ret %d", r);
+ return r;
+ }
+
+ noncoherent = !iommu_capable(&pci_bus_type, IOMMU_CAP_CACHE_COHERENCY);
+
+ /* Check if need to update IOMMU page table for guest memory */
+ if (noncoherent != kvm->arch.iommu_noncoherent) {
+ kvm_iommu_unmap_memslots(kvm);
+ kvm->arch.iommu_noncoherent = noncoherent;
+ r = kvm_iommu_map_memslots(kvm);
+ if (r)
+ goto out_unmap;
+ }
+
+ pci_set_dev_assigned(pdev);
+
+ dev_info(&pdev->dev, "kvm assign device\n");
+
+ return 0;
+out_unmap:
+ kvm_iommu_unmap_memslots(kvm);
+ return r;
+}
+
+int kvm_deassign_device(struct kvm *kvm, struct pci_dev *pdev)
+{
+ struct iommu_domain *domain = kvm->arch.iommu_domain;
+
+ /* check if iommu exists and in use */
+ if (!domain)
+ return 0;
+
+ if (pdev == NULL)
+ return -ENODEV;
+
+ iommu_detach_device(domain, &pdev->dev);
+
+ pci_clear_dev_assigned(pdev);
+
+ dev_info(&pdev->dev, "kvm deassign device\n");
+
+ return 0;
+}
+
+int kvm_iommu_map_guest(struct kvm *kvm)
+{
+ int r;
+
+ if (!iommu_present(&pci_bus_type)) {
+ printk(KERN_ERR "%s: iommu not found\n", __func__);
+ return -ENODEV;
+ }
+
+ mutex_lock(&kvm->slots_lock);
+
+ kvm->arch.iommu_domain = iommu_domain_alloc(&pci_bus_type);
+ if (!kvm->arch.iommu_domain) {
+ r = -ENOMEM;
+ goto out_unlock;
+ }
+
+ if (!allow_unsafe_assigned_interrupts &&
+ !iommu_capable(&pci_bus_type, IOMMU_CAP_INTR_REMAP)) {
+ printk(KERN_WARNING "%s: No interrupt remapping support,"
+ " disallowing device assignment."
+ " Re-enble with \"allow_unsafe_assigned_interrupts=1\""
+ " module option.\n", __func__);
+ iommu_domain_free(kvm->arch.iommu_domain);
+ kvm->arch.iommu_domain = NULL;
+ r = -EPERM;
+ goto out_unlock;
+ }
+
+ r = kvm_iommu_map_memslots(kvm);
+ if (r)
+ kvm_iommu_unmap_memslots(kvm);
+
+out_unlock:
+ mutex_unlock(&kvm->slots_lock);
+ return r;
+}
+
+static void kvm_iommu_put_pages(struct kvm *kvm,
+ gfn_t base_gfn, unsigned long npages)
+{
+ struct iommu_domain *domain;
+ gfn_t end_gfn, gfn;
+ pfn_t pfn;
+ u64 phys;
+
+ domain = kvm->arch.iommu_domain;
+ end_gfn = base_gfn + npages;
+ gfn = base_gfn;
+
+ /* check if iommu exists and in use */
+ if (!domain)
+ return;
+
+ while (gfn < end_gfn) {
+ unsigned long unmap_pages;
+ size_t size;
+
+ /* Get physical address */
+ phys = iommu_iova_to_phys(domain, gfn_to_gpa(gfn));
+
+ if (!phys) {
+ gfn++;
+ continue;
+ }
+
+ pfn = phys >> PAGE_SHIFT;
+
+ /* Unmap address from IO address space */
+ size = iommu_unmap(domain, gfn_to_gpa(gfn), PAGE_SIZE);
+ unmap_pages = 1ULL << get_order(size);
+
+ /* Unpin all pages we just unmapped to not leak any memory */
+ kvm_unpin_pages(kvm, pfn, unmap_pages);
+
+ gfn += unmap_pages;
+
+ cond_resched();
+ }
+}
+
+void kvm_iommu_unmap_pages(struct kvm *kvm, struct kvm_memory_slot *slot)
+{
+ kvm_iommu_put_pages(kvm, slot->base_gfn, slot->npages);
+}
+
+static int kvm_iommu_unmap_memslots(struct kvm *kvm)
+{
+ int idx;
+ struct kvm_memslots *slots;
+ struct kvm_memory_slot *memslot;
+
+ idx = srcu_read_lock(&kvm->srcu);
+ slots = kvm_memslots(kvm);
+
+ kvm_for_each_memslot(memslot, slots)
+ kvm_iommu_unmap_pages(kvm, memslot);
+
+ srcu_read_unlock(&kvm->srcu, idx);
+
+ if (kvm->arch.iommu_noncoherent)
+ kvm_arch_unregister_noncoherent_dma(kvm);
+
+ return 0;
+}
+
+int kvm_iommu_unmap_guest(struct kvm *kvm)
+{
+ struct iommu_domain *domain = kvm->arch.iommu_domain;
+
+ /* check if iommu exists and in use */
+ if (!domain)
+ return 0;
+
+ mutex_lock(&kvm->slots_lock);
+ kvm_iommu_unmap_memslots(kvm);
+ kvm->arch.iommu_domain = NULL;
+ kvm->arch.iommu_noncoherent = false;
+ mutex_unlock(&kvm->slots_lock);
+
+ iommu_domain_free(domain);
+ return 0;
+}
diff --git a/kernel/arch/x86/kvm/irq.c b/kernel/arch/x86/kvm/irq.c
new file mode 100644
index 000000000..a1ec6a50a
--- /dev/null
+++ b/kernel/arch/x86/kvm/irq.c
@@ -0,0 +1,129 @@
+/*
+ * irq.c: API for in kernel interrupt controller
+ * Copyright (c) 2007, Intel Corporation.
+ * Copyright 2009 Red Hat, Inc. and/or its affiliates.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
+ * Place - Suite 330, Boston, MA 02111-1307 USA.
+ * Authors:
+ * Yaozu (Eddie) Dong <Eddie.dong@intel.com>
+ *
+ */
+
+#include <linux/module.h>
+#include <linux/kvm_host.h>
+
+#include "irq.h"
+#include "i8254.h"
+#include "x86.h"
+
+/*
+ * check if there are pending timer events
+ * to be processed.
+ */
+int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
+{
+ return apic_has_pending_timer(vcpu);
+}
+EXPORT_SYMBOL(kvm_cpu_has_pending_timer);
+
+/*
+ * check if there is pending interrupt from
+ * non-APIC source without intack.
+ */
+static int kvm_cpu_has_extint(struct kvm_vcpu *v)
+{
+ if (kvm_apic_accept_pic_intr(v))
+ return pic_irqchip(v->kvm)->output; /* PIC */
+ else
+ return 0;
+}
+
+/*
+ * check if there is injectable interrupt:
+ * when virtual interrupt delivery enabled,
+ * interrupt from apic will handled by hardware,
+ * we don't need to check it here.
+ */
+int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v)
+{
+ if (!irqchip_in_kernel(v->kvm))
+ return v->arch.interrupt.pending;
+
+ if (kvm_cpu_has_extint(v))
+ return 1;
+
+ if (kvm_apic_vid_enabled(v->kvm))
+ return 0;
+
+ return kvm_apic_has_interrupt(v) != -1; /* LAPIC */
+}
+
+/*
+ * check if there is pending interrupt without
+ * intack.
+ */
+int kvm_cpu_has_interrupt(struct kvm_vcpu *v)
+{
+ if (!irqchip_in_kernel(v->kvm))
+ return v->arch.interrupt.pending;
+
+ if (kvm_cpu_has_extint(v))
+ return 1;
+
+ return kvm_apic_has_interrupt(v) != -1; /* LAPIC */
+}
+EXPORT_SYMBOL_GPL(kvm_cpu_has_interrupt);
+
+/*
+ * Read pending interrupt(from non-APIC source)
+ * vector and intack.
+ */
+static int kvm_cpu_get_extint(struct kvm_vcpu *v)
+{
+ if (kvm_cpu_has_extint(v))
+ return kvm_pic_read_irq(v->kvm); /* PIC */
+ return -1;
+}
+
+/*
+ * Read pending interrupt vector and intack.
+ */
+int kvm_cpu_get_interrupt(struct kvm_vcpu *v)
+{
+ int vector;
+
+ if (!irqchip_in_kernel(v->kvm))
+ return v->arch.interrupt.nr;
+
+ vector = kvm_cpu_get_extint(v);
+
+ if (vector != -1)
+ return vector; /* PIC */
+
+ return kvm_get_apic_interrupt(v); /* APIC */
+}
+EXPORT_SYMBOL_GPL(kvm_cpu_get_interrupt);
+
+void kvm_inject_pending_timer_irqs(struct kvm_vcpu *vcpu)
+{
+ kvm_inject_apic_timer_irqs(vcpu);
+ /* TODO: PIT, RTC etc. */
+}
+EXPORT_SYMBOL_GPL(kvm_inject_pending_timer_irqs);
+
+void __kvm_migrate_timers(struct kvm_vcpu *vcpu)
+{
+ __kvm_migrate_apic_timer(vcpu);
+ __kvm_migrate_pit_timer(vcpu);
+}
diff --git a/kernel/arch/x86/kvm/irq.h b/kernel/arch/x86/kvm/irq.h
new file mode 100644
index 000000000..ad68c7300
--- /dev/null
+++ b/kernel/arch/x86/kvm/irq.h
@@ -0,0 +1,106 @@
+/*
+ * irq.h: in kernel interrupt controller related definitions
+ * Copyright (c) 2007, Intel Corporation.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
+ * Place - Suite 330, Boston, MA 02111-1307 USA.
+ * Authors:
+ * Yaozu (Eddie) Dong <Eddie.dong@intel.com>
+ *
+ */
+
+#ifndef __IRQ_H
+#define __IRQ_H
+
+#include <linux/mm_types.h>
+#include <linux/hrtimer.h>
+#include <linux/kvm_host.h>
+#include <linux/spinlock.h>
+
+#include <kvm/iodev.h>
+#include "ioapic.h"
+#include "lapic.h"
+
+#define PIC_NUM_PINS 16
+#define SELECT_PIC(irq) \
+ ((irq) < 8 ? KVM_IRQCHIP_PIC_MASTER : KVM_IRQCHIP_PIC_SLAVE)
+
+struct kvm;
+struct kvm_vcpu;
+
+struct kvm_kpic_state {
+ u8 last_irr; /* edge detection */
+ u8 irr; /* interrupt request register */
+ u8 imr; /* interrupt mask register */
+ u8 isr; /* interrupt service register */
+ u8 priority_add; /* highest irq priority */
+ u8 irq_base;
+ u8 read_reg_select;
+ u8 poll;
+ u8 special_mask;
+ u8 init_state;
+ u8 auto_eoi;
+ u8 rotate_on_auto_eoi;
+ u8 special_fully_nested_mode;
+ u8 init4; /* true if 4 byte init */
+ u8 elcr; /* PIIX edge/trigger selection */
+ u8 elcr_mask;
+ u8 isr_ack; /* interrupt ack detection */
+ struct kvm_pic *pics_state;
+};
+
+struct kvm_pic {
+ spinlock_t lock;
+ bool wakeup_needed;
+ unsigned pending_acks;
+ struct kvm *kvm;
+ struct kvm_kpic_state pics[2]; /* 0 is master pic, 1 is slave pic */
+ int output; /* intr from master PIC */
+ struct kvm_io_device dev_master;
+ struct kvm_io_device dev_slave;
+ struct kvm_io_device dev_eclr;
+ void (*ack_notifier)(void *opaque, int irq);
+ unsigned long irq_states[PIC_NUM_PINS];
+};
+
+struct kvm_pic *kvm_create_pic(struct kvm *kvm);
+void kvm_destroy_pic(struct kvm *kvm);
+int kvm_pic_read_irq(struct kvm *kvm);
+void kvm_pic_update_irq(struct kvm_pic *s);
+
+static inline struct kvm_pic *pic_irqchip(struct kvm *kvm)
+{
+ return kvm->arch.vpic;
+}
+
+static inline int irqchip_in_kernel(struct kvm *kvm)
+{
+ int ret;
+
+ ret = (pic_irqchip(kvm) != NULL);
+ smp_rmb();
+ return ret;
+}
+
+void kvm_pic_reset(struct kvm_kpic_state *s);
+
+void kvm_inject_pending_timer_irqs(struct kvm_vcpu *vcpu);
+void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu);
+void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu);
+void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu);
+void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu);
+void __kvm_migrate_timers(struct kvm_vcpu *vcpu);
+
+int apic_has_pending_timer(struct kvm_vcpu *vcpu);
+
+#endif
diff --git a/kernel/arch/x86/kvm/irq_comm.c b/kernel/arch/x86/kvm/irq_comm.c
new file mode 100644
index 000000000..72298b3ac
--- /dev/null
+++ b/kernel/arch/x86/kvm/irq_comm.c
@@ -0,0 +1,332 @@
+/*
+ * irq_comm.c: Common API for in kernel interrupt controller
+ * Copyright (c) 2007, Intel Corporation.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
+ * Place - Suite 330, Boston, MA 02111-1307 USA.
+ * Authors:
+ * Yaozu (Eddie) Dong <Eddie.dong@intel.com>
+ *
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
+ */
+
+#include <linux/kvm_host.h>
+#include <linux/slab.h>
+#include <linux/export.h>
+#include <trace/events/kvm.h>
+
+#include <asm/msidef.h>
+
+#include "irq.h"
+
+#include "ioapic.h"
+
+static int kvm_set_pic_irq(struct kvm_kernel_irq_routing_entry *e,
+ struct kvm *kvm, int irq_source_id, int level,
+ bool line_status)
+{
+ struct kvm_pic *pic = pic_irqchip(kvm);
+ return kvm_pic_set_irq(pic, e->irqchip.pin, irq_source_id, level);
+}
+
+static int kvm_set_ioapic_irq(struct kvm_kernel_irq_routing_entry *e,
+ struct kvm *kvm, int irq_source_id, int level,
+ bool line_status)
+{
+ struct kvm_ioapic *ioapic = kvm->arch.vioapic;
+ return kvm_ioapic_set_irq(ioapic, e->irqchip.pin, irq_source_id, level,
+ line_status);
+}
+
+inline static bool kvm_is_dm_lowest_prio(struct kvm_lapic_irq *irq)
+{
+ return irq->delivery_mode == APIC_DM_LOWEST;
+}
+
+int kvm_irq_delivery_to_apic(struct kvm *kvm, struct kvm_lapic *src,
+ struct kvm_lapic_irq *irq, unsigned long *dest_map)
+{
+ int i, r = -1;
+ struct kvm_vcpu *vcpu, *lowest = NULL;
+
+ if (irq->dest_mode == 0 && irq->dest_id == 0xff &&
+ kvm_is_dm_lowest_prio(irq)) {
+ printk(KERN_INFO "kvm: apic: phys broadcast and lowest prio\n");
+ irq->delivery_mode = APIC_DM_FIXED;
+ }
+
+ if (kvm_irq_delivery_to_apic_fast(kvm, src, irq, &r, dest_map))
+ return r;
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ if (!kvm_apic_present(vcpu))
+ continue;
+
+ if (!kvm_apic_match_dest(vcpu, src, irq->shorthand,
+ irq->dest_id, irq->dest_mode))
+ continue;
+
+ if (!kvm_is_dm_lowest_prio(irq)) {
+ if (r < 0)
+ r = 0;
+ r += kvm_apic_set_irq(vcpu, irq, dest_map);
+ } else if (kvm_lapic_enabled(vcpu)) {
+ if (!lowest)
+ lowest = vcpu;
+ else if (kvm_apic_compare_prio(vcpu, lowest) < 0)
+ lowest = vcpu;
+ }
+ }
+
+ if (lowest)
+ r = kvm_apic_set_irq(lowest, irq, dest_map);
+
+ return r;
+}
+
+static inline void kvm_set_msi_irq(struct kvm_kernel_irq_routing_entry *e,
+ struct kvm_lapic_irq *irq)
+{
+ trace_kvm_msi_set_irq(e->msi.address_lo, e->msi.data);
+
+ irq->dest_id = (e->msi.address_lo &
+ MSI_ADDR_DEST_ID_MASK) >> MSI_ADDR_DEST_ID_SHIFT;
+ irq->vector = (e->msi.data &
+ MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT;
+ irq->dest_mode = (1 << MSI_ADDR_DEST_MODE_SHIFT) & e->msi.address_lo;
+ irq->trig_mode = (1 << MSI_DATA_TRIGGER_SHIFT) & e->msi.data;
+ irq->delivery_mode = e->msi.data & 0x700;
+ irq->level = 1;
+ irq->shorthand = 0;
+ /* TODO Deal with RH bit of MSI message address */
+}
+
+int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
+ struct kvm *kvm, int irq_source_id, int level, bool line_status)
+{
+ struct kvm_lapic_irq irq;
+
+ if (!level)
+ return -1;
+
+ kvm_set_msi_irq(e, &irq);
+
+ return kvm_irq_delivery_to_apic(kvm, NULL, &irq, NULL);
+}
+
+
+static int kvm_set_msi_inatomic(struct kvm_kernel_irq_routing_entry *e,
+ struct kvm *kvm)
+{
+ struct kvm_lapic_irq irq;
+ int r;
+
+ kvm_set_msi_irq(e, &irq);
+
+ if (kvm_irq_delivery_to_apic_fast(kvm, NULL, &irq, &r, NULL))
+ return r;
+ else
+ return -EWOULDBLOCK;
+}
+
+/*
+ * Deliver an IRQ in an atomic context if we can, or return a failure,
+ * user can retry in a process context.
+ * Return value:
+ * -EWOULDBLOCK - Can't deliver in atomic context: retry in a process context.
+ * Other values - No need to retry.
+ */
+int kvm_set_irq_inatomic(struct kvm *kvm, int irq_source_id, u32 irq, int level)
+{
+ struct kvm_kernel_irq_routing_entry entries[KVM_NR_IRQCHIPS];
+ struct kvm_kernel_irq_routing_entry *e;
+ int ret = -EINVAL;
+ int idx;
+
+ trace_kvm_set_irq(irq, level, irq_source_id);
+
+ /*
+ * Injection into either PIC or IOAPIC might need to scan all CPUs,
+ * which would need to be retried from thread context; when same GSI
+ * is connected to both PIC and IOAPIC, we'd have to report a
+ * partial failure here.
+ * Since there's no easy way to do this, we only support injecting MSI
+ * which is limited to 1:1 GSI mapping.
+ */
+ idx = srcu_read_lock(&kvm->irq_srcu);
+ if (kvm_irq_map_gsi(kvm, entries, irq) > 0) {
+ e = &entries[0];
+ if (likely(e->type == KVM_IRQ_ROUTING_MSI))
+ ret = kvm_set_msi_inatomic(e, kvm);
+ else
+ ret = -EWOULDBLOCK;
+ }
+ srcu_read_unlock(&kvm->irq_srcu, idx);
+ return ret;
+}
+
+int kvm_request_irq_source_id(struct kvm *kvm)
+{
+ unsigned long *bitmap = &kvm->arch.irq_sources_bitmap;
+ int irq_source_id;
+
+ mutex_lock(&kvm->irq_lock);
+ irq_source_id = find_first_zero_bit(bitmap, BITS_PER_LONG);
+
+ if (irq_source_id >= BITS_PER_LONG) {
+ printk(KERN_WARNING "kvm: exhaust allocatable IRQ sources!\n");
+ irq_source_id = -EFAULT;
+ goto unlock;
+ }
+
+ ASSERT(irq_source_id != KVM_USERSPACE_IRQ_SOURCE_ID);
+ ASSERT(irq_source_id != KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID);
+ set_bit(irq_source_id, bitmap);
+unlock:
+ mutex_unlock(&kvm->irq_lock);
+
+ return irq_source_id;
+}
+
+void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id)
+{
+ ASSERT(irq_source_id != KVM_USERSPACE_IRQ_SOURCE_ID);
+ ASSERT(irq_source_id != KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID);
+
+ mutex_lock(&kvm->irq_lock);
+ if (irq_source_id < 0 ||
+ irq_source_id >= BITS_PER_LONG) {
+ printk(KERN_ERR "kvm: IRQ source ID out of range!\n");
+ goto unlock;
+ }
+ clear_bit(irq_source_id, &kvm->arch.irq_sources_bitmap);
+ if (!irqchip_in_kernel(kvm))
+ goto unlock;
+
+ kvm_ioapic_clear_all(kvm->arch.vioapic, irq_source_id);
+ kvm_pic_clear_all(pic_irqchip(kvm), irq_source_id);
+unlock:
+ mutex_unlock(&kvm->irq_lock);
+}
+
+void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
+ struct kvm_irq_mask_notifier *kimn)
+{
+ mutex_lock(&kvm->irq_lock);
+ kimn->irq = irq;
+ hlist_add_head_rcu(&kimn->link, &kvm->arch.mask_notifier_list);
+ mutex_unlock(&kvm->irq_lock);
+}
+
+void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
+ struct kvm_irq_mask_notifier *kimn)
+{
+ mutex_lock(&kvm->irq_lock);
+ hlist_del_rcu(&kimn->link);
+ mutex_unlock(&kvm->irq_lock);
+ synchronize_srcu(&kvm->irq_srcu);
+}
+
+void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
+ bool mask)
+{
+ struct kvm_irq_mask_notifier *kimn;
+ int idx, gsi;
+
+ idx = srcu_read_lock(&kvm->irq_srcu);
+ gsi = kvm_irq_map_chip_pin(kvm, irqchip, pin);
+ if (gsi != -1)
+ hlist_for_each_entry_rcu(kimn, &kvm->arch.mask_notifier_list, link)
+ if (kimn->irq == gsi)
+ kimn->func(kimn, mask);
+ srcu_read_unlock(&kvm->irq_srcu, idx);
+}
+
+int kvm_set_routing_entry(struct kvm_kernel_irq_routing_entry *e,
+ const struct kvm_irq_routing_entry *ue)
+{
+ int r = -EINVAL;
+ int delta;
+ unsigned max_pin;
+
+ switch (ue->type) {
+ case KVM_IRQ_ROUTING_IRQCHIP:
+ delta = 0;
+ switch (ue->u.irqchip.irqchip) {
+ case KVM_IRQCHIP_PIC_MASTER:
+ e->set = kvm_set_pic_irq;
+ max_pin = PIC_NUM_PINS;
+ break;
+ case KVM_IRQCHIP_PIC_SLAVE:
+ e->set = kvm_set_pic_irq;
+ max_pin = PIC_NUM_PINS;
+ delta = 8;
+ break;
+ case KVM_IRQCHIP_IOAPIC:
+ max_pin = KVM_IOAPIC_NUM_PINS;
+ e->set = kvm_set_ioapic_irq;
+ break;
+ default:
+ goto out;
+ }
+ e->irqchip.irqchip = ue->u.irqchip.irqchip;
+ e->irqchip.pin = ue->u.irqchip.pin + delta;
+ if (e->irqchip.pin >= max_pin)
+ goto out;
+ break;
+ case KVM_IRQ_ROUTING_MSI:
+ e->set = kvm_set_msi;
+ e->msi.address_lo = ue->u.msi.address_lo;
+ e->msi.address_hi = ue->u.msi.address_hi;
+ e->msi.data = ue->u.msi.data;
+ break;
+ default:
+ goto out;
+ }
+
+ r = 0;
+out:
+ return r;
+}
+
+#define IOAPIC_ROUTING_ENTRY(irq) \
+ { .gsi = irq, .type = KVM_IRQ_ROUTING_IRQCHIP, \
+ .u.irqchip = { .irqchip = KVM_IRQCHIP_IOAPIC, .pin = (irq) } }
+#define ROUTING_ENTRY1(irq) IOAPIC_ROUTING_ENTRY(irq)
+
+#define PIC_ROUTING_ENTRY(irq) \
+ { .gsi = irq, .type = KVM_IRQ_ROUTING_IRQCHIP, \
+ .u.irqchip = { .irqchip = SELECT_PIC(irq), .pin = (irq) % 8 } }
+#define ROUTING_ENTRY2(irq) \
+ IOAPIC_ROUTING_ENTRY(irq), PIC_ROUTING_ENTRY(irq)
+
+static const struct kvm_irq_routing_entry default_routing[] = {
+ ROUTING_ENTRY2(0), ROUTING_ENTRY2(1),
+ ROUTING_ENTRY2(2), ROUTING_ENTRY2(3),
+ ROUTING_ENTRY2(4), ROUTING_ENTRY2(5),
+ ROUTING_ENTRY2(6), ROUTING_ENTRY2(7),
+ ROUTING_ENTRY2(8), ROUTING_ENTRY2(9),
+ ROUTING_ENTRY2(10), ROUTING_ENTRY2(11),
+ ROUTING_ENTRY2(12), ROUTING_ENTRY2(13),
+ ROUTING_ENTRY2(14), ROUTING_ENTRY2(15),
+ ROUTING_ENTRY1(16), ROUTING_ENTRY1(17),
+ ROUTING_ENTRY1(18), ROUTING_ENTRY1(19),
+ ROUTING_ENTRY1(20), ROUTING_ENTRY1(21),
+ ROUTING_ENTRY1(22), ROUTING_ENTRY1(23),
+};
+
+int kvm_setup_default_irq_routing(struct kvm *kvm)
+{
+ return kvm_set_irq_routing(kvm, default_routing,
+ ARRAY_SIZE(default_routing), 0);
+}
diff --git a/kernel/arch/x86/kvm/kvm_cache_regs.h b/kernel/arch/x86/kvm/kvm_cache_regs.h
new file mode 100644
index 000000000..544076c4f
--- /dev/null
+++ b/kernel/arch/x86/kvm/kvm_cache_regs.h
@@ -0,0 +1,102 @@
+#ifndef ASM_KVM_CACHE_REGS_H
+#define ASM_KVM_CACHE_REGS_H
+
+#define KVM_POSSIBLE_CR0_GUEST_BITS X86_CR0_TS
+#define KVM_POSSIBLE_CR4_GUEST_BITS \
+ (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
+ | X86_CR4_OSXMMEXCPT | X86_CR4_PGE)
+
+static inline unsigned long kvm_register_read(struct kvm_vcpu *vcpu,
+ enum kvm_reg reg)
+{
+ if (!test_bit(reg, (unsigned long *)&vcpu->arch.regs_avail))
+ kvm_x86_ops->cache_reg(vcpu, reg);
+
+ return vcpu->arch.regs[reg];
+}
+
+static inline void kvm_register_write(struct kvm_vcpu *vcpu,
+ enum kvm_reg reg,
+ unsigned long val)
+{
+ vcpu->arch.regs[reg] = val;
+ __set_bit(reg, (unsigned long *)&vcpu->arch.regs_dirty);
+ __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
+}
+
+static inline unsigned long kvm_rip_read(struct kvm_vcpu *vcpu)
+{
+ return kvm_register_read(vcpu, VCPU_REGS_RIP);
+}
+
+static inline void kvm_rip_write(struct kvm_vcpu *vcpu, unsigned long val)
+{
+ kvm_register_write(vcpu, VCPU_REGS_RIP, val);
+}
+
+static inline u64 kvm_pdptr_read(struct kvm_vcpu *vcpu, int index)
+{
+ might_sleep(); /* on svm */
+
+ if (!test_bit(VCPU_EXREG_PDPTR,
+ (unsigned long *)&vcpu->arch.regs_avail))
+ kvm_x86_ops->cache_reg(vcpu, VCPU_EXREG_PDPTR);
+
+ return vcpu->arch.walk_mmu->pdptrs[index];
+}
+
+static inline ulong kvm_read_cr0_bits(struct kvm_vcpu *vcpu, ulong mask)
+{
+ ulong tmask = mask & KVM_POSSIBLE_CR0_GUEST_BITS;
+ if (tmask & vcpu->arch.cr0_guest_owned_bits)
+ kvm_x86_ops->decache_cr0_guest_bits(vcpu);
+ return vcpu->arch.cr0 & mask;
+}
+
+static inline ulong kvm_read_cr0(struct kvm_vcpu *vcpu)
+{
+ return kvm_read_cr0_bits(vcpu, ~0UL);
+}
+
+static inline ulong kvm_read_cr4_bits(struct kvm_vcpu *vcpu, ulong mask)
+{
+ ulong tmask = mask & KVM_POSSIBLE_CR4_GUEST_BITS;
+ if (tmask & vcpu->arch.cr4_guest_owned_bits)
+ kvm_x86_ops->decache_cr4_guest_bits(vcpu);
+ return vcpu->arch.cr4 & mask;
+}
+
+static inline ulong kvm_read_cr3(struct kvm_vcpu *vcpu)
+{
+ if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
+ kvm_x86_ops->decache_cr3(vcpu);
+ return vcpu->arch.cr3;
+}
+
+static inline ulong kvm_read_cr4(struct kvm_vcpu *vcpu)
+{
+ return kvm_read_cr4_bits(vcpu, ~0UL);
+}
+
+static inline u64 kvm_read_edx_eax(struct kvm_vcpu *vcpu)
+{
+ return (kvm_register_read(vcpu, VCPU_REGS_RAX) & -1u)
+ | ((u64)(kvm_register_read(vcpu, VCPU_REGS_RDX) & -1u) << 32);
+}
+
+static inline void enter_guest_mode(struct kvm_vcpu *vcpu)
+{
+ vcpu->arch.hflags |= HF_GUEST_MASK;
+}
+
+static inline void leave_guest_mode(struct kvm_vcpu *vcpu)
+{
+ vcpu->arch.hflags &= ~HF_GUEST_MASK;
+}
+
+static inline bool is_guest_mode(struct kvm_vcpu *vcpu)
+{
+ return vcpu->arch.hflags & HF_GUEST_MASK;
+}
+
+#endif
diff --git a/kernel/arch/x86/kvm/lapic.c b/kernel/arch/x86/kvm/lapic.c
new file mode 100644
index 000000000..525db8be0
--- /dev/null
+++ b/kernel/arch/x86/kvm/lapic.c
@@ -0,0 +1,2114 @@
+
+/*
+ * Local APIC virtualization
+ *
+ * Copyright (C) 2006 Qumranet, Inc.
+ * Copyright (C) 2007 Novell
+ * Copyright (C) 2007 Intel
+ * Copyright 2009 Red Hat, Inc. and/or its affiliates.
+ *
+ * Authors:
+ * Dor Laor <dor.laor@qumranet.com>
+ * Gregory Haskins <ghaskins@novell.com>
+ * Yaozu (Eddie) Dong <eddie.dong@intel.com>
+ *
+ * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation.
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2. See
+ * the COPYING file in the top-level directory.
+ */
+
+#include <linux/kvm_host.h>
+#include <linux/kvm.h>
+#include <linux/mm.h>
+#include <linux/highmem.h>
+#include <linux/smp.h>
+#include <linux/hrtimer.h>
+#include <linux/io.h>
+#include <linux/module.h>
+#include <linux/math64.h>
+#include <linux/slab.h>
+#include <asm/processor.h>
+#include <asm/msr.h>
+#include <asm/page.h>
+#include <asm/current.h>
+#include <asm/apicdef.h>
+#include <asm/delay.h>
+#include <linux/atomic.h>
+#include <linux/jump_label.h>
+#include "kvm_cache_regs.h"
+#include "irq.h"
+#include "trace.h"
+#include "x86.h"
+#include "cpuid.h"
+
+#ifndef CONFIG_X86_64
+#define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
+#else
+#define mod_64(x, y) ((x) % (y))
+#endif
+
+#define PRId64 "d"
+#define PRIx64 "llx"
+#define PRIu64 "u"
+#define PRIo64 "o"
+
+#define APIC_BUS_CYCLE_NS 1
+
+/* #define apic_debug(fmt,arg...) printk(KERN_WARNING fmt,##arg) */
+#define apic_debug(fmt, arg...)
+
+#define APIC_LVT_NUM 6
+/* 14 is the version for Xeon and Pentium 8.4.8*/
+#define APIC_VERSION (0x14UL | ((APIC_LVT_NUM - 1) << 16))
+#define LAPIC_MMIO_LENGTH (1 << 12)
+/* followed define is not in apicdef.h */
+#define APIC_SHORT_MASK 0xc0000
+#define APIC_DEST_NOSHORT 0x0
+#define APIC_DEST_MASK 0x800
+#define MAX_APIC_VECTOR 256
+#define APIC_VECTORS_PER_REG 32
+
+#define APIC_BROADCAST 0xFF
+#define X2APIC_BROADCAST 0xFFFFFFFFul
+
+#define VEC_POS(v) ((v) & (32 - 1))
+#define REG_POS(v) (((v) >> 5) << 4)
+
+static inline void apic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val)
+{
+ *((u32 *) (apic->regs + reg_off)) = val;
+}
+
+static inline int apic_test_vector(int vec, void *bitmap)
+{
+ return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
+}
+
+bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector)
+{
+ struct kvm_lapic *apic = vcpu->arch.apic;
+
+ return apic_test_vector(vector, apic->regs + APIC_ISR) ||
+ apic_test_vector(vector, apic->regs + APIC_IRR);
+}
+
+static inline void apic_set_vector(int vec, void *bitmap)
+{
+ set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
+}
+
+static inline void apic_clear_vector(int vec, void *bitmap)
+{
+ clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
+}
+
+static inline int __apic_test_and_set_vector(int vec, void *bitmap)
+{
+ return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
+}
+
+static inline int __apic_test_and_clear_vector(int vec, void *bitmap)
+{
+ return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
+}
+
+struct static_key_deferred apic_hw_disabled __read_mostly;
+struct static_key_deferred apic_sw_disabled __read_mostly;
+
+static inline int apic_enabled(struct kvm_lapic *apic)
+{
+ return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic);
+}
+
+#define LVT_MASK \
+ (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK)
+
+#define LINT_MASK \
+ (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
+ APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
+
+static inline int kvm_apic_id(struct kvm_lapic *apic)
+{
+ return (kvm_apic_get_reg(apic, APIC_ID) >> 24) & 0xff;
+}
+
+/* The logical map is definitely wrong if we have multiple
+ * modes at the same time. (Physical map is always right.)
+ */
+static inline bool kvm_apic_logical_map_valid(struct kvm_apic_map *map)
+{
+ return !(map->mode & (map->mode - 1));
+}
+
+static inline void
+apic_logical_id(struct kvm_apic_map *map, u32 dest_id, u16 *cid, u16 *lid)
+{
+ unsigned lid_bits;
+
+ BUILD_BUG_ON(KVM_APIC_MODE_XAPIC_CLUSTER != 4);
+ BUILD_BUG_ON(KVM_APIC_MODE_XAPIC_FLAT != 8);
+ BUILD_BUG_ON(KVM_APIC_MODE_X2APIC != 16);
+ lid_bits = map->mode;
+
+ *cid = dest_id >> lid_bits;
+ *lid = dest_id & ((1 << lid_bits) - 1);
+}
+
+static void recalculate_apic_map(struct kvm *kvm)
+{
+ struct kvm_apic_map *new, *old = NULL;
+ struct kvm_vcpu *vcpu;
+ int i;
+
+ new = kzalloc(sizeof(struct kvm_apic_map), GFP_KERNEL);
+
+ mutex_lock(&kvm->arch.apic_map_lock);
+
+ if (!new)
+ goto out;
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ struct kvm_lapic *apic = vcpu->arch.apic;
+ u16 cid, lid;
+ u32 ldr, aid;
+
+ if (!kvm_apic_present(vcpu))
+ continue;
+
+ aid = kvm_apic_id(apic);
+ ldr = kvm_apic_get_reg(apic, APIC_LDR);
+
+ if (aid < ARRAY_SIZE(new->phys_map))
+ new->phys_map[aid] = apic;
+
+ if (apic_x2apic_mode(apic)) {
+ new->mode |= KVM_APIC_MODE_X2APIC;
+ } else if (ldr) {
+ ldr = GET_APIC_LOGICAL_ID(ldr);
+ if (kvm_apic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT)
+ new->mode |= KVM_APIC_MODE_XAPIC_FLAT;
+ else
+ new->mode |= KVM_APIC_MODE_XAPIC_CLUSTER;
+ }
+
+ if (!kvm_apic_logical_map_valid(new))
+ continue;
+
+ apic_logical_id(new, ldr, &cid, &lid);
+
+ if (lid && cid < ARRAY_SIZE(new->logical_map))
+ new->logical_map[cid][ffs(lid) - 1] = apic;
+ }
+out:
+ old = rcu_dereference_protected(kvm->arch.apic_map,
+ lockdep_is_held(&kvm->arch.apic_map_lock));
+ rcu_assign_pointer(kvm->arch.apic_map, new);
+ mutex_unlock(&kvm->arch.apic_map_lock);
+
+ if (old)
+ kfree_rcu(old, rcu);
+
+ kvm_vcpu_request_scan_ioapic(kvm);
+}
+
+static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
+{
+ bool enabled = val & APIC_SPIV_APIC_ENABLED;
+
+ apic_set_reg(apic, APIC_SPIV, val);
+
+ if (enabled != apic->sw_enabled) {
+ apic->sw_enabled = enabled;
+ if (enabled) {
+ static_key_slow_dec_deferred(&apic_sw_disabled);
+ recalculate_apic_map(apic->vcpu->kvm);
+ } else
+ static_key_slow_inc(&apic_sw_disabled.key);
+ }
+}
+
+static inline void kvm_apic_set_id(struct kvm_lapic *apic, u8 id)
+{
+ apic_set_reg(apic, APIC_ID, id << 24);
+ recalculate_apic_map(apic->vcpu->kvm);
+}
+
+static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id)
+{
+ apic_set_reg(apic, APIC_LDR, id);
+ recalculate_apic_map(apic->vcpu->kvm);
+}
+
+static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type)
+{
+ return !(kvm_apic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
+}
+
+static inline int apic_lvt_vector(struct kvm_lapic *apic, int lvt_type)
+{
+ return kvm_apic_get_reg(apic, lvt_type) & APIC_VECTOR_MASK;
+}
+
+static inline int apic_lvtt_oneshot(struct kvm_lapic *apic)
+{
+ return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT;
+}
+
+static inline int apic_lvtt_period(struct kvm_lapic *apic)
+{
+ return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC;
+}
+
+static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic)
+{
+ return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE;
+}
+
+static inline int apic_lvt_nmi_mode(u32 lvt_val)
+{
+ return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI;
+}
+
+void kvm_apic_set_version(struct kvm_vcpu *vcpu)
+{
+ struct kvm_lapic *apic = vcpu->arch.apic;
+ struct kvm_cpuid_entry2 *feat;
+ u32 v = APIC_VERSION;
+
+ if (!kvm_vcpu_has_lapic(vcpu))
+ return;
+
+ feat = kvm_find_cpuid_entry(apic->vcpu, 0x1, 0);
+ if (feat && (feat->ecx & (1 << (X86_FEATURE_X2APIC & 31))))
+ v |= APIC_LVR_DIRECTED_EOI;
+ apic_set_reg(apic, APIC_LVR, v);
+}
+
+static const unsigned int apic_lvt_mask[APIC_LVT_NUM] = {
+ LVT_MASK , /* part LVTT mask, timer mode mask added at runtime */
+ LVT_MASK | APIC_MODE_MASK, /* LVTTHMR */
+ LVT_MASK | APIC_MODE_MASK, /* LVTPC */
+ LINT_MASK, LINT_MASK, /* LVT0-1 */
+ LVT_MASK /* LVTERR */
+};
+
+static int find_highest_vector(void *bitmap)
+{
+ int vec;
+ u32 *reg;
+
+ for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG;
+ vec >= 0; vec -= APIC_VECTORS_PER_REG) {
+ reg = bitmap + REG_POS(vec);
+ if (*reg)
+ return fls(*reg) - 1 + vec;
+ }
+
+ return -1;
+}
+
+static u8 count_vectors(void *bitmap)
+{
+ int vec;
+ u32 *reg;
+ u8 count = 0;
+
+ for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) {
+ reg = bitmap + REG_POS(vec);
+ count += hweight32(*reg);
+ }
+
+ return count;
+}
+
+void __kvm_apic_update_irr(u32 *pir, void *regs)
+{
+ u32 i, pir_val;
+
+ for (i = 0; i <= 7; i++) {
+ pir_val = xchg(&pir[i], 0);
+ if (pir_val)
+ *((u32 *)(regs + APIC_IRR + i * 0x10)) |= pir_val;
+ }
+}
+EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
+
+void kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir)
+{
+ struct kvm_lapic *apic = vcpu->arch.apic;
+
+ __kvm_apic_update_irr(pir, apic->regs);
+}
+EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
+
+static inline void apic_set_irr(int vec, struct kvm_lapic *apic)
+{
+ apic_set_vector(vec, apic->regs + APIC_IRR);
+ /*
+ * irr_pending must be true if any interrupt is pending; set it after
+ * APIC_IRR to avoid race with apic_clear_irr
+ */
+ apic->irr_pending = true;
+}
+
+static inline int apic_search_irr(struct kvm_lapic *apic)
+{
+ return find_highest_vector(apic->regs + APIC_IRR);
+}
+
+static inline int apic_find_highest_irr(struct kvm_lapic *apic)
+{
+ int result;
+
+ /*
+ * Note that irr_pending is just a hint. It will be always
+ * true with virtual interrupt delivery enabled.
+ */
+ if (!apic->irr_pending)
+ return -1;
+
+ kvm_x86_ops->sync_pir_to_irr(apic->vcpu);
+ result = apic_search_irr(apic);
+ ASSERT(result == -1 || result >= 16);
+
+ return result;
+}
+
+static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
+{
+ struct kvm_vcpu *vcpu;
+
+ vcpu = apic->vcpu;
+
+ if (unlikely(kvm_apic_vid_enabled(vcpu->kvm))) {
+ /* try to update RVI */
+ apic_clear_vector(vec, apic->regs + APIC_IRR);
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+ } else {
+ apic->irr_pending = false;
+ apic_clear_vector(vec, apic->regs + APIC_IRR);
+ if (apic_search_irr(apic) != -1)
+ apic->irr_pending = true;
+ }
+}
+
+static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
+{
+ struct kvm_vcpu *vcpu;
+
+ if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR))
+ return;
+
+ vcpu = apic->vcpu;
+
+ /*
+ * With APIC virtualization enabled, all caching is disabled
+ * because the processor can modify ISR under the hood. Instead
+ * just set SVI.
+ */
+ if (unlikely(kvm_x86_ops->hwapic_isr_update))
+ kvm_x86_ops->hwapic_isr_update(vcpu->kvm, vec);
+ else {
+ ++apic->isr_count;
+ BUG_ON(apic->isr_count > MAX_APIC_VECTOR);
+ /*
+ * ISR (in service register) bit is set when injecting an interrupt.
+ * The highest vector is injected. Thus the latest bit set matches
+ * the highest bit in ISR.
+ */
+ apic->highest_isr_cache = vec;
+ }
+}
+
+static inline int apic_find_highest_isr(struct kvm_lapic *apic)
+{
+ int result;
+
+ /*
+ * Note that isr_count is always 1, and highest_isr_cache
+ * is always -1, with APIC virtualization enabled.
+ */
+ if (!apic->isr_count)
+ return -1;
+ if (likely(apic->highest_isr_cache != -1))
+ return apic->highest_isr_cache;
+
+ result = find_highest_vector(apic->regs + APIC_ISR);
+ ASSERT(result == -1 || result >= 16);
+
+ return result;
+}
+
+static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
+{
+ struct kvm_vcpu *vcpu;
+ if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR))
+ return;
+
+ vcpu = apic->vcpu;
+
+ /*
+ * We do get here for APIC virtualization enabled if the guest
+ * uses the Hyper-V APIC enlightenment. In this case we may need
+ * to trigger a new interrupt delivery by writing the SVI field;
+ * on the other hand isr_count and highest_isr_cache are unused
+ * and must be left alone.
+ */
+ if (unlikely(kvm_x86_ops->hwapic_isr_update))
+ kvm_x86_ops->hwapic_isr_update(vcpu->kvm,
+ apic_find_highest_isr(apic));
+ else {
+ --apic->isr_count;
+ BUG_ON(apic->isr_count < 0);
+ apic->highest_isr_cache = -1;
+ }
+}
+
+int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
+{
+ int highest_irr;
+
+ /* This may race with setting of irr in __apic_accept_irq() and
+ * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq
+ * will cause vmexit immediately and the value will be recalculated
+ * on the next vmentry.
+ */
+ if (!kvm_vcpu_has_lapic(vcpu))
+ return 0;
+ highest_irr = apic_find_highest_irr(vcpu->arch.apic);
+
+ return highest_irr;
+}
+
+static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
+ int vector, int level, int trig_mode,
+ unsigned long *dest_map);
+
+int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
+ unsigned long *dest_map)
+{
+ struct kvm_lapic *apic = vcpu->arch.apic;
+
+ return __apic_accept_irq(apic, irq->delivery_mode, irq->vector,
+ irq->level, irq->trig_mode, dest_map);
+}
+
+static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val)
+{
+
+ return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val,
+ sizeof(val));
+}
+
+static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val)
+{
+
+ return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val,
+ sizeof(*val));
+}
+
+static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu)
+{
+ return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
+}
+
+static bool pv_eoi_get_pending(struct kvm_vcpu *vcpu)
+{
+ u8 val;
+ if (pv_eoi_get_user(vcpu, &val) < 0)
+ apic_debug("Can't read EOI MSR value: 0x%llx\n",
+ (unsigned long long)vcpu->arch.pv_eoi.msr_val);
+ return val & 0x1;
+}
+
+static void pv_eoi_set_pending(struct kvm_vcpu *vcpu)
+{
+ if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) {
+ apic_debug("Can't set EOI MSR value: 0x%llx\n",
+ (unsigned long long)vcpu->arch.pv_eoi.msr_val);
+ return;
+ }
+ __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
+}
+
+static void pv_eoi_clr_pending(struct kvm_vcpu *vcpu)
+{
+ if (pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) {
+ apic_debug("Can't clear EOI MSR value: 0x%llx\n",
+ (unsigned long long)vcpu->arch.pv_eoi.msr_val);
+ return;
+ }
+ __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
+}
+
+void kvm_apic_update_tmr(struct kvm_vcpu *vcpu, u32 *tmr)
+{
+ struct kvm_lapic *apic = vcpu->arch.apic;
+ int i;
+
+ for (i = 0; i < 8; i++)
+ apic_set_reg(apic, APIC_TMR + 0x10 * i, tmr[i]);
+}
+
+static void apic_update_ppr(struct kvm_lapic *apic)
+{
+ u32 tpr, isrv, ppr, old_ppr;
+ int isr;
+
+ old_ppr = kvm_apic_get_reg(apic, APIC_PROCPRI);
+ tpr = kvm_apic_get_reg(apic, APIC_TASKPRI);
+ isr = apic_find_highest_isr(apic);
+ isrv = (isr != -1) ? isr : 0;
+
+ if ((tpr & 0xf0) >= (isrv & 0xf0))
+ ppr = tpr & 0xff;
+ else
+ ppr = isrv & 0xf0;
+
+ apic_debug("vlapic %p, ppr 0x%x, isr 0x%x, isrv 0x%x",
+ apic, ppr, isr, isrv);
+
+ if (old_ppr != ppr) {
+ apic_set_reg(apic, APIC_PROCPRI, ppr);
+ if (ppr < old_ppr)
+ kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
+ }
+}
+
+static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
+{
+ apic_set_reg(apic, APIC_TASKPRI, tpr);
+ apic_update_ppr(apic);
+}
+
+static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda)
+{
+ if (apic_x2apic_mode(apic))
+ return mda == X2APIC_BROADCAST;
+
+ return GET_APIC_DEST_FIELD(mda) == APIC_BROADCAST;
+}
+
+static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
+{
+ if (kvm_apic_broadcast(apic, mda))
+ return true;
+
+ if (apic_x2apic_mode(apic))
+ return mda == kvm_apic_id(apic);
+
+ return mda == SET_APIC_DEST_FIELD(kvm_apic_id(apic));
+}
+
+static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
+{
+ u32 logical_id;
+
+ if (kvm_apic_broadcast(apic, mda))
+ return true;
+
+ logical_id = kvm_apic_get_reg(apic, APIC_LDR);
+
+ if (apic_x2apic_mode(apic))
+ return ((logical_id >> 16) == (mda >> 16))
+ && (logical_id & mda & 0xffff) != 0;
+
+ logical_id = GET_APIC_LOGICAL_ID(logical_id);
+ mda = GET_APIC_DEST_FIELD(mda);
+
+ switch (kvm_apic_get_reg(apic, APIC_DFR)) {
+ case APIC_DFR_FLAT:
+ return (logical_id & mda) != 0;
+ case APIC_DFR_CLUSTER:
+ return ((logical_id >> 4) == (mda >> 4))
+ && (logical_id & mda & 0xf) != 0;
+ default:
+ apic_debug("Bad DFR vcpu %d: %08x\n",
+ apic->vcpu->vcpu_id, kvm_apic_get_reg(apic, APIC_DFR));
+ return false;
+ }
+}
+
+/* KVM APIC implementation has two quirks
+ * - dest always begins at 0 while xAPIC MDA has offset 24,
+ * - IOxAPIC messages have to be delivered (directly) to x2APIC.
+ */
+static u32 kvm_apic_mda(unsigned int dest_id, struct kvm_lapic *source,
+ struct kvm_lapic *target)
+{
+ bool ipi = source != NULL;
+ bool x2apic_mda = apic_x2apic_mode(ipi ? source : target);
+
+ if (!ipi && dest_id == APIC_BROADCAST && x2apic_mda)
+ return X2APIC_BROADCAST;
+
+ return x2apic_mda ? dest_id : SET_APIC_DEST_FIELD(dest_id);
+}
+
+bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
+ int short_hand, unsigned int dest, int dest_mode)
+{
+ struct kvm_lapic *target = vcpu->arch.apic;
+ u32 mda = kvm_apic_mda(dest, source, target);
+
+ apic_debug("target %p, source %p, dest 0x%x, "
+ "dest_mode 0x%x, short_hand 0x%x\n",
+ target, source, dest, dest_mode, short_hand);
+
+ ASSERT(target);
+ switch (short_hand) {
+ case APIC_DEST_NOSHORT:
+ if (dest_mode == APIC_DEST_PHYSICAL)
+ return kvm_apic_match_physical_addr(target, mda);
+ else
+ return kvm_apic_match_logical_addr(target, mda);
+ case APIC_DEST_SELF:
+ return target == source;
+ case APIC_DEST_ALLINC:
+ return true;
+ case APIC_DEST_ALLBUT:
+ return target != source;
+ default:
+ apic_debug("kvm: apic: Bad dest shorthand value %x\n",
+ short_hand);
+ return false;
+ }
+}
+
+bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
+ struct kvm_lapic_irq *irq, int *r, unsigned long *dest_map)
+{
+ struct kvm_apic_map *map;
+ unsigned long bitmap = 1;
+ struct kvm_lapic **dst;
+ int i;
+ bool ret, x2apic_ipi;
+
+ *r = -1;
+
+ if (irq->shorthand == APIC_DEST_SELF) {
+ *r = kvm_apic_set_irq(src->vcpu, irq, dest_map);
+ return true;
+ }
+
+ if (irq->shorthand)
+ return false;
+
+ x2apic_ipi = src && apic_x2apic_mode(src);
+ if (irq->dest_id == (x2apic_ipi ? X2APIC_BROADCAST : APIC_BROADCAST))
+ return false;
+
+ ret = true;
+ rcu_read_lock();
+ map = rcu_dereference(kvm->arch.apic_map);
+
+ if (!map) {
+ ret = false;
+ goto out;
+ }
+
+ if (irq->dest_mode == APIC_DEST_PHYSICAL) {
+ if (irq->dest_id >= ARRAY_SIZE(map->phys_map))
+ goto out;
+
+ dst = &map->phys_map[irq->dest_id];
+ } else {
+ u16 cid;
+
+ if (!kvm_apic_logical_map_valid(map)) {
+ ret = false;
+ goto out;
+ }
+
+ apic_logical_id(map, irq->dest_id, &cid, (u16 *)&bitmap);
+
+ if (cid >= ARRAY_SIZE(map->logical_map))
+ goto out;
+
+ dst = map->logical_map[cid];
+
+ if (irq->delivery_mode == APIC_DM_LOWEST) {
+ int l = -1;
+ for_each_set_bit(i, &bitmap, 16) {
+ if (!dst[i])
+ continue;
+ if (l < 0)
+ l = i;
+ else if (kvm_apic_compare_prio(dst[i]->vcpu, dst[l]->vcpu) < 0)
+ l = i;
+ }
+
+ bitmap = (l >= 0) ? 1 << l : 0;
+ }
+ }
+
+ for_each_set_bit(i, &bitmap, 16) {
+ if (!dst[i])
+ continue;
+ if (*r < 0)
+ *r = 0;
+ *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
+ }
+out:
+ rcu_read_unlock();
+ return ret;
+}
+
+/*
+ * Add a pending IRQ into lapic.
+ * Return 1 if successfully added and 0 if discarded.
+ */
+static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
+ int vector, int level, int trig_mode,
+ unsigned long *dest_map)
+{
+ int result = 0;
+ struct kvm_vcpu *vcpu = apic->vcpu;
+
+ trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode,
+ trig_mode, vector);
+ switch (delivery_mode) {
+ case APIC_DM_LOWEST:
+ vcpu->arch.apic_arb_prio++;
+ case APIC_DM_FIXED:
+ /* FIXME add logic for vcpu on reset */
+ if (unlikely(!apic_enabled(apic)))
+ break;
+
+ result = 1;
+
+ if (dest_map)
+ __set_bit(vcpu->vcpu_id, dest_map);
+
+ if (kvm_x86_ops->deliver_posted_interrupt)
+ kvm_x86_ops->deliver_posted_interrupt(vcpu, vector);
+ else {
+ apic_set_irr(vector, apic);
+
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+ kvm_vcpu_kick(vcpu);
+ }
+ break;
+
+ case APIC_DM_REMRD:
+ result = 1;
+ vcpu->arch.pv.pv_unhalted = 1;
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+ kvm_vcpu_kick(vcpu);
+ break;
+
+ case APIC_DM_SMI:
+ apic_debug("Ignoring guest SMI\n");
+ break;
+
+ case APIC_DM_NMI:
+ result = 1;
+ kvm_inject_nmi(vcpu);
+ kvm_vcpu_kick(vcpu);
+ break;
+
+ case APIC_DM_INIT:
+ if (!trig_mode || level) {
+ result = 1;
+ /* assumes that there are only KVM_APIC_INIT/SIPI */
+ apic->pending_events = (1UL << KVM_APIC_INIT);
+ /* make sure pending_events is visible before sending
+ * the request */
+ smp_wmb();
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+ kvm_vcpu_kick(vcpu);
+ } else {
+ apic_debug("Ignoring de-assert INIT to vcpu %d\n",
+ vcpu->vcpu_id);
+ }
+ break;
+
+ case APIC_DM_STARTUP:
+ apic_debug("SIPI to vcpu %d vector 0x%02x\n",
+ vcpu->vcpu_id, vector);
+ result = 1;
+ apic->sipi_vector = vector;
+ /* make sure sipi_vector is visible for the receiver */
+ smp_wmb();
+ set_bit(KVM_APIC_SIPI, &apic->pending_events);
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+ kvm_vcpu_kick(vcpu);
+ break;
+
+ case APIC_DM_EXTINT:
+ /*
+ * Should only be called by kvm_apic_local_deliver() with LVT0,
+ * before NMI watchdog was enabled. Already handled by
+ * kvm_apic_accept_pic_intr().
+ */
+ break;
+
+ default:
+ printk(KERN_ERR "TODO: unsupported delivery mode %x\n",
+ delivery_mode);
+ break;
+ }
+ return result;
+}
+
+int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
+{
+ return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio;
+}
+
+static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector)
+{
+ if (kvm_ioapic_handles_vector(apic->vcpu->kvm, vector)) {
+ int trigger_mode;
+ if (apic_test_vector(vector, apic->regs + APIC_TMR))
+ trigger_mode = IOAPIC_LEVEL_TRIG;
+ else
+ trigger_mode = IOAPIC_EDGE_TRIG;
+ kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode);
+ }
+}
+
+static int apic_set_eoi(struct kvm_lapic *apic)
+{
+ int vector = apic_find_highest_isr(apic);
+
+ trace_kvm_eoi(apic, vector);
+
+ /*
+ * Not every write EOI will has corresponding ISR,
+ * one example is when Kernel check timer on setup_IO_APIC
+ */
+ if (vector == -1)
+ return vector;
+
+ apic_clear_isr(vector, apic);
+ apic_update_ppr(apic);
+
+ kvm_ioapic_send_eoi(apic, vector);
+ kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
+ return vector;
+}
+
+/*
+ * this interface assumes a trap-like exit, which has already finished
+ * desired side effect including vISR and vPPR update.
+ */
+void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector)
+{
+ struct kvm_lapic *apic = vcpu->arch.apic;
+
+ trace_kvm_eoi(apic, vector);
+
+ kvm_ioapic_send_eoi(apic, vector);
+ kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
+}
+EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated);
+
+static void apic_send_ipi(struct kvm_lapic *apic)
+{
+ u32 icr_low = kvm_apic_get_reg(apic, APIC_ICR);
+ u32 icr_high = kvm_apic_get_reg(apic, APIC_ICR2);
+ struct kvm_lapic_irq irq;
+
+ irq.vector = icr_low & APIC_VECTOR_MASK;
+ irq.delivery_mode = icr_low & APIC_MODE_MASK;
+ irq.dest_mode = icr_low & APIC_DEST_MASK;
+ irq.level = icr_low & APIC_INT_ASSERT;
+ irq.trig_mode = icr_low & APIC_INT_LEVELTRIG;
+ irq.shorthand = icr_low & APIC_SHORT_MASK;
+ if (apic_x2apic_mode(apic))
+ irq.dest_id = icr_high;
+ else
+ irq.dest_id = GET_APIC_DEST_FIELD(icr_high);
+
+ trace_kvm_apic_ipi(icr_low, irq.dest_id);
+
+ apic_debug("icr_high 0x%x, icr_low 0x%x, "
+ "short_hand 0x%x, dest 0x%x, trig_mode 0x%x, level 0x%x, "
+ "dest_mode 0x%x, delivery_mode 0x%x, vector 0x%x\n",
+ icr_high, icr_low, irq.shorthand, irq.dest_id,
+ irq.trig_mode, irq.level, irq.dest_mode, irq.delivery_mode,
+ irq.vector);
+
+ kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL);
+}
+
+static u32 apic_get_tmcct(struct kvm_lapic *apic)
+{
+ ktime_t remaining;
+ s64 ns;
+ u32 tmcct;
+
+ ASSERT(apic != NULL);
+
+ /* if initial count is 0, current count should also be 0 */
+ if (kvm_apic_get_reg(apic, APIC_TMICT) == 0 ||
+ apic->lapic_timer.period == 0)
+ return 0;
+
+ remaining = hrtimer_get_remaining(&apic->lapic_timer.timer);
+ if (ktime_to_ns(remaining) < 0)
+ remaining = ktime_set(0, 0);
+
+ ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
+ tmcct = div64_u64(ns,
+ (APIC_BUS_CYCLE_NS * apic->divide_count));
+
+ return tmcct;
+}
+
+static void __report_tpr_access(struct kvm_lapic *apic, bool write)
+{
+ struct kvm_vcpu *vcpu = apic->vcpu;
+ struct kvm_run *run = vcpu->run;
+
+ kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu);
+ run->tpr_access.rip = kvm_rip_read(vcpu);
+ run->tpr_access.is_write = write;
+}
+
+static inline void report_tpr_access(struct kvm_lapic *apic, bool write)
+{
+ if (apic->vcpu->arch.tpr_access_reporting)
+ __report_tpr_access(apic, write);
+}
+
+static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset)
+{
+ u32 val = 0;
+
+ if (offset >= LAPIC_MMIO_LENGTH)
+ return 0;
+
+ switch (offset) {
+ case APIC_ID:
+ if (apic_x2apic_mode(apic))
+ val = kvm_apic_id(apic);
+ else
+ val = kvm_apic_id(apic) << 24;
+ break;
+ case APIC_ARBPRI:
+ apic_debug("Access APIC ARBPRI register which is for P6\n");
+ break;
+
+ case APIC_TMCCT: /* Timer CCR */
+ if (apic_lvtt_tscdeadline(apic))
+ return 0;
+
+ val = apic_get_tmcct(apic);
+ break;
+ case APIC_PROCPRI:
+ apic_update_ppr(apic);
+ val = kvm_apic_get_reg(apic, offset);
+ break;
+ case APIC_TASKPRI:
+ report_tpr_access(apic, false);
+ /* fall thru */
+ default:
+ val = kvm_apic_get_reg(apic, offset);
+ break;
+ }
+
+ return val;
+}
+
+static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev)
+{
+ return container_of(dev, struct kvm_lapic, dev);
+}
+
+static int apic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
+ void *data)
+{
+ unsigned char alignment = offset & 0xf;
+ u32 result;
+ /* this bitmask has a bit cleared for each reserved register */
+ static const u64 rmask = 0x43ff01ffffffe70cULL;
+
+ if ((alignment + len) > 4) {
+ apic_debug("KVM_APIC_READ: alignment error %x %d\n",
+ offset, len);
+ return 1;
+ }
+
+ if (offset > 0x3f0 || !(rmask & (1ULL << (offset >> 4)))) {
+ apic_debug("KVM_APIC_READ: read reserved register %x\n",
+ offset);
+ return 1;
+ }
+
+ result = __apic_read(apic, offset & ~0xf);
+
+ trace_kvm_apic_read(offset, result);
+
+ switch (len) {
+ case 1:
+ case 2:
+ case 4:
+ memcpy(data, (char *)&result + alignment, len);
+ break;
+ default:
+ printk(KERN_ERR "Local APIC read with len = %x, "
+ "should be 1,2, or 4 instead\n", len);
+ break;
+ }
+ return 0;
+}
+
+static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr)
+{
+ return kvm_apic_hw_enabled(apic) &&
+ addr >= apic->base_address &&
+ addr < apic->base_address + LAPIC_MMIO_LENGTH;
+}
+
+static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
+ gpa_t address, int len, void *data)
+{
+ struct kvm_lapic *apic = to_lapic(this);
+ u32 offset = address - apic->base_address;
+
+ if (!apic_mmio_in_range(apic, address))
+ return -EOPNOTSUPP;
+
+ apic_reg_read(apic, offset, len, data);
+
+ return 0;
+}
+
+static void update_divide_count(struct kvm_lapic *apic)
+{
+ u32 tmp1, tmp2, tdcr;
+
+ tdcr = kvm_apic_get_reg(apic, APIC_TDCR);
+ tmp1 = tdcr & 0xf;
+ tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
+ apic->divide_count = 0x1 << (tmp2 & 0x7);
+
+ apic_debug("timer divide count is 0x%x\n",
+ apic->divide_count);
+}
+
+static void apic_update_lvtt(struct kvm_lapic *apic)
+{
+ u32 timer_mode = kvm_apic_get_reg(apic, APIC_LVTT) &
+ apic->lapic_timer.timer_mode_mask;
+
+ if (apic->lapic_timer.timer_mode != timer_mode) {
+ apic->lapic_timer.timer_mode = timer_mode;
+ hrtimer_cancel(&apic->lapic_timer.timer);
+ }
+}
+
+static void apic_timer_expired(struct kvm_lapic *apic)
+{
+ struct kvm_vcpu *vcpu = apic->vcpu;
+ struct swait_head *q = &vcpu->wq;
+ struct kvm_timer *ktimer = &apic->lapic_timer;
+
+ if (atomic_read(&apic->lapic_timer.pending))
+ return;
+
+ atomic_inc(&apic->lapic_timer.pending);
+ kvm_set_pending_timer(vcpu);
+
+ if (swaitqueue_active(q))
+ swait_wake_interruptible(q);
+
+ if (apic_lvtt_tscdeadline(apic))
+ ktimer->expired_tscdeadline = ktimer->tscdeadline;
+}
+
+/*
+ * On APICv, this test will cause a busy wait
+ * during a higher-priority task.
+ */
+
+static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
+{
+ struct kvm_lapic *apic = vcpu->arch.apic;
+ u32 reg = kvm_apic_get_reg(apic, APIC_LVTT);
+
+ if (kvm_apic_hw_enabled(apic)) {
+ int vec = reg & APIC_VECTOR_MASK;
+ void *bitmap = apic->regs + APIC_ISR;
+
+ if (kvm_x86_ops->deliver_posted_interrupt)
+ bitmap = apic->regs + APIC_IRR;
+
+ if (apic_test_vector(vec, bitmap))
+ return true;
+ }
+ return false;
+}
+
+void wait_lapic_expire(struct kvm_vcpu *vcpu)
+{
+ struct kvm_lapic *apic = vcpu->arch.apic;
+ u64 guest_tsc, tsc_deadline;
+
+ if (!kvm_vcpu_has_lapic(vcpu))
+ return;
+
+ if (apic->lapic_timer.expired_tscdeadline == 0)
+ return;
+
+ if (!lapic_timer_int_injected(vcpu))
+ return;
+
+ tsc_deadline = apic->lapic_timer.expired_tscdeadline;
+ apic->lapic_timer.expired_tscdeadline = 0;
+ guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu, native_read_tsc());
+ trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline);
+
+ /* __delay is delay_tsc whenever the hardware has TSC, thus always. */
+ if (guest_tsc < tsc_deadline)
+ __delay(tsc_deadline - guest_tsc);
+}
+
+static enum hrtimer_restart apic_timer_fn(struct hrtimer *data);
+
+static void __apic_timer_expired(struct hrtimer *data)
+{
+ int ret, i = 0;
+ enum hrtimer_restart r;
+ struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
+
+ r = apic_timer_fn(data);
+
+ if (r == HRTIMER_RESTART) {
+ do {
+ ret = hrtimer_start_expires(data, HRTIMER_MODE_ABS);
+ if (ret == -ETIME)
+ hrtimer_add_expires_ns(&ktimer->timer,
+ ktimer->period);
+ i++;
+ } while (ret == -ETIME && i < 10);
+
+ if (ret == -ETIME) {
+ printk_once(KERN_ERR "%s: failed to reprogram timer\n",
+ __func__);
+ WARN_ON_ONCE(1);
+ }
+ }
+}
+
+static void start_apic_timer(struct kvm_lapic *apic)
+{
+ int ret;
+ ktime_t now;
+
+ atomic_set(&apic->lapic_timer.pending, 0);
+
+ if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) {
+ /* lapic timer in oneshot or periodic mode */
+ now = apic->lapic_timer.timer.base->get_time();
+ apic->lapic_timer.period = (u64)kvm_apic_get_reg(apic, APIC_TMICT)
+ * APIC_BUS_CYCLE_NS * apic->divide_count;
+
+ if (!apic->lapic_timer.period)
+ return;
+ /*
+ * Do not allow the guest to program periodic timers with small
+ * interval, since the hrtimers are not throttled by the host
+ * scheduler.
+ */
+ if (apic_lvtt_period(apic)) {
+ s64 min_period = min_timer_period_us * 1000LL;
+
+ if (apic->lapic_timer.period < min_period) {
+ pr_info_ratelimited(
+ "kvm: vcpu %i: requested %lld ns "
+ "lapic timer period limited to %lld ns\n",
+ apic->vcpu->vcpu_id,
+ apic->lapic_timer.period, min_period);
+ apic->lapic_timer.period = min_period;
+ }
+ }
+
+ ret = hrtimer_start(&apic->lapic_timer.timer,
+ ktime_add_ns(now, apic->lapic_timer.period),
+ HRTIMER_MODE_ABS);
+ if (ret == -ETIME)
+ __apic_timer_expired(&apic->lapic_timer.timer);
+
+ apic_debug("%s: bus cycle is %" PRId64 "ns, now 0x%016"
+ PRIx64 ", "
+ "timer initial count 0x%x, period %lldns, "
+ "expire @ 0x%016" PRIx64 ".\n", __func__,
+ APIC_BUS_CYCLE_NS, ktime_to_ns(now),
+ kvm_apic_get_reg(apic, APIC_TMICT),
+ apic->lapic_timer.period,
+ ktime_to_ns(ktime_add_ns(now,
+ apic->lapic_timer.period)));
+ } else if (apic_lvtt_tscdeadline(apic)) {
+ /* lapic timer in tsc deadline mode */
+ u64 guest_tsc, tscdeadline = apic->lapic_timer.tscdeadline;
+ u64 ns = 0;
+ ktime_t expire;
+ struct kvm_vcpu *vcpu = apic->vcpu;
+ unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz;
+ unsigned long flags;
+
+ if (unlikely(!tscdeadline || !this_tsc_khz))
+ return;
+
+ local_irq_save(flags);
+
+ now = apic->lapic_timer.timer.base->get_time();
+ guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu, native_read_tsc());
+ if (likely(tscdeadline > guest_tsc)) {
+ ns = (tscdeadline - guest_tsc) * 1000000ULL;
+ do_div(ns, this_tsc_khz);
+ expire = ktime_add_ns(now, ns);
+ expire = ktime_sub_ns(expire, lapic_timer_advance_ns);
+ ret = hrtimer_start(&apic->lapic_timer.timer,
+ expire, HRTIMER_MODE_ABS);
+ if (ret == -ETIME)
+ __apic_timer_expired(&apic->lapic_timer.timer);
+ } else
+ apic_timer_expired(apic);
+
+ local_irq_restore(flags);
+ }
+}
+
+static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
+{
+ int nmi_wd_enabled = apic_lvt_nmi_mode(kvm_apic_get_reg(apic, APIC_LVT0));
+
+ if (apic_lvt_nmi_mode(lvt0_val)) {
+ if (!nmi_wd_enabled) {
+ apic_debug("Receive NMI setting on APIC_LVT0 "
+ "for cpu %d\n", apic->vcpu->vcpu_id);
+ atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
+ }
+ } else if (nmi_wd_enabled)
+ atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
+}
+
+static int apic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
+{
+ int ret = 0;
+
+ trace_kvm_apic_write(reg, val);
+
+ switch (reg) {
+ case APIC_ID: /* Local APIC ID */
+ if (!apic_x2apic_mode(apic))
+ kvm_apic_set_id(apic, val >> 24);
+ else
+ ret = 1;
+ break;
+
+ case APIC_TASKPRI:
+ report_tpr_access(apic, true);
+ apic_set_tpr(apic, val & 0xff);
+ break;
+
+ case APIC_EOI:
+ apic_set_eoi(apic);
+ break;
+
+ case APIC_LDR:
+ if (!apic_x2apic_mode(apic))
+ kvm_apic_set_ldr(apic, val & APIC_LDR_MASK);
+ else
+ ret = 1;
+ break;
+
+ case APIC_DFR:
+ if (!apic_x2apic_mode(apic)) {
+ apic_set_reg(apic, APIC_DFR, val | 0x0FFFFFFF);
+ recalculate_apic_map(apic->vcpu->kvm);
+ } else
+ ret = 1;
+ break;
+
+ case APIC_SPIV: {
+ u32 mask = 0x3ff;
+ if (kvm_apic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
+ mask |= APIC_SPIV_DIRECTED_EOI;
+ apic_set_spiv(apic, val & mask);
+ if (!(val & APIC_SPIV_APIC_ENABLED)) {
+ int i;
+ u32 lvt_val;
+
+ for (i = 0; i < APIC_LVT_NUM; i++) {
+ lvt_val = kvm_apic_get_reg(apic,
+ APIC_LVTT + 0x10 * i);
+ apic_set_reg(apic, APIC_LVTT + 0x10 * i,
+ lvt_val | APIC_LVT_MASKED);
+ }
+ apic_update_lvtt(apic);
+ atomic_set(&apic->lapic_timer.pending, 0);
+
+ }
+ break;
+ }
+ case APIC_ICR:
+ /* No delay here, so we always clear the pending bit */
+ apic_set_reg(apic, APIC_ICR, val & ~(1 << 12));
+ apic_send_ipi(apic);
+ break;
+
+ case APIC_ICR2:
+ if (!apic_x2apic_mode(apic))
+ val &= 0xff000000;
+ apic_set_reg(apic, APIC_ICR2, val);
+ break;
+
+ case APIC_LVT0:
+ apic_manage_nmi_watchdog(apic, val);
+ case APIC_LVTTHMR:
+ case APIC_LVTPC:
+ case APIC_LVT1:
+ case APIC_LVTERR:
+ /* TODO: Check vector */
+ if (!kvm_apic_sw_enabled(apic))
+ val |= APIC_LVT_MASKED;
+
+ val &= apic_lvt_mask[(reg - APIC_LVTT) >> 4];
+ apic_set_reg(apic, reg, val);
+
+ break;
+
+ case APIC_LVTT:
+ if (!kvm_apic_sw_enabled(apic))
+ val |= APIC_LVT_MASKED;
+ val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask);
+ apic_set_reg(apic, APIC_LVTT, val);
+ apic_update_lvtt(apic);
+ break;
+
+ case APIC_TMICT:
+ if (apic_lvtt_tscdeadline(apic))
+ break;
+
+ hrtimer_cancel(&apic->lapic_timer.timer);
+ apic_set_reg(apic, APIC_TMICT, val);
+ start_apic_timer(apic);
+ break;
+
+ case APIC_TDCR:
+ if (val & 4)
+ apic_debug("KVM_WRITE:TDCR %x\n", val);
+ apic_set_reg(apic, APIC_TDCR, val);
+ update_divide_count(apic);
+ break;
+
+ case APIC_ESR:
+ if (apic_x2apic_mode(apic) && val != 0) {
+ apic_debug("KVM_WRITE:ESR not zero %x\n", val);
+ ret = 1;
+ }
+ break;
+
+ case APIC_SELF_IPI:
+ if (apic_x2apic_mode(apic)) {
+ apic_reg_write(apic, APIC_ICR, 0x40000 | (val & 0xff));
+ } else
+ ret = 1;
+ break;
+ default:
+ ret = 1;
+ break;
+ }
+ if (ret)
+ apic_debug("Local APIC Write to read-only register %x\n", reg);
+ return ret;
+}
+
+static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
+ gpa_t address, int len, const void *data)
+{
+ struct kvm_lapic *apic = to_lapic(this);
+ unsigned int offset = address - apic->base_address;
+ u32 val;
+
+ if (!apic_mmio_in_range(apic, address))
+ return -EOPNOTSUPP;
+
+ /*
+ * APIC register must be aligned on 128-bits boundary.
+ * 32/64/128 bits registers must be accessed thru 32 bits.
+ * Refer SDM 8.4.1
+ */
+ if (len != 4 || (offset & 0xf)) {
+ /* Don't shout loud, $infamous_os would cause only noise. */
+ apic_debug("apic write: bad size=%d %lx\n", len, (long)address);
+ return 0;
+ }
+
+ val = *(u32*)data;
+
+ /* too common printing */
+ if (offset != APIC_EOI)
+ apic_debug("%s: offset 0x%x with length 0x%x, and value is "
+ "0x%x\n", __func__, offset, len, val);
+
+ apic_reg_write(apic, offset & 0xff0, val);
+
+ return 0;
+}
+
+void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu)
+{
+ if (kvm_vcpu_has_lapic(vcpu))
+ apic_reg_write(vcpu->arch.apic, APIC_EOI, 0);
+}
+EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi);
+
+/* emulate APIC access in a trap manner */
+void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset)
+{
+ u32 val = 0;
+
+ /* hw has done the conditional check and inst decode */
+ offset &= 0xff0;
+
+ apic_reg_read(vcpu->arch.apic, offset, 4, &val);
+
+ /* TODO: optimize to just emulate side effect w/o one more write */
+ apic_reg_write(vcpu->arch.apic, offset, val);
+}
+EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode);
+
+void kvm_free_lapic(struct kvm_vcpu *vcpu)
+{
+ struct kvm_lapic *apic = vcpu->arch.apic;
+
+ if (!vcpu->arch.apic)
+ return;
+
+ hrtimer_cancel(&apic->lapic_timer.timer);
+
+ if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
+ static_key_slow_dec_deferred(&apic_hw_disabled);
+
+ if (!apic->sw_enabled)
+ static_key_slow_dec_deferred(&apic_sw_disabled);
+
+ if (apic->regs)
+ free_page((unsigned long)apic->regs);
+
+ kfree(apic);
+}
+
+/*
+ *----------------------------------------------------------------------
+ * LAPIC interface
+ *----------------------------------------------------------------------
+ */
+
+u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
+{
+ struct kvm_lapic *apic = vcpu->arch.apic;
+
+ if (!kvm_vcpu_has_lapic(vcpu) || apic_lvtt_oneshot(apic) ||
+ apic_lvtt_period(apic))
+ return 0;
+
+ return apic->lapic_timer.tscdeadline;
+}
+
+void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data)
+{
+ struct kvm_lapic *apic = vcpu->arch.apic;
+
+ if (!kvm_vcpu_has_lapic(vcpu) || apic_lvtt_oneshot(apic) ||
+ apic_lvtt_period(apic))
+ return;
+
+ hrtimer_cancel(&apic->lapic_timer.timer);
+ apic->lapic_timer.tscdeadline = data;
+ start_apic_timer(apic);
+}
+
+void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8)
+{
+ struct kvm_lapic *apic = vcpu->arch.apic;
+
+ if (!kvm_vcpu_has_lapic(vcpu))
+ return;
+
+ apic_set_tpr(apic, ((cr8 & 0x0f) << 4)
+ | (kvm_apic_get_reg(apic, APIC_TASKPRI) & 4));
+}
+
+u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu)
+{
+ u64 tpr;
+
+ if (!kvm_vcpu_has_lapic(vcpu))
+ return 0;
+
+ tpr = (u64) kvm_apic_get_reg(vcpu->arch.apic, APIC_TASKPRI);
+
+ return (tpr & 0xf0) >> 4;
+}
+
+void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value)
+{
+ u64 old_value = vcpu->arch.apic_base;
+ struct kvm_lapic *apic = vcpu->arch.apic;
+
+ if (!apic) {
+ value |= MSR_IA32_APICBASE_BSP;
+ vcpu->arch.apic_base = value;
+ return;
+ }
+
+ vcpu->arch.apic_base = value;
+
+ /* update jump label if enable bit changes */
+ if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) {
+ if (value & MSR_IA32_APICBASE_ENABLE)
+ static_key_slow_dec_deferred(&apic_hw_disabled);
+ else
+ static_key_slow_inc(&apic_hw_disabled.key);
+ recalculate_apic_map(vcpu->kvm);
+ }
+
+ if ((old_value ^ value) & X2APIC_ENABLE) {
+ if (value & X2APIC_ENABLE) {
+ u32 id = kvm_apic_id(apic);
+ u32 ldr = ((id >> 4) << 16) | (1 << (id & 0xf));
+ kvm_apic_set_ldr(apic, ldr);
+ kvm_x86_ops->set_virtual_x2apic_mode(vcpu, true);
+ } else
+ kvm_x86_ops->set_virtual_x2apic_mode(vcpu, false);
+ }
+
+ apic->base_address = apic->vcpu->arch.apic_base &
+ MSR_IA32_APICBASE_BASE;
+
+ if ((value & MSR_IA32_APICBASE_ENABLE) &&
+ apic->base_address != APIC_DEFAULT_PHYS_BASE)
+ pr_warn_once("APIC base relocation is unsupported by KVM");
+
+ /* with FSB delivery interrupt, we can restart APIC functionality */
+ apic_debug("apic base msr is 0x%016" PRIx64 ", and base address is "
+ "0x%lx.\n", apic->vcpu->arch.apic_base, apic->base_address);
+
+}
+
+void kvm_lapic_reset(struct kvm_vcpu *vcpu)
+{
+ struct kvm_lapic *apic;
+ int i;
+
+ apic_debug("%s\n", __func__);
+
+ ASSERT(vcpu);
+ apic = vcpu->arch.apic;
+ ASSERT(apic != NULL);
+
+ /* Stop the timer in case it's a reset to an active apic */
+ hrtimer_cancel(&apic->lapic_timer.timer);
+
+ kvm_apic_set_id(apic, vcpu->vcpu_id);
+ kvm_apic_set_version(apic->vcpu);
+
+ for (i = 0; i < APIC_LVT_NUM; i++)
+ apic_set_reg(apic, APIC_LVTT + 0x10 * i, APIC_LVT_MASKED);
+ apic_update_lvtt(apic);
+ apic_set_reg(apic, APIC_LVT0,
+ SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT));
+
+ apic_set_reg(apic, APIC_DFR, 0xffffffffU);
+ apic_set_spiv(apic, 0xff);
+ apic_set_reg(apic, APIC_TASKPRI, 0);
+ kvm_apic_set_ldr(apic, 0);
+ apic_set_reg(apic, APIC_ESR, 0);
+ apic_set_reg(apic, APIC_ICR, 0);
+ apic_set_reg(apic, APIC_ICR2, 0);
+ apic_set_reg(apic, APIC_TDCR, 0);
+ apic_set_reg(apic, APIC_TMICT, 0);
+ for (i = 0; i < 8; i++) {
+ apic_set_reg(apic, APIC_IRR + 0x10 * i, 0);
+ apic_set_reg(apic, APIC_ISR + 0x10 * i, 0);
+ apic_set_reg(apic, APIC_TMR + 0x10 * i, 0);
+ }
+ apic->irr_pending = kvm_apic_vid_enabled(vcpu->kvm);
+ apic->isr_count = kvm_x86_ops->hwapic_isr_update ? 1 : 0;
+ apic->highest_isr_cache = -1;
+ update_divide_count(apic);
+ atomic_set(&apic->lapic_timer.pending, 0);
+ if (kvm_vcpu_is_bsp(vcpu))
+ kvm_lapic_set_base(vcpu,
+ vcpu->arch.apic_base | MSR_IA32_APICBASE_BSP);
+ vcpu->arch.pv_eoi.msr_val = 0;
+ apic_update_ppr(apic);
+
+ vcpu->arch.apic_arb_prio = 0;
+ vcpu->arch.apic_attention = 0;
+
+ apic_debug("%s: vcpu=%p, id=%d, base_msr="
+ "0x%016" PRIx64 ", base_address=0x%0lx.\n", __func__,
+ vcpu, kvm_apic_id(apic),
+ vcpu->arch.apic_base, apic->base_address);
+}
+
+/*
+ *----------------------------------------------------------------------
+ * timer interface
+ *----------------------------------------------------------------------
+ */
+
+static bool lapic_is_periodic(struct kvm_lapic *apic)
+{
+ return apic_lvtt_period(apic);
+}
+
+int apic_has_pending_timer(struct kvm_vcpu *vcpu)
+{
+ struct kvm_lapic *apic = vcpu->arch.apic;
+
+ if (kvm_vcpu_has_lapic(vcpu) && apic_enabled(apic) &&
+ apic_lvt_enabled(apic, APIC_LVTT))
+ return atomic_read(&apic->lapic_timer.pending);
+
+ return 0;
+}
+
+int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
+{
+ u32 reg = kvm_apic_get_reg(apic, lvt_type);
+ int vector, mode, trig_mode;
+
+ if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
+ vector = reg & APIC_VECTOR_MASK;
+ mode = reg & APIC_MODE_MASK;
+ trig_mode = reg & APIC_LVT_LEVEL_TRIGGER;
+ return __apic_accept_irq(apic, mode, vector, 1, trig_mode,
+ NULL);
+ }
+ return 0;
+}
+
+void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
+{
+ struct kvm_lapic *apic = vcpu->arch.apic;
+
+ if (apic)
+ kvm_apic_local_deliver(apic, APIC_LVT0);
+}
+
+static const struct kvm_io_device_ops apic_mmio_ops = {
+ .read = apic_mmio_read,
+ .write = apic_mmio_write,
+};
+
+static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
+{
+ struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
+ struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer);
+
+ apic_timer_expired(apic);
+
+ if (lapic_is_periodic(apic)) {
+ hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
+ return HRTIMER_RESTART;
+ } else
+ return HRTIMER_NORESTART;
+}
+
+int kvm_create_lapic(struct kvm_vcpu *vcpu)
+{
+ struct kvm_lapic *apic;
+
+ ASSERT(vcpu != NULL);
+ apic_debug("apic_init %d\n", vcpu->vcpu_id);
+
+ apic = kzalloc(sizeof(*apic), GFP_KERNEL);
+ if (!apic)
+ goto nomem;
+
+ vcpu->arch.apic = apic;
+
+ apic->regs = (void *)get_zeroed_page(GFP_KERNEL);
+ if (!apic->regs) {
+ printk(KERN_ERR "malloc apic regs error for vcpu %x\n",
+ vcpu->vcpu_id);
+ goto nomem_free_apic;
+ }
+ apic->vcpu = vcpu;
+
+ hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC,
+ HRTIMER_MODE_ABS);
+ apic->lapic_timer.timer.function = apic_timer_fn;
+ apic->lapic_timer.timer.irqsafe = 1;
+
+ /*
+ * APIC is created enabled. This will prevent kvm_lapic_set_base from
+ * thinking that APIC satet has changed.
+ */
+ vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE;
+ kvm_lapic_set_base(vcpu,
+ APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE);
+
+ static_key_slow_inc(&apic_sw_disabled.key); /* sw disabled at reset */
+ kvm_lapic_reset(vcpu);
+ kvm_iodevice_init(&apic->dev, &apic_mmio_ops);
+
+ return 0;
+nomem_free_apic:
+ kfree(apic);
+nomem:
+ return -ENOMEM;
+}
+
+int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
+{
+ struct kvm_lapic *apic = vcpu->arch.apic;
+ int highest_irr;
+
+ if (!kvm_vcpu_has_lapic(vcpu) || !apic_enabled(apic))
+ return -1;
+
+ apic_update_ppr(apic);
+ highest_irr = apic_find_highest_irr(apic);
+ if ((highest_irr == -1) ||
+ ((highest_irr & 0xF0) <= kvm_apic_get_reg(apic, APIC_PROCPRI)))
+ return -1;
+ return highest_irr;
+}
+
+int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
+{
+ u32 lvt0 = kvm_apic_get_reg(vcpu->arch.apic, APIC_LVT0);
+ int r = 0;
+
+ if (!kvm_apic_hw_enabled(vcpu->arch.apic))
+ r = 1;
+ if ((lvt0 & APIC_LVT_MASKED) == 0 &&
+ GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT)
+ r = 1;
+ return r;
+}
+
+void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
+{
+ struct kvm_lapic *apic = vcpu->arch.apic;
+
+ if (!kvm_vcpu_has_lapic(vcpu))
+ return;
+
+ if (atomic_read(&apic->lapic_timer.pending) > 0) {
+ kvm_apic_local_deliver(apic, APIC_LVTT);
+ if (apic_lvtt_tscdeadline(apic))
+ apic->lapic_timer.tscdeadline = 0;
+ atomic_set(&apic->lapic_timer.pending, 0);
+ }
+}
+
+int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu)
+{
+ int vector = kvm_apic_has_interrupt(vcpu);
+ struct kvm_lapic *apic = vcpu->arch.apic;
+
+ if (vector == -1)
+ return -1;
+
+ /*
+ * We get here even with APIC virtualization enabled, if doing
+ * nested virtualization and L1 runs with the "acknowledge interrupt
+ * on exit" mode. Then we cannot inject the interrupt via RVI,
+ * because the process would deliver it through the IDT.
+ */
+
+ apic_set_isr(vector, apic);
+ apic_update_ppr(apic);
+ apic_clear_irr(vector, apic);
+ return vector;
+}
+
+void kvm_apic_post_state_restore(struct kvm_vcpu *vcpu,
+ struct kvm_lapic_state *s)
+{
+ struct kvm_lapic *apic = vcpu->arch.apic;
+
+ kvm_lapic_set_base(vcpu, vcpu->arch.apic_base);
+ /* set SPIV separately to get count of SW disabled APICs right */
+ apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV)));
+ memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
+ /* call kvm_apic_set_id() to put apic into apic_map */
+ kvm_apic_set_id(apic, kvm_apic_id(apic));
+ kvm_apic_set_version(vcpu);
+
+ apic_update_ppr(apic);
+ hrtimer_cancel(&apic->lapic_timer.timer);
+ apic_update_lvtt(apic);
+ apic_manage_nmi_watchdog(apic, kvm_apic_get_reg(apic, APIC_LVT0));
+ update_divide_count(apic);
+ start_apic_timer(apic);
+ apic->irr_pending = true;
+ apic->isr_count = kvm_x86_ops->hwapic_isr_update ?
+ 1 : count_vectors(apic->regs + APIC_ISR);
+ apic->highest_isr_cache = -1;
+ if (kvm_x86_ops->hwapic_irr_update)
+ kvm_x86_ops->hwapic_irr_update(vcpu,
+ apic_find_highest_irr(apic));
+ if (unlikely(kvm_x86_ops->hwapic_isr_update))
+ kvm_x86_ops->hwapic_isr_update(vcpu->kvm,
+ apic_find_highest_isr(apic));
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+ kvm_rtc_eoi_tracking_restore_one(vcpu);
+}
+
+void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
+{
+ struct hrtimer *timer;
+
+ if (!kvm_vcpu_has_lapic(vcpu))
+ return;
+
+ timer = &vcpu->arch.apic->lapic_timer.timer;
+ if (hrtimer_cancel(timer))
+ if (hrtimer_start_expires(timer, HRTIMER_MODE_ABS) == -ETIME)
+ __apic_timer_expired(timer);
+}
+
+/*
+ * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt
+ *
+ * Detect whether guest triggered PV EOI since the
+ * last entry. If yes, set EOI on guests's behalf.
+ * Clear PV EOI in guest memory in any case.
+ */
+static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu,
+ struct kvm_lapic *apic)
+{
+ bool pending;
+ int vector;
+ /*
+ * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host
+ * and KVM_PV_EOI_ENABLED in guest memory as follows:
+ *
+ * KVM_APIC_PV_EOI_PENDING is unset:
+ * -> host disabled PV EOI.
+ * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set:
+ * -> host enabled PV EOI, guest did not execute EOI yet.
+ * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset:
+ * -> host enabled PV EOI, guest executed EOI.
+ */
+ BUG_ON(!pv_eoi_enabled(vcpu));
+ pending = pv_eoi_get_pending(vcpu);
+ /*
+ * Clear pending bit in any case: it will be set again on vmentry.
+ * While this might not be ideal from performance point of view,
+ * this makes sure pv eoi is only enabled when we know it's safe.
+ */
+ pv_eoi_clr_pending(vcpu);
+ if (pending)
+ return;
+ vector = apic_set_eoi(apic);
+ trace_kvm_pv_eoi(apic, vector);
+}
+
+void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)
+{
+ u32 data;
+
+ if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention))
+ apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic);
+
+ if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
+ return;
+
+ kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
+ sizeof(u32));
+
+ apic_set_tpr(vcpu->arch.apic, data & 0xff);
+}
+
+/*
+ * apic_sync_pv_eoi_to_guest - called before vmentry
+ *
+ * Detect whether it's safe to enable PV EOI and
+ * if yes do so.
+ */
+static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu,
+ struct kvm_lapic *apic)
+{
+ if (!pv_eoi_enabled(vcpu) ||
+ /* IRR set or many bits in ISR: could be nested. */
+ apic->irr_pending ||
+ /* Cache not set: could be safe but we don't bother. */
+ apic->highest_isr_cache == -1 ||
+ /* Need EOI to update ioapic. */
+ kvm_ioapic_handles_vector(vcpu->kvm, apic->highest_isr_cache)) {
+ /*
+ * PV EOI was disabled by apic_sync_pv_eoi_from_guest
+ * so we need not do anything here.
+ */
+ return;
+ }
+
+ pv_eoi_set_pending(apic->vcpu);
+}
+
+void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
+{
+ u32 data, tpr;
+ int max_irr, max_isr;
+ struct kvm_lapic *apic = vcpu->arch.apic;
+
+ apic_sync_pv_eoi_to_guest(vcpu, apic);
+
+ if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
+ return;
+
+ tpr = kvm_apic_get_reg(apic, APIC_TASKPRI) & 0xff;
+ max_irr = apic_find_highest_irr(apic);
+ if (max_irr < 0)
+ max_irr = 0;
+ max_isr = apic_find_highest_isr(apic);
+ if (max_isr < 0)
+ max_isr = 0;
+ data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24);
+
+ kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
+ sizeof(u32));
+}
+
+int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr)
+{
+ if (vapic_addr) {
+ if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
+ &vcpu->arch.apic->vapic_cache,
+ vapic_addr, sizeof(u32)))
+ return -EINVAL;
+ __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
+ } else {
+ __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
+ }
+
+ vcpu->arch.apic->vapic_addr = vapic_addr;
+ return 0;
+}
+
+int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data)
+{
+ struct kvm_lapic *apic = vcpu->arch.apic;
+ u32 reg = (msr - APIC_BASE_MSR) << 4;
+
+ if (!irqchip_in_kernel(vcpu->kvm) || !apic_x2apic_mode(apic))
+ return 1;
+
+ if (reg == APIC_ICR2)
+ return 1;
+
+ /* if this is ICR write vector before command */
+ if (reg == APIC_ICR)
+ apic_reg_write(apic, APIC_ICR2, (u32)(data >> 32));
+ return apic_reg_write(apic, reg, (u32)data);
+}
+
+int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
+{
+ struct kvm_lapic *apic = vcpu->arch.apic;
+ u32 reg = (msr - APIC_BASE_MSR) << 4, low, high = 0;
+
+ if (!irqchip_in_kernel(vcpu->kvm) || !apic_x2apic_mode(apic))
+ return 1;
+
+ if (reg == APIC_DFR || reg == APIC_ICR2) {
+ apic_debug("KVM_APIC_READ: read x2apic reserved register %x\n",
+ reg);
+ return 1;
+ }
+
+ if (apic_reg_read(apic, reg, 4, &low))
+ return 1;
+ if (reg == APIC_ICR)
+ apic_reg_read(apic, APIC_ICR2, 4, &high);
+
+ *data = (((u64)high) << 32) | low;
+
+ return 0;
+}
+
+int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data)
+{
+ struct kvm_lapic *apic = vcpu->arch.apic;
+
+ if (!kvm_vcpu_has_lapic(vcpu))
+ return 1;
+
+ /* if this is ICR write vector before command */
+ if (reg == APIC_ICR)
+ apic_reg_write(apic, APIC_ICR2, (u32)(data >> 32));
+ return apic_reg_write(apic, reg, (u32)data);
+}
+
+int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
+{
+ struct kvm_lapic *apic = vcpu->arch.apic;
+ u32 low, high = 0;
+
+ if (!kvm_vcpu_has_lapic(vcpu))
+ return 1;
+
+ if (apic_reg_read(apic, reg, 4, &low))
+ return 1;
+ if (reg == APIC_ICR)
+ apic_reg_read(apic, APIC_ICR2, 4, &high);
+
+ *data = (((u64)high) << 32) | low;
+
+ return 0;
+}
+
+int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data)
+{
+ u64 addr = data & ~KVM_MSR_ENABLED;
+ if (!IS_ALIGNED(addr, 4))
+ return 1;
+
+ vcpu->arch.pv_eoi.msr_val = data;
+ if (!pv_eoi_enabled(vcpu))
+ return 0;
+ return kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.pv_eoi.data,
+ addr, sizeof(u8));
+}
+
+void kvm_apic_accept_events(struct kvm_vcpu *vcpu)
+{
+ struct kvm_lapic *apic = vcpu->arch.apic;
+ u8 sipi_vector;
+ unsigned long pe;
+
+ if (!kvm_vcpu_has_lapic(vcpu) || !apic->pending_events)
+ return;
+
+ pe = xchg(&apic->pending_events, 0);
+
+ if (test_bit(KVM_APIC_INIT, &pe)) {
+ kvm_lapic_reset(vcpu);
+ kvm_vcpu_reset(vcpu);
+ if (kvm_vcpu_is_bsp(apic->vcpu))
+ vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
+ else
+ vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
+ }
+ if (test_bit(KVM_APIC_SIPI, &pe) &&
+ vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
+ /* evaluate pending_events before reading the vector */
+ smp_rmb();
+ sipi_vector = apic->sipi_vector;
+ apic_debug("vcpu %d received sipi with vector # %x\n",
+ vcpu->vcpu_id, sipi_vector);
+ kvm_vcpu_deliver_sipi_vector(vcpu, sipi_vector);
+ vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
+ }
+}
+
+void kvm_lapic_init(void)
+{
+ /* do not patch jump label more than once per second */
+ jump_label_rate_limit(&apic_hw_disabled, HZ);
+ jump_label_rate_limit(&apic_sw_disabled, HZ);
+}
diff --git a/kernel/arch/x86/kvm/lapic.h b/kernel/arch/x86/kvm/lapic.h
new file mode 100644
index 000000000..9d28383fc
--- /dev/null
+++ b/kernel/arch/x86/kvm/lapic.h
@@ -0,0 +1,160 @@
+#ifndef __KVM_X86_LAPIC_H
+#define __KVM_X86_LAPIC_H
+
+#include <kvm/iodev.h>
+
+#include <linux/kvm_host.h>
+
+#define KVM_APIC_INIT 0
+#define KVM_APIC_SIPI 1
+
+struct kvm_timer {
+ struct hrtimer timer;
+ s64 period; /* unit: ns */
+ u32 timer_mode;
+ u32 timer_mode_mask;
+ u64 tscdeadline;
+ u64 expired_tscdeadline;
+ atomic_t pending; /* accumulated triggered timers */
+};
+
+struct kvm_lapic {
+ unsigned long base_address;
+ struct kvm_io_device dev;
+ struct kvm_timer lapic_timer;
+ u32 divide_count;
+ struct kvm_vcpu *vcpu;
+ bool sw_enabled;
+ bool irr_pending;
+ /* Number of bits set in ISR. */
+ s16 isr_count;
+ /* The highest vector set in ISR; if -1 - invalid, must scan ISR. */
+ int highest_isr_cache;
+ /**
+ * APIC register page. The layout matches the register layout seen by
+ * the guest 1:1, because it is accessed by the vmx microcode.
+ * Note: Only one register, the TPR, is used by the microcode.
+ */
+ void *regs;
+ gpa_t vapic_addr;
+ struct gfn_to_hva_cache vapic_cache;
+ unsigned long pending_events;
+ unsigned int sipi_vector;
+};
+int kvm_create_lapic(struct kvm_vcpu *vcpu);
+void kvm_free_lapic(struct kvm_vcpu *vcpu);
+
+int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu);
+int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu);
+int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu);
+void kvm_apic_accept_events(struct kvm_vcpu *vcpu);
+void kvm_lapic_reset(struct kvm_vcpu *vcpu);
+u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu);
+void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8);
+void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu);
+void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value);
+u64 kvm_lapic_get_base(struct kvm_vcpu *vcpu);
+void kvm_apic_set_version(struct kvm_vcpu *vcpu);
+
+void kvm_apic_update_tmr(struct kvm_vcpu *vcpu, u32 *tmr);
+void __kvm_apic_update_irr(u32 *pir, void *regs);
+void kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir);
+int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
+ unsigned long *dest_map);
+int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type);
+
+bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
+ struct kvm_lapic_irq *irq, int *r, unsigned long *dest_map);
+
+u64 kvm_get_apic_base(struct kvm_vcpu *vcpu);
+int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info);
+void kvm_apic_post_state_restore(struct kvm_vcpu *vcpu,
+ struct kvm_lapic_state *s);
+int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu);
+
+u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu);
+void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data);
+
+void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset);
+void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector);
+
+int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr);
+void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu);
+void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu);
+
+int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data);
+int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data);
+
+int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data);
+int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data);
+
+static inline bool kvm_hv_vapic_assist_page_enabled(struct kvm_vcpu *vcpu)
+{
+ return vcpu->arch.hv_vapic & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE;
+}
+
+int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data);
+void kvm_lapic_init(void);
+
+static inline u32 kvm_apic_get_reg(struct kvm_lapic *apic, int reg_off)
+{
+ return *((u32 *) (apic->regs + reg_off));
+}
+
+extern struct static_key kvm_no_apic_vcpu;
+
+static inline bool kvm_vcpu_has_lapic(struct kvm_vcpu *vcpu)
+{
+ if (static_key_false(&kvm_no_apic_vcpu))
+ return vcpu->arch.apic;
+ return true;
+}
+
+extern struct static_key_deferred apic_hw_disabled;
+
+static inline int kvm_apic_hw_enabled(struct kvm_lapic *apic)
+{
+ if (static_key_false(&apic_hw_disabled.key))
+ return apic->vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE;
+ return MSR_IA32_APICBASE_ENABLE;
+}
+
+extern struct static_key_deferred apic_sw_disabled;
+
+static inline bool kvm_apic_sw_enabled(struct kvm_lapic *apic)
+{
+ if (static_key_false(&apic_sw_disabled.key))
+ return apic->sw_enabled;
+ return true;
+}
+
+static inline bool kvm_apic_present(struct kvm_vcpu *vcpu)
+{
+ return kvm_vcpu_has_lapic(vcpu) && kvm_apic_hw_enabled(vcpu->arch.apic);
+}
+
+static inline int kvm_lapic_enabled(struct kvm_vcpu *vcpu)
+{
+ return kvm_apic_present(vcpu) && kvm_apic_sw_enabled(vcpu->arch.apic);
+}
+
+static inline int apic_x2apic_mode(struct kvm_lapic *apic)
+{
+ return apic->vcpu->arch.apic_base & X2APIC_ENABLE;
+}
+
+static inline bool kvm_apic_vid_enabled(struct kvm *kvm)
+{
+ return kvm_x86_ops->vm_has_apicv(kvm);
+}
+
+static inline bool kvm_apic_has_events(struct kvm_vcpu *vcpu)
+{
+ return vcpu->arch.apic->pending_events;
+}
+
+bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector);
+
+void wait_lapic_expire(struct kvm_vcpu *vcpu);
+
+#endif
diff --git a/kernel/arch/x86/kvm/mmu.c b/kernel/arch/x86/kvm/mmu.c
new file mode 100644
index 000000000..b73337634
--- /dev/null
+++ b/kernel/arch/x86/kvm/mmu.c
@@ -0,0 +1,4920 @@
+/*
+ * Kernel-based Virtual Machine driver for Linux
+ *
+ * This module enables machines with Intel VT-x extensions to run virtual
+ * machines without emulation or binary translation.
+ *
+ * MMU support
+ *
+ * Copyright (C) 2006 Qumranet, Inc.
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
+ *
+ * Authors:
+ * Yaniv Kamay <yaniv@qumranet.com>
+ * Avi Kivity <avi@qumranet.com>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2. See
+ * the COPYING file in the top-level directory.
+ *
+ */
+
+#include "irq.h"
+#include "mmu.h"
+#include "x86.h"
+#include "kvm_cache_regs.h"
+#include "cpuid.h"
+
+#include <linux/kvm_host.h>
+#include <linux/types.h>
+#include <linux/string.h>
+#include <linux/mm.h>
+#include <linux/highmem.h>
+#include <linux/module.h>
+#include <linux/swap.h>
+#include <linux/hugetlb.h>
+#include <linux/compiler.h>
+#include <linux/srcu.h>
+#include <linux/slab.h>
+#include <linux/uaccess.h>
+
+#include <asm/page.h>
+#include <asm/cmpxchg.h>
+#include <asm/io.h>
+#include <asm/vmx.h>
+
+/*
+ * When setting this variable to true it enables Two-Dimensional-Paging
+ * where the hardware walks 2 page tables:
+ * 1. the guest-virtual to guest-physical
+ * 2. while doing 1. it walks guest-physical to host-physical
+ * If the hardware supports that we don't need to do shadow paging.
+ */
+bool tdp_enabled = false;
+
+enum {
+ AUDIT_PRE_PAGE_FAULT,
+ AUDIT_POST_PAGE_FAULT,
+ AUDIT_PRE_PTE_WRITE,
+ AUDIT_POST_PTE_WRITE,
+ AUDIT_PRE_SYNC,
+ AUDIT_POST_SYNC
+};
+
+#undef MMU_DEBUG
+
+#ifdef MMU_DEBUG
+static bool dbg = 0;
+module_param(dbg, bool, 0644);
+
+#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
+#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
+#define MMU_WARN_ON(x) WARN_ON(x)
+#else
+#define pgprintk(x...) do { } while (0)
+#define rmap_printk(x...) do { } while (0)
+#define MMU_WARN_ON(x) do { } while (0)
+#endif
+
+#define PTE_PREFETCH_NUM 8
+
+#define PT_FIRST_AVAIL_BITS_SHIFT 10
+#define PT64_SECOND_AVAIL_BITS_SHIFT 52
+
+#define PT64_LEVEL_BITS 9
+
+#define PT64_LEVEL_SHIFT(level) \
+ (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
+
+#define PT64_INDEX(address, level)\
+ (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
+
+
+#define PT32_LEVEL_BITS 10
+
+#define PT32_LEVEL_SHIFT(level) \
+ (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
+
+#define PT32_LVL_OFFSET_MASK(level) \
+ (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
+ * PT32_LEVEL_BITS))) - 1))
+
+#define PT32_INDEX(address, level)\
+ (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
+
+
+#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
+#define PT64_DIR_BASE_ADDR_MASK \
+ (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
+#define PT64_LVL_ADDR_MASK(level) \
+ (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
+ * PT64_LEVEL_BITS))) - 1))
+#define PT64_LVL_OFFSET_MASK(level) \
+ (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
+ * PT64_LEVEL_BITS))) - 1))
+
+#define PT32_BASE_ADDR_MASK PAGE_MASK
+#define PT32_DIR_BASE_ADDR_MASK \
+ (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
+#define PT32_LVL_ADDR_MASK(level) \
+ (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
+ * PT32_LEVEL_BITS))) - 1))
+
+#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
+ | shadow_x_mask | shadow_nx_mask)
+
+#define ACC_EXEC_MASK 1
+#define ACC_WRITE_MASK PT_WRITABLE_MASK
+#define ACC_USER_MASK PT_USER_MASK
+#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
+
+#include <trace/events/kvm.h>
+
+#define CREATE_TRACE_POINTS
+#include "mmutrace.h"
+
+#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
+#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
+
+#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
+
+/* make pte_list_desc fit well in cache line */
+#define PTE_LIST_EXT 3
+
+struct pte_list_desc {
+ u64 *sptes[PTE_LIST_EXT];
+ struct pte_list_desc *more;
+};
+
+struct kvm_shadow_walk_iterator {
+ u64 addr;
+ hpa_t shadow_addr;
+ u64 *sptep;
+ int level;
+ unsigned index;
+};
+
+#define for_each_shadow_entry(_vcpu, _addr, _walker) \
+ for (shadow_walk_init(&(_walker), _vcpu, _addr); \
+ shadow_walk_okay(&(_walker)); \
+ shadow_walk_next(&(_walker)))
+
+#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
+ for (shadow_walk_init(&(_walker), _vcpu, _addr); \
+ shadow_walk_okay(&(_walker)) && \
+ ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
+ __shadow_walk_next(&(_walker), spte))
+
+static struct kmem_cache *pte_list_desc_cache;
+static struct kmem_cache *mmu_page_header_cache;
+static struct percpu_counter kvm_total_used_mmu_pages;
+
+static u64 __read_mostly shadow_nx_mask;
+static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
+static u64 __read_mostly shadow_user_mask;
+static u64 __read_mostly shadow_accessed_mask;
+static u64 __read_mostly shadow_dirty_mask;
+static u64 __read_mostly shadow_mmio_mask;
+
+static void mmu_spte_set(u64 *sptep, u64 spte);
+static void mmu_free_roots(struct kvm_vcpu *vcpu);
+
+void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
+{
+ shadow_mmio_mask = mmio_mask;
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
+
+/*
+ * the low bit of the generation number is always presumed to be zero.
+ * This disables mmio caching during memslot updates. The concept is
+ * similar to a seqcount but instead of retrying the access we just punt
+ * and ignore the cache.
+ *
+ * spte bits 3-11 are used as bits 1-9 of the generation number,
+ * the bits 52-61 are used as bits 10-19 of the generation number.
+ */
+#define MMIO_SPTE_GEN_LOW_SHIFT 2
+#define MMIO_SPTE_GEN_HIGH_SHIFT 52
+
+#define MMIO_GEN_SHIFT 20
+#define MMIO_GEN_LOW_SHIFT 10
+#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
+#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
+
+static u64 generation_mmio_spte_mask(unsigned int gen)
+{
+ u64 mask;
+
+ WARN_ON(gen & ~MMIO_GEN_MASK);
+
+ mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
+ mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
+ return mask;
+}
+
+static unsigned int get_mmio_spte_generation(u64 spte)
+{
+ unsigned int gen;
+
+ spte &= ~shadow_mmio_mask;
+
+ gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
+ gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
+ return gen;
+}
+
+static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
+{
+ return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
+}
+
+static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
+ unsigned access)
+{
+ unsigned int gen = kvm_current_mmio_generation(kvm);
+ u64 mask = generation_mmio_spte_mask(gen);
+
+ access &= ACC_WRITE_MASK | ACC_USER_MASK;
+ mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
+
+ trace_mark_mmio_spte(sptep, gfn, access, gen);
+ mmu_spte_set(sptep, mask);
+}
+
+static bool is_mmio_spte(u64 spte)
+{
+ return (spte & shadow_mmio_mask) == shadow_mmio_mask;
+}
+
+static gfn_t get_mmio_spte_gfn(u64 spte)
+{
+ u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
+ return (spte & ~mask) >> PAGE_SHIFT;
+}
+
+static unsigned get_mmio_spte_access(u64 spte)
+{
+ u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
+ return (spte & ~mask) & ~PAGE_MASK;
+}
+
+static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
+ pfn_t pfn, unsigned access)
+{
+ if (unlikely(is_noslot_pfn(pfn))) {
+ mark_mmio_spte(kvm, sptep, gfn, access);
+ return true;
+ }
+
+ return false;
+}
+
+static bool check_mmio_spte(struct kvm *kvm, u64 spte)
+{
+ unsigned int kvm_gen, spte_gen;
+
+ kvm_gen = kvm_current_mmio_generation(kvm);
+ spte_gen = get_mmio_spte_generation(spte);
+
+ trace_check_mmio_spte(spte, kvm_gen, spte_gen);
+ return likely(kvm_gen == spte_gen);
+}
+
+void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
+ u64 dirty_mask, u64 nx_mask, u64 x_mask)
+{
+ shadow_user_mask = user_mask;
+ shadow_accessed_mask = accessed_mask;
+ shadow_dirty_mask = dirty_mask;
+ shadow_nx_mask = nx_mask;
+ shadow_x_mask = x_mask;
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
+
+static int is_cpuid_PSE36(void)
+{
+ return 1;
+}
+
+static int is_nx(struct kvm_vcpu *vcpu)
+{
+ return vcpu->arch.efer & EFER_NX;
+}
+
+static int is_shadow_present_pte(u64 pte)
+{
+ return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
+}
+
+static int is_large_pte(u64 pte)
+{
+ return pte & PT_PAGE_SIZE_MASK;
+}
+
+static int is_rmap_spte(u64 pte)
+{
+ return is_shadow_present_pte(pte);
+}
+
+static int is_last_spte(u64 pte, int level)
+{
+ if (level == PT_PAGE_TABLE_LEVEL)
+ return 1;
+ if (is_large_pte(pte))
+ return 1;
+ return 0;
+}
+
+static pfn_t spte_to_pfn(u64 pte)
+{
+ return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
+}
+
+static gfn_t pse36_gfn_delta(u32 gpte)
+{
+ int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
+
+ return (gpte & PT32_DIR_PSE36_MASK) << shift;
+}
+
+#ifdef CONFIG_X86_64
+static void __set_spte(u64 *sptep, u64 spte)
+{
+ *sptep = spte;
+}
+
+static void __update_clear_spte_fast(u64 *sptep, u64 spte)
+{
+ *sptep = spte;
+}
+
+static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
+{
+ return xchg(sptep, spte);
+}
+
+static u64 __get_spte_lockless(u64 *sptep)
+{
+ return ACCESS_ONCE(*sptep);
+}
+
+static bool __check_direct_spte_mmio_pf(u64 spte)
+{
+ /* It is valid if the spte is zapped. */
+ return spte == 0ull;
+}
+#else
+union split_spte {
+ struct {
+ u32 spte_low;
+ u32 spte_high;
+ };
+ u64 spte;
+};
+
+static void count_spte_clear(u64 *sptep, u64 spte)
+{
+ struct kvm_mmu_page *sp = page_header(__pa(sptep));
+
+ if (is_shadow_present_pte(spte))
+ return;
+
+ /* Ensure the spte is completely set before we increase the count */
+ smp_wmb();
+ sp->clear_spte_count++;
+}
+
+static void __set_spte(u64 *sptep, u64 spte)
+{
+ union split_spte *ssptep, sspte;
+
+ ssptep = (union split_spte *)sptep;
+ sspte = (union split_spte)spte;
+
+ ssptep->spte_high = sspte.spte_high;
+
+ /*
+ * If we map the spte from nonpresent to present, We should store
+ * the high bits firstly, then set present bit, so cpu can not
+ * fetch this spte while we are setting the spte.
+ */
+ smp_wmb();
+
+ ssptep->spte_low = sspte.spte_low;
+}
+
+static void __update_clear_spte_fast(u64 *sptep, u64 spte)
+{
+ union split_spte *ssptep, sspte;
+
+ ssptep = (union split_spte *)sptep;
+ sspte = (union split_spte)spte;
+
+ ssptep->spte_low = sspte.spte_low;
+
+ /*
+ * If we map the spte from present to nonpresent, we should clear
+ * present bit firstly to avoid vcpu fetch the old high bits.
+ */
+ smp_wmb();
+
+ ssptep->spte_high = sspte.spte_high;
+ count_spte_clear(sptep, spte);
+}
+
+static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
+{
+ union split_spte *ssptep, sspte, orig;
+
+ ssptep = (union split_spte *)sptep;
+ sspte = (union split_spte)spte;
+
+ /* xchg acts as a barrier before the setting of the high bits */
+ orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
+ orig.spte_high = ssptep->spte_high;
+ ssptep->spte_high = sspte.spte_high;
+ count_spte_clear(sptep, spte);
+
+ return orig.spte;
+}
+
+/*
+ * The idea using the light way get the spte on x86_32 guest is from
+ * gup_get_pte(arch/x86/mm/gup.c).
+ *
+ * An spte tlb flush may be pending, because kvm_set_pte_rmapp
+ * coalesces them and we are running out of the MMU lock. Therefore
+ * we need to protect against in-progress updates of the spte.
+ *
+ * Reading the spte while an update is in progress may get the old value
+ * for the high part of the spte. The race is fine for a present->non-present
+ * change (because the high part of the spte is ignored for non-present spte),
+ * but for a present->present change we must reread the spte.
+ *
+ * All such changes are done in two steps (present->non-present and
+ * non-present->present), hence it is enough to count the number of
+ * present->non-present updates: if it changed while reading the spte,
+ * we might have hit the race. This is done using clear_spte_count.
+ */
+static u64 __get_spte_lockless(u64 *sptep)
+{
+ struct kvm_mmu_page *sp = page_header(__pa(sptep));
+ union split_spte spte, *orig = (union split_spte *)sptep;
+ int count;
+
+retry:
+ count = sp->clear_spte_count;
+ smp_rmb();
+
+ spte.spte_low = orig->spte_low;
+ smp_rmb();
+
+ spte.spte_high = orig->spte_high;
+ smp_rmb();
+
+ if (unlikely(spte.spte_low != orig->spte_low ||
+ count != sp->clear_spte_count))
+ goto retry;
+
+ return spte.spte;
+}
+
+static bool __check_direct_spte_mmio_pf(u64 spte)
+{
+ union split_spte sspte = (union split_spte)spte;
+ u32 high_mmio_mask = shadow_mmio_mask >> 32;
+
+ /* It is valid if the spte is zapped. */
+ if (spte == 0ull)
+ return true;
+
+ /* It is valid if the spte is being zapped. */
+ if (sspte.spte_low == 0ull &&
+ (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
+ return true;
+
+ return false;
+}
+#endif
+
+static bool spte_is_locklessly_modifiable(u64 spte)
+{
+ return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
+ (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
+}
+
+static bool spte_has_volatile_bits(u64 spte)
+{
+ /*
+ * Always atomicly update spte if it can be updated
+ * out of mmu-lock, it can ensure dirty bit is not lost,
+ * also, it can help us to get a stable is_writable_pte()
+ * to ensure tlb flush is not missed.
+ */
+ if (spte_is_locklessly_modifiable(spte))
+ return true;
+
+ if (!shadow_accessed_mask)
+ return false;
+
+ if (!is_shadow_present_pte(spte))
+ return false;
+
+ if ((spte & shadow_accessed_mask) &&
+ (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
+ return false;
+
+ return true;
+}
+
+static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
+{
+ return (old_spte & bit_mask) && !(new_spte & bit_mask);
+}
+
+static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
+{
+ return (old_spte & bit_mask) != (new_spte & bit_mask);
+}
+
+/* Rules for using mmu_spte_set:
+ * Set the sptep from nonpresent to present.
+ * Note: the sptep being assigned *must* be either not present
+ * or in a state where the hardware will not attempt to update
+ * the spte.
+ */
+static void mmu_spte_set(u64 *sptep, u64 new_spte)
+{
+ WARN_ON(is_shadow_present_pte(*sptep));
+ __set_spte(sptep, new_spte);
+}
+
+/* Rules for using mmu_spte_update:
+ * Update the state bits, it means the mapped pfn is not changged.
+ *
+ * Whenever we overwrite a writable spte with a read-only one we
+ * should flush remote TLBs. Otherwise rmap_write_protect
+ * will find a read-only spte, even though the writable spte
+ * might be cached on a CPU's TLB, the return value indicates this
+ * case.
+ */
+static bool mmu_spte_update(u64 *sptep, u64 new_spte)
+{
+ u64 old_spte = *sptep;
+ bool ret = false;
+
+ WARN_ON(!is_rmap_spte(new_spte));
+
+ if (!is_shadow_present_pte(old_spte)) {
+ mmu_spte_set(sptep, new_spte);
+ return ret;
+ }
+
+ if (!spte_has_volatile_bits(old_spte))
+ __update_clear_spte_fast(sptep, new_spte);
+ else
+ old_spte = __update_clear_spte_slow(sptep, new_spte);
+
+ /*
+ * For the spte updated out of mmu-lock is safe, since
+ * we always atomicly update it, see the comments in
+ * spte_has_volatile_bits().
+ */
+ if (spte_is_locklessly_modifiable(old_spte) &&
+ !is_writable_pte(new_spte))
+ ret = true;
+
+ if (!shadow_accessed_mask)
+ return ret;
+
+ /*
+ * Flush TLB when accessed/dirty bits are changed in the page tables,
+ * to guarantee consistency between TLB and page tables.
+ */
+ if (spte_is_bit_changed(old_spte, new_spte,
+ shadow_accessed_mask | shadow_dirty_mask))
+ ret = true;
+
+ if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
+ kvm_set_pfn_accessed(spte_to_pfn(old_spte));
+ if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
+ kvm_set_pfn_dirty(spte_to_pfn(old_spte));
+
+ return ret;
+}
+
+/*
+ * Rules for using mmu_spte_clear_track_bits:
+ * It sets the sptep from present to nonpresent, and track the
+ * state bits, it is used to clear the last level sptep.
+ */
+static int mmu_spte_clear_track_bits(u64 *sptep)
+{
+ pfn_t pfn;
+ u64 old_spte = *sptep;
+
+ if (!spte_has_volatile_bits(old_spte))
+ __update_clear_spte_fast(sptep, 0ull);
+ else
+ old_spte = __update_clear_spte_slow(sptep, 0ull);
+
+ if (!is_rmap_spte(old_spte))
+ return 0;
+
+ pfn = spte_to_pfn(old_spte);
+
+ /*
+ * KVM does not hold the refcount of the page used by
+ * kvm mmu, before reclaiming the page, we should
+ * unmap it from mmu first.
+ */
+ WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
+
+ if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
+ kvm_set_pfn_accessed(pfn);
+ if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
+ kvm_set_pfn_dirty(pfn);
+ return 1;
+}
+
+/*
+ * Rules for using mmu_spte_clear_no_track:
+ * Directly clear spte without caring the state bits of sptep,
+ * it is used to set the upper level spte.
+ */
+static void mmu_spte_clear_no_track(u64 *sptep)
+{
+ __update_clear_spte_fast(sptep, 0ull);
+}
+
+static u64 mmu_spte_get_lockless(u64 *sptep)
+{
+ return __get_spte_lockless(sptep);
+}
+
+static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
+{
+ /*
+ * Prevent page table teardown by making any free-er wait during
+ * kvm_flush_remote_tlbs() IPI to all active vcpus.
+ */
+ local_irq_disable();
+ vcpu->mode = READING_SHADOW_PAGE_TABLES;
+ /*
+ * Make sure a following spte read is not reordered ahead of the write
+ * to vcpu->mode.
+ */
+ smp_mb();
+}
+
+static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
+{
+ /*
+ * Make sure the write to vcpu->mode is not reordered in front of
+ * reads to sptes. If it does, kvm_commit_zap_page() can see us
+ * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
+ */
+ smp_mb();
+ vcpu->mode = OUTSIDE_GUEST_MODE;
+ local_irq_enable();
+}
+
+static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
+ struct kmem_cache *base_cache, int min)
+{
+ void *obj;
+
+ if (cache->nobjs >= min)
+ return 0;
+ while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
+ obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
+ if (!obj)
+ return -ENOMEM;
+ cache->objects[cache->nobjs++] = obj;
+ }
+ return 0;
+}
+
+static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
+{
+ return cache->nobjs;
+}
+
+static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
+ struct kmem_cache *cache)
+{
+ while (mc->nobjs)
+ kmem_cache_free(cache, mc->objects[--mc->nobjs]);
+}
+
+static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
+ int min)
+{
+ void *page;
+
+ if (cache->nobjs >= min)
+ return 0;
+ while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
+ page = (void *)__get_free_page(GFP_KERNEL);
+ if (!page)
+ return -ENOMEM;
+ cache->objects[cache->nobjs++] = page;
+ }
+ return 0;
+}
+
+static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
+{
+ while (mc->nobjs)
+ free_page((unsigned long)mc->objects[--mc->nobjs]);
+}
+
+static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
+{
+ int r;
+
+ r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
+ pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
+ if (r)
+ goto out;
+ r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
+ if (r)
+ goto out;
+ r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
+ mmu_page_header_cache, 4);
+out:
+ return r;
+}
+
+static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
+{
+ mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
+ pte_list_desc_cache);
+ mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
+ mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
+ mmu_page_header_cache);
+}
+
+static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
+{
+ void *p;
+
+ BUG_ON(!mc->nobjs);
+ p = mc->objects[--mc->nobjs];
+ return p;
+}
+
+static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
+{
+ return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
+}
+
+static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
+{
+ kmem_cache_free(pte_list_desc_cache, pte_list_desc);
+}
+
+static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
+{
+ if (!sp->role.direct)
+ return sp->gfns[index];
+
+ return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
+}
+
+static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
+{
+ if (sp->role.direct)
+ BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
+ else
+ sp->gfns[index] = gfn;
+}
+
+/*
+ * Return the pointer to the large page information for a given gfn,
+ * handling slots that are not large page aligned.
+ */
+static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
+ struct kvm_memory_slot *slot,
+ int level)
+{
+ unsigned long idx;
+
+ idx = gfn_to_index(gfn, slot->base_gfn, level);
+ return &slot->arch.lpage_info[level - 2][idx];
+}
+
+static void account_shadowed(struct kvm *kvm, gfn_t gfn)
+{
+ struct kvm_memory_slot *slot;
+ struct kvm_lpage_info *linfo;
+ int i;
+
+ slot = gfn_to_memslot(kvm, gfn);
+ for (i = PT_DIRECTORY_LEVEL;
+ i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
+ linfo = lpage_info_slot(gfn, slot, i);
+ linfo->write_count += 1;
+ }
+ kvm->arch.indirect_shadow_pages++;
+}
+
+static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
+{
+ struct kvm_memory_slot *slot;
+ struct kvm_lpage_info *linfo;
+ int i;
+
+ slot = gfn_to_memslot(kvm, gfn);
+ for (i = PT_DIRECTORY_LEVEL;
+ i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
+ linfo = lpage_info_slot(gfn, slot, i);
+ linfo->write_count -= 1;
+ WARN_ON(linfo->write_count < 0);
+ }
+ kvm->arch.indirect_shadow_pages--;
+}
+
+static int has_wrprotected_page(struct kvm *kvm,
+ gfn_t gfn,
+ int level)
+{
+ struct kvm_memory_slot *slot;
+ struct kvm_lpage_info *linfo;
+
+ slot = gfn_to_memslot(kvm, gfn);
+ if (slot) {
+ linfo = lpage_info_slot(gfn, slot, level);
+ return linfo->write_count;
+ }
+
+ return 1;
+}
+
+static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
+{
+ unsigned long page_size;
+ int i, ret = 0;
+
+ page_size = kvm_host_page_size(kvm, gfn);
+
+ for (i = PT_PAGE_TABLE_LEVEL;
+ i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
+ if (page_size >= KVM_HPAGE_SIZE(i))
+ ret = i;
+ else
+ break;
+ }
+
+ return ret;
+}
+
+static struct kvm_memory_slot *
+gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
+ bool no_dirty_log)
+{
+ struct kvm_memory_slot *slot;
+
+ slot = gfn_to_memslot(vcpu->kvm, gfn);
+ if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
+ (no_dirty_log && slot->dirty_bitmap))
+ slot = NULL;
+
+ return slot;
+}
+
+static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
+{
+ return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
+}
+
+static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
+{
+ int host_level, level, max_level;
+
+ host_level = host_mapping_level(vcpu->kvm, large_gfn);
+
+ if (host_level == PT_PAGE_TABLE_LEVEL)
+ return host_level;
+
+ max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
+
+ for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
+ if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
+ break;
+
+ return level - 1;
+}
+
+/*
+ * Pte mapping structures:
+ *
+ * If pte_list bit zero is zero, then pte_list point to the spte.
+ *
+ * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
+ * pte_list_desc containing more mappings.
+ *
+ * Returns the number of pte entries before the spte was added or zero if
+ * the spte was not added.
+ *
+ */
+static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
+ unsigned long *pte_list)
+{
+ struct pte_list_desc *desc;
+ int i, count = 0;
+
+ if (!*pte_list) {
+ rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
+ *pte_list = (unsigned long)spte;
+ } else if (!(*pte_list & 1)) {
+ rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
+ desc = mmu_alloc_pte_list_desc(vcpu);
+ desc->sptes[0] = (u64 *)*pte_list;
+ desc->sptes[1] = spte;
+ *pte_list = (unsigned long)desc | 1;
+ ++count;
+ } else {
+ rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
+ desc = (struct pte_list_desc *)(*pte_list & ~1ul);
+ while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
+ desc = desc->more;
+ count += PTE_LIST_EXT;
+ }
+ if (desc->sptes[PTE_LIST_EXT-1]) {
+ desc->more = mmu_alloc_pte_list_desc(vcpu);
+ desc = desc->more;
+ }
+ for (i = 0; desc->sptes[i]; ++i)
+ ++count;
+ desc->sptes[i] = spte;
+ }
+ return count;
+}
+
+static void
+pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
+ int i, struct pte_list_desc *prev_desc)
+{
+ int j;
+
+ for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
+ ;
+ desc->sptes[i] = desc->sptes[j];
+ desc->sptes[j] = NULL;
+ if (j != 0)
+ return;
+ if (!prev_desc && !desc->more)
+ *pte_list = (unsigned long)desc->sptes[0];
+ else
+ if (prev_desc)
+ prev_desc->more = desc->more;
+ else
+ *pte_list = (unsigned long)desc->more | 1;
+ mmu_free_pte_list_desc(desc);
+}
+
+static void pte_list_remove(u64 *spte, unsigned long *pte_list)
+{
+ struct pte_list_desc *desc;
+ struct pte_list_desc *prev_desc;
+ int i;
+
+ if (!*pte_list) {
+ printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
+ BUG();
+ } else if (!(*pte_list & 1)) {
+ rmap_printk("pte_list_remove: %p 1->0\n", spte);
+ if ((u64 *)*pte_list != spte) {
+ printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
+ BUG();
+ }
+ *pte_list = 0;
+ } else {
+ rmap_printk("pte_list_remove: %p many->many\n", spte);
+ desc = (struct pte_list_desc *)(*pte_list & ~1ul);
+ prev_desc = NULL;
+ while (desc) {
+ for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
+ if (desc->sptes[i] == spte) {
+ pte_list_desc_remove_entry(pte_list,
+ desc, i,
+ prev_desc);
+ return;
+ }
+ prev_desc = desc;
+ desc = desc->more;
+ }
+ pr_err("pte_list_remove: %p many->many\n", spte);
+ BUG();
+ }
+}
+
+typedef void (*pte_list_walk_fn) (u64 *spte);
+static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
+{
+ struct pte_list_desc *desc;
+ int i;
+
+ if (!*pte_list)
+ return;
+
+ if (!(*pte_list & 1))
+ return fn((u64 *)*pte_list);
+
+ desc = (struct pte_list_desc *)(*pte_list & ~1ul);
+ while (desc) {
+ for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
+ fn(desc->sptes[i]);
+ desc = desc->more;
+ }
+}
+
+static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
+ struct kvm_memory_slot *slot)
+{
+ unsigned long idx;
+
+ idx = gfn_to_index(gfn, slot->base_gfn, level);
+ return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
+}
+
+/*
+ * Take gfn and return the reverse mapping to it.
+ */
+static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
+{
+ struct kvm_memory_slot *slot;
+
+ slot = gfn_to_memslot(kvm, gfn);
+ return __gfn_to_rmap(gfn, level, slot);
+}
+
+static bool rmap_can_add(struct kvm_vcpu *vcpu)
+{
+ struct kvm_mmu_memory_cache *cache;
+
+ cache = &vcpu->arch.mmu_pte_list_desc_cache;
+ return mmu_memory_cache_free_objects(cache);
+}
+
+static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
+{
+ struct kvm_mmu_page *sp;
+ unsigned long *rmapp;
+
+ sp = page_header(__pa(spte));
+ kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
+ rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
+ return pte_list_add(vcpu, spte, rmapp);
+}
+
+static void rmap_remove(struct kvm *kvm, u64 *spte)
+{
+ struct kvm_mmu_page *sp;
+ gfn_t gfn;
+ unsigned long *rmapp;
+
+ sp = page_header(__pa(spte));
+ gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
+ rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
+ pte_list_remove(spte, rmapp);
+}
+
+/*
+ * Used by the following functions to iterate through the sptes linked by a
+ * rmap. All fields are private and not assumed to be used outside.
+ */
+struct rmap_iterator {
+ /* private fields */
+ struct pte_list_desc *desc; /* holds the sptep if not NULL */
+ int pos; /* index of the sptep */
+};
+
+/*
+ * Iteration must be started by this function. This should also be used after
+ * removing/dropping sptes from the rmap link because in such cases the
+ * information in the itererator may not be valid.
+ *
+ * Returns sptep if found, NULL otherwise.
+ */
+static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
+{
+ if (!rmap)
+ return NULL;
+
+ if (!(rmap & 1)) {
+ iter->desc = NULL;
+ return (u64 *)rmap;
+ }
+
+ iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
+ iter->pos = 0;
+ return iter->desc->sptes[iter->pos];
+}
+
+/*
+ * Must be used with a valid iterator: e.g. after rmap_get_first().
+ *
+ * Returns sptep if found, NULL otherwise.
+ */
+static u64 *rmap_get_next(struct rmap_iterator *iter)
+{
+ if (iter->desc) {
+ if (iter->pos < PTE_LIST_EXT - 1) {
+ u64 *sptep;
+
+ ++iter->pos;
+ sptep = iter->desc->sptes[iter->pos];
+ if (sptep)
+ return sptep;
+ }
+
+ iter->desc = iter->desc->more;
+
+ if (iter->desc) {
+ iter->pos = 0;
+ /* desc->sptes[0] cannot be NULL */
+ return iter->desc->sptes[iter->pos];
+ }
+ }
+
+ return NULL;
+}
+
+static void drop_spte(struct kvm *kvm, u64 *sptep)
+{
+ if (mmu_spte_clear_track_bits(sptep))
+ rmap_remove(kvm, sptep);
+}
+
+
+static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
+{
+ if (is_large_pte(*sptep)) {
+ WARN_ON(page_header(__pa(sptep))->role.level ==
+ PT_PAGE_TABLE_LEVEL);
+ drop_spte(kvm, sptep);
+ --kvm->stat.lpages;
+ return true;
+ }
+
+ return false;
+}
+
+static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
+{
+ if (__drop_large_spte(vcpu->kvm, sptep))
+ kvm_flush_remote_tlbs(vcpu->kvm);
+}
+
+/*
+ * Write-protect on the specified @sptep, @pt_protect indicates whether
+ * spte write-protection is caused by protecting shadow page table.
+ *
+ * Note: write protection is difference between dirty logging and spte
+ * protection:
+ * - for dirty logging, the spte can be set to writable at anytime if
+ * its dirty bitmap is properly set.
+ * - for spte protection, the spte can be writable only after unsync-ing
+ * shadow page.
+ *
+ * Return true if tlb need be flushed.
+ */
+static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
+{
+ u64 spte = *sptep;
+
+ if (!is_writable_pte(spte) &&
+ !(pt_protect && spte_is_locklessly_modifiable(spte)))
+ return false;
+
+ rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
+
+ if (pt_protect)
+ spte &= ~SPTE_MMU_WRITEABLE;
+ spte = spte & ~PT_WRITABLE_MASK;
+
+ return mmu_spte_update(sptep, spte);
+}
+
+static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
+ bool pt_protect)
+{
+ u64 *sptep;
+ struct rmap_iterator iter;
+ bool flush = false;
+
+ for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
+ BUG_ON(!(*sptep & PT_PRESENT_MASK));
+
+ flush |= spte_write_protect(kvm, sptep, pt_protect);
+ sptep = rmap_get_next(&iter);
+ }
+
+ return flush;
+}
+
+static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
+{
+ u64 spte = *sptep;
+
+ rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
+
+ spte &= ~shadow_dirty_mask;
+
+ return mmu_spte_update(sptep, spte);
+}
+
+static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
+{
+ u64 *sptep;
+ struct rmap_iterator iter;
+ bool flush = false;
+
+ for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
+ BUG_ON(!(*sptep & PT_PRESENT_MASK));
+
+ flush |= spte_clear_dirty(kvm, sptep);
+ sptep = rmap_get_next(&iter);
+ }
+
+ return flush;
+}
+
+static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
+{
+ u64 spte = *sptep;
+
+ rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
+
+ spte |= shadow_dirty_mask;
+
+ return mmu_spte_update(sptep, spte);
+}
+
+static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
+{
+ u64 *sptep;
+ struct rmap_iterator iter;
+ bool flush = false;
+
+ for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
+ BUG_ON(!(*sptep & PT_PRESENT_MASK));
+
+ flush |= spte_set_dirty(kvm, sptep);
+ sptep = rmap_get_next(&iter);
+ }
+
+ return flush;
+}
+
+/**
+ * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
+ * @kvm: kvm instance
+ * @slot: slot to protect
+ * @gfn_offset: start of the BITS_PER_LONG pages we care about
+ * @mask: indicates which pages we should protect
+ *
+ * Used when we do not need to care about huge page mappings: e.g. during dirty
+ * logging we do not have any such mappings.
+ */
+static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
+ struct kvm_memory_slot *slot,
+ gfn_t gfn_offset, unsigned long mask)
+{
+ unsigned long *rmapp;
+
+ while (mask) {
+ rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
+ PT_PAGE_TABLE_LEVEL, slot);
+ __rmap_write_protect(kvm, rmapp, false);
+
+ /* clear the first set bit */
+ mask &= mask - 1;
+ }
+}
+
+/**
+ * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
+ * @kvm: kvm instance
+ * @slot: slot to clear D-bit
+ * @gfn_offset: start of the BITS_PER_LONG pages we care about
+ * @mask: indicates which pages we should clear D-bit
+ *
+ * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
+ */
+void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
+ struct kvm_memory_slot *slot,
+ gfn_t gfn_offset, unsigned long mask)
+{
+ unsigned long *rmapp;
+
+ while (mask) {
+ rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
+ PT_PAGE_TABLE_LEVEL, slot);
+ __rmap_clear_dirty(kvm, rmapp);
+
+ /* clear the first set bit */
+ mask &= mask - 1;
+ }
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
+
+/**
+ * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
+ * PT level pages.
+ *
+ * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
+ * enable dirty logging for them.
+ *
+ * Used when we do not need to care about huge page mappings: e.g. during dirty
+ * logging we do not have any such mappings.
+ */
+void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
+ struct kvm_memory_slot *slot,
+ gfn_t gfn_offset, unsigned long mask)
+{
+ if (kvm_x86_ops->enable_log_dirty_pt_masked)
+ kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
+ mask);
+ else
+ kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
+}
+
+static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
+{
+ struct kvm_memory_slot *slot;
+ unsigned long *rmapp;
+ int i;
+ bool write_protected = false;
+
+ slot = gfn_to_memslot(kvm, gfn);
+
+ for (i = PT_PAGE_TABLE_LEVEL;
+ i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
+ rmapp = __gfn_to_rmap(gfn, i, slot);
+ write_protected |= __rmap_write_protect(kvm, rmapp, true);
+ }
+
+ return write_protected;
+}
+
+static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
+ struct kvm_memory_slot *slot, gfn_t gfn, int level,
+ unsigned long data)
+{
+ u64 *sptep;
+ struct rmap_iterator iter;
+ int need_tlb_flush = 0;
+
+ while ((sptep = rmap_get_first(*rmapp, &iter))) {
+ BUG_ON(!(*sptep & PT_PRESENT_MASK));
+ rmap_printk("kvm_rmap_unmap_hva: spte %p %llx gfn %llx (%d)\n",
+ sptep, *sptep, gfn, level);
+
+ drop_spte(kvm, sptep);
+ need_tlb_flush = 1;
+ }
+
+ return need_tlb_flush;
+}
+
+static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
+ struct kvm_memory_slot *slot, gfn_t gfn, int level,
+ unsigned long data)
+{
+ u64 *sptep;
+ struct rmap_iterator iter;
+ int need_flush = 0;
+ u64 new_spte;
+ pte_t *ptep = (pte_t *)data;
+ pfn_t new_pfn;
+
+ WARN_ON(pte_huge(*ptep));
+ new_pfn = pte_pfn(*ptep);
+
+ for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
+ BUG_ON(!is_shadow_present_pte(*sptep));
+ rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
+ sptep, *sptep, gfn, level);
+
+ need_flush = 1;
+
+ if (pte_write(*ptep)) {
+ drop_spte(kvm, sptep);
+ sptep = rmap_get_first(*rmapp, &iter);
+ } else {
+ new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
+ new_spte |= (u64)new_pfn << PAGE_SHIFT;
+
+ new_spte &= ~PT_WRITABLE_MASK;
+ new_spte &= ~SPTE_HOST_WRITEABLE;
+ new_spte &= ~shadow_accessed_mask;
+
+ mmu_spte_clear_track_bits(sptep);
+ mmu_spte_set(sptep, new_spte);
+ sptep = rmap_get_next(&iter);
+ }
+ }
+
+ if (need_flush)
+ kvm_flush_remote_tlbs(kvm);
+
+ return 0;
+}
+
+static int kvm_handle_hva_range(struct kvm *kvm,
+ unsigned long start,
+ unsigned long end,
+ unsigned long data,
+ int (*handler)(struct kvm *kvm,
+ unsigned long *rmapp,
+ struct kvm_memory_slot *slot,
+ gfn_t gfn,
+ int level,
+ unsigned long data))
+{
+ int j;
+ int ret = 0;
+ struct kvm_memslots *slots;
+ struct kvm_memory_slot *memslot;
+
+ slots = kvm_memslots(kvm);
+
+ kvm_for_each_memslot(memslot, slots) {
+ unsigned long hva_start, hva_end;
+ gfn_t gfn_start, gfn_end;
+
+ hva_start = max(start, memslot->userspace_addr);
+ hva_end = min(end, memslot->userspace_addr +
+ (memslot->npages << PAGE_SHIFT));
+ if (hva_start >= hva_end)
+ continue;
+ /*
+ * {gfn(page) | page intersects with [hva_start, hva_end)} =
+ * {gfn_start, gfn_start+1, ..., gfn_end-1}.
+ */
+ gfn_start = hva_to_gfn_memslot(hva_start, memslot);
+ gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
+
+ for (j = PT_PAGE_TABLE_LEVEL;
+ j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
+ unsigned long idx, idx_end;
+ unsigned long *rmapp;
+ gfn_t gfn = gfn_start;
+
+ /*
+ * {idx(page_j) | page_j intersects with
+ * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
+ */
+ idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
+ idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
+
+ rmapp = __gfn_to_rmap(gfn_start, j, memslot);
+
+ for (; idx <= idx_end;
+ ++idx, gfn += (1UL << KVM_HPAGE_GFN_SHIFT(j)))
+ ret |= handler(kvm, rmapp++, memslot,
+ gfn, j, data);
+ }
+ }
+
+ return ret;
+}
+
+static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
+ unsigned long data,
+ int (*handler)(struct kvm *kvm, unsigned long *rmapp,
+ struct kvm_memory_slot *slot,
+ gfn_t gfn, int level,
+ unsigned long data))
+{
+ return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
+}
+
+int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
+{
+ return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
+}
+
+int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
+{
+ return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
+}
+
+void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
+{
+ kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
+}
+
+static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
+ struct kvm_memory_slot *slot, gfn_t gfn, int level,
+ unsigned long data)
+{
+ u64 *sptep;
+ struct rmap_iterator uninitialized_var(iter);
+ int young = 0;
+
+ BUG_ON(!shadow_accessed_mask);
+
+ for (sptep = rmap_get_first(*rmapp, &iter); sptep;
+ sptep = rmap_get_next(&iter)) {
+ BUG_ON(!is_shadow_present_pte(*sptep));
+
+ if (*sptep & shadow_accessed_mask) {
+ young = 1;
+ clear_bit((ffs(shadow_accessed_mask) - 1),
+ (unsigned long *)sptep);
+ }
+ }
+ trace_kvm_age_page(gfn, level, slot, young);
+ return young;
+}
+
+static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
+ struct kvm_memory_slot *slot, gfn_t gfn,
+ int level, unsigned long data)
+{
+ u64 *sptep;
+ struct rmap_iterator iter;
+ int young = 0;
+
+ /*
+ * If there's no access bit in the secondary pte set by the
+ * hardware it's up to gup-fast/gup to set the access bit in
+ * the primary pte or in the page structure.
+ */
+ if (!shadow_accessed_mask)
+ goto out;
+
+ for (sptep = rmap_get_first(*rmapp, &iter); sptep;
+ sptep = rmap_get_next(&iter)) {
+ BUG_ON(!is_shadow_present_pte(*sptep));
+
+ if (*sptep & shadow_accessed_mask) {
+ young = 1;
+ break;
+ }
+ }
+out:
+ return young;
+}
+
+#define RMAP_RECYCLE_THRESHOLD 1000
+
+static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
+{
+ unsigned long *rmapp;
+ struct kvm_mmu_page *sp;
+
+ sp = page_header(__pa(spte));
+
+ rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
+
+ kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
+ kvm_flush_remote_tlbs(vcpu->kvm);
+}
+
+int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
+{
+ /*
+ * In case of absence of EPT Access and Dirty Bits supports,
+ * emulate the accessed bit for EPT, by checking if this page has
+ * an EPT mapping, and clearing it if it does. On the next access,
+ * a new EPT mapping will be established.
+ * This has some overhead, but not as much as the cost of swapping
+ * out actively used pages or breaking up actively used hugepages.
+ */
+ if (!shadow_accessed_mask) {
+ /*
+ * We are holding the kvm->mmu_lock, and we are blowing up
+ * shadow PTEs. MMU notifier consumers need to be kept at bay.
+ * This is correct as long as we don't decouple the mmu_lock
+ * protected regions (like invalidate_range_start|end does).
+ */
+ kvm->mmu_notifier_seq++;
+ return kvm_handle_hva_range(kvm, start, end, 0,
+ kvm_unmap_rmapp);
+ }
+
+ return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
+}
+
+int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
+{
+ return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
+}
+
+#ifdef MMU_DEBUG
+static int is_empty_shadow_page(u64 *spt)
+{
+ u64 *pos;
+ u64 *end;
+
+ for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
+ if (is_shadow_present_pte(*pos)) {
+ printk(KERN_ERR "%s: %p %llx\n", __func__,
+ pos, *pos);
+ return 0;
+ }
+ return 1;
+}
+#endif
+
+/*
+ * This value is the sum of all of the kvm instances's
+ * kvm->arch.n_used_mmu_pages values. We need a global,
+ * aggregate version in order to make the slab shrinker
+ * faster
+ */
+static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
+{
+ kvm->arch.n_used_mmu_pages += nr;
+ percpu_counter_add(&kvm_total_used_mmu_pages, nr);
+}
+
+static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
+{
+ MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
+ hlist_del(&sp->hash_link);
+ list_del(&sp->link);
+ free_page((unsigned long)sp->spt);
+ if (!sp->role.direct)
+ free_page((unsigned long)sp->gfns);
+ kmem_cache_free(mmu_page_header_cache, sp);
+}
+
+static unsigned kvm_page_table_hashfn(gfn_t gfn)
+{
+ return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
+}
+
+static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
+ struct kvm_mmu_page *sp, u64 *parent_pte)
+{
+ if (!parent_pte)
+ return;
+
+ pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
+}
+
+static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
+ u64 *parent_pte)
+{
+ pte_list_remove(parent_pte, &sp->parent_ptes);
+}
+
+static void drop_parent_pte(struct kvm_mmu_page *sp,
+ u64 *parent_pte)
+{
+ mmu_page_remove_parent_pte(sp, parent_pte);
+ mmu_spte_clear_no_track(parent_pte);
+}
+
+static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
+ u64 *parent_pte, int direct)
+{
+ struct kvm_mmu_page *sp;
+
+ sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
+ sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
+ if (!direct)
+ sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
+ set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
+
+ /*
+ * The active_mmu_pages list is the FIFO list, do not move the
+ * page until it is zapped. kvm_zap_obsolete_pages depends on
+ * this feature. See the comments in kvm_zap_obsolete_pages().
+ */
+ list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
+ sp->parent_ptes = 0;
+ mmu_page_add_parent_pte(vcpu, sp, parent_pte);
+ kvm_mod_used_mmu_pages(vcpu->kvm, +1);
+ return sp;
+}
+
+static void mark_unsync(u64 *spte);
+static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
+{
+ pte_list_walk(&sp->parent_ptes, mark_unsync);
+}
+
+static void mark_unsync(u64 *spte)
+{
+ struct kvm_mmu_page *sp;
+ unsigned int index;
+
+ sp = page_header(__pa(spte));
+ index = spte - sp->spt;
+ if (__test_and_set_bit(index, sp->unsync_child_bitmap))
+ return;
+ if (sp->unsync_children++)
+ return;
+ kvm_mmu_mark_parents_unsync(sp);
+}
+
+static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
+ struct kvm_mmu_page *sp)
+{
+ return 1;
+}
+
+static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
+{
+}
+
+static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
+ struct kvm_mmu_page *sp, u64 *spte,
+ const void *pte)
+{
+ WARN_ON(1);
+}
+
+#define KVM_PAGE_ARRAY_NR 16
+
+struct kvm_mmu_pages {
+ struct mmu_page_and_offset {
+ struct kvm_mmu_page *sp;
+ unsigned int idx;
+ } page[KVM_PAGE_ARRAY_NR];
+ unsigned int nr;
+};
+
+static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
+ int idx)
+{
+ int i;
+
+ if (sp->unsync)
+ for (i=0; i < pvec->nr; i++)
+ if (pvec->page[i].sp == sp)
+ return 0;
+
+ pvec->page[pvec->nr].sp = sp;
+ pvec->page[pvec->nr].idx = idx;
+ pvec->nr++;
+ return (pvec->nr == KVM_PAGE_ARRAY_NR);
+}
+
+static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
+ struct kvm_mmu_pages *pvec)
+{
+ int i, ret, nr_unsync_leaf = 0;
+
+ for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
+ struct kvm_mmu_page *child;
+ u64 ent = sp->spt[i];
+
+ if (!is_shadow_present_pte(ent) || is_large_pte(ent))
+ goto clear_child_bitmap;
+
+ child = page_header(ent & PT64_BASE_ADDR_MASK);
+
+ if (child->unsync_children) {
+ if (mmu_pages_add(pvec, child, i))
+ return -ENOSPC;
+
+ ret = __mmu_unsync_walk(child, pvec);
+ if (!ret)
+ goto clear_child_bitmap;
+ else if (ret > 0)
+ nr_unsync_leaf += ret;
+ else
+ return ret;
+ } else if (child->unsync) {
+ nr_unsync_leaf++;
+ if (mmu_pages_add(pvec, child, i))
+ return -ENOSPC;
+ } else
+ goto clear_child_bitmap;
+
+ continue;
+
+clear_child_bitmap:
+ __clear_bit(i, sp->unsync_child_bitmap);
+ sp->unsync_children--;
+ WARN_ON((int)sp->unsync_children < 0);
+ }
+
+
+ return nr_unsync_leaf;
+}
+
+static int mmu_unsync_walk(struct kvm_mmu_page *sp,
+ struct kvm_mmu_pages *pvec)
+{
+ if (!sp->unsync_children)
+ return 0;
+
+ mmu_pages_add(pvec, sp, 0);
+ return __mmu_unsync_walk(sp, pvec);
+}
+
+static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
+{
+ WARN_ON(!sp->unsync);
+ trace_kvm_mmu_sync_page(sp);
+ sp->unsync = 0;
+ --kvm->stat.mmu_unsync;
+}
+
+static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
+ struct list_head *invalid_list);
+static void kvm_mmu_commit_zap_page(struct kvm *kvm,
+ struct list_head *invalid_list);
+
+/*
+ * NOTE: we should pay more attention on the zapped-obsolete page
+ * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
+ * since it has been deleted from active_mmu_pages but still can be found
+ * at hast list.
+ *
+ * for_each_gfn_indirect_valid_sp has skipped that kind of page and
+ * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
+ * all the obsolete pages.
+ */
+#define for_each_gfn_sp(_kvm, _sp, _gfn) \
+ hlist_for_each_entry(_sp, \
+ &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
+ if ((_sp)->gfn != (_gfn)) {} else
+
+#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
+ for_each_gfn_sp(_kvm, _sp, _gfn) \
+ if ((_sp)->role.direct || (_sp)->role.invalid) {} else
+
+/* @sp->gfn should be write-protected at the call site */
+static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
+ struct list_head *invalid_list, bool clear_unsync)
+{
+ if (sp->role.cr4_pae != !!is_pae(vcpu)) {
+ kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
+ return 1;
+ }
+
+ if (clear_unsync)
+ kvm_unlink_unsync_page(vcpu->kvm, sp);
+
+ if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
+ kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
+ return 1;
+ }
+
+ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+ return 0;
+}
+
+static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
+ struct kvm_mmu_page *sp)
+{
+ LIST_HEAD(invalid_list);
+ int ret;
+
+ ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
+ if (ret)
+ kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
+
+ return ret;
+}
+
+#ifdef CONFIG_KVM_MMU_AUDIT
+#include "mmu_audit.c"
+#else
+static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
+static void mmu_audit_disable(void) { }
+#endif
+
+static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
+ struct list_head *invalid_list)
+{
+ return __kvm_sync_page(vcpu, sp, invalid_list, true);
+}
+
+/* @gfn should be write-protected at the call site */
+static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
+{
+ struct kvm_mmu_page *s;
+ LIST_HEAD(invalid_list);
+ bool flush = false;
+
+ for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
+ if (!s->unsync)
+ continue;
+
+ WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
+ kvm_unlink_unsync_page(vcpu->kvm, s);
+ if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
+ (vcpu->arch.mmu.sync_page(vcpu, s))) {
+ kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
+ continue;
+ }
+ flush = true;
+ }
+
+ kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
+ if (flush)
+ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+}
+
+struct mmu_page_path {
+ struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
+ unsigned int idx[PT64_ROOT_LEVEL-1];
+};
+
+#define for_each_sp(pvec, sp, parents, i) \
+ for (i = mmu_pages_next(&pvec, &parents, -1), \
+ sp = pvec.page[i].sp; \
+ i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
+ i = mmu_pages_next(&pvec, &parents, i))
+
+static int mmu_pages_next(struct kvm_mmu_pages *pvec,
+ struct mmu_page_path *parents,
+ int i)
+{
+ int n;
+
+ for (n = i+1; n < pvec->nr; n++) {
+ struct kvm_mmu_page *sp = pvec->page[n].sp;
+
+ if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
+ parents->idx[0] = pvec->page[n].idx;
+ return n;
+ }
+
+ parents->parent[sp->role.level-2] = sp;
+ parents->idx[sp->role.level-1] = pvec->page[n].idx;
+ }
+
+ return n;
+}
+
+static void mmu_pages_clear_parents(struct mmu_page_path *parents)
+{
+ struct kvm_mmu_page *sp;
+ unsigned int level = 0;
+
+ do {
+ unsigned int idx = parents->idx[level];
+
+ sp = parents->parent[level];
+ if (!sp)
+ return;
+
+ --sp->unsync_children;
+ WARN_ON((int)sp->unsync_children < 0);
+ __clear_bit(idx, sp->unsync_child_bitmap);
+ level++;
+ } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
+}
+
+static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
+ struct mmu_page_path *parents,
+ struct kvm_mmu_pages *pvec)
+{
+ parents->parent[parent->role.level-1] = NULL;
+ pvec->nr = 0;
+}
+
+static void mmu_sync_children(struct kvm_vcpu *vcpu,
+ struct kvm_mmu_page *parent)
+{
+ int i;
+ struct kvm_mmu_page *sp;
+ struct mmu_page_path parents;
+ struct kvm_mmu_pages pages;
+ LIST_HEAD(invalid_list);
+
+ kvm_mmu_pages_init(parent, &parents, &pages);
+ while (mmu_unsync_walk(parent, &pages)) {
+ bool protected = false;
+
+ for_each_sp(pages, sp, parents, i)
+ protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
+
+ if (protected)
+ kvm_flush_remote_tlbs(vcpu->kvm);
+
+ for_each_sp(pages, sp, parents, i) {
+ kvm_sync_page(vcpu, sp, &invalid_list);
+ mmu_pages_clear_parents(&parents);
+ }
+ kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
+ cond_resched_lock(&vcpu->kvm->mmu_lock);
+ kvm_mmu_pages_init(parent, &parents, &pages);
+ }
+}
+
+static void init_shadow_page_table(struct kvm_mmu_page *sp)
+{
+ int i;
+
+ for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
+ sp->spt[i] = 0ull;
+}
+
+static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
+{
+ sp->write_flooding_count = 0;
+}
+
+static void clear_sp_write_flooding_count(u64 *spte)
+{
+ struct kvm_mmu_page *sp = page_header(__pa(spte));
+
+ __clear_sp_write_flooding_count(sp);
+}
+
+static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
+{
+ return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
+}
+
+static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
+ gfn_t gfn,
+ gva_t gaddr,
+ unsigned level,
+ int direct,
+ unsigned access,
+ u64 *parent_pte)
+{
+ union kvm_mmu_page_role role;
+ unsigned quadrant;
+ struct kvm_mmu_page *sp;
+ bool need_sync = false;
+
+ role = vcpu->arch.mmu.base_role;
+ role.level = level;
+ role.direct = direct;
+ if (role.direct)
+ role.cr4_pae = 0;
+ role.access = access;
+ if (!vcpu->arch.mmu.direct_map
+ && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
+ quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
+ quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
+ role.quadrant = quadrant;
+ }
+ for_each_gfn_sp(vcpu->kvm, sp, gfn) {
+ if (is_obsolete_sp(vcpu->kvm, sp))
+ continue;
+
+ if (!need_sync && sp->unsync)
+ need_sync = true;
+
+ if (sp->role.word != role.word)
+ continue;
+
+ if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
+ break;
+
+ mmu_page_add_parent_pte(vcpu, sp, parent_pte);
+ if (sp->unsync_children) {
+ kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
+ kvm_mmu_mark_parents_unsync(sp);
+ } else if (sp->unsync)
+ kvm_mmu_mark_parents_unsync(sp);
+
+ __clear_sp_write_flooding_count(sp);
+ trace_kvm_mmu_get_page(sp, false);
+ return sp;
+ }
+ ++vcpu->kvm->stat.mmu_cache_miss;
+ sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
+ if (!sp)
+ return sp;
+ sp->gfn = gfn;
+ sp->role = role;
+ hlist_add_head(&sp->hash_link,
+ &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
+ if (!direct) {
+ if (rmap_write_protect(vcpu->kvm, gfn))
+ kvm_flush_remote_tlbs(vcpu->kvm);
+ if (level > PT_PAGE_TABLE_LEVEL && need_sync)
+ kvm_sync_pages(vcpu, gfn);
+
+ account_shadowed(vcpu->kvm, gfn);
+ }
+ sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
+ init_shadow_page_table(sp);
+ trace_kvm_mmu_get_page(sp, true);
+ return sp;
+}
+
+static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
+ struct kvm_vcpu *vcpu, u64 addr)
+{
+ iterator->addr = addr;
+ iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
+ iterator->level = vcpu->arch.mmu.shadow_root_level;
+
+ if (iterator->level == PT64_ROOT_LEVEL &&
+ vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
+ !vcpu->arch.mmu.direct_map)
+ --iterator->level;
+
+ if (iterator->level == PT32E_ROOT_LEVEL) {
+ iterator->shadow_addr
+ = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
+ iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
+ --iterator->level;
+ if (!iterator->shadow_addr)
+ iterator->level = 0;
+ }
+}
+
+static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
+{
+ if (iterator->level < PT_PAGE_TABLE_LEVEL)
+ return false;
+
+ iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
+ iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
+ return true;
+}
+
+static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
+ u64 spte)
+{
+ if (is_last_spte(spte, iterator->level)) {
+ iterator->level = 0;
+ return;
+ }
+
+ iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
+ --iterator->level;
+}
+
+static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
+{
+ return __shadow_walk_next(iterator, *iterator->sptep);
+}
+
+static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
+{
+ u64 spte;
+
+ BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
+ VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
+
+ spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
+ shadow_user_mask | shadow_x_mask;
+
+ if (accessed)
+ spte |= shadow_accessed_mask;
+
+ mmu_spte_set(sptep, spte);
+}
+
+static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
+ unsigned direct_access)
+{
+ if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
+ struct kvm_mmu_page *child;
+
+ /*
+ * For the direct sp, if the guest pte's dirty bit
+ * changed form clean to dirty, it will corrupt the
+ * sp's access: allow writable in the read-only sp,
+ * so we should update the spte at this point to get
+ * a new sp with the correct access.
+ */
+ child = page_header(*sptep & PT64_BASE_ADDR_MASK);
+ if (child->role.access == direct_access)
+ return;
+
+ drop_parent_pte(child, sptep);
+ kvm_flush_remote_tlbs(vcpu->kvm);
+ }
+}
+
+static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
+ u64 *spte)
+{
+ u64 pte;
+ struct kvm_mmu_page *child;
+
+ pte = *spte;
+ if (is_shadow_present_pte(pte)) {
+ if (is_last_spte(pte, sp->role.level)) {
+ drop_spte(kvm, spte);
+ if (is_large_pte(pte))
+ --kvm->stat.lpages;
+ } else {
+ child = page_header(pte & PT64_BASE_ADDR_MASK);
+ drop_parent_pte(child, spte);
+ }
+ return true;
+ }
+
+ if (is_mmio_spte(pte))
+ mmu_spte_clear_no_track(spte);
+
+ return false;
+}
+
+static void kvm_mmu_page_unlink_children(struct kvm *kvm,
+ struct kvm_mmu_page *sp)
+{
+ unsigned i;
+
+ for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
+ mmu_page_zap_pte(kvm, sp, sp->spt + i);
+}
+
+static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
+{
+ mmu_page_remove_parent_pte(sp, parent_pte);
+}
+
+static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
+{
+ u64 *sptep;
+ struct rmap_iterator iter;
+
+ while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
+ drop_parent_pte(sp, sptep);
+}
+
+static int mmu_zap_unsync_children(struct kvm *kvm,
+ struct kvm_mmu_page *parent,
+ struct list_head *invalid_list)
+{
+ int i, zapped = 0;
+ struct mmu_page_path parents;
+ struct kvm_mmu_pages pages;
+
+ if (parent->role.level == PT_PAGE_TABLE_LEVEL)
+ return 0;
+
+ kvm_mmu_pages_init(parent, &parents, &pages);
+ while (mmu_unsync_walk(parent, &pages)) {
+ struct kvm_mmu_page *sp;
+
+ for_each_sp(pages, sp, parents, i) {
+ kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
+ mmu_pages_clear_parents(&parents);
+ zapped++;
+ }
+ kvm_mmu_pages_init(parent, &parents, &pages);
+ }
+
+ return zapped;
+}
+
+static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
+ struct list_head *invalid_list)
+{
+ int ret;
+
+ trace_kvm_mmu_prepare_zap_page(sp);
+ ++kvm->stat.mmu_shadow_zapped;
+ ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
+ kvm_mmu_page_unlink_children(kvm, sp);
+ kvm_mmu_unlink_parents(kvm, sp);
+
+ if (!sp->role.invalid && !sp->role.direct)
+ unaccount_shadowed(kvm, sp->gfn);
+
+ if (sp->unsync)
+ kvm_unlink_unsync_page(kvm, sp);
+ if (!sp->root_count) {
+ /* Count self */
+ ret++;
+ list_move(&sp->link, invalid_list);
+ kvm_mod_used_mmu_pages(kvm, -1);
+ } else {
+ list_move(&sp->link, &kvm->arch.active_mmu_pages);
+
+ /*
+ * The obsolete pages can not be used on any vcpus.
+ * See the comments in kvm_mmu_invalidate_zap_all_pages().
+ */
+ if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
+ kvm_reload_remote_mmus(kvm);
+ }
+
+ sp->role.invalid = 1;
+ return ret;
+}
+
+static void kvm_mmu_commit_zap_page(struct kvm *kvm,
+ struct list_head *invalid_list)
+{
+ struct kvm_mmu_page *sp, *nsp;
+
+ if (list_empty(invalid_list))
+ return;
+
+ /*
+ * wmb: make sure everyone sees our modifications to the page tables
+ * rmb: make sure we see changes to vcpu->mode
+ */
+ smp_mb();
+
+ /*
+ * Wait for all vcpus to exit guest mode and/or lockless shadow
+ * page table walks.
+ */
+ kvm_flush_remote_tlbs(kvm);
+
+ list_for_each_entry_safe(sp, nsp, invalid_list, link) {
+ WARN_ON(!sp->role.invalid || sp->root_count);
+ kvm_mmu_free_page(sp);
+ }
+}
+
+static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
+ struct list_head *invalid_list)
+{
+ struct kvm_mmu_page *sp;
+
+ if (list_empty(&kvm->arch.active_mmu_pages))
+ return false;
+
+ sp = list_entry(kvm->arch.active_mmu_pages.prev,
+ struct kvm_mmu_page, link);
+ kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
+
+ return true;
+}
+
+/*
+ * Changing the number of mmu pages allocated to the vm
+ * Note: if goal_nr_mmu_pages is too small, you will get dead lock
+ */
+void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
+{
+ LIST_HEAD(invalid_list);
+
+ spin_lock(&kvm->mmu_lock);
+
+ if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
+ /* Need to free some mmu pages to achieve the goal. */
+ while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
+ if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
+ break;
+
+ kvm_mmu_commit_zap_page(kvm, &invalid_list);
+ goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
+ }
+
+ kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
+
+ spin_unlock(&kvm->mmu_lock);
+}
+
+int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
+{
+ struct kvm_mmu_page *sp;
+ LIST_HEAD(invalid_list);
+ int r;
+
+ pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
+ r = 0;
+ spin_lock(&kvm->mmu_lock);
+ for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
+ pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
+ sp->role.word);
+ r = 1;
+ kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
+ }
+ kvm_mmu_commit_zap_page(kvm, &invalid_list);
+ spin_unlock(&kvm->mmu_lock);
+
+ return r;
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
+
+/*
+ * The function is based on mtrr_type_lookup() in
+ * arch/x86/kernel/cpu/mtrr/generic.c
+ */
+static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
+ u64 start, u64 end)
+{
+ int i;
+ u64 base, mask;
+ u8 prev_match, curr_match;
+ int num_var_ranges = KVM_NR_VAR_MTRR;
+
+ if (!mtrr_state->enabled)
+ return 0xFF;
+
+ /* Make end inclusive end, instead of exclusive */
+ end--;
+
+ /* Look in fixed ranges. Just return the type as per start */
+ if (mtrr_state->have_fixed && (start < 0x100000)) {
+ int idx;
+
+ if (start < 0x80000) {
+ idx = 0;
+ idx += (start >> 16);
+ return mtrr_state->fixed_ranges[idx];
+ } else if (start < 0xC0000) {
+ idx = 1 * 8;
+ idx += ((start - 0x80000) >> 14);
+ return mtrr_state->fixed_ranges[idx];
+ } else if (start < 0x1000000) {
+ idx = 3 * 8;
+ idx += ((start - 0xC0000) >> 12);
+ return mtrr_state->fixed_ranges[idx];
+ }
+ }
+
+ /*
+ * Look in variable ranges
+ * Look of multiple ranges matching this address and pick type
+ * as per MTRR precedence
+ */
+ if (!(mtrr_state->enabled & 2))
+ return mtrr_state->def_type;
+
+ prev_match = 0xFF;
+ for (i = 0; i < num_var_ranges; ++i) {
+ unsigned short start_state, end_state;
+
+ if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
+ continue;
+
+ base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
+ (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
+ mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
+ (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
+
+ start_state = ((start & mask) == (base & mask));
+ end_state = ((end & mask) == (base & mask));
+ if (start_state != end_state)
+ return 0xFE;
+
+ if ((start & mask) != (base & mask))
+ continue;
+
+ curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
+ if (prev_match == 0xFF) {
+ prev_match = curr_match;
+ continue;
+ }
+
+ if (prev_match == MTRR_TYPE_UNCACHABLE ||
+ curr_match == MTRR_TYPE_UNCACHABLE)
+ return MTRR_TYPE_UNCACHABLE;
+
+ if ((prev_match == MTRR_TYPE_WRBACK &&
+ curr_match == MTRR_TYPE_WRTHROUGH) ||
+ (prev_match == MTRR_TYPE_WRTHROUGH &&
+ curr_match == MTRR_TYPE_WRBACK)) {
+ prev_match = MTRR_TYPE_WRTHROUGH;
+ curr_match = MTRR_TYPE_WRTHROUGH;
+ }
+
+ if (prev_match != curr_match)
+ return MTRR_TYPE_UNCACHABLE;
+ }
+
+ if (prev_match != 0xFF)
+ return prev_match;
+
+ return mtrr_state->def_type;
+}
+
+u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
+{
+ u8 mtrr;
+
+ mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
+ (gfn << PAGE_SHIFT) + PAGE_SIZE);
+ if (mtrr == 0xfe || mtrr == 0xff)
+ mtrr = MTRR_TYPE_WRBACK;
+ return mtrr;
+}
+EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
+
+static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
+{
+ trace_kvm_mmu_unsync_page(sp);
+ ++vcpu->kvm->stat.mmu_unsync;
+ sp->unsync = 1;
+
+ kvm_mmu_mark_parents_unsync(sp);
+}
+
+static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
+{
+ struct kvm_mmu_page *s;
+
+ for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
+ if (s->unsync)
+ continue;
+ WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
+ __kvm_unsync_page(vcpu, s);
+ }
+}
+
+static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
+ bool can_unsync)
+{
+ struct kvm_mmu_page *s;
+ bool need_unsync = false;
+
+ for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
+ if (!can_unsync)
+ return 1;
+
+ if (s->role.level != PT_PAGE_TABLE_LEVEL)
+ return 1;
+
+ if (!s->unsync)
+ need_unsync = true;
+ }
+ if (need_unsync)
+ kvm_unsync_pages(vcpu, gfn);
+ return 0;
+}
+
+static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
+ unsigned pte_access, int level,
+ gfn_t gfn, pfn_t pfn, bool speculative,
+ bool can_unsync, bool host_writable)
+{
+ u64 spte;
+ int ret = 0;
+
+ if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
+ return 0;
+
+ spte = PT_PRESENT_MASK;
+ if (!speculative)
+ spte |= shadow_accessed_mask;
+
+ if (pte_access & ACC_EXEC_MASK)
+ spte |= shadow_x_mask;
+ else
+ spte |= shadow_nx_mask;
+
+ if (pte_access & ACC_USER_MASK)
+ spte |= shadow_user_mask;
+
+ if (level > PT_PAGE_TABLE_LEVEL)
+ spte |= PT_PAGE_SIZE_MASK;
+ if (tdp_enabled)
+ spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
+ kvm_is_reserved_pfn(pfn));
+
+ if (host_writable)
+ spte |= SPTE_HOST_WRITEABLE;
+ else
+ pte_access &= ~ACC_WRITE_MASK;
+
+ spte |= (u64)pfn << PAGE_SHIFT;
+
+ if (pte_access & ACC_WRITE_MASK) {
+
+ /*
+ * Other vcpu creates new sp in the window between
+ * mapping_level() and acquiring mmu-lock. We can
+ * allow guest to retry the access, the mapping can
+ * be fixed if guest refault.
+ */
+ if (level > PT_PAGE_TABLE_LEVEL &&
+ has_wrprotected_page(vcpu->kvm, gfn, level))
+ goto done;
+
+ spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
+
+ /*
+ * Optimization: for pte sync, if spte was writable the hash
+ * lookup is unnecessary (and expensive). Write protection
+ * is responsibility of mmu_get_page / kvm_sync_page.
+ * Same reasoning can be applied to dirty page accounting.
+ */
+ if (!can_unsync && is_writable_pte(*sptep))
+ goto set_pte;
+
+ if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
+ pgprintk("%s: found shadow page for %llx, marking ro\n",
+ __func__, gfn);
+ ret = 1;
+ pte_access &= ~ACC_WRITE_MASK;
+ spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
+ }
+ }
+
+ if (pte_access & ACC_WRITE_MASK) {
+ mark_page_dirty(vcpu->kvm, gfn);
+ spte |= shadow_dirty_mask;
+ }
+
+set_pte:
+ if (mmu_spte_update(sptep, spte))
+ kvm_flush_remote_tlbs(vcpu->kvm);
+done:
+ return ret;
+}
+
+static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
+ unsigned pte_access, int write_fault, int *emulate,
+ int level, gfn_t gfn, pfn_t pfn, bool speculative,
+ bool host_writable)
+{
+ int was_rmapped = 0;
+ int rmap_count;
+
+ pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
+ *sptep, write_fault, gfn);
+
+ if (is_rmap_spte(*sptep)) {
+ /*
+ * If we overwrite a PTE page pointer with a 2MB PMD, unlink
+ * the parent of the now unreachable PTE.
+ */
+ if (level > PT_PAGE_TABLE_LEVEL &&
+ !is_large_pte(*sptep)) {
+ struct kvm_mmu_page *child;
+ u64 pte = *sptep;
+
+ child = page_header(pte & PT64_BASE_ADDR_MASK);
+ drop_parent_pte(child, sptep);
+ kvm_flush_remote_tlbs(vcpu->kvm);
+ } else if (pfn != spte_to_pfn(*sptep)) {
+ pgprintk("hfn old %llx new %llx\n",
+ spte_to_pfn(*sptep), pfn);
+ drop_spte(vcpu->kvm, sptep);
+ kvm_flush_remote_tlbs(vcpu->kvm);
+ } else
+ was_rmapped = 1;
+ }
+
+ if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
+ true, host_writable)) {
+ if (write_fault)
+ *emulate = 1;
+ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+ }
+
+ if (unlikely(is_mmio_spte(*sptep) && emulate))
+ *emulate = 1;
+
+ pgprintk("%s: setting spte %llx\n", __func__, *sptep);
+ pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
+ is_large_pte(*sptep)? "2MB" : "4kB",
+ *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
+ *sptep, sptep);
+ if (!was_rmapped && is_large_pte(*sptep))
+ ++vcpu->kvm->stat.lpages;
+
+ if (is_shadow_present_pte(*sptep)) {
+ if (!was_rmapped) {
+ rmap_count = rmap_add(vcpu, sptep, gfn);
+ if (rmap_count > RMAP_RECYCLE_THRESHOLD)
+ rmap_recycle(vcpu, sptep, gfn);
+ }
+ }
+
+ kvm_release_pfn_clean(pfn);
+}
+
+static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
+ bool no_dirty_log)
+{
+ struct kvm_memory_slot *slot;
+
+ slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
+ if (!slot)
+ return KVM_PFN_ERR_FAULT;
+
+ return gfn_to_pfn_memslot_atomic(slot, gfn);
+}
+
+static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
+ struct kvm_mmu_page *sp,
+ u64 *start, u64 *end)
+{
+ struct page *pages[PTE_PREFETCH_NUM];
+ unsigned access = sp->role.access;
+ int i, ret;
+ gfn_t gfn;
+
+ gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
+ if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
+ return -1;
+
+ ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
+ if (ret <= 0)
+ return -1;
+
+ for (i = 0; i < ret; i++, gfn++, start++)
+ mmu_set_spte(vcpu, start, access, 0, NULL,
+ sp->role.level, gfn, page_to_pfn(pages[i]),
+ true, true);
+
+ return 0;
+}
+
+static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
+ struct kvm_mmu_page *sp, u64 *sptep)
+{
+ u64 *spte, *start = NULL;
+ int i;
+
+ WARN_ON(!sp->role.direct);
+
+ i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
+ spte = sp->spt + i;
+
+ for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
+ if (is_shadow_present_pte(*spte) || spte == sptep) {
+ if (!start)
+ continue;
+ if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
+ break;
+ start = NULL;
+ } else if (!start)
+ start = spte;
+ }
+}
+
+static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
+{
+ struct kvm_mmu_page *sp;
+
+ /*
+ * Since it's no accessed bit on EPT, it's no way to
+ * distinguish between actually accessed translations
+ * and prefetched, so disable pte prefetch if EPT is
+ * enabled.
+ */
+ if (!shadow_accessed_mask)
+ return;
+
+ sp = page_header(__pa(sptep));
+ if (sp->role.level > PT_PAGE_TABLE_LEVEL)
+ return;
+
+ __direct_pte_prefetch(vcpu, sp, sptep);
+}
+
+static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
+ int map_writable, int level, gfn_t gfn, pfn_t pfn,
+ bool prefault)
+{
+ struct kvm_shadow_walk_iterator iterator;
+ struct kvm_mmu_page *sp;
+ int emulate = 0;
+ gfn_t pseudo_gfn;
+
+ if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
+ return 0;
+
+ for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
+ if (iterator.level == level) {
+ mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
+ write, &emulate, level, gfn, pfn,
+ prefault, map_writable);
+ direct_pte_prefetch(vcpu, iterator.sptep);
+ ++vcpu->stat.pf_fixed;
+ break;
+ }
+
+ drop_large_spte(vcpu, iterator.sptep);
+ if (!is_shadow_present_pte(*iterator.sptep)) {
+ u64 base_addr = iterator.addr;
+
+ base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
+ pseudo_gfn = base_addr >> PAGE_SHIFT;
+ sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
+ iterator.level - 1,
+ 1, ACC_ALL, iterator.sptep);
+
+ link_shadow_page(iterator.sptep, sp, true);
+ }
+ }
+ return emulate;
+}
+
+static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
+{
+ siginfo_t info;
+
+ info.si_signo = SIGBUS;
+ info.si_errno = 0;
+ info.si_code = BUS_MCEERR_AR;
+ info.si_addr = (void __user *)address;
+ info.si_addr_lsb = PAGE_SHIFT;
+
+ send_sig_info(SIGBUS, &info, tsk);
+}
+
+static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
+{
+ /*
+ * Do not cache the mmio info caused by writing the readonly gfn
+ * into the spte otherwise read access on readonly gfn also can
+ * caused mmio page fault and treat it as mmio access.
+ * Return 1 to tell kvm to emulate it.
+ */
+ if (pfn == KVM_PFN_ERR_RO_FAULT)
+ return 1;
+
+ if (pfn == KVM_PFN_ERR_HWPOISON) {
+ kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
+ return 0;
+ }
+
+ return -EFAULT;
+}
+
+static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
+ gfn_t *gfnp, pfn_t *pfnp, int *levelp)
+{
+ pfn_t pfn = *pfnp;
+ gfn_t gfn = *gfnp;
+ int level = *levelp;
+
+ /*
+ * Check if it's a transparent hugepage. If this would be an
+ * hugetlbfs page, level wouldn't be set to
+ * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
+ * here.
+ */
+ if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
+ level == PT_PAGE_TABLE_LEVEL &&
+ PageTransCompound(pfn_to_page(pfn)) &&
+ !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
+ unsigned long mask;
+ /*
+ * mmu_notifier_retry was successful and we hold the
+ * mmu_lock here, so the pmd can't become splitting
+ * from under us, and in turn
+ * __split_huge_page_refcount() can't run from under
+ * us and we can safely transfer the refcount from
+ * PG_tail to PG_head as we switch the pfn to tail to
+ * head.
+ */
+ *levelp = level = PT_DIRECTORY_LEVEL;
+ mask = KVM_PAGES_PER_HPAGE(level) - 1;
+ VM_BUG_ON((gfn & mask) != (pfn & mask));
+ if (pfn & mask) {
+ gfn &= ~mask;
+ *gfnp = gfn;
+ kvm_release_pfn_clean(pfn);
+ pfn &= ~mask;
+ kvm_get_pfn(pfn);
+ *pfnp = pfn;
+ }
+ }
+}
+
+static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
+ pfn_t pfn, unsigned access, int *ret_val)
+{
+ bool ret = true;
+
+ /* The pfn is invalid, report the error! */
+ if (unlikely(is_error_pfn(pfn))) {
+ *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
+ goto exit;
+ }
+
+ if (unlikely(is_noslot_pfn(pfn)))
+ vcpu_cache_mmio_info(vcpu, gva, gfn, access);
+
+ ret = false;
+exit:
+ return ret;
+}
+
+static bool page_fault_can_be_fast(u32 error_code)
+{
+ /*
+ * Do not fix the mmio spte with invalid generation number which
+ * need to be updated by slow page fault path.
+ */
+ if (unlikely(error_code & PFERR_RSVD_MASK))
+ return false;
+
+ /*
+ * #PF can be fast only if the shadow page table is present and it
+ * is caused by write-protect, that means we just need change the
+ * W bit of the spte which can be done out of mmu-lock.
+ */
+ if (!(error_code & PFERR_PRESENT_MASK) ||
+ !(error_code & PFERR_WRITE_MASK))
+ return false;
+
+ return true;
+}
+
+static bool
+fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
+ u64 *sptep, u64 spte)
+{
+ gfn_t gfn;
+
+ WARN_ON(!sp->role.direct);
+
+ /*
+ * The gfn of direct spte is stable since it is calculated
+ * by sp->gfn.
+ */
+ gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
+
+ /*
+ * Theoretically we could also set dirty bit (and flush TLB) here in
+ * order to eliminate unnecessary PML logging. See comments in
+ * set_spte. But fast_page_fault is very unlikely to happen with PML
+ * enabled, so we do not do this. This might result in the same GPA
+ * to be logged in PML buffer again when the write really happens, and
+ * eventually to be called by mark_page_dirty twice. But it's also no
+ * harm. This also avoids the TLB flush needed after setting dirty bit
+ * so non-PML cases won't be impacted.
+ *
+ * Compare with set_spte where instead shadow_dirty_mask is set.
+ */
+ if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
+ mark_page_dirty(vcpu->kvm, gfn);
+
+ return true;
+}
+
+/*
+ * Return value:
+ * - true: let the vcpu to access on the same address again.
+ * - false: let the real page fault path to fix it.
+ */
+static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
+ u32 error_code)
+{
+ struct kvm_shadow_walk_iterator iterator;
+ struct kvm_mmu_page *sp;
+ bool ret = false;
+ u64 spte = 0ull;
+
+ if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
+ return false;
+
+ if (!page_fault_can_be_fast(error_code))
+ return false;
+
+ walk_shadow_page_lockless_begin(vcpu);
+ for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
+ if (!is_shadow_present_pte(spte) || iterator.level < level)
+ break;
+
+ /*
+ * If the mapping has been changed, let the vcpu fault on the
+ * same address again.
+ */
+ if (!is_rmap_spte(spte)) {
+ ret = true;
+ goto exit;
+ }
+
+ sp = page_header(__pa(iterator.sptep));
+ if (!is_last_spte(spte, sp->role.level))
+ goto exit;
+
+ /*
+ * Check if it is a spurious fault caused by TLB lazily flushed.
+ *
+ * Need not check the access of upper level table entries since
+ * they are always ACC_ALL.
+ */
+ if (is_writable_pte(spte)) {
+ ret = true;
+ goto exit;
+ }
+
+ /*
+ * Currently, to simplify the code, only the spte write-protected
+ * by dirty-log can be fast fixed.
+ */
+ if (!spte_is_locklessly_modifiable(spte))
+ goto exit;
+
+ /*
+ * Do not fix write-permission on the large spte since we only dirty
+ * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
+ * that means other pages are missed if its slot is dirty-logged.
+ *
+ * Instead, we let the slow page fault path create a normal spte to
+ * fix the access.
+ *
+ * See the comments in kvm_arch_commit_memory_region().
+ */
+ if (sp->role.level > PT_PAGE_TABLE_LEVEL)
+ goto exit;
+
+ /*
+ * Currently, fast page fault only works for direct mapping since
+ * the gfn is not stable for indirect shadow page.
+ * See Documentation/virtual/kvm/locking.txt to get more detail.
+ */
+ ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
+exit:
+ trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
+ spte, ret);
+ walk_shadow_page_lockless_end(vcpu);
+
+ return ret;
+}
+
+static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
+ gva_t gva, pfn_t *pfn, bool write, bool *writable);
+static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
+
+static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
+ gfn_t gfn, bool prefault)
+{
+ int r;
+ int level;
+ int force_pt_level;
+ pfn_t pfn;
+ unsigned long mmu_seq;
+ bool map_writable, write = error_code & PFERR_WRITE_MASK;
+
+ force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
+ if (likely(!force_pt_level)) {
+ level = mapping_level(vcpu, gfn);
+ /*
+ * This path builds a PAE pagetable - so we can map
+ * 2mb pages at maximum. Therefore check if the level
+ * is larger than that.
+ */
+ if (level > PT_DIRECTORY_LEVEL)
+ level = PT_DIRECTORY_LEVEL;
+
+ gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
+ } else
+ level = PT_PAGE_TABLE_LEVEL;
+
+ if (fast_page_fault(vcpu, v, level, error_code))
+ return 0;
+
+ mmu_seq = vcpu->kvm->mmu_notifier_seq;
+ smp_rmb();
+
+ if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
+ return 0;
+
+ if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
+ return r;
+
+ spin_lock(&vcpu->kvm->mmu_lock);
+ if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
+ goto out_unlock;
+ make_mmu_pages_available(vcpu);
+ if (likely(!force_pt_level))
+ transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
+ r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
+ prefault);
+ spin_unlock(&vcpu->kvm->mmu_lock);
+
+
+ return r;
+
+out_unlock:
+ spin_unlock(&vcpu->kvm->mmu_lock);
+ kvm_release_pfn_clean(pfn);
+ return 0;
+}
+
+
+static void mmu_free_roots(struct kvm_vcpu *vcpu)
+{
+ int i;
+ struct kvm_mmu_page *sp;
+ LIST_HEAD(invalid_list);
+
+ if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
+ return;
+
+ if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
+ (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
+ vcpu->arch.mmu.direct_map)) {
+ hpa_t root = vcpu->arch.mmu.root_hpa;
+
+ spin_lock(&vcpu->kvm->mmu_lock);
+ sp = page_header(root);
+ --sp->root_count;
+ if (!sp->root_count && sp->role.invalid) {
+ kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
+ kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
+ }
+ spin_unlock(&vcpu->kvm->mmu_lock);
+ vcpu->arch.mmu.root_hpa = INVALID_PAGE;
+ return;
+ }
+
+ spin_lock(&vcpu->kvm->mmu_lock);
+ for (i = 0; i < 4; ++i) {
+ hpa_t root = vcpu->arch.mmu.pae_root[i];
+
+ if (root) {
+ root &= PT64_BASE_ADDR_MASK;
+ sp = page_header(root);
+ --sp->root_count;
+ if (!sp->root_count && sp->role.invalid)
+ kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
+ &invalid_list);
+ }
+ vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
+ }
+ kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
+ spin_unlock(&vcpu->kvm->mmu_lock);
+ vcpu->arch.mmu.root_hpa = INVALID_PAGE;
+}
+
+static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
+{
+ int ret = 0;
+
+ if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
+ kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+ ret = 1;
+ }
+
+ return ret;
+}
+
+static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
+{
+ struct kvm_mmu_page *sp;
+ unsigned i;
+
+ if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
+ spin_lock(&vcpu->kvm->mmu_lock);
+ make_mmu_pages_available(vcpu);
+ sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
+ 1, ACC_ALL, NULL);
+ ++sp->root_count;
+ spin_unlock(&vcpu->kvm->mmu_lock);
+ vcpu->arch.mmu.root_hpa = __pa(sp->spt);
+ } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
+ for (i = 0; i < 4; ++i) {
+ hpa_t root = vcpu->arch.mmu.pae_root[i];
+
+ MMU_WARN_ON(VALID_PAGE(root));
+ spin_lock(&vcpu->kvm->mmu_lock);
+ make_mmu_pages_available(vcpu);
+ sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
+ i << 30,
+ PT32_ROOT_LEVEL, 1, ACC_ALL,
+ NULL);
+ root = __pa(sp->spt);
+ ++sp->root_count;
+ spin_unlock(&vcpu->kvm->mmu_lock);
+ vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
+ }
+ vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
+ } else
+ BUG();
+
+ return 0;
+}
+
+static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
+{
+ struct kvm_mmu_page *sp;
+ u64 pdptr, pm_mask;
+ gfn_t root_gfn;
+ int i;
+
+ root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
+
+ if (mmu_check_root(vcpu, root_gfn))
+ return 1;
+
+ /*
+ * Do we shadow a long mode page table? If so we need to
+ * write-protect the guests page table root.
+ */
+ if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
+ hpa_t root = vcpu->arch.mmu.root_hpa;
+
+ MMU_WARN_ON(VALID_PAGE(root));
+
+ spin_lock(&vcpu->kvm->mmu_lock);
+ make_mmu_pages_available(vcpu);
+ sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
+ 0, ACC_ALL, NULL);
+ root = __pa(sp->spt);
+ ++sp->root_count;
+ spin_unlock(&vcpu->kvm->mmu_lock);
+ vcpu->arch.mmu.root_hpa = root;
+ return 0;
+ }
+
+ /*
+ * We shadow a 32 bit page table. This may be a legacy 2-level
+ * or a PAE 3-level page table. In either case we need to be aware that
+ * the shadow page table may be a PAE or a long mode page table.
+ */
+ pm_mask = PT_PRESENT_MASK;
+ if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
+ pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
+
+ for (i = 0; i < 4; ++i) {
+ hpa_t root = vcpu->arch.mmu.pae_root[i];
+
+ MMU_WARN_ON(VALID_PAGE(root));
+ if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
+ pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
+ if (!is_present_gpte(pdptr)) {
+ vcpu->arch.mmu.pae_root[i] = 0;
+ continue;
+ }
+ root_gfn = pdptr >> PAGE_SHIFT;
+ if (mmu_check_root(vcpu, root_gfn))
+ return 1;
+ }
+ spin_lock(&vcpu->kvm->mmu_lock);
+ make_mmu_pages_available(vcpu);
+ sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
+ PT32_ROOT_LEVEL, 0,
+ ACC_ALL, NULL);
+ root = __pa(sp->spt);
+ ++sp->root_count;
+ spin_unlock(&vcpu->kvm->mmu_lock);
+
+ vcpu->arch.mmu.pae_root[i] = root | pm_mask;
+ }
+ vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
+
+ /*
+ * If we shadow a 32 bit page table with a long mode page
+ * table we enter this path.
+ */
+ if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
+ if (vcpu->arch.mmu.lm_root == NULL) {
+ /*
+ * The additional page necessary for this is only
+ * allocated on demand.
+ */
+
+ u64 *lm_root;
+
+ lm_root = (void*)get_zeroed_page(GFP_KERNEL);
+ if (lm_root == NULL)
+ return 1;
+
+ lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
+
+ vcpu->arch.mmu.lm_root = lm_root;
+ }
+
+ vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
+ }
+
+ return 0;
+}
+
+static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
+{
+ if (vcpu->arch.mmu.direct_map)
+ return mmu_alloc_direct_roots(vcpu);
+ else
+ return mmu_alloc_shadow_roots(vcpu);
+}
+
+static void mmu_sync_roots(struct kvm_vcpu *vcpu)
+{
+ int i;
+ struct kvm_mmu_page *sp;
+
+ if (vcpu->arch.mmu.direct_map)
+ return;
+
+ if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
+ return;
+
+ vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
+ kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
+ if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
+ hpa_t root = vcpu->arch.mmu.root_hpa;
+ sp = page_header(root);
+ mmu_sync_children(vcpu, sp);
+ kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
+ return;
+ }
+ for (i = 0; i < 4; ++i) {
+ hpa_t root = vcpu->arch.mmu.pae_root[i];
+
+ if (root && VALID_PAGE(root)) {
+ root &= PT64_BASE_ADDR_MASK;
+ sp = page_header(root);
+ mmu_sync_children(vcpu, sp);
+ }
+ }
+ kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
+}
+
+void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
+{
+ spin_lock(&vcpu->kvm->mmu_lock);
+ mmu_sync_roots(vcpu);
+ spin_unlock(&vcpu->kvm->mmu_lock);
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
+
+static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
+ u32 access, struct x86_exception *exception)
+{
+ if (exception)
+ exception->error_code = 0;
+ return vaddr;
+}
+
+static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
+ u32 access,
+ struct x86_exception *exception)
+{
+ if (exception)
+ exception->error_code = 0;
+ return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
+}
+
+static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
+{
+ if (direct)
+ return vcpu_match_mmio_gpa(vcpu, addr);
+
+ return vcpu_match_mmio_gva(vcpu, addr);
+}
+
+
+/*
+ * On direct hosts, the last spte is only allows two states
+ * for mmio page fault:
+ * - It is the mmio spte
+ * - It is zapped or it is being zapped.
+ *
+ * This function completely checks the spte when the last spte
+ * is not the mmio spte.
+ */
+static bool check_direct_spte_mmio_pf(u64 spte)
+{
+ return __check_direct_spte_mmio_pf(spte);
+}
+
+static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
+{
+ struct kvm_shadow_walk_iterator iterator;
+ u64 spte = 0ull;
+
+ if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
+ return spte;
+
+ walk_shadow_page_lockless_begin(vcpu);
+ for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
+ if (!is_shadow_present_pte(spte))
+ break;
+ walk_shadow_page_lockless_end(vcpu);
+
+ return spte;
+}
+
+int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
+{
+ u64 spte;
+
+ if (quickly_check_mmio_pf(vcpu, addr, direct))
+ return RET_MMIO_PF_EMULATE;
+
+ spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
+
+ if (is_mmio_spte(spte)) {
+ gfn_t gfn = get_mmio_spte_gfn(spte);
+ unsigned access = get_mmio_spte_access(spte);
+
+ if (!check_mmio_spte(vcpu->kvm, spte))
+ return RET_MMIO_PF_INVALID;
+
+ if (direct)
+ addr = 0;
+
+ trace_handle_mmio_page_fault(addr, gfn, access);
+ vcpu_cache_mmio_info(vcpu, addr, gfn, access);
+ return RET_MMIO_PF_EMULATE;
+ }
+
+ /*
+ * It's ok if the gva is remapped by other cpus on shadow guest,
+ * it's a BUG if the gfn is not a mmio page.
+ */
+ if (direct && !check_direct_spte_mmio_pf(spte))
+ return RET_MMIO_PF_BUG;
+
+ /*
+ * If the page table is zapped by other cpus, let CPU fault again on
+ * the address.
+ */
+ return RET_MMIO_PF_RETRY;
+}
+EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
+
+static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
+ u32 error_code, bool direct)
+{
+ int ret;
+
+ ret = handle_mmio_page_fault_common(vcpu, addr, direct);
+ WARN_ON(ret == RET_MMIO_PF_BUG);
+ return ret;
+}
+
+static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
+ u32 error_code, bool prefault)
+{
+ gfn_t gfn;
+ int r;
+
+ pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
+
+ if (unlikely(error_code & PFERR_RSVD_MASK)) {
+ r = handle_mmio_page_fault(vcpu, gva, error_code, true);
+
+ if (likely(r != RET_MMIO_PF_INVALID))
+ return r;
+ }
+
+ r = mmu_topup_memory_caches(vcpu);
+ if (r)
+ return r;
+
+ MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
+
+ gfn = gva >> PAGE_SHIFT;
+
+ return nonpaging_map(vcpu, gva & PAGE_MASK,
+ error_code, gfn, prefault);
+}
+
+static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
+{
+ struct kvm_arch_async_pf arch;
+
+ arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
+ arch.gfn = gfn;
+ arch.direct_map = vcpu->arch.mmu.direct_map;
+ arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
+
+ return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
+}
+
+static bool can_do_async_pf(struct kvm_vcpu *vcpu)
+{
+ if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
+ kvm_event_needs_reinjection(vcpu)))
+ return false;
+
+ return kvm_x86_ops->interrupt_allowed(vcpu);
+}
+
+static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
+ gva_t gva, pfn_t *pfn, bool write, bool *writable)
+{
+ bool async;
+
+ *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
+
+ if (!async)
+ return false; /* *pfn has correct page already */
+
+ if (!prefault && can_do_async_pf(vcpu)) {
+ trace_kvm_try_async_get_page(gva, gfn);
+ if (kvm_find_async_pf_gfn(vcpu, gfn)) {
+ trace_kvm_async_pf_doublefault(gva, gfn);
+ kvm_make_request(KVM_REQ_APF_HALT, vcpu);
+ return true;
+ } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
+ return true;
+ }
+
+ *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
+
+ return false;
+}
+
+static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
+ bool prefault)
+{
+ pfn_t pfn;
+ int r;
+ int level;
+ int force_pt_level;
+ gfn_t gfn = gpa >> PAGE_SHIFT;
+ unsigned long mmu_seq;
+ int write = error_code & PFERR_WRITE_MASK;
+ bool map_writable;
+
+ MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
+
+ if (unlikely(error_code & PFERR_RSVD_MASK)) {
+ r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
+
+ if (likely(r != RET_MMIO_PF_INVALID))
+ return r;
+ }
+
+ r = mmu_topup_memory_caches(vcpu);
+ if (r)
+ return r;
+
+ force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
+ if (likely(!force_pt_level)) {
+ level = mapping_level(vcpu, gfn);
+ gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
+ } else
+ level = PT_PAGE_TABLE_LEVEL;
+
+ if (fast_page_fault(vcpu, gpa, level, error_code))
+ return 0;
+
+ mmu_seq = vcpu->kvm->mmu_notifier_seq;
+ smp_rmb();
+
+ if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
+ return 0;
+
+ if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
+ return r;
+
+ spin_lock(&vcpu->kvm->mmu_lock);
+ if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
+ goto out_unlock;
+ make_mmu_pages_available(vcpu);
+ if (likely(!force_pt_level))
+ transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
+ r = __direct_map(vcpu, gpa, write, map_writable,
+ level, gfn, pfn, prefault);
+ spin_unlock(&vcpu->kvm->mmu_lock);
+
+ return r;
+
+out_unlock:
+ spin_unlock(&vcpu->kvm->mmu_lock);
+ kvm_release_pfn_clean(pfn);
+ return 0;
+}
+
+static void nonpaging_init_context(struct kvm_vcpu *vcpu,
+ struct kvm_mmu *context)
+{
+ context->page_fault = nonpaging_page_fault;
+ context->gva_to_gpa = nonpaging_gva_to_gpa;
+ context->sync_page = nonpaging_sync_page;
+ context->invlpg = nonpaging_invlpg;
+ context->update_pte = nonpaging_update_pte;
+ context->root_level = 0;
+ context->shadow_root_level = PT32E_ROOT_LEVEL;
+ context->root_hpa = INVALID_PAGE;
+ context->direct_map = true;
+ context->nx = false;
+}
+
+void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
+{
+ mmu_free_roots(vcpu);
+}
+
+static unsigned long get_cr3(struct kvm_vcpu *vcpu)
+{
+ return kvm_read_cr3(vcpu);
+}
+
+static void inject_page_fault(struct kvm_vcpu *vcpu,
+ struct x86_exception *fault)
+{
+ vcpu->arch.mmu.inject_page_fault(vcpu, fault);
+}
+
+static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
+ unsigned access, int *nr_present)
+{
+ if (unlikely(is_mmio_spte(*sptep))) {
+ if (gfn != get_mmio_spte_gfn(*sptep)) {
+ mmu_spte_clear_no_track(sptep);
+ return true;
+ }
+
+ (*nr_present)++;
+ mark_mmio_spte(kvm, sptep, gfn, access);
+ return true;
+ }
+
+ return false;
+}
+
+static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
+{
+ unsigned index;
+
+ index = level - 1;
+ index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
+ return mmu->last_pte_bitmap & (1 << index);
+}
+
+#define PTTYPE_EPT 18 /* arbitrary */
+#define PTTYPE PTTYPE_EPT
+#include "paging_tmpl.h"
+#undef PTTYPE
+
+#define PTTYPE 64
+#include "paging_tmpl.h"
+#undef PTTYPE
+
+#define PTTYPE 32
+#include "paging_tmpl.h"
+#undef PTTYPE
+
+static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
+ struct kvm_mmu *context)
+{
+ int maxphyaddr = cpuid_maxphyaddr(vcpu);
+ u64 exb_bit_rsvd = 0;
+ u64 gbpages_bit_rsvd = 0;
+ u64 nonleaf_bit8_rsvd = 0;
+
+ context->bad_mt_xwr = 0;
+
+ if (!context->nx)
+ exb_bit_rsvd = rsvd_bits(63, 63);
+ if (!guest_cpuid_has_gbpages(vcpu))
+ gbpages_bit_rsvd = rsvd_bits(7, 7);
+
+ /*
+ * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
+ * leaf entries) on AMD CPUs only.
+ */
+ if (guest_cpuid_is_amd(vcpu))
+ nonleaf_bit8_rsvd = rsvd_bits(8, 8);
+
+ switch (context->root_level) {
+ case PT32_ROOT_LEVEL:
+ /* no rsvd bits for 2 level 4K page table entries */
+ context->rsvd_bits_mask[0][1] = 0;
+ context->rsvd_bits_mask[0][0] = 0;
+ context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
+
+ if (!is_pse(vcpu)) {
+ context->rsvd_bits_mask[1][1] = 0;
+ break;
+ }
+
+ if (is_cpuid_PSE36())
+ /* 36bits PSE 4MB page */
+ context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
+ else
+ /* 32 bits PSE 4MB page */
+ context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
+ break;
+ case PT32E_ROOT_LEVEL:
+ context->rsvd_bits_mask[0][2] =
+ rsvd_bits(maxphyaddr, 63) |
+ rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
+ context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
+ rsvd_bits(maxphyaddr, 62); /* PDE */
+ context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
+ rsvd_bits(maxphyaddr, 62); /* PTE */
+ context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
+ rsvd_bits(maxphyaddr, 62) |
+ rsvd_bits(13, 20); /* large page */
+ context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
+ break;
+ case PT64_ROOT_LEVEL:
+ context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
+ nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
+ context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
+ nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
+ context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
+ rsvd_bits(maxphyaddr, 51);
+ context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
+ rsvd_bits(maxphyaddr, 51);
+ context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
+ context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
+ gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
+ rsvd_bits(13, 29);
+ context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
+ rsvd_bits(maxphyaddr, 51) |
+ rsvd_bits(13, 20); /* large page */
+ context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
+ break;
+ }
+}
+
+static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
+ struct kvm_mmu *context, bool execonly)
+{
+ int maxphyaddr = cpuid_maxphyaddr(vcpu);
+ int pte;
+
+ context->rsvd_bits_mask[0][3] =
+ rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
+ context->rsvd_bits_mask[0][2] =
+ rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
+ context->rsvd_bits_mask[0][1] =
+ rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
+ context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
+
+ /* large page */
+ context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
+ context->rsvd_bits_mask[1][2] =
+ rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
+ context->rsvd_bits_mask[1][1] =
+ rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
+ context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
+
+ for (pte = 0; pte < 64; pte++) {
+ int rwx_bits = pte & 7;
+ int mt = pte >> 3;
+ if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
+ rwx_bits == 0x2 || rwx_bits == 0x6 ||
+ (rwx_bits == 0x4 && !execonly))
+ context->bad_mt_xwr |= (1ull << pte);
+ }
+}
+
+static void update_permission_bitmask(struct kvm_vcpu *vcpu,
+ struct kvm_mmu *mmu, bool ept)
+{
+ unsigned bit, byte, pfec;
+ u8 map;
+ bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
+
+ cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
+ cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
+ for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
+ pfec = byte << 1;
+ map = 0;
+ wf = pfec & PFERR_WRITE_MASK;
+ uf = pfec & PFERR_USER_MASK;
+ ff = pfec & PFERR_FETCH_MASK;
+ /*
+ * PFERR_RSVD_MASK bit is set in PFEC if the access is not
+ * subject to SMAP restrictions, and cleared otherwise. The
+ * bit is only meaningful if the SMAP bit is set in CR4.
+ */
+ smapf = !(pfec & PFERR_RSVD_MASK);
+ for (bit = 0; bit < 8; ++bit) {
+ x = bit & ACC_EXEC_MASK;
+ w = bit & ACC_WRITE_MASK;
+ u = bit & ACC_USER_MASK;
+
+ if (!ept) {
+ /* Not really needed: !nx will cause pte.nx to fault */
+ x |= !mmu->nx;
+ /* Allow supervisor writes if !cr0.wp */
+ w |= !is_write_protection(vcpu) && !uf;
+ /* Disallow supervisor fetches of user code if cr4.smep */
+ x &= !(cr4_smep && u && !uf);
+
+ /*
+ * SMAP:kernel-mode data accesses from user-mode
+ * mappings should fault. A fault is considered
+ * as a SMAP violation if all of the following
+ * conditions are ture:
+ * - X86_CR4_SMAP is set in CR4
+ * - An user page is accessed
+ * - Page fault in kernel mode
+ * - if CPL = 3 or X86_EFLAGS_AC is clear
+ *
+ * Here, we cover the first three conditions.
+ * The fourth is computed dynamically in
+ * permission_fault() and is in smapf.
+ *
+ * Also, SMAP does not affect instruction
+ * fetches, add the !ff check here to make it
+ * clearer.
+ */
+ smap = cr4_smap && u && !uf && !ff;
+ } else
+ /* Not really needed: no U/S accesses on ept */
+ u = 1;
+
+ fault = (ff && !x) || (uf && !u) || (wf && !w) ||
+ (smapf && smap);
+ map |= fault << bit;
+ }
+ mmu->permissions[byte] = map;
+ }
+}
+
+static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
+{
+ u8 map;
+ unsigned level, root_level = mmu->root_level;
+ const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
+
+ if (root_level == PT32E_ROOT_LEVEL)
+ --root_level;
+ /* PT_PAGE_TABLE_LEVEL always terminates */
+ map = 1 | (1 << ps_set_index);
+ for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
+ if (level <= PT_PDPE_LEVEL
+ && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
+ map |= 1 << (ps_set_index | (level - 1));
+ }
+ mmu->last_pte_bitmap = map;
+}
+
+static void paging64_init_context_common(struct kvm_vcpu *vcpu,
+ struct kvm_mmu *context,
+ int level)
+{
+ context->nx = is_nx(vcpu);
+ context->root_level = level;
+
+ reset_rsvds_bits_mask(vcpu, context);
+ update_permission_bitmask(vcpu, context, false);
+ update_last_pte_bitmap(vcpu, context);
+
+ MMU_WARN_ON(!is_pae(vcpu));
+ context->page_fault = paging64_page_fault;
+ context->gva_to_gpa = paging64_gva_to_gpa;
+ context->sync_page = paging64_sync_page;
+ context->invlpg = paging64_invlpg;
+ context->update_pte = paging64_update_pte;
+ context->shadow_root_level = level;
+ context->root_hpa = INVALID_PAGE;
+ context->direct_map = false;
+}
+
+static void paging64_init_context(struct kvm_vcpu *vcpu,
+ struct kvm_mmu *context)
+{
+ paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
+}
+
+static void paging32_init_context(struct kvm_vcpu *vcpu,
+ struct kvm_mmu *context)
+{
+ context->nx = false;
+ context->root_level = PT32_ROOT_LEVEL;
+
+ reset_rsvds_bits_mask(vcpu, context);
+ update_permission_bitmask(vcpu, context, false);
+ update_last_pte_bitmap(vcpu, context);
+
+ context->page_fault = paging32_page_fault;
+ context->gva_to_gpa = paging32_gva_to_gpa;
+ context->sync_page = paging32_sync_page;
+ context->invlpg = paging32_invlpg;
+ context->update_pte = paging32_update_pte;
+ context->shadow_root_level = PT32E_ROOT_LEVEL;
+ context->root_hpa = INVALID_PAGE;
+ context->direct_map = false;
+}
+
+static void paging32E_init_context(struct kvm_vcpu *vcpu,
+ struct kvm_mmu *context)
+{
+ paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
+}
+
+static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
+{
+ struct kvm_mmu *context = &vcpu->arch.mmu;
+
+ context->base_role.word = 0;
+ context->page_fault = tdp_page_fault;
+ context->sync_page = nonpaging_sync_page;
+ context->invlpg = nonpaging_invlpg;
+ context->update_pte = nonpaging_update_pte;
+ context->shadow_root_level = kvm_x86_ops->get_tdp_level();
+ context->root_hpa = INVALID_PAGE;
+ context->direct_map = true;
+ context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
+ context->get_cr3 = get_cr3;
+ context->get_pdptr = kvm_pdptr_read;
+ context->inject_page_fault = kvm_inject_page_fault;
+
+ if (!is_paging(vcpu)) {
+ context->nx = false;
+ context->gva_to_gpa = nonpaging_gva_to_gpa;
+ context->root_level = 0;
+ } else if (is_long_mode(vcpu)) {
+ context->nx = is_nx(vcpu);
+ context->root_level = PT64_ROOT_LEVEL;
+ reset_rsvds_bits_mask(vcpu, context);
+ context->gva_to_gpa = paging64_gva_to_gpa;
+ } else if (is_pae(vcpu)) {
+ context->nx = is_nx(vcpu);
+ context->root_level = PT32E_ROOT_LEVEL;
+ reset_rsvds_bits_mask(vcpu, context);
+ context->gva_to_gpa = paging64_gva_to_gpa;
+ } else {
+ context->nx = false;
+ context->root_level = PT32_ROOT_LEVEL;
+ reset_rsvds_bits_mask(vcpu, context);
+ context->gva_to_gpa = paging32_gva_to_gpa;
+ }
+
+ update_permission_bitmask(vcpu, context, false);
+ update_last_pte_bitmap(vcpu, context);
+}
+
+void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
+{
+ bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
+ bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
+ struct kvm_mmu *context = &vcpu->arch.mmu;
+
+ MMU_WARN_ON(VALID_PAGE(context->root_hpa));
+
+ if (!is_paging(vcpu))
+ nonpaging_init_context(vcpu, context);
+ else if (is_long_mode(vcpu))
+ paging64_init_context(vcpu, context);
+ else if (is_pae(vcpu))
+ paging32E_init_context(vcpu, context);
+ else
+ paging32_init_context(vcpu, context);
+
+ context->base_role.nxe = is_nx(vcpu);
+ context->base_role.cr4_pae = !!is_pae(vcpu);
+ context->base_role.cr0_wp = is_write_protection(vcpu);
+ context->base_role.smep_andnot_wp
+ = smep && !is_write_protection(vcpu);
+ context->base_role.smap_andnot_wp
+ = smap && !is_write_protection(vcpu);
+}
+EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
+
+void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
+{
+ struct kvm_mmu *context = &vcpu->arch.mmu;
+
+ MMU_WARN_ON(VALID_PAGE(context->root_hpa));
+
+ context->shadow_root_level = kvm_x86_ops->get_tdp_level();
+
+ context->nx = true;
+ context->page_fault = ept_page_fault;
+ context->gva_to_gpa = ept_gva_to_gpa;
+ context->sync_page = ept_sync_page;
+ context->invlpg = ept_invlpg;
+ context->update_pte = ept_update_pte;
+ context->root_level = context->shadow_root_level;
+ context->root_hpa = INVALID_PAGE;
+ context->direct_map = false;
+
+ update_permission_bitmask(vcpu, context, true);
+ reset_rsvds_bits_mask_ept(vcpu, context, execonly);
+}
+EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
+
+static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
+{
+ struct kvm_mmu *context = &vcpu->arch.mmu;
+
+ kvm_init_shadow_mmu(vcpu);
+ context->set_cr3 = kvm_x86_ops->set_cr3;
+ context->get_cr3 = get_cr3;
+ context->get_pdptr = kvm_pdptr_read;
+ context->inject_page_fault = kvm_inject_page_fault;
+}
+
+static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
+{
+ struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
+
+ g_context->get_cr3 = get_cr3;
+ g_context->get_pdptr = kvm_pdptr_read;
+ g_context->inject_page_fault = kvm_inject_page_fault;
+
+ /*
+ * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
+ * translation of l2_gpa to l1_gpa addresses is done using the
+ * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
+ * functions between mmu and nested_mmu are swapped.
+ */
+ if (!is_paging(vcpu)) {
+ g_context->nx = false;
+ g_context->root_level = 0;
+ g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
+ } else if (is_long_mode(vcpu)) {
+ g_context->nx = is_nx(vcpu);
+ g_context->root_level = PT64_ROOT_LEVEL;
+ reset_rsvds_bits_mask(vcpu, g_context);
+ g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
+ } else if (is_pae(vcpu)) {
+ g_context->nx = is_nx(vcpu);
+ g_context->root_level = PT32E_ROOT_LEVEL;
+ reset_rsvds_bits_mask(vcpu, g_context);
+ g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
+ } else {
+ g_context->nx = false;
+ g_context->root_level = PT32_ROOT_LEVEL;
+ reset_rsvds_bits_mask(vcpu, g_context);
+ g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
+ }
+
+ update_permission_bitmask(vcpu, g_context, false);
+ update_last_pte_bitmap(vcpu, g_context);
+}
+
+static void init_kvm_mmu(struct kvm_vcpu *vcpu)
+{
+ if (mmu_is_nested(vcpu))
+ init_kvm_nested_mmu(vcpu);
+ else if (tdp_enabled)
+ init_kvm_tdp_mmu(vcpu);
+ else
+ init_kvm_softmmu(vcpu);
+}
+
+void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
+{
+ kvm_mmu_unload(vcpu);
+ init_kvm_mmu(vcpu);
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
+
+int kvm_mmu_load(struct kvm_vcpu *vcpu)
+{
+ int r;
+
+ r = mmu_topup_memory_caches(vcpu);
+ if (r)
+ goto out;
+ r = mmu_alloc_roots(vcpu);
+ kvm_mmu_sync_roots(vcpu);
+ if (r)
+ goto out;
+ /* set_cr3() should ensure TLB has been flushed */
+ vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
+out:
+ return r;
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_load);
+
+void kvm_mmu_unload(struct kvm_vcpu *vcpu)
+{
+ mmu_free_roots(vcpu);
+ WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_unload);
+
+static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
+ struct kvm_mmu_page *sp, u64 *spte,
+ const void *new)
+{
+ if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
+ ++vcpu->kvm->stat.mmu_pde_zapped;
+ return;
+ }
+
+ ++vcpu->kvm->stat.mmu_pte_updated;
+ vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
+}
+
+static bool need_remote_flush(u64 old, u64 new)
+{
+ if (!is_shadow_present_pte(old))
+ return false;
+ if (!is_shadow_present_pte(new))
+ return true;
+ if ((old ^ new) & PT64_BASE_ADDR_MASK)
+ return true;
+ old ^= shadow_nx_mask;
+ new ^= shadow_nx_mask;
+ return (old & ~new & PT64_PERM_MASK) != 0;
+}
+
+static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
+ bool remote_flush, bool local_flush)
+{
+ if (zap_page)
+ return;
+
+ if (remote_flush)
+ kvm_flush_remote_tlbs(vcpu->kvm);
+ else if (local_flush)
+ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+}
+
+static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
+ const u8 *new, int *bytes)
+{
+ u64 gentry;
+ int r;
+
+ /*
+ * Assume that the pte write on a page table of the same type
+ * as the current vcpu paging mode since we update the sptes only
+ * when they have the same mode.
+ */
+ if (is_pae(vcpu) && *bytes == 4) {
+ /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
+ *gpa &= ~(gpa_t)7;
+ *bytes = 8;
+ r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
+ if (r)
+ gentry = 0;
+ new = (const u8 *)&gentry;
+ }
+
+ switch (*bytes) {
+ case 4:
+ gentry = *(const u32 *)new;
+ break;
+ case 8:
+ gentry = *(const u64 *)new;
+ break;
+ default:
+ gentry = 0;
+ break;
+ }
+
+ return gentry;
+}
+
+/*
+ * If we're seeing too many writes to a page, it may no longer be a page table,
+ * or we may be forking, in which case it is better to unmap the page.
+ */
+static bool detect_write_flooding(struct kvm_mmu_page *sp)
+{
+ /*
+ * Skip write-flooding detected for the sp whose level is 1, because
+ * it can become unsync, then the guest page is not write-protected.
+ */
+ if (sp->role.level == PT_PAGE_TABLE_LEVEL)
+ return false;
+
+ return ++sp->write_flooding_count >= 3;
+}
+
+/*
+ * Misaligned accesses are too much trouble to fix up; also, they usually
+ * indicate a page is not used as a page table.
+ */
+static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
+ int bytes)
+{
+ unsigned offset, pte_size, misaligned;
+
+ pgprintk("misaligned: gpa %llx bytes %d role %x\n",
+ gpa, bytes, sp->role.word);
+
+ offset = offset_in_page(gpa);
+ pte_size = sp->role.cr4_pae ? 8 : 4;
+
+ /*
+ * Sometimes, the OS only writes the last one bytes to update status
+ * bits, for example, in linux, andb instruction is used in clear_bit().
+ */
+ if (!(offset & (pte_size - 1)) && bytes == 1)
+ return false;
+
+ misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
+ misaligned |= bytes < 4;
+
+ return misaligned;
+}
+
+static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
+{
+ unsigned page_offset, quadrant;
+ u64 *spte;
+ int level;
+
+ page_offset = offset_in_page(gpa);
+ level = sp->role.level;
+ *nspte = 1;
+ if (!sp->role.cr4_pae) {
+ page_offset <<= 1; /* 32->64 */
+ /*
+ * A 32-bit pde maps 4MB while the shadow pdes map
+ * only 2MB. So we need to double the offset again
+ * and zap two pdes instead of one.
+ */
+ if (level == PT32_ROOT_LEVEL) {
+ page_offset &= ~7; /* kill rounding error */
+ page_offset <<= 1;
+ *nspte = 2;
+ }
+ quadrant = page_offset >> PAGE_SHIFT;
+ page_offset &= ~PAGE_MASK;
+ if (quadrant != sp->role.quadrant)
+ return NULL;
+ }
+
+ spte = &sp->spt[page_offset / sizeof(*spte)];
+ return spte;
+}
+
+void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
+ const u8 *new, int bytes)
+{
+ gfn_t gfn = gpa >> PAGE_SHIFT;
+ struct kvm_mmu_page *sp;
+ LIST_HEAD(invalid_list);
+ u64 entry, gentry, *spte;
+ int npte;
+ bool remote_flush, local_flush, zap_page;
+ union kvm_mmu_page_role mask = { };
+
+ mask.cr0_wp = 1;
+ mask.cr4_pae = 1;
+ mask.nxe = 1;
+ mask.smep_andnot_wp = 1;
+ mask.smap_andnot_wp = 1;
+
+ /*
+ * If we don't have indirect shadow pages, it means no page is
+ * write-protected, so we can exit simply.
+ */
+ if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
+ return;
+
+ zap_page = remote_flush = local_flush = false;
+
+ pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
+
+ gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
+
+ /*
+ * No need to care whether allocation memory is successful
+ * or not since pte prefetch is skiped if it does not have
+ * enough objects in the cache.
+ */
+ mmu_topup_memory_caches(vcpu);
+
+ spin_lock(&vcpu->kvm->mmu_lock);
+ ++vcpu->kvm->stat.mmu_pte_write;
+ kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
+
+ for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
+ if (detect_write_misaligned(sp, gpa, bytes) ||
+ detect_write_flooding(sp)) {
+ zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
+ &invalid_list);
+ ++vcpu->kvm->stat.mmu_flooded;
+ continue;
+ }
+
+ spte = get_written_sptes(sp, gpa, &npte);
+ if (!spte)
+ continue;
+
+ local_flush = true;
+ while (npte--) {
+ entry = *spte;
+ mmu_page_zap_pte(vcpu->kvm, sp, spte);
+ if (gentry &&
+ !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
+ & mask.word) && rmap_can_add(vcpu))
+ mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
+ if (need_remote_flush(entry, *spte))
+ remote_flush = true;
+ ++spte;
+ }
+ }
+ mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
+ kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
+ kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
+ spin_unlock(&vcpu->kvm->mmu_lock);
+}
+
+int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
+{
+ gpa_t gpa;
+ int r;
+
+ if (vcpu->arch.mmu.direct_map)
+ return 0;
+
+ gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
+
+ r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
+
+ return r;
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
+
+static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
+{
+ LIST_HEAD(invalid_list);
+
+ if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
+ return;
+
+ while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
+ if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
+ break;
+
+ ++vcpu->kvm->stat.mmu_recycled;
+ }
+ kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
+}
+
+static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
+{
+ if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
+ return vcpu_match_mmio_gpa(vcpu, addr);
+
+ return vcpu_match_mmio_gva(vcpu, addr);
+}
+
+int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
+ void *insn, int insn_len)
+{
+ int r, emulation_type = EMULTYPE_RETRY;
+ enum emulation_result er;
+
+ r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
+ if (r < 0)
+ goto out;
+
+ if (!r) {
+ r = 1;
+ goto out;
+ }
+
+ if (is_mmio_page_fault(vcpu, cr2))
+ emulation_type = 0;
+
+ er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
+
+ switch (er) {
+ case EMULATE_DONE:
+ return 1;
+ case EMULATE_USER_EXIT:
+ ++vcpu->stat.mmio_exits;
+ /* fall through */
+ case EMULATE_FAIL:
+ return 0;
+ default:
+ BUG();
+ }
+out:
+ return r;
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
+
+void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
+{
+ vcpu->arch.mmu.invlpg(vcpu, gva);
+ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+ ++vcpu->stat.invlpg;
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
+
+void kvm_enable_tdp(void)
+{
+ tdp_enabled = true;
+}
+EXPORT_SYMBOL_GPL(kvm_enable_tdp);
+
+void kvm_disable_tdp(void)
+{
+ tdp_enabled = false;
+}
+EXPORT_SYMBOL_GPL(kvm_disable_tdp);
+
+static void free_mmu_pages(struct kvm_vcpu *vcpu)
+{
+ free_page((unsigned long)vcpu->arch.mmu.pae_root);
+ if (vcpu->arch.mmu.lm_root != NULL)
+ free_page((unsigned long)vcpu->arch.mmu.lm_root);
+}
+
+static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
+{
+ struct page *page;
+ int i;
+
+ /*
+ * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
+ * Therefore we need to allocate shadow page tables in the first
+ * 4GB of memory, which happens to fit the DMA32 zone.
+ */
+ page = alloc_page(GFP_KERNEL | __GFP_DMA32);
+ if (!page)
+ return -ENOMEM;
+
+ vcpu->arch.mmu.pae_root = page_address(page);
+ for (i = 0; i < 4; ++i)
+ vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
+
+ return 0;
+}
+
+int kvm_mmu_create(struct kvm_vcpu *vcpu)
+{
+ vcpu->arch.walk_mmu = &vcpu->arch.mmu;
+ vcpu->arch.mmu.root_hpa = INVALID_PAGE;
+ vcpu->arch.mmu.translate_gpa = translate_gpa;
+ vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
+
+ return alloc_mmu_pages(vcpu);
+}
+
+void kvm_mmu_setup(struct kvm_vcpu *vcpu)
+{
+ MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
+
+ init_kvm_mmu(vcpu);
+}
+
+void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
+ struct kvm_memory_slot *memslot)
+{
+ gfn_t last_gfn;
+ int i;
+ bool flush = false;
+
+ last_gfn = memslot->base_gfn + memslot->npages - 1;
+
+ spin_lock(&kvm->mmu_lock);
+
+ for (i = PT_PAGE_TABLE_LEVEL;
+ i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
+ unsigned long *rmapp;
+ unsigned long last_index, index;
+
+ rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
+ last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
+
+ for (index = 0; index <= last_index; ++index, ++rmapp) {
+ if (*rmapp)
+ flush |= __rmap_write_protect(kvm, rmapp,
+ false);
+
+ if (need_resched() || spin_needbreak(&kvm->mmu_lock))
+ cond_resched_lock(&kvm->mmu_lock);
+ }
+ }
+
+ spin_unlock(&kvm->mmu_lock);
+
+ /*
+ * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
+ * which do tlb flush out of mmu-lock should be serialized by
+ * kvm->slots_lock otherwise tlb flush would be missed.
+ */
+ lockdep_assert_held(&kvm->slots_lock);
+
+ /*
+ * We can flush all the TLBs out of the mmu lock without TLB
+ * corruption since we just change the spte from writable to
+ * readonly so that we only need to care the case of changing
+ * spte from present to present (changing the spte from present
+ * to nonpresent will flush all the TLBs immediately), in other
+ * words, the only case we care is mmu_spte_update() where we
+ * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
+ * instead of PT_WRITABLE_MASK, that means it does not depend
+ * on PT_WRITABLE_MASK anymore.
+ */
+ if (flush)
+ kvm_flush_remote_tlbs(kvm);
+}
+
+static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
+ unsigned long *rmapp)
+{
+ u64 *sptep;
+ struct rmap_iterator iter;
+ int need_tlb_flush = 0;
+ pfn_t pfn;
+ struct kvm_mmu_page *sp;
+
+ for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
+ BUG_ON(!(*sptep & PT_PRESENT_MASK));
+
+ sp = page_header(__pa(sptep));
+ pfn = spte_to_pfn(*sptep);
+
+ /*
+ * We cannot do huge page mapping for indirect shadow pages,
+ * which are found on the last rmap (level = 1) when not using
+ * tdp; such shadow pages are synced with the page table in
+ * the guest, and the guest page table is using 4K page size
+ * mapping if the indirect sp has level = 1.
+ */
+ if (sp->role.direct &&
+ !kvm_is_reserved_pfn(pfn) &&
+ PageTransCompound(pfn_to_page(pfn))) {
+ drop_spte(kvm, sptep);
+ sptep = rmap_get_first(*rmapp, &iter);
+ need_tlb_flush = 1;
+ } else
+ sptep = rmap_get_next(&iter);
+ }
+
+ return need_tlb_flush;
+}
+
+void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
+ struct kvm_memory_slot *memslot)
+{
+ bool flush = false;
+ unsigned long *rmapp;
+ unsigned long last_index, index;
+
+ spin_lock(&kvm->mmu_lock);
+
+ rmapp = memslot->arch.rmap[0];
+ last_index = gfn_to_index(memslot->base_gfn + memslot->npages - 1,
+ memslot->base_gfn, PT_PAGE_TABLE_LEVEL);
+
+ for (index = 0; index <= last_index; ++index, ++rmapp) {
+ if (*rmapp)
+ flush |= kvm_mmu_zap_collapsible_spte(kvm, rmapp);
+
+ if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
+ if (flush) {
+ kvm_flush_remote_tlbs(kvm);
+ flush = false;
+ }
+ cond_resched_lock(&kvm->mmu_lock);
+ }
+ }
+
+ if (flush)
+ kvm_flush_remote_tlbs(kvm);
+
+ spin_unlock(&kvm->mmu_lock);
+}
+
+void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
+ struct kvm_memory_slot *memslot)
+{
+ gfn_t last_gfn;
+ unsigned long *rmapp;
+ unsigned long last_index, index;
+ bool flush = false;
+
+ last_gfn = memslot->base_gfn + memslot->npages - 1;
+
+ spin_lock(&kvm->mmu_lock);
+
+ rmapp = memslot->arch.rmap[PT_PAGE_TABLE_LEVEL - 1];
+ last_index = gfn_to_index(last_gfn, memslot->base_gfn,
+ PT_PAGE_TABLE_LEVEL);
+
+ for (index = 0; index <= last_index; ++index, ++rmapp) {
+ if (*rmapp)
+ flush |= __rmap_clear_dirty(kvm, rmapp);
+
+ if (need_resched() || spin_needbreak(&kvm->mmu_lock))
+ cond_resched_lock(&kvm->mmu_lock);
+ }
+
+ spin_unlock(&kvm->mmu_lock);
+
+ lockdep_assert_held(&kvm->slots_lock);
+
+ /*
+ * It's also safe to flush TLBs out of mmu lock here as currently this
+ * function is only used for dirty logging, in which case flushing TLB
+ * out of mmu lock also guarantees no dirty pages will be lost in
+ * dirty_bitmap.
+ */
+ if (flush)
+ kvm_flush_remote_tlbs(kvm);
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
+
+void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
+ struct kvm_memory_slot *memslot)
+{
+ gfn_t last_gfn;
+ int i;
+ bool flush = false;
+
+ last_gfn = memslot->base_gfn + memslot->npages - 1;
+
+ spin_lock(&kvm->mmu_lock);
+
+ for (i = PT_PAGE_TABLE_LEVEL + 1; /* skip rmap for 4K page */
+ i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
+ unsigned long *rmapp;
+ unsigned long last_index, index;
+
+ rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
+ last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
+
+ for (index = 0; index <= last_index; ++index, ++rmapp) {
+ if (*rmapp)
+ flush |= __rmap_write_protect(kvm, rmapp,
+ false);
+
+ if (need_resched() || spin_needbreak(&kvm->mmu_lock))
+ cond_resched_lock(&kvm->mmu_lock);
+ }
+ }
+ spin_unlock(&kvm->mmu_lock);
+
+ /* see kvm_mmu_slot_remove_write_access */
+ lockdep_assert_held(&kvm->slots_lock);
+
+ if (flush)
+ kvm_flush_remote_tlbs(kvm);
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
+
+void kvm_mmu_slot_set_dirty(struct kvm *kvm,
+ struct kvm_memory_slot *memslot)
+{
+ gfn_t last_gfn;
+ int i;
+ bool flush = false;
+
+ last_gfn = memslot->base_gfn + memslot->npages - 1;
+
+ spin_lock(&kvm->mmu_lock);
+
+ for (i = PT_PAGE_TABLE_LEVEL;
+ i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
+ unsigned long *rmapp;
+ unsigned long last_index, index;
+
+ rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
+ last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
+
+ for (index = 0; index <= last_index; ++index, ++rmapp) {
+ if (*rmapp)
+ flush |= __rmap_set_dirty(kvm, rmapp);
+
+ if (need_resched() || spin_needbreak(&kvm->mmu_lock))
+ cond_resched_lock(&kvm->mmu_lock);
+ }
+ }
+
+ spin_unlock(&kvm->mmu_lock);
+
+ lockdep_assert_held(&kvm->slots_lock);
+
+ /* see kvm_mmu_slot_leaf_clear_dirty */
+ if (flush)
+ kvm_flush_remote_tlbs(kvm);
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
+
+#define BATCH_ZAP_PAGES 10
+static void kvm_zap_obsolete_pages(struct kvm *kvm)
+{
+ struct kvm_mmu_page *sp, *node;
+ int batch = 0;
+
+restart:
+ list_for_each_entry_safe_reverse(sp, node,
+ &kvm->arch.active_mmu_pages, link) {
+ int ret;
+
+ /*
+ * No obsolete page exists before new created page since
+ * active_mmu_pages is the FIFO list.
+ */
+ if (!is_obsolete_sp(kvm, sp))
+ break;
+
+ /*
+ * Since we are reversely walking the list and the invalid
+ * list will be moved to the head, skip the invalid page
+ * can help us to avoid the infinity list walking.
+ */
+ if (sp->role.invalid)
+ continue;
+
+ /*
+ * Need not flush tlb since we only zap the sp with invalid
+ * generation number.
+ */
+ if (batch >= BATCH_ZAP_PAGES &&
+ cond_resched_lock(&kvm->mmu_lock)) {
+ batch = 0;
+ goto restart;
+ }
+
+ ret = kvm_mmu_prepare_zap_page(kvm, sp,
+ &kvm->arch.zapped_obsolete_pages);
+ batch += ret;
+
+ if (ret)
+ goto restart;
+ }
+
+ /*
+ * Should flush tlb before free page tables since lockless-walking
+ * may use the pages.
+ */
+ kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
+}
+
+/*
+ * Fast invalidate all shadow pages and use lock-break technique
+ * to zap obsolete pages.
+ *
+ * It's required when memslot is being deleted or VM is being
+ * destroyed, in these cases, we should ensure that KVM MMU does
+ * not use any resource of the being-deleted slot or all slots
+ * after calling the function.
+ */
+void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
+{
+ spin_lock(&kvm->mmu_lock);
+ trace_kvm_mmu_invalidate_zap_all_pages(kvm);
+ kvm->arch.mmu_valid_gen++;
+
+ /*
+ * Notify all vcpus to reload its shadow page table
+ * and flush TLB. Then all vcpus will switch to new
+ * shadow page table with the new mmu_valid_gen.
+ *
+ * Note: we should do this under the protection of
+ * mmu-lock, otherwise, vcpu would purge shadow page
+ * but miss tlb flush.
+ */
+ kvm_reload_remote_mmus(kvm);
+
+ kvm_zap_obsolete_pages(kvm);
+ spin_unlock(&kvm->mmu_lock);
+}
+
+static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
+{
+ return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
+}
+
+void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
+{
+ /*
+ * The very rare case: if the generation-number is round,
+ * zap all shadow pages.
+ */
+ if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
+ printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
+ kvm_mmu_invalidate_zap_all_pages(kvm);
+ }
+}
+
+static unsigned long
+mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
+{
+ struct kvm *kvm;
+ int nr_to_scan = sc->nr_to_scan;
+ unsigned long freed = 0;
+
+ spin_lock(&kvm_lock);
+
+ list_for_each_entry(kvm, &vm_list, vm_list) {
+ int idx;
+ LIST_HEAD(invalid_list);
+
+ /*
+ * Never scan more than sc->nr_to_scan VM instances.
+ * Will not hit this condition practically since we do not try
+ * to shrink more than one VM and it is very unlikely to see
+ * !n_used_mmu_pages so many times.
+ */
+ if (!nr_to_scan--)
+ break;
+ /*
+ * n_used_mmu_pages is accessed without holding kvm->mmu_lock
+ * here. We may skip a VM instance errorneosly, but we do not
+ * want to shrink a VM that only started to populate its MMU
+ * anyway.
+ */
+ if (!kvm->arch.n_used_mmu_pages &&
+ !kvm_has_zapped_obsolete_pages(kvm))
+ continue;
+
+ idx = srcu_read_lock(&kvm->srcu);
+ spin_lock(&kvm->mmu_lock);
+
+ if (kvm_has_zapped_obsolete_pages(kvm)) {
+ kvm_mmu_commit_zap_page(kvm,
+ &kvm->arch.zapped_obsolete_pages);
+ goto unlock;
+ }
+
+ if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
+ freed++;
+ kvm_mmu_commit_zap_page(kvm, &invalid_list);
+
+unlock:
+ spin_unlock(&kvm->mmu_lock);
+ srcu_read_unlock(&kvm->srcu, idx);
+
+ /*
+ * unfair on small ones
+ * per-vm shrinkers cry out
+ * sadness comes quickly
+ */
+ list_move_tail(&kvm->vm_list, &vm_list);
+ break;
+ }
+
+ spin_unlock(&kvm_lock);
+ return freed;
+}
+
+static unsigned long
+mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
+{
+ return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
+}
+
+static struct shrinker mmu_shrinker = {
+ .count_objects = mmu_shrink_count,
+ .scan_objects = mmu_shrink_scan,
+ .seeks = DEFAULT_SEEKS * 10,
+};
+
+static void mmu_destroy_caches(void)
+{
+ if (pte_list_desc_cache)
+ kmem_cache_destroy(pte_list_desc_cache);
+ if (mmu_page_header_cache)
+ kmem_cache_destroy(mmu_page_header_cache);
+}
+
+int kvm_mmu_module_init(void)
+{
+ pte_list_desc_cache = kmem_cache_create("pte_list_desc",
+ sizeof(struct pte_list_desc),
+ 0, 0, NULL);
+ if (!pte_list_desc_cache)
+ goto nomem;
+
+ mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
+ sizeof(struct kvm_mmu_page),
+ 0, 0, NULL);
+ if (!mmu_page_header_cache)
+ goto nomem;
+
+ if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
+ goto nomem;
+
+ register_shrinker(&mmu_shrinker);
+
+ return 0;
+
+nomem:
+ mmu_destroy_caches();
+ return -ENOMEM;
+}
+
+/*
+ * Caculate mmu pages needed for kvm.
+ */
+unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
+{
+ unsigned int nr_mmu_pages;
+ unsigned int nr_pages = 0;
+ struct kvm_memslots *slots;
+ struct kvm_memory_slot *memslot;
+
+ slots = kvm_memslots(kvm);
+
+ kvm_for_each_memslot(memslot, slots)
+ nr_pages += memslot->npages;
+
+ nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
+ nr_mmu_pages = max(nr_mmu_pages,
+ (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
+
+ return nr_mmu_pages;
+}
+
+int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
+{
+ struct kvm_shadow_walk_iterator iterator;
+ u64 spte;
+ int nr_sptes = 0;
+
+ if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
+ return nr_sptes;
+
+ walk_shadow_page_lockless_begin(vcpu);
+ for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
+ sptes[iterator.level-1] = spte;
+ nr_sptes++;
+ if (!is_shadow_present_pte(spte))
+ break;
+ }
+ walk_shadow_page_lockless_end(vcpu);
+
+ return nr_sptes;
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
+
+void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
+{
+ kvm_mmu_unload(vcpu);
+ free_mmu_pages(vcpu);
+ mmu_free_memory_caches(vcpu);
+}
+
+void kvm_mmu_module_exit(void)
+{
+ mmu_destroy_caches();
+ percpu_counter_destroy(&kvm_total_used_mmu_pages);
+ unregister_shrinker(&mmu_shrinker);
+ mmu_audit_disable();
+}
diff --git a/kernel/arch/x86/kvm/mmu.h b/kernel/arch/x86/kvm/mmu.h
new file mode 100644
index 000000000..0ada65ecd
--- /dev/null
+++ b/kernel/arch/x86/kvm/mmu.h
@@ -0,0 +1,173 @@
+#ifndef __KVM_X86_MMU_H
+#define __KVM_X86_MMU_H
+
+#include <linux/kvm_host.h>
+#include "kvm_cache_regs.h"
+
+#define PT64_PT_BITS 9
+#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
+#define PT32_PT_BITS 10
+#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
+
+#define PT_WRITABLE_SHIFT 1
+
+#define PT_PRESENT_MASK (1ULL << 0)
+#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
+#define PT_USER_MASK (1ULL << 2)
+#define PT_PWT_MASK (1ULL << 3)
+#define PT_PCD_MASK (1ULL << 4)
+#define PT_ACCESSED_SHIFT 5
+#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
+#define PT_DIRTY_SHIFT 6
+#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
+#define PT_PAGE_SIZE_SHIFT 7
+#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
+#define PT_PAT_MASK (1ULL << 7)
+#define PT_GLOBAL_MASK (1ULL << 8)
+#define PT64_NX_SHIFT 63
+#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
+
+#define PT_PAT_SHIFT 7
+#define PT_DIR_PAT_SHIFT 12
+#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
+
+#define PT32_DIR_PSE36_SIZE 4
+#define PT32_DIR_PSE36_SHIFT 13
+#define PT32_DIR_PSE36_MASK \
+ (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
+
+#define PT64_ROOT_LEVEL 4
+#define PT32_ROOT_LEVEL 2
+#define PT32E_ROOT_LEVEL 3
+
+#define PT_PDPE_LEVEL 3
+#define PT_DIRECTORY_LEVEL 2
+#define PT_PAGE_TABLE_LEVEL 1
+
+static inline u64 rsvd_bits(int s, int e)
+{
+ return ((1ULL << (e - s + 1)) - 1) << s;
+}
+
+int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4]);
+void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask);
+
+/*
+ * Return values of handle_mmio_page_fault_common:
+ * RET_MMIO_PF_EMULATE: it is a real mmio page fault, emulate the instruction
+ * directly.
+ * RET_MMIO_PF_INVALID: invalid spte is detected then let the real page
+ * fault path update the mmio spte.
+ * RET_MMIO_PF_RETRY: let CPU fault again on the address.
+ * RET_MMIO_PF_BUG: bug is detected.
+ */
+enum {
+ RET_MMIO_PF_EMULATE = 1,
+ RET_MMIO_PF_INVALID = 2,
+ RET_MMIO_PF_RETRY = 0,
+ RET_MMIO_PF_BUG = -1
+};
+
+int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct);
+void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu);
+void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly);
+
+static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm)
+{
+ if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
+ return kvm->arch.n_max_mmu_pages -
+ kvm->arch.n_used_mmu_pages;
+
+ return 0;
+}
+
+static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
+{
+ if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE))
+ return 0;
+
+ return kvm_mmu_load(vcpu);
+}
+
+static inline int is_present_gpte(unsigned long pte)
+{
+ return pte & PT_PRESENT_MASK;
+}
+
+/*
+ * Currently, we have two sorts of write-protection, a) the first one
+ * write-protects guest page to sync the guest modification, b) another one is
+ * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
+ * between these two sorts are:
+ * 1) the first case clears SPTE_MMU_WRITEABLE bit.
+ * 2) the first case requires flushing tlb immediately avoiding corrupting
+ * shadow page table between all vcpus so it should be in the protection of
+ * mmu-lock. And the another case does not need to flush tlb until returning
+ * the dirty bitmap to userspace since it only write-protects the page
+ * logged in the bitmap, that means the page in the dirty bitmap is not
+ * missed, so it can flush tlb out of mmu-lock.
+ *
+ * So, there is the problem: the first case can meet the corrupted tlb caused
+ * by another case which write-protects pages but without flush tlb
+ * immediately. In order to making the first case be aware this problem we let
+ * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
+ * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
+ *
+ * Anyway, whenever a spte is updated (only permission and status bits are
+ * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
+ * readonly, if that happens, we need to flush tlb. Fortunately,
+ * mmu_spte_update() has already handled it perfectly.
+ *
+ * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
+ * - if we want to see if it has writable tlb entry or if the spte can be
+ * writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
+ * case, otherwise
+ * - if we fix page fault on the spte or do write-protection by dirty logging,
+ * check PT_WRITABLE_MASK.
+ *
+ * TODO: introduce APIs to split these two cases.
+ */
+static inline int is_writable_pte(unsigned long pte)
+{
+ return pte & PT_WRITABLE_MASK;
+}
+
+static inline bool is_write_protection(struct kvm_vcpu *vcpu)
+{
+ return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
+}
+
+/*
+ * Will a fault with a given page-fault error code (pfec) cause a permission
+ * fault with the given access (in ACC_* format)?
+ */
+static inline bool permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
+ unsigned pte_access, unsigned pfec)
+{
+ int cpl = kvm_x86_ops->get_cpl(vcpu);
+ unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
+
+ /*
+ * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
+ *
+ * If CPL = 3, SMAP applies to all supervisor-mode data accesses
+ * (these are implicit supervisor accesses) regardless of the value
+ * of EFLAGS.AC.
+ *
+ * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
+ * the result in X86_EFLAGS_AC. We then insert it in place of
+ * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
+ * but it will be one in index if SMAP checks are being overridden.
+ * It is important to keep this branchless.
+ */
+ unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
+ int index = (pfec >> 1) +
+ (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
+
+ WARN_ON(pfec & PFERR_RSVD_MASK);
+
+ return (mmu->permissions[index] >> pte_access) & 1;
+}
+
+void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm);
+#endif
diff --git a/kernel/arch/x86/kvm/mmu_audit.c b/kernel/arch/x86/kvm/mmu_audit.c
new file mode 100644
index 000000000..9ade5cfb5
--- /dev/null
+++ b/kernel/arch/x86/kvm/mmu_audit.c
@@ -0,0 +1,299 @@
+/*
+ * mmu_audit.c:
+ *
+ * Audit code for KVM MMU
+ *
+ * Copyright (C) 2006 Qumranet, Inc.
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
+ *
+ * Authors:
+ * Yaniv Kamay <yaniv@qumranet.com>
+ * Avi Kivity <avi@qumranet.com>
+ * Marcelo Tosatti <mtosatti@redhat.com>
+ * Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2. See
+ * the COPYING file in the top-level directory.
+ *
+ */
+
+#include <linux/ratelimit.h>
+
+char const *audit_point_name[] = {
+ "pre page fault",
+ "post page fault",
+ "pre pte write",
+ "post pte write",
+ "pre sync",
+ "post sync"
+};
+
+#define audit_printk(kvm, fmt, args...) \
+ printk(KERN_ERR "audit: (%s) error: " \
+ fmt, audit_point_name[kvm->arch.audit_point], ##args)
+
+typedef void (*inspect_spte_fn) (struct kvm_vcpu *vcpu, u64 *sptep, int level);
+
+static void __mmu_spte_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
+ inspect_spte_fn fn, int level)
+{
+ int i;
+
+ for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
+ u64 *ent = sp->spt;
+
+ fn(vcpu, ent + i, level);
+
+ if (is_shadow_present_pte(ent[i]) &&
+ !is_last_spte(ent[i], level)) {
+ struct kvm_mmu_page *child;
+
+ child = page_header(ent[i] & PT64_BASE_ADDR_MASK);
+ __mmu_spte_walk(vcpu, child, fn, level - 1);
+ }
+ }
+}
+
+static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
+{
+ int i;
+ struct kvm_mmu_page *sp;
+
+ if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
+ return;
+
+ if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
+ hpa_t root = vcpu->arch.mmu.root_hpa;
+
+ sp = page_header(root);
+ __mmu_spte_walk(vcpu, sp, fn, PT64_ROOT_LEVEL);
+ return;
+ }
+
+ for (i = 0; i < 4; ++i) {
+ hpa_t root = vcpu->arch.mmu.pae_root[i];
+
+ if (root && VALID_PAGE(root)) {
+ root &= PT64_BASE_ADDR_MASK;
+ sp = page_header(root);
+ __mmu_spte_walk(vcpu, sp, fn, 2);
+ }
+ }
+
+ return;
+}
+
+typedef void (*sp_handler) (struct kvm *kvm, struct kvm_mmu_page *sp);
+
+static void walk_all_active_sps(struct kvm *kvm, sp_handler fn)
+{
+ struct kvm_mmu_page *sp;
+
+ list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link)
+ fn(kvm, sp);
+}
+
+static void audit_mappings(struct kvm_vcpu *vcpu, u64 *sptep, int level)
+{
+ struct kvm_mmu_page *sp;
+ gfn_t gfn;
+ pfn_t pfn;
+ hpa_t hpa;
+
+ sp = page_header(__pa(sptep));
+
+ if (sp->unsync) {
+ if (level != PT_PAGE_TABLE_LEVEL) {
+ audit_printk(vcpu->kvm, "unsync sp: %p "
+ "level = %d\n", sp, level);
+ return;
+ }
+ }
+
+ if (!is_shadow_present_pte(*sptep) || !is_last_spte(*sptep, level))
+ return;
+
+ gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
+ pfn = gfn_to_pfn_atomic(vcpu->kvm, gfn);
+
+ if (is_error_pfn(pfn))
+ return;
+
+ hpa = pfn << PAGE_SHIFT;
+ if ((*sptep & PT64_BASE_ADDR_MASK) != hpa)
+ audit_printk(vcpu->kvm, "levels %d pfn %llx hpa %llx "
+ "ent %llxn", vcpu->arch.mmu.root_level, pfn,
+ hpa, *sptep);
+}
+
+static void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep)
+{
+ static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
+ unsigned long *rmapp;
+ struct kvm_mmu_page *rev_sp;
+ gfn_t gfn;
+
+ rev_sp = page_header(__pa(sptep));
+ gfn = kvm_mmu_page_get_gfn(rev_sp, sptep - rev_sp->spt);
+
+ if (!gfn_to_memslot(kvm, gfn)) {
+ if (!__ratelimit(&ratelimit_state))
+ return;
+ audit_printk(kvm, "no memslot for gfn %llx\n", gfn);
+ audit_printk(kvm, "index %ld of sp (gfn=%llx)\n",
+ (long int)(sptep - rev_sp->spt), rev_sp->gfn);
+ dump_stack();
+ return;
+ }
+
+ rmapp = gfn_to_rmap(kvm, gfn, rev_sp->role.level);
+ if (!*rmapp) {
+ if (!__ratelimit(&ratelimit_state))
+ return;
+ audit_printk(kvm, "no rmap for writable spte %llx\n",
+ *sptep);
+ dump_stack();
+ }
+}
+
+static void audit_sptes_have_rmaps(struct kvm_vcpu *vcpu, u64 *sptep, int level)
+{
+ if (is_shadow_present_pte(*sptep) && is_last_spte(*sptep, level))
+ inspect_spte_has_rmap(vcpu->kvm, sptep);
+}
+
+static void audit_spte_after_sync(struct kvm_vcpu *vcpu, u64 *sptep, int level)
+{
+ struct kvm_mmu_page *sp = page_header(__pa(sptep));
+
+ if (vcpu->kvm->arch.audit_point == AUDIT_POST_SYNC && sp->unsync)
+ audit_printk(vcpu->kvm, "meet unsync sp(%p) after sync "
+ "root.\n", sp);
+}
+
+static void check_mappings_rmap(struct kvm *kvm, struct kvm_mmu_page *sp)
+{
+ int i;
+
+ if (sp->role.level != PT_PAGE_TABLE_LEVEL)
+ return;
+
+ for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
+ if (!is_rmap_spte(sp->spt[i]))
+ continue;
+
+ inspect_spte_has_rmap(kvm, sp->spt + i);
+ }
+}
+
+static void audit_write_protection(struct kvm *kvm, struct kvm_mmu_page *sp)
+{
+ unsigned long *rmapp;
+ u64 *sptep;
+ struct rmap_iterator iter;
+
+ if (sp->role.direct || sp->unsync || sp->role.invalid)
+ return;
+
+ rmapp = gfn_to_rmap(kvm, sp->gfn, PT_PAGE_TABLE_LEVEL);
+
+ for (sptep = rmap_get_first(*rmapp, &iter); sptep;
+ sptep = rmap_get_next(&iter)) {
+ if (is_writable_pte(*sptep))
+ audit_printk(kvm, "shadow page has writable "
+ "mappings: gfn %llx role %x\n",
+ sp->gfn, sp->role.word);
+ }
+}
+
+static void audit_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
+{
+ check_mappings_rmap(kvm, sp);
+ audit_write_protection(kvm, sp);
+}
+
+static void audit_all_active_sps(struct kvm *kvm)
+{
+ walk_all_active_sps(kvm, audit_sp);
+}
+
+static void audit_spte(struct kvm_vcpu *vcpu, u64 *sptep, int level)
+{
+ audit_sptes_have_rmaps(vcpu, sptep, level);
+ audit_mappings(vcpu, sptep, level);
+ audit_spte_after_sync(vcpu, sptep, level);
+}
+
+static void audit_vcpu_spte(struct kvm_vcpu *vcpu)
+{
+ mmu_spte_walk(vcpu, audit_spte);
+}
+
+static bool mmu_audit;
+static struct static_key mmu_audit_key;
+
+static void __kvm_mmu_audit(struct kvm_vcpu *vcpu, int point)
+{
+ static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
+
+ if (!__ratelimit(&ratelimit_state))
+ return;
+
+ vcpu->kvm->arch.audit_point = point;
+ audit_all_active_sps(vcpu->kvm);
+ audit_vcpu_spte(vcpu);
+}
+
+static inline void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point)
+{
+ if (static_key_false((&mmu_audit_key)))
+ __kvm_mmu_audit(vcpu, point);
+}
+
+static void mmu_audit_enable(void)
+{
+ if (mmu_audit)
+ return;
+
+ static_key_slow_inc(&mmu_audit_key);
+ mmu_audit = true;
+}
+
+static void mmu_audit_disable(void)
+{
+ if (!mmu_audit)
+ return;
+
+ static_key_slow_dec(&mmu_audit_key);
+ mmu_audit = false;
+}
+
+static int mmu_audit_set(const char *val, const struct kernel_param *kp)
+{
+ int ret;
+ unsigned long enable;
+
+ ret = kstrtoul(val, 10, &enable);
+ if (ret < 0)
+ return -EINVAL;
+
+ switch (enable) {
+ case 0:
+ mmu_audit_disable();
+ break;
+ case 1:
+ mmu_audit_enable();
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static struct kernel_param_ops audit_param_ops = {
+ .set = mmu_audit_set,
+ .get = param_get_bool,
+};
+
+arch_param_cb(mmu_audit, &audit_param_ops, &mmu_audit, 0644);
diff --git a/kernel/arch/x86/kvm/mmutrace.h b/kernel/arch/x86/kvm/mmutrace.h
new file mode 100644
index 000000000..ce463a9cc
--- /dev/null
+++ b/kernel/arch/x86/kvm/mmutrace.h
@@ -0,0 +1,333 @@
+#if !defined(_TRACE_KVMMMU_H) || defined(TRACE_HEADER_MULTI_READ)
+#define _TRACE_KVMMMU_H
+
+#include <linux/tracepoint.h>
+#include <linux/ftrace_event.h>
+
+#undef TRACE_SYSTEM
+#define TRACE_SYSTEM kvmmmu
+
+#define KVM_MMU_PAGE_FIELDS \
+ __field(unsigned long, mmu_valid_gen) \
+ __field(__u64, gfn) \
+ __field(__u32, role) \
+ __field(__u32, root_count) \
+ __field(bool, unsync)
+
+#define KVM_MMU_PAGE_ASSIGN(sp) \
+ __entry->mmu_valid_gen = sp->mmu_valid_gen; \
+ __entry->gfn = sp->gfn; \
+ __entry->role = sp->role.word; \
+ __entry->root_count = sp->root_count; \
+ __entry->unsync = sp->unsync;
+
+#define KVM_MMU_PAGE_PRINTK() ({ \
+ const char *saved_ptr = trace_seq_buffer_ptr(p); \
+ static const char *access_str[] = { \
+ "---", "--x", "w--", "w-x", "-u-", "-ux", "wu-", "wux" \
+ }; \
+ union kvm_mmu_page_role role; \
+ \
+ role.word = __entry->role; \
+ \
+ trace_seq_printf(p, "sp gen %lx gfn %llx %u%s q%u%s %s%s" \
+ " %snxe root %u %s%c", __entry->mmu_valid_gen, \
+ __entry->gfn, role.level, \
+ role.cr4_pae ? " pae" : "", \
+ role.quadrant, \
+ role.direct ? " direct" : "", \
+ access_str[role.access], \
+ role.invalid ? " invalid" : "", \
+ role.nxe ? "" : "!", \
+ __entry->root_count, \
+ __entry->unsync ? "unsync" : "sync", 0); \
+ saved_ptr; \
+ })
+
+#define kvm_mmu_trace_pferr_flags \
+ { PFERR_PRESENT_MASK, "P" }, \
+ { PFERR_WRITE_MASK, "W" }, \
+ { PFERR_USER_MASK, "U" }, \
+ { PFERR_RSVD_MASK, "RSVD" }, \
+ { PFERR_FETCH_MASK, "F" }
+
+/*
+ * A pagetable walk has started
+ */
+TRACE_EVENT(
+ kvm_mmu_pagetable_walk,
+ TP_PROTO(u64 addr, u32 pferr),
+ TP_ARGS(addr, pferr),
+
+ TP_STRUCT__entry(
+ __field(__u64, addr)
+ __field(__u32, pferr)
+ ),
+
+ TP_fast_assign(
+ __entry->addr = addr;
+ __entry->pferr = pferr;
+ ),
+
+ TP_printk("addr %llx pferr %x %s", __entry->addr, __entry->pferr,
+ __print_flags(__entry->pferr, "|", kvm_mmu_trace_pferr_flags))
+);
+
+
+/* We just walked a paging element */
+TRACE_EVENT(
+ kvm_mmu_paging_element,
+ TP_PROTO(u64 pte, int level),
+ TP_ARGS(pte, level),
+
+ TP_STRUCT__entry(
+ __field(__u64, pte)
+ __field(__u32, level)
+ ),
+
+ TP_fast_assign(
+ __entry->pte = pte;
+ __entry->level = level;
+ ),
+
+ TP_printk("pte %llx level %u", __entry->pte, __entry->level)
+);
+
+DECLARE_EVENT_CLASS(kvm_mmu_set_bit_class,
+
+ TP_PROTO(unsigned long table_gfn, unsigned index, unsigned size),
+
+ TP_ARGS(table_gfn, index, size),
+
+ TP_STRUCT__entry(
+ __field(__u64, gpa)
+ ),
+
+ TP_fast_assign(
+ __entry->gpa = ((u64)table_gfn << PAGE_SHIFT)
+ + index * size;
+ ),
+
+ TP_printk("gpa %llx", __entry->gpa)
+);
+
+/* We set a pte accessed bit */
+DEFINE_EVENT(kvm_mmu_set_bit_class, kvm_mmu_set_accessed_bit,
+
+ TP_PROTO(unsigned long table_gfn, unsigned index, unsigned size),
+
+ TP_ARGS(table_gfn, index, size)
+);
+
+/* We set a pte dirty bit */
+DEFINE_EVENT(kvm_mmu_set_bit_class, kvm_mmu_set_dirty_bit,
+
+ TP_PROTO(unsigned long table_gfn, unsigned index, unsigned size),
+
+ TP_ARGS(table_gfn, index, size)
+);
+
+TRACE_EVENT(
+ kvm_mmu_walker_error,
+ TP_PROTO(u32 pferr),
+ TP_ARGS(pferr),
+
+ TP_STRUCT__entry(
+ __field(__u32, pferr)
+ ),
+
+ TP_fast_assign(
+ __entry->pferr = pferr;
+ ),
+
+ TP_printk("pferr %x %s", __entry->pferr,
+ __print_flags(__entry->pferr, "|", kvm_mmu_trace_pferr_flags))
+);
+
+TRACE_EVENT(
+ kvm_mmu_get_page,
+ TP_PROTO(struct kvm_mmu_page *sp, bool created),
+ TP_ARGS(sp, created),
+
+ TP_STRUCT__entry(
+ KVM_MMU_PAGE_FIELDS
+ __field(bool, created)
+ ),
+
+ TP_fast_assign(
+ KVM_MMU_PAGE_ASSIGN(sp)
+ __entry->created = created;
+ ),
+
+ TP_printk("%s %s", KVM_MMU_PAGE_PRINTK(),
+ __entry->created ? "new" : "existing")
+);
+
+DECLARE_EVENT_CLASS(kvm_mmu_page_class,
+
+ TP_PROTO(struct kvm_mmu_page *sp),
+ TP_ARGS(sp),
+
+ TP_STRUCT__entry(
+ KVM_MMU_PAGE_FIELDS
+ ),
+
+ TP_fast_assign(
+ KVM_MMU_PAGE_ASSIGN(sp)
+ ),
+
+ TP_printk("%s", KVM_MMU_PAGE_PRINTK())
+);
+
+DEFINE_EVENT(kvm_mmu_page_class, kvm_mmu_sync_page,
+ TP_PROTO(struct kvm_mmu_page *sp),
+
+ TP_ARGS(sp)
+);
+
+DEFINE_EVENT(kvm_mmu_page_class, kvm_mmu_unsync_page,
+ TP_PROTO(struct kvm_mmu_page *sp),
+
+ TP_ARGS(sp)
+);
+
+DEFINE_EVENT(kvm_mmu_page_class, kvm_mmu_prepare_zap_page,
+ TP_PROTO(struct kvm_mmu_page *sp),
+
+ TP_ARGS(sp)
+);
+
+TRACE_EVENT(
+ mark_mmio_spte,
+ TP_PROTO(u64 *sptep, gfn_t gfn, unsigned access, unsigned int gen),
+ TP_ARGS(sptep, gfn, access, gen),
+
+ TP_STRUCT__entry(
+ __field(void *, sptep)
+ __field(gfn_t, gfn)
+ __field(unsigned, access)
+ __field(unsigned int, gen)
+ ),
+
+ TP_fast_assign(
+ __entry->sptep = sptep;
+ __entry->gfn = gfn;
+ __entry->access = access;
+ __entry->gen = gen;
+ ),
+
+ TP_printk("sptep:%p gfn %llx access %x gen %x", __entry->sptep,
+ __entry->gfn, __entry->access, __entry->gen)
+);
+
+TRACE_EVENT(
+ handle_mmio_page_fault,
+ TP_PROTO(u64 addr, gfn_t gfn, unsigned access),
+ TP_ARGS(addr, gfn, access),
+
+ TP_STRUCT__entry(
+ __field(u64, addr)
+ __field(gfn_t, gfn)
+ __field(unsigned, access)
+ ),
+
+ TP_fast_assign(
+ __entry->addr = addr;
+ __entry->gfn = gfn;
+ __entry->access = access;
+ ),
+
+ TP_printk("addr:%llx gfn %llx access %x", __entry->addr, __entry->gfn,
+ __entry->access)
+);
+
+#define __spte_satisfied(__spte) \
+ (__entry->retry && is_writable_pte(__entry->__spte))
+
+TRACE_EVENT(
+ fast_page_fault,
+ TP_PROTO(struct kvm_vcpu *vcpu, gva_t gva, u32 error_code,
+ u64 *sptep, u64 old_spte, bool retry),
+ TP_ARGS(vcpu, gva, error_code, sptep, old_spte, retry),
+
+ TP_STRUCT__entry(
+ __field(int, vcpu_id)
+ __field(gva_t, gva)
+ __field(u32, error_code)
+ __field(u64 *, sptep)
+ __field(u64, old_spte)
+ __field(u64, new_spte)
+ __field(bool, retry)
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_id = vcpu->vcpu_id;
+ __entry->gva = gva;
+ __entry->error_code = error_code;
+ __entry->sptep = sptep;
+ __entry->old_spte = old_spte;
+ __entry->new_spte = *sptep;
+ __entry->retry = retry;
+ ),
+
+ TP_printk("vcpu %d gva %lx error_code %s sptep %p old %#llx"
+ " new %llx spurious %d fixed %d", __entry->vcpu_id,
+ __entry->gva, __print_flags(__entry->error_code, "|",
+ kvm_mmu_trace_pferr_flags), __entry->sptep,
+ __entry->old_spte, __entry->new_spte,
+ __spte_satisfied(old_spte), __spte_satisfied(new_spte)
+ )
+);
+
+TRACE_EVENT(
+ kvm_mmu_invalidate_zap_all_pages,
+ TP_PROTO(struct kvm *kvm),
+ TP_ARGS(kvm),
+
+ TP_STRUCT__entry(
+ __field(unsigned long, mmu_valid_gen)
+ __field(unsigned int, mmu_used_pages)
+ ),
+
+ TP_fast_assign(
+ __entry->mmu_valid_gen = kvm->arch.mmu_valid_gen;
+ __entry->mmu_used_pages = kvm->arch.n_used_mmu_pages;
+ ),
+
+ TP_printk("kvm-mmu-valid-gen %lx used_pages %x",
+ __entry->mmu_valid_gen, __entry->mmu_used_pages
+ )
+);
+
+
+TRACE_EVENT(
+ check_mmio_spte,
+ TP_PROTO(u64 spte, unsigned int kvm_gen, unsigned int spte_gen),
+ TP_ARGS(spte, kvm_gen, spte_gen),
+
+ TP_STRUCT__entry(
+ __field(unsigned int, kvm_gen)
+ __field(unsigned int, spte_gen)
+ __field(u64, spte)
+ ),
+
+ TP_fast_assign(
+ __entry->kvm_gen = kvm_gen;
+ __entry->spte_gen = spte_gen;
+ __entry->spte = spte;
+ ),
+
+ TP_printk("spte %llx kvm_gen %x spte-gen %x valid %d", __entry->spte,
+ __entry->kvm_gen, __entry->spte_gen,
+ __entry->kvm_gen == __entry->spte_gen
+ )
+);
+#endif /* _TRACE_KVMMMU_H */
+
+#undef TRACE_INCLUDE_PATH
+#define TRACE_INCLUDE_PATH .
+#undef TRACE_INCLUDE_FILE
+#define TRACE_INCLUDE_FILE mmutrace
+
+/* This part must be outside protection */
+#include <trace/define_trace.h>
diff --git a/kernel/arch/x86/kvm/paging_tmpl.h b/kernel/arch/x86/kvm/paging_tmpl.h
new file mode 100644
index 000000000..6e6d115fe
--- /dev/null
+++ b/kernel/arch/x86/kvm/paging_tmpl.h
@@ -0,0 +1,1011 @@
+/*
+ * Kernel-based Virtual Machine driver for Linux
+ *
+ * This module enables machines with Intel VT-x extensions to run virtual
+ * machines without emulation or binary translation.
+ *
+ * MMU support
+ *
+ * Copyright (C) 2006 Qumranet, Inc.
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
+ *
+ * Authors:
+ * Yaniv Kamay <yaniv@qumranet.com>
+ * Avi Kivity <avi@qumranet.com>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2. See
+ * the COPYING file in the top-level directory.
+ *
+ */
+
+/*
+ * We need the mmu code to access both 32-bit and 64-bit guest ptes,
+ * so the code in this file is compiled twice, once per pte size.
+ */
+
+/*
+ * This is used to catch non optimized PT_GUEST_(DIRTY|ACCESS)_SHIFT macro
+ * uses for EPT without A/D paging type.
+ */
+extern u64 __pure __using_nonexistent_pte_bit(void)
+ __compiletime_error("wrong use of PT_GUEST_(DIRTY|ACCESS)_SHIFT");
+
+#if PTTYPE == 64
+ #define pt_element_t u64
+ #define guest_walker guest_walker64
+ #define FNAME(name) paging##64_##name
+ #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
+ #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
+ #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
+ #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
+ #define PT_LEVEL_BITS PT64_LEVEL_BITS
+ #define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK
+ #define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK
+ #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
+ #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
+ #ifdef CONFIG_X86_64
+ #define PT_MAX_FULL_LEVELS 4
+ #define CMPXCHG cmpxchg
+ #else
+ #define CMPXCHG cmpxchg64
+ #define PT_MAX_FULL_LEVELS 2
+ #endif
+#elif PTTYPE == 32
+ #define pt_element_t u32
+ #define guest_walker guest_walker32
+ #define FNAME(name) paging##32_##name
+ #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
+ #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
+ #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
+ #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
+ #define PT_LEVEL_BITS PT32_LEVEL_BITS
+ #define PT_MAX_FULL_LEVELS 2
+ #define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK
+ #define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK
+ #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
+ #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
+ #define CMPXCHG cmpxchg
+#elif PTTYPE == PTTYPE_EPT
+ #define pt_element_t u64
+ #define guest_walker guest_walkerEPT
+ #define FNAME(name) ept_##name
+ #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
+ #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
+ #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
+ #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
+ #define PT_LEVEL_BITS PT64_LEVEL_BITS
+ #define PT_GUEST_ACCESSED_MASK 0
+ #define PT_GUEST_DIRTY_MASK 0
+ #define PT_GUEST_DIRTY_SHIFT __using_nonexistent_pte_bit()
+ #define PT_GUEST_ACCESSED_SHIFT __using_nonexistent_pte_bit()
+ #define CMPXCHG cmpxchg64
+ #define PT_MAX_FULL_LEVELS 4
+#else
+ #error Invalid PTTYPE value
+#endif
+
+#define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
+#define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
+
+/*
+ * The guest_walker structure emulates the behavior of the hardware page
+ * table walker.
+ */
+struct guest_walker {
+ int level;
+ unsigned max_level;
+ gfn_t table_gfn[PT_MAX_FULL_LEVELS];
+ pt_element_t ptes[PT_MAX_FULL_LEVELS];
+ pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
+ gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
+ pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
+ bool pte_writable[PT_MAX_FULL_LEVELS];
+ unsigned pt_access;
+ unsigned pte_access;
+ gfn_t gfn;
+ struct x86_exception fault;
+};
+
+static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
+{
+ return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
+}
+
+static inline void FNAME(protect_clean_gpte)(unsigned *access, unsigned gpte)
+{
+ unsigned mask;
+
+ /* dirty bit is not supported, so no need to track it */
+ if (!PT_GUEST_DIRTY_MASK)
+ return;
+
+ BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
+
+ mask = (unsigned)~ACC_WRITE_MASK;
+ /* Allow write access to dirty gptes */
+ mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
+ PT_WRITABLE_MASK;
+ *access &= mask;
+}
+
+static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level)
+{
+ int bit7 = (gpte >> 7) & 1, low6 = gpte & 0x3f;
+
+ return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) |
+ ((mmu->bad_mt_xwr & (1ull << low6)) != 0);
+}
+
+static inline int FNAME(is_present_gpte)(unsigned long pte)
+{
+#if PTTYPE != PTTYPE_EPT
+ return is_present_gpte(pte);
+#else
+ return pte & 7;
+#endif
+}
+
+static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
+ pt_element_t __user *ptep_user, unsigned index,
+ pt_element_t orig_pte, pt_element_t new_pte)
+{
+ int npages;
+ pt_element_t ret;
+ pt_element_t *table;
+ struct page *page;
+
+ npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
+ /* Check if the user is doing something meaningless. */
+ if (unlikely(npages != 1))
+ return -EFAULT;
+
+ table = kmap_atomic(page);
+ ret = CMPXCHG(&table[index], orig_pte, new_pte);
+ kunmap_atomic(table);
+
+ kvm_release_page_dirty(page);
+
+ return (ret != orig_pte);
+}
+
+static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
+ struct kvm_mmu_page *sp, u64 *spte,
+ u64 gpte)
+{
+ if (FNAME(is_rsvd_bits_set)(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
+ goto no_present;
+
+ if (!FNAME(is_present_gpte)(gpte))
+ goto no_present;
+
+ /* if accessed bit is not supported prefetch non accessed gpte */
+ if (PT_GUEST_ACCESSED_MASK && !(gpte & PT_GUEST_ACCESSED_MASK))
+ goto no_present;
+
+ return false;
+
+no_present:
+ drop_spte(vcpu->kvm, spte);
+ return true;
+}
+
+static inline unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, u64 gpte)
+{
+ unsigned access;
+#if PTTYPE == PTTYPE_EPT
+ access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
+ ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
+ ACC_USER_MASK;
+#else
+ access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
+ access &= ~(gpte >> PT64_NX_SHIFT);
+#endif
+
+ return access;
+}
+
+static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
+ struct kvm_mmu *mmu,
+ struct guest_walker *walker,
+ int write_fault)
+{
+ unsigned level, index;
+ pt_element_t pte, orig_pte;
+ pt_element_t __user *ptep_user;
+ gfn_t table_gfn;
+ int ret;
+
+ /* dirty/accessed bits are not supported, so no need to update them */
+ if (!PT_GUEST_DIRTY_MASK)
+ return 0;
+
+ for (level = walker->max_level; level >= walker->level; --level) {
+ pte = orig_pte = walker->ptes[level - 1];
+ table_gfn = walker->table_gfn[level - 1];
+ ptep_user = walker->ptep_user[level - 1];
+ index = offset_in_page(ptep_user) / sizeof(pt_element_t);
+ if (!(pte & PT_GUEST_ACCESSED_MASK)) {
+ trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
+ pte |= PT_GUEST_ACCESSED_MASK;
+ }
+ if (level == walker->level && write_fault &&
+ !(pte & PT_GUEST_DIRTY_MASK)) {
+ trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
+ pte |= PT_GUEST_DIRTY_MASK;
+ }
+ if (pte == orig_pte)
+ continue;
+
+ /*
+ * If the slot is read-only, simply do not process the accessed
+ * and dirty bits. This is the correct thing to do if the slot
+ * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
+ * are only supported if the accessed and dirty bits are already
+ * set in the ROM (so that MMIO writes are never needed).
+ *
+ * Note that NPT does not allow this at all and faults, since
+ * it always wants nested page table entries for the guest
+ * page tables to be writable. And EPT works but will simply
+ * overwrite the read-only memory to set the accessed and dirty
+ * bits.
+ */
+ if (unlikely(!walker->pte_writable[level - 1]))
+ continue;
+
+ ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
+ if (ret)
+ return ret;
+
+ mark_page_dirty(vcpu->kvm, table_gfn);
+ walker->ptes[level] = pte;
+ }
+ return 0;
+}
+
+/*
+ * Fetch a guest pte for a guest virtual address
+ */
+static int FNAME(walk_addr_generic)(struct guest_walker *walker,
+ struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
+ gva_t addr, u32 access)
+{
+ int ret;
+ pt_element_t pte;
+ pt_element_t __user *uninitialized_var(ptep_user);
+ gfn_t table_gfn;
+ unsigned index, pt_access, pte_access, accessed_dirty;
+ gpa_t pte_gpa;
+ int offset;
+ const int write_fault = access & PFERR_WRITE_MASK;
+ const int user_fault = access & PFERR_USER_MASK;
+ const int fetch_fault = access & PFERR_FETCH_MASK;
+ u16 errcode = 0;
+ gpa_t real_gpa;
+ gfn_t gfn;
+
+ trace_kvm_mmu_pagetable_walk(addr, access);
+retry_walk:
+ walker->level = mmu->root_level;
+ pte = mmu->get_cr3(vcpu);
+
+#if PTTYPE == 64
+ if (walker->level == PT32E_ROOT_LEVEL) {
+ pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
+ trace_kvm_mmu_paging_element(pte, walker->level);
+ if (!FNAME(is_present_gpte)(pte))
+ goto error;
+ --walker->level;
+ }
+#endif
+ walker->max_level = walker->level;
+ ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
+
+ accessed_dirty = PT_GUEST_ACCESSED_MASK;
+ pt_access = pte_access = ACC_ALL;
+ ++walker->level;
+
+ do {
+ gfn_t real_gfn;
+ unsigned long host_addr;
+
+ pt_access &= pte_access;
+ --walker->level;
+
+ index = PT_INDEX(addr, walker->level);
+
+ table_gfn = gpte_to_gfn(pte);
+ offset = index * sizeof(pt_element_t);
+ pte_gpa = gfn_to_gpa(table_gfn) + offset;
+ walker->table_gfn[walker->level - 1] = table_gfn;
+ walker->pte_gpa[walker->level - 1] = pte_gpa;
+
+ real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
+ PFERR_USER_MASK|PFERR_WRITE_MASK,
+ &walker->fault);
+
+ /*
+ * FIXME: This can happen if emulation (for of an INS/OUTS
+ * instruction) triggers a nested page fault. The exit
+ * qualification / exit info field will incorrectly have
+ * "guest page access" as the nested page fault's cause,
+ * instead of "guest page structure access". To fix this,
+ * the x86_exception struct should be augmented with enough
+ * information to fix the exit_qualification or exit_info_1
+ * fields.
+ */
+ if (unlikely(real_gfn == UNMAPPED_GVA))
+ return 0;
+
+ real_gfn = gpa_to_gfn(real_gfn);
+
+ host_addr = gfn_to_hva_prot(vcpu->kvm, real_gfn,
+ &walker->pte_writable[walker->level - 1]);
+ if (unlikely(kvm_is_error_hva(host_addr)))
+ goto error;
+
+ ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
+ if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
+ goto error;
+ walker->ptep_user[walker->level - 1] = ptep_user;
+
+ trace_kvm_mmu_paging_element(pte, walker->level);
+
+ if (unlikely(!FNAME(is_present_gpte)(pte)))
+ goto error;
+
+ if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte,
+ walker->level))) {
+ errcode |= PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
+ goto error;
+ }
+
+ accessed_dirty &= pte;
+ pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
+
+ walker->ptes[walker->level - 1] = pte;
+ } while (!is_last_gpte(mmu, walker->level, pte));
+
+ if (unlikely(permission_fault(vcpu, mmu, pte_access, access))) {
+ errcode |= PFERR_PRESENT_MASK;
+ goto error;
+ }
+
+ gfn = gpte_to_gfn_lvl(pte, walker->level);
+ gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
+
+ if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
+ gfn += pse36_gfn_delta(pte);
+
+ real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
+ if (real_gpa == UNMAPPED_GVA)
+ return 0;
+
+ walker->gfn = real_gpa >> PAGE_SHIFT;
+
+ if (!write_fault)
+ FNAME(protect_clean_gpte)(&pte_access, pte);
+ else
+ /*
+ * On a write fault, fold the dirty bit into accessed_dirty.
+ * For modes without A/D bits support accessed_dirty will be
+ * always clear.
+ */
+ accessed_dirty &= pte >>
+ (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
+
+ if (unlikely(!accessed_dirty)) {
+ ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
+ if (unlikely(ret < 0))
+ goto error;
+ else if (ret)
+ goto retry_walk;
+ }
+
+ walker->pt_access = pt_access;
+ walker->pte_access = pte_access;
+ pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
+ __func__, (u64)pte, pte_access, pt_access);
+ return 1;
+
+error:
+ errcode |= write_fault | user_fault;
+ if (fetch_fault && (mmu->nx ||
+ kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
+ errcode |= PFERR_FETCH_MASK;
+
+ walker->fault.vector = PF_VECTOR;
+ walker->fault.error_code_valid = true;
+ walker->fault.error_code = errcode;
+
+#if PTTYPE == PTTYPE_EPT
+ /*
+ * Use PFERR_RSVD_MASK in error_code to to tell if EPT
+ * misconfiguration requires to be injected. The detection is
+ * done by is_rsvd_bits_set() above.
+ *
+ * We set up the value of exit_qualification to inject:
+ * [2:0] - Derive from [2:0] of real exit_qualification at EPT violation
+ * [5:3] - Calculated by the page walk of the guest EPT page tables
+ * [7:8] - Derived from [7:8] of real exit_qualification
+ *
+ * The other bits are set to 0.
+ */
+ if (!(errcode & PFERR_RSVD_MASK)) {
+ vcpu->arch.exit_qualification &= 0x187;
+ vcpu->arch.exit_qualification |= ((pt_access & pte) & 0x7) << 3;
+ }
+#endif
+ walker->fault.address = addr;
+ walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
+
+ trace_kvm_mmu_walker_error(walker->fault.error_code);
+ return 0;
+}
+
+static int FNAME(walk_addr)(struct guest_walker *walker,
+ struct kvm_vcpu *vcpu, gva_t addr, u32 access)
+{
+ return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
+ access);
+}
+
+#if PTTYPE != PTTYPE_EPT
+static int FNAME(walk_addr_nested)(struct guest_walker *walker,
+ struct kvm_vcpu *vcpu, gva_t addr,
+ u32 access)
+{
+ return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
+ addr, access);
+}
+#endif
+
+static bool
+FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
+ u64 *spte, pt_element_t gpte, bool no_dirty_log)
+{
+ unsigned pte_access;
+ gfn_t gfn;
+ pfn_t pfn;
+
+ if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
+ return false;
+
+ pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
+
+ gfn = gpte_to_gfn(gpte);
+ pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
+ FNAME(protect_clean_gpte)(&pte_access, gpte);
+ pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
+ no_dirty_log && (pte_access & ACC_WRITE_MASK));
+ if (is_error_pfn(pfn))
+ return false;
+
+ /*
+ * we call mmu_set_spte() with host_writable = true because
+ * pte_prefetch_gfn_to_pfn always gets a writable pfn.
+ */
+ mmu_set_spte(vcpu, spte, pte_access, 0, NULL, PT_PAGE_TABLE_LEVEL,
+ gfn, pfn, true, true);
+
+ return true;
+}
+
+static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
+ u64 *spte, const void *pte)
+{
+ pt_element_t gpte = *(const pt_element_t *)pte;
+
+ FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
+}
+
+static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
+ struct guest_walker *gw, int level)
+{
+ pt_element_t curr_pte;
+ gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
+ u64 mask;
+ int r, index;
+
+ if (level == PT_PAGE_TABLE_LEVEL) {
+ mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
+ base_gpa = pte_gpa & ~mask;
+ index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
+
+ r = kvm_read_guest_atomic(vcpu->kvm, base_gpa,
+ gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
+ curr_pte = gw->prefetch_ptes[index];
+ } else
+ r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa,
+ &curr_pte, sizeof(curr_pte));
+
+ return r || curr_pte != gw->ptes[level - 1];
+}
+
+static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
+ u64 *sptep)
+{
+ struct kvm_mmu_page *sp;
+ pt_element_t *gptep = gw->prefetch_ptes;
+ u64 *spte;
+ int i;
+
+ sp = page_header(__pa(sptep));
+
+ if (sp->role.level > PT_PAGE_TABLE_LEVEL)
+ return;
+
+ if (sp->role.direct)
+ return __direct_pte_prefetch(vcpu, sp, sptep);
+
+ i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
+ spte = sp->spt + i;
+
+ for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
+ if (spte == sptep)
+ continue;
+
+ if (is_shadow_present_pte(*spte))
+ continue;
+
+ if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
+ break;
+ }
+}
+
+/*
+ * Fetch a shadow pte for a specific level in the paging hierarchy.
+ * If the guest tries to write a write-protected page, we need to
+ * emulate this operation, return 1 to indicate this case.
+ */
+static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
+ struct guest_walker *gw,
+ int write_fault, int hlevel,
+ pfn_t pfn, bool map_writable, bool prefault)
+{
+ struct kvm_mmu_page *sp = NULL;
+ struct kvm_shadow_walk_iterator it;
+ unsigned direct_access, access = gw->pt_access;
+ int top_level, emulate = 0;
+
+ direct_access = gw->pte_access;
+
+ top_level = vcpu->arch.mmu.root_level;
+ if (top_level == PT32E_ROOT_LEVEL)
+ top_level = PT32_ROOT_LEVEL;
+ /*
+ * Verify that the top-level gpte is still there. Since the page
+ * is a root page, it is either write protected (and cannot be
+ * changed from now on) or it is invalid (in which case, we don't
+ * really care if it changes underneath us after this point).
+ */
+ if (FNAME(gpte_changed)(vcpu, gw, top_level))
+ goto out_gpte_changed;
+
+ if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
+ goto out_gpte_changed;
+
+ for (shadow_walk_init(&it, vcpu, addr);
+ shadow_walk_okay(&it) && it.level > gw->level;
+ shadow_walk_next(&it)) {
+ gfn_t table_gfn;
+
+ clear_sp_write_flooding_count(it.sptep);
+ drop_large_spte(vcpu, it.sptep);
+
+ sp = NULL;
+ if (!is_shadow_present_pte(*it.sptep)) {
+ table_gfn = gw->table_gfn[it.level - 2];
+ sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
+ false, access, it.sptep);
+ }
+
+ /*
+ * Verify that the gpte in the page we've just write
+ * protected is still there.
+ */
+ if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
+ goto out_gpte_changed;
+
+ if (sp)
+ link_shadow_page(it.sptep, sp, PT_GUEST_ACCESSED_MASK);
+ }
+
+ for (;
+ shadow_walk_okay(&it) && it.level > hlevel;
+ shadow_walk_next(&it)) {
+ gfn_t direct_gfn;
+
+ clear_sp_write_flooding_count(it.sptep);
+ validate_direct_spte(vcpu, it.sptep, direct_access);
+
+ drop_large_spte(vcpu, it.sptep);
+
+ if (is_shadow_present_pte(*it.sptep))
+ continue;
+
+ direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
+
+ sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
+ true, direct_access, it.sptep);
+ link_shadow_page(it.sptep, sp, PT_GUEST_ACCESSED_MASK);
+ }
+
+ clear_sp_write_flooding_count(it.sptep);
+ mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault, &emulate,
+ it.level, gw->gfn, pfn, prefault, map_writable);
+ FNAME(pte_prefetch)(vcpu, gw, it.sptep);
+
+ return emulate;
+
+out_gpte_changed:
+ if (sp)
+ kvm_mmu_put_page(sp, it.sptep);
+ kvm_release_pfn_clean(pfn);
+ return 0;
+}
+
+ /*
+ * To see whether the mapped gfn can write its page table in the current
+ * mapping.
+ *
+ * It is the helper function of FNAME(page_fault). When guest uses large page
+ * size to map the writable gfn which is used as current page table, we should
+ * force kvm to use small page size to map it because new shadow page will be
+ * created when kvm establishes shadow page table that stop kvm using large
+ * page size. Do it early can avoid unnecessary #PF and emulation.
+ *
+ * @write_fault_to_shadow_pgtable will return true if the fault gfn is
+ * currently used as its page table.
+ *
+ * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
+ * since the PDPT is always shadowed, that means, we can not use large page
+ * size to map the gfn which is used as PDPT.
+ */
+static bool
+FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
+ struct guest_walker *walker, int user_fault,
+ bool *write_fault_to_shadow_pgtable)
+{
+ int level;
+ gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
+ bool self_changed = false;
+
+ if (!(walker->pte_access & ACC_WRITE_MASK ||
+ (!is_write_protection(vcpu) && !user_fault)))
+ return false;
+
+ for (level = walker->level; level <= walker->max_level; level++) {
+ gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
+
+ self_changed |= !(gfn & mask);
+ *write_fault_to_shadow_pgtable |= !gfn;
+ }
+
+ return self_changed;
+}
+
+/*
+ * Page fault handler. There are several causes for a page fault:
+ * - there is no shadow pte for the guest pte
+ * - write access through a shadow pte marked read only so that we can set
+ * the dirty bit
+ * - write access to a shadow pte marked read only so we can update the page
+ * dirty bitmap, when userspace requests it
+ * - mmio access; in this case we will never install a present shadow pte
+ * - normal guest page fault due to the guest pte marked not present, not
+ * writable, or not executable
+ *
+ * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
+ * a negative value on error.
+ */
+static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
+ bool prefault)
+{
+ int write_fault = error_code & PFERR_WRITE_MASK;
+ int user_fault = error_code & PFERR_USER_MASK;
+ struct guest_walker walker;
+ int r;
+ pfn_t pfn;
+ int level = PT_PAGE_TABLE_LEVEL;
+ int force_pt_level;
+ unsigned long mmu_seq;
+ bool map_writable, is_self_change_mapping;
+
+ pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
+
+ if (unlikely(error_code & PFERR_RSVD_MASK)) {
+ r = handle_mmio_page_fault(vcpu, addr, error_code,
+ mmu_is_nested(vcpu));
+ if (likely(r != RET_MMIO_PF_INVALID))
+ return r;
+
+ /*
+ * page fault with PFEC.RSVD = 1 is caused by shadow
+ * page fault, should not be used to walk guest page
+ * table.
+ */
+ error_code &= ~PFERR_RSVD_MASK;
+ };
+
+ r = mmu_topup_memory_caches(vcpu);
+ if (r)
+ return r;
+
+ /*
+ * Look up the guest pte for the faulting address.
+ */
+ r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
+
+ /*
+ * The page is not mapped by the guest. Let the guest handle it.
+ */
+ if (!r) {
+ pgprintk("%s: guest page fault\n", __func__);
+ if (!prefault)
+ inject_page_fault(vcpu, &walker.fault);
+
+ return 0;
+ }
+
+ vcpu->arch.write_fault_to_shadow_pgtable = false;
+
+ is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
+ &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
+
+ if (walker.level >= PT_DIRECTORY_LEVEL)
+ force_pt_level = mapping_level_dirty_bitmap(vcpu, walker.gfn)
+ || is_self_change_mapping;
+ else
+ force_pt_level = 1;
+ if (!force_pt_level) {
+ level = min(walker.level, mapping_level(vcpu, walker.gfn));
+ walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
+ }
+
+ mmu_seq = vcpu->kvm->mmu_notifier_seq;
+ smp_rmb();
+
+ if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
+ &map_writable))
+ return 0;
+
+ if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr,
+ walker.gfn, pfn, walker.pte_access, &r))
+ return r;
+
+ /*
+ * Do not change pte_access if the pfn is a mmio page, otherwise
+ * we will cache the incorrect access into mmio spte.
+ */
+ if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
+ !is_write_protection(vcpu) && !user_fault &&
+ !is_noslot_pfn(pfn)) {
+ walker.pte_access |= ACC_WRITE_MASK;
+ walker.pte_access &= ~ACC_USER_MASK;
+
+ /*
+ * If we converted a user page to a kernel page,
+ * so that the kernel can write to it when cr0.wp=0,
+ * then we should prevent the kernel from executing it
+ * if SMEP is enabled.
+ */
+ if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
+ walker.pte_access &= ~ACC_EXEC_MASK;
+ }
+
+ spin_lock(&vcpu->kvm->mmu_lock);
+ if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
+ goto out_unlock;
+
+ kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
+ make_mmu_pages_available(vcpu);
+ if (!force_pt_level)
+ transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
+ r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
+ level, pfn, map_writable, prefault);
+ ++vcpu->stat.pf_fixed;
+ kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
+ spin_unlock(&vcpu->kvm->mmu_lock);
+
+ return r;
+
+out_unlock:
+ spin_unlock(&vcpu->kvm->mmu_lock);
+ kvm_release_pfn_clean(pfn);
+ return 0;
+}
+
+static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
+{
+ int offset = 0;
+
+ WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
+
+ if (PTTYPE == 32)
+ offset = sp->role.quadrant << PT64_LEVEL_BITS;
+
+ return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
+}
+
+static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
+{
+ struct kvm_shadow_walk_iterator iterator;
+ struct kvm_mmu_page *sp;
+ int level;
+ u64 *sptep;
+
+ vcpu_clear_mmio_info(vcpu, gva);
+
+ /*
+ * No need to check return value here, rmap_can_add() can
+ * help us to skip pte prefetch later.
+ */
+ mmu_topup_memory_caches(vcpu);
+
+ if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
+ WARN_ON(1);
+ return;
+ }
+
+ spin_lock(&vcpu->kvm->mmu_lock);
+ for_each_shadow_entry(vcpu, gva, iterator) {
+ level = iterator.level;
+ sptep = iterator.sptep;
+
+ sp = page_header(__pa(sptep));
+ if (is_last_spte(*sptep, level)) {
+ pt_element_t gpte;
+ gpa_t pte_gpa;
+
+ if (!sp->unsync)
+ break;
+
+ pte_gpa = FNAME(get_level1_sp_gpa)(sp);
+ pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
+
+ if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
+ kvm_flush_remote_tlbs(vcpu->kvm);
+
+ if (!rmap_can_add(vcpu))
+ break;
+
+ if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
+ sizeof(pt_element_t)))
+ break;
+
+ FNAME(update_pte)(vcpu, sp, sptep, &gpte);
+ }
+
+ if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
+ break;
+ }
+ spin_unlock(&vcpu->kvm->mmu_lock);
+}
+
+static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
+ struct x86_exception *exception)
+{
+ struct guest_walker walker;
+ gpa_t gpa = UNMAPPED_GVA;
+ int r;
+
+ r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
+
+ if (r) {
+ gpa = gfn_to_gpa(walker.gfn);
+ gpa |= vaddr & ~PAGE_MASK;
+ } else if (exception)
+ *exception = walker.fault;
+
+ return gpa;
+}
+
+#if PTTYPE != PTTYPE_EPT
+static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
+ u32 access,
+ struct x86_exception *exception)
+{
+ struct guest_walker walker;
+ gpa_t gpa = UNMAPPED_GVA;
+ int r;
+
+ r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
+
+ if (r) {
+ gpa = gfn_to_gpa(walker.gfn);
+ gpa |= vaddr & ~PAGE_MASK;
+ } else if (exception)
+ *exception = walker.fault;
+
+ return gpa;
+}
+#endif
+
+/*
+ * Using the cached information from sp->gfns is safe because:
+ * - The spte has a reference to the struct page, so the pfn for a given gfn
+ * can't change unless all sptes pointing to it are nuked first.
+ *
+ * Note:
+ * We should flush all tlbs if spte is dropped even though guest is
+ * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
+ * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
+ * used by guest then tlbs are not flushed, so guest is allowed to access the
+ * freed pages.
+ * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
+ */
+static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
+{
+ int i, nr_present = 0;
+ bool host_writable;
+ gpa_t first_pte_gpa;
+
+ /* direct kvm_mmu_page can not be unsync. */
+ BUG_ON(sp->role.direct);
+
+ first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
+
+ for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
+ unsigned pte_access;
+ pt_element_t gpte;
+ gpa_t pte_gpa;
+ gfn_t gfn;
+
+ if (!sp->spt[i])
+ continue;
+
+ pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
+
+ if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
+ sizeof(pt_element_t)))
+ return -EINVAL;
+
+ if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
+ vcpu->kvm->tlbs_dirty++;
+ continue;
+ }
+
+ gfn = gpte_to_gfn(gpte);
+ pte_access = sp->role.access;
+ pte_access &= FNAME(gpte_access)(vcpu, gpte);
+ FNAME(protect_clean_gpte)(&pte_access, gpte);
+
+ if (sync_mmio_spte(vcpu->kvm, &sp->spt[i], gfn, pte_access,
+ &nr_present))
+ continue;
+
+ if (gfn != sp->gfns[i]) {
+ drop_spte(vcpu->kvm, &sp->spt[i]);
+ vcpu->kvm->tlbs_dirty++;
+ continue;
+ }
+
+ nr_present++;
+
+ host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
+
+ set_spte(vcpu, &sp->spt[i], pte_access,
+ PT_PAGE_TABLE_LEVEL, gfn,
+ spte_to_pfn(sp->spt[i]), true, false,
+ host_writable);
+ }
+
+ return !nr_present;
+}
+
+#undef pt_element_t
+#undef guest_walker
+#undef FNAME
+#undef PT_BASE_ADDR_MASK
+#undef PT_INDEX
+#undef PT_LVL_ADDR_MASK
+#undef PT_LVL_OFFSET_MASK
+#undef PT_LEVEL_BITS
+#undef PT_MAX_FULL_LEVELS
+#undef gpte_to_gfn
+#undef gpte_to_gfn_lvl
+#undef CMPXCHG
+#undef PT_GUEST_ACCESSED_MASK
+#undef PT_GUEST_DIRTY_MASK
+#undef PT_GUEST_DIRTY_SHIFT
+#undef PT_GUEST_ACCESSED_SHIFT
diff --git a/kernel/arch/x86/kvm/pmu.c b/kernel/arch/x86/kvm/pmu.c
new file mode 100644
index 000000000..29fbf9dfd
--- /dev/null
+++ b/kernel/arch/x86/kvm/pmu.c
@@ -0,0 +1,576 @@
+/*
+ * Kernel-based Virtual Machine -- Performance Monitoring Unit support
+ *
+ * Copyright 2011 Red Hat, Inc. and/or its affiliates.
+ *
+ * Authors:
+ * Avi Kivity <avi@redhat.com>
+ * Gleb Natapov <gleb@redhat.com>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2. See
+ * the COPYING file in the top-level directory.
+ *
+ */
+
+#include <linux/types.h>
+#include <linux/kvm_host.h>
+#include <linux/perf_event.h>
+#include <asm/perf_event.h>
+#include "x86.h"
+#include "cpuid.h"
+#include "lapic.h"
+
+static struct kvm_arch_event_perf_mapping {
+ u8 eventsel;
+ u8 unit_mask;
+ unsigned event_type;
+ bool inexact;
+} arch_events[] = {
+ /* Index must match CPUID 0x0A.EBX bit vector */
+ [0] = { 0x3c, 0x00, PERF_COUNT_HW_CPU_CYCLES },
+ [1] = { 0xc0, 0x00, PERF_COUNT_HW_INSTRUCTIONS },
+ [2] = { 0x3c, 0x01, PERF_COUNT_HW_BUS_CYCLES },
+ [3] = { 0x2e, 0x4f, PERF_COUNT_HW_CACHE_REFERENCES },
+ [4] = { 0x2e, 0x41, PERF_COUNT_HW_CACHE_MISSES },
+ [5] = { 0xc4, 0x00, PERF_COUNT_HW_BRANCH_INSTRUCTIONS },
+ [6] = { 0xc5, 0x00, PERF_COUNT_HW_BRANCH_MISSES },
+ [7] = { 0x00, 0x30, PERF_COUNT_HW_REF_CPU_CYCLES },
+};
+
+/* mapping between fixed pmc index and arch_events array */
+static int fixed_pmc_events[] = {1, 0, 7};
+
+static bool pmc_is_gp(struct kvm_pmc *pmc)
+{
+ return pmc->type == KVM_PMC_GP;
+}
+
+static inline u64 pmc_bitmask(struct kvm_pmc *pmc)
+{
+ struct kvm_pmu *pmu = &pmc->vcpu->arch.pmu;
+
+ return pmu->counter_bitmask[pmc->type];
+}
+
+static inline bool pmc_enabled(struct kvm_pmc *pmc)
+{
+ struct kvm_pmu *pmu = &pmc->vcpu->arch.pmu;
+ return test_bit(pmc->idx, (unsigned long *)&pmu->global_ctrl);
+}
+
+static inline struct kvm_pmc *get_gp_pmc(struct kvm_pmu *pmu, u32 msr,
+ u32 base)
+{
+ if (msr >= base && msr < base + pmu->nr_arch_gp_counters)
+ return &pmu->gp_counters[msr - base];
+ return NULL;
+}
+
+static inline struct kvm_pmc *get_fixed_pmc(struct kvm_pmu *pmu, u32 msr)
+{
+ int base = MSR_CORE_PERF_FIXED_CTR0;
+ if (msr >= base && msr < base + pmu->nr_arch_fixed_counters)
+ return &pmu->fixed_counters[msr - base];
+ return NULL;
+}
+
+static inline struct kvm_pmc *get_fixed_pmc_idx(struct kvm_pmu *pmu, int idx)
+{
+ return get_fixed_pmc(pmu, MSR_CORE_PERF_FIXED_CTR0 + idx);
+}
+
+static struct kvm_pmc *global_idx_to_pmc(struct kvm_pmu *pmu, int idx)
+{
+ if (idx < INTEL_PMC_IDX_FIXED)
+ return get_gp_pmc(pmu, MSR_P6_EVNTSEL0 + idx, MSR_P6_EVNTSEL0);
+ else
+ return get_fixed_pmc_idx(pmu, idx - INTEL_PMC_IDX_FIXED);
+}
+
+void kvm_deliver_pmi(struct kvm_vcpu *vcpu)
+{
+ if (vcpu->arch.apic)
+ kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
+}
+
+static void trigger_pmi(struct irq_work *irq_work)
+{
+ struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu,
+ irq_work);
+ struct kvm_vcpu *vcpu = container_of(pmu, struct kvm_vcpu,
+ arch.pmu);
+
+ kvm_deliver_pmi(vcpu);
+}
+
+static void kvm_perf_overflow(struct perf_event *perf_event,
+ struct perf_sample_data *data,
+ struct pt_regs *regs)
+{
+ struct kvm_pmc *pmc = perf_event->overflow_handler_context;
+ struct kvm_pmu *pmu = &pmc->vcpu->arch.pmu;
+ if (!test_and_set_bit(pmc->idx, (unsigned long *)&pmu->reprogram_pmi)) {
+ __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
+ kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
+ }
+}
+
+static void kvm_perf_overflow_intr(struct perf_event *perf_event,
+ struct perf_sample_data *data, struct pt_regs *regs)
+{
+ struct kvm_pmc *pmc = perf_event->overflow_handler_context;
+ struct kvm_pmu *pmu = &pmc->vcpu->arch.pmu;
+ if (!test_and_set_bit(pmc->idx, (unsigned long *)&pmu->reprogram_pmi)) {
+ __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
+ kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
+ /*
+ * Inject PMI. If vcpu was in a guest mode during NMI PMI
+ * can be ejected on a guest mode re-entry. Otherwise we can't
+ * be sure that vcpu wasn't executing hlt instruction at the
+ * time of vmexit and is not going to re-enter guest mode until,
+ * woken up. So we should wake it, but this is impossible from
+ * NMI context. Do it from irq work instead.
+ */
+ if (!kvm_is_in_guest())
+ irq_work_queue(&pmc->vcpu->arch.pmu.irq_work);
+ else
+ kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
+ }
+}
+
+static u64 read_pmc(struct kvm_pmc *pmc)
+{
+ u64 counter, enabled, running;
+
+ counter = pmc->counter;
+
+ if (pmc->perf_event)
+ counter += perf_event_read_value(pmc->perf_event,
+ &enabled, &running);
+
+ /* FIXME: Scaling needed? */
+
+ return counter & pmc_bitmask(pmc);
+}
+
+static void stop_counter(struct kvm_pmc *pmc)
+{
+ if (pmc->perf_event) {
+ pmc->counter = read_pmc(pmc);
+ perf_event_release_kernel(pmc->perf_event);
+ pmc->perf_event = NULL;
+ }
+}
+
+static void reprogram_counter(struct kvm_pmc *pmc, u32 type,
+ unsigned config, bool exclude_user, bool exclude_kernel,
+ bool intr, bool in_tx, bool in_tx_cp)
+{
+ struct perf_event *event;
+ struct perf_event_attr attr = {
+ .type = type,
+ .size = sizeof(attr),
+ .pinned = true,
+ .exclude_idle = true,
+ .exclude_host = 1,
+ .exclude_user = exclude_user,
+ .exclude_kernel = exclude_kernel,
+ .config = config,
+ };
+ if (in_tx)
+ attr.config |= HSW_IN_TX;
+ if (in_tx_cp)
+ attr.config |= HSW_IN_TX_CHECKPOINTED;
+
+ attr.sample_period = (-pmc->counter) & pmc_bitmask(pmc);
+
+ event = perf_event_create_kernel_counter(&attr, -1, current,
+ intr ? kvm_perf_overflow_intr :
+ kvm_perf_overflow, pmc);
+ if (IS_ERR(event)) {
+ printk_once("kvm: pmu event creation failed %ld\n",
+ PTR_ERR(event));
+ return;
+ }
+
+ pmc->perf_event = event;
+ clear_bit(pmc->idx, (unsigned long*)&pmc->vcpu->arch.pmu.reprogram_pmi);
+}
+
+static unsigned find_arch_event(struct kvm_pmu *pmu, u8 event_select,
+ u8 unit_mask)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(arch_events); i++)
+ if (arch_events[i].eventsel == event_select
+ && arch_events[i].unit_mask == unit_mask
+ && (pmu->available_event_types & (1 << i)))
+ break;
+
+ if (i == ARRAY_SIZE(arch_events))
+ return PERF_COUNT_HW_MAX;
+
+ return arch_events[i].event_type;
+}
+
+static void reprogram_gp_counter(struct kvm_pmc *pmc, u64 eventsel)
+{
+ unsigned config, type = PERF_TYPE_RAW;
+ u8 event_select, unit_mask;
+
+ if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
+ printk_once("kvm pmu: pin control bit is ignored\n");
+
+ pmc->eventsel = eventsel;
+
+ stop_counter(pmc);
+
+ if (!(eventsel & ARCH_PERFMON_EVENTSEL_ENABLE) || !pmc_enabled(pmc))
+ return;
+
+ event_select = eventsel & ARCH_PERFMON_EVENTSEL_EVENT;
+ unit_mask = (eventsel & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
+
+ if (!(eventsel & (ARCH_PERFMON_EVENTSEL_EDGE |
+ ARCH_PERFMON_EVENTSEL_INV |
+ ARCH_PERFMON_EVENTSEL_CMASK |
+ HSW_IN_TX |
+ HSW_IN_TX_CHECKPOINTED))) {
+ config = find_arch_event(&pmc->vcpu->arch.pmu, event_select,
+ unit_mask);
+ if (config != PERF_COUNT_HW_MAX)
+ type = PERF_TYPE_HARDWARE;
+ }
+
+ if (type == PERF_TYPE_RAW)
+ config = eventsel & X86_RAW_EVENT_MASK;
+
+ reprogram_counter(pmc, type, config,
+ !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
+ !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
+ eventsel & ARCH_PERFMON_EVENTSEL_INT,
+ (eventsel & HSW_IN_TX),
+ (eventsel & HSW_IN_TX_CHECKPOINTED));
+}
+
+static void reprogram_fixed_counter(struct kvm_pmc *pmc, u8 en_pmi, int idx)
+{
+ unsigned en = en_pmi & 0x3;
+ bool pmi = en_pmi & 0x8;
+
+ stop_counter(pmc);
+
+ if (!en || !pmc_enabled(pmc))
+ return;
+
+ reprogram_counter(pmc, PERF_TYPE_HARDWARE,
+ arch_events[fixed_pmc_events[idx]].event_type,
+ !(en & 0x2), /* exclude user */
+ !(en & 0x1), /* exclude kernel */
+ pmi, false, false);
+}
+
+static inline u8 fixed_en_pmi(u64 ctrl, int idx)
+{
+ return (ctrl >> (idx * 4)) & 0xf;
+}
+
+static void reprogram_fixed_counters(struct kvm_pmu *pmu, u64 data)
+{
+ int i;
+
+ for (i = 0; i < pmu->nr_arch_fixed_counters; i++) {
+ u8 en_pmi = fixed_en_pmi(data, i);
+ struct kvm_pmc *pmc = get_fixed_pmc_idx(pmu, i);
+
+ if (fixed_en_pmi(pmu->fixed_ctr_ctrl, i) == en_pmi)
+ continue;
+
+ reprogram_fixed_counter(pmc, en_pmi, i);
+ }
+
+ pmu->fixed_ctr_ctrl = data;
+}
+
+static void reprogram_idx(struct kvm_pmu *pmu, int idx)
+{
+ struct kvm_pmc *pmc = global_idx_to_pmc(pmu, idx);
+
+ if (!pmc)
+ return;
+
+ if (pmc_is_gp(pmc))
+ reprogram_gp_counter(pmc, pmc->eventsel);
+ else {
+ int fidx = idx - INTEL_PMC_IDX_FIXED;
+ reprogram_fixed_counter(pmc,
+ fixed_en_pmi(pmu->fixed_ctr_ctrl, fidx), fidx);
+ }
+}
+
+static void global_ctrl_changed(struct kvm_pmu *pmu, u64 data)
+{
+ int bit;
+ u64 diff = pmu->global_ctrl ^ data;
+
+ pmu->global_ctrl = data;
+
+ for_each_set_bit(bit, (unsigned long *)&diff, X86_PMC_IDX_MAX)
+ reprogram_idx(pmu, bit);
+}
+
+bool kvm_pmu_msr(struct kvm_vcpu *vcpu, u32 msr)
+{
+ struct kvm_pmu *pmu = &vcpu->arch.pmu;
+ int ret;
+
+ switch (msr) {
+ case MSR_CORE_PERF_FIXED_CTR_CTRL:
+ case MSR_CORE_PERF_GLOBAL_STATUS:
+ case MSR_CORE_PERF_GLOBAL_CTRL:
+ case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
+ ret = pmu->version > 1;
+ break;
+ default:
+ ret = get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0)
+ || get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0)
+ || get_fixed_pmc(pmu, msr);
+ break;
+ }
+ return ret;
+}
+
+int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
+{
+ struct kvm_pmu *pmu = &vcpu->arch.pmu;
+ struct kvm_pmc *pmc;
+
+ switch (index) {
+ case MSR_CORE_PERF_FIXED_CTR_CTRL:
+ *data = pmu->fixed_ctr_ctrl;
+ return 0;
+ case MSR_CORE_PERF_GLOBAL_STATUS:
+ *data = pmu->global_status;
+ return 0;
+ case MSR_CORE_PERF_GLOBAL_CTRL:
+ *data = pmu->global_ctrl;
+ return 0;
+ case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
+ *data = pmu->global_ovf_ctrl;
+ return 0;
+ default:
+ if ((pmc = get_gp_pmc(pmu, index, MSR_IA32_PERFCTR0)) ||
+ (pmc = get_fixed_pmc(pmu, index))) {
+ *data = read_pmc(pmc);
+ return 0;
+ } else if ((pmc = get_gp_pmc(pmu, index, MSR_P6_EVNTSEL0))) {
+ *data = pmc->eventsel;
+ return 0;
+ }
+ }
+ return 1;
+}
+
+int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
+{
+ struct kvm_pmu *pmu = &vcpu->arch.pmu;
+ struct kvm_pmc *pmc;
+ u32 index = msr_info->index;
+ u64 data = msr_info->data;
+
+ switch (index) {
+ case MSR_CORE_PERF_FIXED_CTR_CTRL:
+ if (pmu->fixed_ctr_ctrl == data)
+ return 0;
+ if (!(data & 0xfffffffffffff444ull)) {
+ reprogram_fixed_counters(pmu, data);
+ return 0;
+ }
+ break;
+ case MSR_CORE_PERF_GLOBAL_STATUS:
+ if (msr_info->host_initiated) {
+ pmu->global_status = data;
+ return 0;
+ }
+ break; /* RO MSR */
+ case MSR_CORE_PERF_GLOBAL_CTRL:
+ if (pmu->global_ctrl == data)
+ return 0;
+ if (!(data & pmu->global_ctrl_mask)) {
+ global_ctrl_changed(pmu, data);
+ return 0;
+ }
+ break;
+ case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
+ if (!(data & (pmu->global_ctrl_mask & ~(3ull<<62)))) {
+ if (!msr_info->host_initiated)
+ pmu->global_status &= ~data;
+ pmu->global_ovf_ctrl = data;
+ return 0;
+ }
+ break;
+ default:
+ if ((pmc = get_gp_pmc(pmu, index, MSR_IA32_PERFCTR0)) ||
+ (pmc = get_fixed_pmc(pmu, index))) {
+ if (!msr_info->host_initiated)
+ data = (s64)(s32)data;
+ pmc->counter += data - read_pmc(pmc);
+ return 0;
+ } else if ((pmc = get_gp_pmc(pmu, index, MSR_P6_EVNTSEL0))) {
+ if (data == pmc->eventsel)
+ return 0;
+ if (!(data & pmu->reserved_bits)) {
+ reprogram_gp_counter(pmc, data);
+ return 0;
+ }
+ }
+ }
+ return 1;
+}
+
+int kvm_pmu_check_pmc(struct kvm_vcpu *vcpu, unsigned pmc)
+{
+ struct kvm_pmu *pmu = &vcpu->arch.pmu;
+ bool fixed = pmc & (1u << 30);
+ pmc &= ~(3u << 30);
+ return (!fixed && pmc >= pmu->nr_arch_gp_counters) ||
+ (fixed && pmc >= pmu->nr_arch_fixed_counters);
+}
+
+int kvm_pmu_read_pmc(struct kvm_vcpu *vcpu, unsigned pmc, u64 *data)
+{
+ struct kvm_pmu *pmu = &vcpu->arch.pmu;
+ bool fast_mode = pmc & (1u << 31);
+ bool fixed = pmc & (1u << 30);
+ struct kvm_pmc *counters;
+ u64 ctr;
+
+ pmc &= ~(3u << 30);
+ if (!fixed && pmc >= pmu->nr_arch_gp_counters)
+ return 1;
+ if (fixed && pmc >= pmu->nr_arch_fixed_counters)
+ return 1;
+ counters = fixed ? pmu->fixed_counters : pmu->gp_counters;
+ ctr = read_pmc(&counters[pmc]);
+ if (fast_mode)
+ ctr = (u32)ctr;
+ *data = ctr;
+
+ return 0;
+}
+
+void kvm_pmu_cpuid_update(struct kvm_vcpu *vcpu)
+{
+ struct kvm_pmu *pmu = &vcpu->arch.pmu;
+ struct kvm_cpuid_entry2 *entry;
+ union cpuid10_eax eax;
+ union cpuid10_edx edx;
+
+ pmu->nr_arch_gp_counters = 0;
+ pmu->nr_arch_fixed_counters = 0;
+ pmu->counter_bitmask[KVM_PMC_GP] = 0;
+ pmu->counter_bitmask[KVM_PMC_FIXED] = 0;
+ pmu->version = 0;
+ pmu->reserved_bits = 0xffffffff00200000ull;
+
+ entry = kvm_find_cpuid_entry(vcpu, 0xa, 0);
+ if (!entry)
+ return;
+ eax.full = entry->eax;
+ edx.full = entry->edx;
+
+ pmu->version = eax.split.version_id;
+ if (!pmu->version)
+ return;
+
+ pmu->nr_arch_gp_counters = min_t(int, eax.split.num_counters,
+ INTEL_PMC_MAX_GENERIC);
+ pmu->counter_bitmask[KVM_PMC_GP] = ((u64)1 << eax.split.bit_width) - 1;
+ pmu->available_event_types = ~entry->ebx &
+ ((1ull << eax.split.mask_length) - 1);
+
+ if (pmu->version == 1) {
+ pmu->nr_arch_fixed_counters = 0;
+ } else {
+ pmu->nr_arch_fixed_counters =
+ min_t(int, edx.split.num_counters_fixed,
+ INTEL_PMC_MAX_FIXED);
+ pmu->counter_bitmask[KVM_PMC_FIXED] =
+ ((u64)1 << edx.split.bit_width_fixed) - 1;
+ }
+
+ pmu->global_ctrl = ((1 << pmu->nr_arch_gp_counters) - 1) |
+ (((1ull << pmu->nr_arch_fixed_counters) - 1) << INTEL_PMC_IDX_FIXED);
+ pmu->global_ctrl_mask = ~pmu->global_ctrl;
+
+ entry = kvm_find_cpuid_entry(vcpu, 7, 0);
+ if (entry &&
+ (boot_cpu_has(X86_FEATURE_HLE) || boot_cpu_has(X86_FEATURE_RTM)) &&
+ (entry->ebx & (X86_FEATURE_HLE|X86_FEATURE_RTM)))
+ pmu->reserved_bits ^= HSW_IN_TX|HSW_IN_TX_CHECKPOINTED;
+}
+
+void kvm_pmu_init(struct kvm_vcpu *vcpu)
+{
+ int i;
+ struct kvm_pmu *pmu = &vcpu->arch.pmu;
+
+ memset(pmu, 0, sizeof(*pmu));
+ for (i = 0; i < INTEL_PMC_MAX_GENERIC; i++) {
+ pmu->gp_counters[i].type = KVM_PMC_GP;
+ pmu->gp_counters[i].vcpu = vcpu;
+ pmu->gp_counters[i].idx = i;
+ }
+ for (i = 0; i < INTEL_PMC_MAX_FIXED; i++) {
+ pmu->fixed_counters[i].type = KVM_PMC_FIXED;
+ pmu->fixed_counters[i].vcpu = vcpu;
+ pmu->fixed_counters[i].idx = i + INTEL_PMC_IDX_FIXED;
+ }
+ init_irq_work(&pmu->irq_work, trigger_pmi);
+ kvm_pmu_cpuid_update(vcpu);
+}
+
+void kvm_pmu_reset(struct kvm_vcpu *vcpu)
+{
+ struct kvm_pmu *pmu = &vcpu->arch.pmu;
+ int i;
+
+ irq_work_sync(&pmu->irq_work);
+ for (i = 0; i < INTEL_PMC_MAX_GENERIC; i++) {
+ struct kvm_pmc *pmc = &pmu->gp_counters[i];
+ stop_counter(pmc);
+ pmc->counter = pmc->eventsel = 0;
+ }
+
+ for (i = 0; i < INTEL_PMC_MAX_FIXED; i++)
+ stop_counter(&pmu->fixed_counters[i]);
+
+ pmu->fixed_ctr_ctrl = pmu->global_ctrl = pmu->global_status =
+ pmu->global_ovf_ctrl = 0;
+}
+
+void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
+{
+ kvm_pmu_reset(vcpu);
+}
+
+void kvm_handle_pmu_event(struct kvm_vcpu *vcpu)
+{
+ struct kvm_pmu *pmu = &vcpu->arch.pmu;
+ u64 bitmask;
+ int bit;
+
+ bitmask = pmu->reprogram_pmi;
+
+ for_each_set_bit(bit, (unsigned long *)&bitmask, X86_PMC_IDX_MAX) {
+ struct kvm_pmc *pmc = global_idx_to_pmc(pmu, bit);
+
+ if (unlikely(!pmc || !pmc->perf_event)) {
+ clear_bit(bit, (unsigned long *)&pmu->reprogram_pmi);
+ continue;
+ }
+
+ reprogram_idx(pmu, bit);
+ }
+}
diff --git a/kernel/arch/x86/kvm/svm.c b/kernel/arch/x86/kvm/svm.c
new file mode 100644
index 000000000..4911bf191
--- /dev/null
+++ b/kernel/arch/x86/kvm/svm.c
@@ -0,0 +1,4461 @@
+/*
+ * Kernel-based Virtual Machine driver for Linux
+ *
+ * AMD SVM support
+ *
+ * Copyright (C) 2006 Qumranet, Inc.
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
+ *
+ * Authors:
+ * Yaniv Kamay <yaniv@qumranet.com>
+ * Avi Kivity <avi@qumranet.com>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2. See
+ * the COPYING file in the top-level directory.
+ *
+ */
+#include <linux/kvm_host.h>
+
+#include "irq.h"
+#include "mmu.h"
+#include "kvm_cache_regs.h"
+#include "x86.h"
+#include "cpuid.h"
+
+#include <linux/module.h>
+#include <linux/mod_devicetable.h>
+#include <linux/kernel.h>
+#include <linux/vmalloc.h>
+#include <linux/highmem.h>
+#include <linux/sched.h>
+#include <linux/ftrace_event.h>
+#include <linux/slab.h>
+
+#include <asm/perf_event.h>
+#include <asm/tlbflush.h>
+#include <asm/desc.h>
+#include <asm/debugreg.h>
+#include <asm/kvm_para.h>
+
+#include <asm/virtext.h>
+#include "trace.h"
+
+#define __ex(x) __kvm_handle_fault_on_reboot(x)
+
+MODULE_AUTHOR("Qumranet");
+MODULE_LICENSE("GPL");
+
+static const struct x86_cpu_id svm_cpu_id[] = {
+ X86_FEATURE_MATCH(X86_FEATURE_SVM),
+ {}
+};
+MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
+
+#define IOPM_ALLOC_ORDER 2
+#define MSRPM_ALLOC_ORDER 1
+
+#define SEG_TYPE_LDT 2
+#define SEG_TYPE_BUSY_TSS16 3
+
+#define SVM_FEATURE_NPT (1 << 0)
+#define SVM_FEATURE_LBRV (1 << 1)
+#define SVM_FEATURE_SVML (1 << 2)
+#define SVM_FEATURE_NRIP (1 << 3)
+#define SVM_FEATURE_TSC_RATE (1 << 4)
+#define SVM_FEATURE_VMCB_CLEAN (1 << 5)
+#define SVM_FEATURE_FLUSH_ASID (1 << 6)
+#define SVM_FEATURE_DECODE_ASSIST (1 << 7)
+#define SVM_FEATURE_PAUSE_FILTER (1 << 10)
+
+#define NESTED_EXIT_HOST 0 /* Exit handled on host level */
+#define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
+#define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
+
+#define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
+
+#define TSC_RATIO_RSVD 0xffffff0000000000ULL
+#define TSC_RATIO_MIN 0x0000000000000001ULL
+#define TSC_RATIO_MAX 0x000000ffffffffffULL
+
+static bool erratum_383_found __read_mostly;
+
+static const u32 host_save_user_msrs[] = {
+#ifdef CONFIG_X86_64
+ MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
+ MSR_FS_BASE,
+#endif
+ MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
+};
+
+#define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
+
+struct kvm_vcpu;
+
+struct nested_state {
+ struct vmcb *hsave;
+ u64 hsave_msr;
+ u64 vm_cr_msr;
+ u64 vmcb;
+
+ /* These are the merged vectors */
+ u32 *msrpm;
+
+ /* gpa pointers to the real vectors */
+ u64 vmcb_msrpm;
+ u64 vmcb_iopm;
+
+ /* A VMEXIT is required but not yet emulated */
+ bool exit_required;
+
+ /* cache for intercepts of the guest */
+ u32 intercept_cr;
+ u32 intercept_dr;
+ u32 intercept_exceptions;
+ u64 intercept;
+
+ /* Nested Paging related state */
+ u64 nested_cr3;
+};
+
+#define MSRPM_OFFSETS 16
+static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
+
+/*
+ * Set osvw_len to higher value when updated Revision Guides
+ * are published and we know what the new status bits are
+ */
+static uint64_t osvw_len = 4, osvw_status;
+
+struct vcpu_svm {
+ struct kvm_vcpu vcpu;
+ struct vmcb *vmcb;
+ unsigned long vmcb_pa;
+ struct svm_cpu_data *svm_data;
+ uint64_t asid_generation;
+ uint64_t sysenter_esp;
+ uint64_t sysenter_eip;
+
+ u64 next_rip;
+
+ u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
+ struct {
+ u16 fs;
+ u16 gs;
+ u16 ldt;
+ u64 gs_base;
+ } host;
+
+ u32 *msrpm;
+
+ ulong nmi_iret_rip;
+
+ struct nested_state nested;
+
+ bool nmi_singlestep;
+
+ unsigned int3_injected;
+ unsigned long int3_rip;
+ u32 apf_reason;
+
+ u64 tsc_ratio;
+};
+
+static DEFINE_PER_CPU(u64, current_tsc_ratio);
+#define TSC_RATIO_DEFAULT 0x0100000000ULL
+
+#define MSR_INVALID 0xffffffffU
+
+static const struct svm_direct_access_msrs {
+ u32 index; /* Index of the MSR */
+ bool always; /* True if intercept is always on */
+} direct_access_msrs[] = {
+ { .index = MSR_STAR, .always = true },
+ { .index = MSR_IA32_SYSENTER_CS, .always = true },
+#ifdef CONFIG_X86_64
+ { .index = MSR_GS_BASE, .always = true },
+ { .index = MSR_FS_BASE, .always = true },
+ { .index = MSR_KERNEL_GS_BASE, .always = true },
+ { .index = MSR_LSTAR, .always = true },
+ { .index = MSR_CSTAR, .always = true },
+ { .index = MSR_SYSCALL_MASK, .always = true },
+#endif
+ { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
+ { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
+ { .index = MSR_IA32_LASTINTFROMIP, .always = false },
+ { .index = MSR_IA32_LASTINTTOIP, .always = false },
+ { .index = MSR_INVALID, .always = false },
+};
+
+/* enable NPT for AMD64 and X86 with PAE */
+#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
+static bool npt_enabled = true;
+#else
+static bool npt_enabled;
+#endif
+
+/* allow nested paging (virtualized MMU) for all guests */
+static int npt = true;
+module_param(npt, int, S_IRUGO);
+
+/* allow nested virtualization in KVM/SVM */
+static int nested = true;
+module_param(nested, int, S_IRUGO);
+
+static void svm_flush_tlb(struct kvm_vcpu *vcpu);
+static void svm_complete_interrupts(struct vcpu_svm *svm);
+
+static int nested_svm_exit_handled(struct vcpu_svm *svm);
+static int nested_svm_intercept(struct vcpu_svm *svm);
+static int nested_svm_vmexit(struct vcpu_svm *svm);
+static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
+ bool has_error_code, u32 error_code);
+static u64 __scale_tsc(u64 ratio, u64 tsc);
+
+enum {
+ VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
+ pause filter count */
+ VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
+ VMCB_ASID, /* ASID */
+ VMCB_INTR, /* int_ctl, int_vector */
+ VMCB_NPT, /* npt_en, nCR3, gPAT */
+ VMCB_CR, /* CR0, CR3, CR4, EFER */
+ VMCB_DR, /* DR6, DR7 */
+ VMCB_DT, /* GDT, IDT */
+ VMCB_SEG, /* CS, DS, SS, ES, CPL */
+ VMCB_CR2, /* CR2 only */
+ VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
+ VMCB_DIRTY_MAX,
+};
+
+/* TPR and CR2 are always written before VMRUN */
+#define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
+
+static inline void mark_all_dirty(struct vmcb *vmcb)
+{
+ vmcb->control.clean = 0;
+}
+
+static inline void mark_all_clean(struct vmcb *vmcb)
+{
+ vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
+ & ~VMCB_ALWAYS_DIRTY_MASK;
+}
+
+static inline void mark_dirty(struct vmcb *vmcb, int bit)
+{
+ vmcb->control.clean &= ~(1 << bit);
+}
+
+static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
+{
+ return container_of(vcpu, struct vcpu_svm, vcpu);
+}
+
+static void recalc_intercepts(struct vcpu_svm *svm)
+{
+ struct vmcb_control_area *c, *h;
+ struct nested_state *g;
+
+ mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
+
+ if (!is_guest_mode(&svm->vcpu))
+ return;
+
+ c = &svm->vmcb->control;
+ h = &svm->nested.hsave->control;
+ g = &svm->nested;
+
+ c->intercept_cr = h->intercept_cr | g->intercept_cr;
+ c->intercept_dr = h->intercept_dr | g->intercept_dr;
+ c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
+ c->intercept = h->intercept | g->intercept;
+}
+
+static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
+{
+ if (is_guest_mode(&svm->vcpu))
+ return svm->nested.hsave;
+ else
+ return svm->vmcb;
+}
+
+static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
+{
+ struct vmcb *vmcb = get_host_vmcb(svm);
+
+ vmcb->control.intercept_cr |= (1U << bit);
+
+ recalc_intercepts(svm);
+}
+
+static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
+{
+ struct vmcb *vmcb = get_host_vmcb(svm);
+
+ vmcb->control.intercept_cr &= ~(1U << bit);
+
+ recalc_intercepts(svm);
+}
+
+static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
+{
+ struct vmcb *vmcb = get_host_vmcb(svm);
+
+ return vmcb->control.intercept_cr & (1U << bit);
+}
+
+static inline void set_dr_intercepts(struct vcpu_svm *svm)
+{
+ struct vmcb *vmcb = get_host_vmcb(svm);
+
+ vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
+ | (1 << INTERCEPT_DR1_READ)
+ | (1 << INTERCEPT_DR2_READ)
+ | (1 << INTERCEPT_DR3_READ)
+ | (1 << INTERCEPT_DR4_READ)
+ | (1 << INTERCEPT_DR5_READ)
+ | (1 << INTERCEPT_DR6_READ)
+ | (1 << INTERCEPT_DR7_READ)
+ | (1 << INTERCEPT_DR0_WRITE)
+ | (1 << INTERCEPT_DR1_WRITE)
+ | (1 << INTERCEPT_DR2_WRITE)
+ | (1 << INTERCEPT_DR3_WRITE)
+ | (1 << INTERCEPT_DR4_WRITE)
+ | (1 << INTERCEPT_DR5_WRITE)
+ | (1 << INTERCEPT_DR6_WRITE)
+ | (1 << INTERCEPT_DR7_WRITE);
+
+ recalc_intercepts(svm);
+}
+
+static inline void clr_dr_intercepts(struct vcpu_svm *svm)
+{
+ struct vmcb *vmcb = get_host_vmcb(svm);
+
+ vmcb->control.intercept_dr = 0;
+
+ recalc_intercepts(svm);
+}
+
+static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
+{
+ struct vmcb *vmcb = get_host_vmcb(svm);
+
+ vmcb->control.intercept_exceptions |= (1U << bit);
+
+ recalc_intercepts(svm);
+}
+
+static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
+{
+ struct vmcb *vmcb = get_host_vmcb(svm);
+
+ vmcb->control.intercept_exceptions &= ~(1U << bit);
+
+ recalc_intercepts(svm);
+}
+
+static inline void set_intercept(struct vcpu_svm *svm, int bit)
+{
+ struct vmcb *vmcb = get_host_vmcb(svm);
+
+ vmcb->control.intercept |= (1ULL << bit);
+
+ recalc_intercepts(svm);
+}
+
+static inline void clr_intercept(struct vcpu_svm *svm, int bit)
+{
+ struct vmcb *vmcb = get_host_vmcb(svm);
+
+ vmcb->control.intercept &= ~(1ULL << bit);
+
+ recalc_intercepts(svm);
+}
+
+static inline void enable_gif(struct vcpu_svm *svm)
+{
+ svm->vcpu.arch.hflags |= HF_GIF_MASK;
+}
+
+static inline void disable_gif(struct vcpu_svm *svm)
+{
+ svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
+}
+
+static inline bool gif_set(struct vcpu_svm *svm)
+{
+ return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
+}
+
+static unsigned long iopm_base;
+
+struct kvm_ldttss_desc {
+ u16 limit0;
+ u16 base0;
+ unsigned base1:8, type:5, dpl:2, p:1;
+ unsigned limit1:4, zero0:3, g:1, base2:8;
+ u32 base3;
+ u32 zero1;
+} __attribute__((packed));
+
+struct svm_cpu_data {
+ int cpu;
+
+ u64 asid_generation;
+ u32 max_asid;
+ u32 next_asid;
+ struct kvm_ldttss_desc *tss_desc;
+
+ struct page *save_area;
+};
+
+static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
+
+struct svm_init_data {
+ int cpu;
+ int r;
+};
+
+static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
+
+#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
+#define MSRS_RANGE_SIZE 2048
+#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
+
+static u32 svm_msrpm_offset(u32 msr)
+{
+ u32 offset;
+ int i;
+
+ for (i = 0; i < NUM_MSR_MAPS; i++) {
+ if (msr < msrpm_ranges[i] ||
+ msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
+ continue;
+
+ offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
+ offset += (i * MSRS_RANGE_SIZE); /* add range offset */
+
+ /* Now we have the u8 offset - but need the u32 offset */
+ return offset / 4;
+ }
+
+ /* MSR not in any range */
+ return MSR_INVALID;
+}
+
+#define MAX_INST_SIZE 15
+
+static inline void clgi(void)
+{
+ asm volatile (__ex(SVM_CLGI));
+}
+
+static inline void stgi(void)
+{
+ asm volatile (__ex(SVM_STGI));
+}
+
+static inline void invlpga(unsigned long addr, u32 asid)
+{
+ asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
+}
+
+static int get_npt_level(void)
+{
+#ifdef CONFIG_X86_64
+ return PT64_ROOT_LEVEL;
+#else
+ return PT32E_ROOT_LEVEL;
+#endif
+}
+
+static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
+{
+ vcpu->arch.efer = efer;
+ if (!npt_enabled && !(efer & EFER_LMA))
+ efer &= ~EFER_LME;
+
+ to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
+ mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
+}
+
+static int is_external_interrupt(u32 info)
+{
+ info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
+ return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
+}
+
+static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+ u32 ret = 0;
+
+ if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
+ ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
+ return ret;
+}
+
+static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ if (mask == 0)
+ svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
+ else
+ svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
+
+}
+
+static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ if (svm->vmcb->control.next_rip != 0) {
+ WARN_ON(!static_cpu_has(X86_FEATURE_NRIPS));
+ svm->next_rip = svm->vmcb->control.next_rip;
+ }
+
+ if (!svm->next_rip) {
+ if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
+ EMULATE_DONE)
+ printk(KERN_DEBUG "%s: NOP\n", __func__);
+ return;
+ }
+ if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
+ printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
+ __func__, kvm_rip_read(vcpu), svm->next_rip);
+
+ kvm_rip_write(vcpu, svm->next_rip);
+ svm_set_interrupt_shadow(vcpu, 0);
+}
+
+static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
+ bool has_error_code, u32 error_code,
+ bool reinject)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ /*
+ * If we are within a nested VM we'd better #VMEXIT and let the guest
+ * handle the exception
+ */
+ if (!reinject &&
+ nested_svm_check_exception(svm, nr, has_error_code, error_code))
+ return;
+
+ if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
+ unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
+
+ /*
+ * For guest debugging where we have to reinject #BP if some
+ * INT3 is guest-owned:
+ * Emulate nRIP by moving RIP forward. Will fail if injection
+ * raises a fault that is not intercepted. Still better than
+ * failing in all cases.
+ */
+ skip_emulated_instruction(&svm->vcpu);
+ rip = kvm_rip_read(&svm->vcpu);
+ svm->int3_rip = rip + svm->vmcb->save.cs.base;
+ svm->int3_injected = rip - old_rip;
+ }
+
+ svm->vmcb->control.event_inj = nr
+ | SVM_EVTINJ_VALID
+ | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
+ | SVM_EVTINJ_TYPE_EXEPT;
+ svm->vmcb->control.event_inj_err = error_code;
+}
+
+static void svm_init_erratum_383(void)
+{
+ u32 low, high;
+ int err;
+ u64 val;
+
+ if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
+ return;
+
+ /* Use _safe variants to not break nested virtualization */
+ val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
+ if (err)
+ return;
+
+ val |= (1ULL << 47);
+
+ low = lower_32_bits(val);
+ high = upper_32_bits(val);
+
+ native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
+
+ erratum_383_found = true;
+}
+
+static void svm_init_osvw(struct kvm_vcpu *vcpu)
+{
+ /*
+ * Guests should see errata 400 and 415 as fixed (assuming that
+ * HLT and IO instructions are intercepted).
+ */
+ vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
+ vcpu->arch.osvw.status = osvw_status & ~(6ULL);
+
+ /*
+ * By increasing VCPU's osvw.length to 3 we are telling the guest that
+ * all osvw.status bits inside that length, including bit 0 (which is
+ * reserved for erratum 298), are valid. However, if host processor's
+ * osvw_len is 0 then osvw_status[0] carries no information. We need to
+ * be conservative here and therefore we tell the guest that erratum 298
+ * is present (because we really don't know).
+ */
+ if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
+ vcpu->arch.osvw.status |= 1;
+}
+
+static int has_svm(void)
+{
+ const char *msg;
+
+ if (!cpu_has_svm(&msg)) {
+ printk(KERN_INFO "has_svm: %s\n", msg);
+ return 0;
+ }
+
+ return 1;
+}
+
+static void svm_hardware_disable(void)
+{
+ /* Make sure we clean up behind us */
+ if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
+ wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
+
+ cpu_svm_disable();
+
+ amd_pmu_disable_virt();
+}
+
+static int svm_hardware_enable(void)
+{
+
+ struct svm_cpu_data *sd;
+ uint64_t efer;
+ struct desc_ptr gdt_descr;
+ struct desc_struct *gdt;
+ int me = raw_smp_processor_id();
+
+ rdmsrl(MSR_EFER, efer);
+ if (efer & EFER_SVME)
+ return -EBUSY;
+
+ if (!has_svm()) {
+ pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
+ return -EINVAL;
+ }
+ sd = per_cpu(svm_data, me);
+ if (!sd) {
+ pr_err("%s: svm_data is NULL on %d\n", __func__, me);
+ return -EINVAL;
+ }
+
+ sd->asid_generation = 1;
+ sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
+ sd->next_asid = sd->max_asid + 1;
+
+ native_store_gdt(&gdt_descr);
+ gdt = (struct desc_struct *)gdt_descr.address;
+ sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
+
+ wrmsrl(MSR_EFER, efer | EFER_SVME);
+
+ wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
+
+ if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
+ wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
+ __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
+ }
+
+
+ /*
+ * Get OSVW bits.
+ *
+ * Note that it is possible to have a system with mixed processor
+ * revisions and therefore different OSVW bits. If bits are not the same
+ * on different processors then choose the worst case (i.e. if erratum
+ * is present on one processor and not on another then assume that the
+ * erratum is present everywhere).
+ */
+ if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
+ uint64_t len, status = 0;
+ int err;
+
+ len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
+ if (!err)
+ status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
+ &err);
+
+ if (err)
+ osvw_status = osvw_len = 0;
+ else {
+ if (len < osvw_len)
+ osvw_len = len;
+ osvw_status |= status;
+ osvw_status &= (1ULL << osvw_len) - 1;
+ }
+ } else
+ osvw_status = osvw_len = 0;
+
+ svm_init_erratum_383();
+
+ amd_pmu_enable_virt();
+
+ return 0;
+}
+
+static void svm_cpu_uninit(int cpu)
+{
+ struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
+
+ if (!sd)
+ return;
+
+ per_cpu(svm_data, raw_smp_processor_id()) = NULL;
+ __free_page(sd->save_area);
+ kfree(sd);
+}
+
+static int svm_cpu_init(int cpu)
+{
+ struct svm_cpu_data *sd;
+ int r;
+
+ sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
+ if (!sd)
+ return -ENOMEM;
+ sd->cpu = cpu;
+ sd->save_area = alloc_page(GFP_KERNEL);
+ r = -ENOMEM;
+ if (!sd->save_area)
+ goto err_1;
+
+ per_cpu(svm_data, cpu) = sd;
+
+ return 0;
+
+err_1:
+ kfree(sd);
+ return r;
+
+}
+
+static bool valid_msr_intercept(u32 index)
+{
+ int i;
+
+ for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
+ if (direct_access_msrs[i].index == index)
+ return true;
+
+ return false;
+}
+
+static void set_msr_interception(u32 *msrpm, unsigned msr,
+ int read, int write)
+{
+ u8 bit_read, bit_write;
+ unsigned long tmp;
+ u32 offset;
+
+ /*
+ * If this warning triggers extend the direct_access_msrs list at the
+ * beginning of the file
+ */
+ WARN_ON(!valid_msr_intercept(msr));
+
+ offset = svm_msrpm_offset(msr);
+ bit_read = 2 * (msr & 0x0f);
+ bit_write = 2 * (msr & 0x0f) + 1;
+ tmp = msrpm[offset];
+
+ BUG_ON(offset == MSR_INVALID);
+
+ read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
+ write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
+
+ msrpm[offset] = tmp;
+}
+
+static void svm_vcpu_init_msrpm(u32 *msrpm)
+{
+ int i;
+
+ memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
+
+ for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
+ if (!direct_access_msrs[i].always)
+ continue;
+
+ set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
+ }
+}
+
+static void add_msr_offset(u32 offset)
+{
+ int i;
+
+ for (i = 0; i < MSRPM_OFFSETS; ++i) {
+
+ /* Offset already in list? */
+ if (msrpm_offsets[i] == offset)
+ return;
+
+ /* Slot used by another offset? */
+ if (msrpm_offsets[i] != MSR_INVALID)
+ continue;
+
+ /* Add offset to list */
+ msrpm_offsets[i] = offset;
+
+ return;
+ }
+
+ /*
+ * If this BUG triggers the msrpm_offsets table has an overflow. Just
+ * increase MSRPM_OFFSETS in this case.
+ */
+ BUG();
+}
+
+static void init_msrpm_offsets(void)
+{
+ int i;
+
+ memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
+
+ for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
+ u32 offset;
+
+ offset = svm_msrpm_offset(direct_access_msrs[i].index);
+ BUG_ON(offset == MSR_INVALID);
+
+ add_msr_offset(offset);
+ }
+}
+
+static void svm_enable_lbrv(struct vcpu_svm *svm)
+{
+ u32 *msrpm = svm->msrpm;
+
+ svm->vmcb->control.lbr_ctl = 1;
+ set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
+ set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
+ set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
+ set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
+}
+
+static void svm_disable_lbrv(struct vcpu_svm *svm)
+{
+ u32 *msrpm = svm->msrpm;
+
+ svm->vmcb->control.lbr_ctl = 0;
+ set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
+ set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
+ set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
+ set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
+}
+
+static __init int svm_hardware_setup(void)
+{
+ int cpu;
+ struct page *iopm_pages;
+ void *iopm_va;
+ int r;
+
+ iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
+
+ if (!iopm_pages)
+ return -ENOMEM;
+
+ iopm_va = page_address(iopm_pages);
+ memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
+ iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
+
+ init_msrpm_offsets();
+
+ if (boot_cpu_has(X86_FEATURE_NX))
+ kvm_enable_efer_bits(EFER_NX);
+
+ if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
+ kvm_enable_efer_bits(EFER_FFXSR);
+
+ if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
+ u64 max;
+
+ kvm_has_tsc_control = true;
+
+ /*
+ * Make sure the user can only configure tsc_khz values that
+ * fit into a signed integer.
+ * A min value is not calculated needed because it will always
+ * be 1 on all machines and a value of 0 is used to disable
+ * tsc-scaling for the vcpu.
+ */
+ max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
+
+ kvm_max_guest_tsc_khz = max;
+ }
+
+ if (nested) {
+ printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
+ kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
+ }
+
+ for_each_possible_cpu(cpu) {
+ r = svm_cpu_init(cpu);
+ if (r)
+ goto err;
+ }
+
+ if (!boot_cpu_has(X86_FEATURE_NPT))
+ npt_enabled = false;
+
+ if (npt_enabled && !npt) {
+ printk(KERN_INFO "kvm: Nested Paging disabled\n");
+ npt_enabled = false;
+ }
+
+ if (npt_enabled) {
+ printk(KERN_INFO "kvm: Nested Paging enabled\n");
+ kvm_enable_tdp();
+ } else
+ kvm_disable_tdp();
+
+ return 0;
+
+err:
+ __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
+ iopm_base = 0;
+ return r;
+}
+
+static __exit void svm_hardware_unsetup(void)
+{
+ int cpu;
+
+ for_each_possible_cpu(cpu)
+ svm_cpu_uninit(cpu);
+
+ __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
+ iopm_base = 0;
+}
+
+static void init_seg(struct vmcb_seg *seg)
+{
+ seg->selector = 0;
+ seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
+ SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
+ seg->limit = 0xffff;
+ seg->base = 0;
+}
+
+static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
+{
+ seg->selector = 0;
+ seg->attrib = SVM_SELECTOR_P_MASK | type;
+ seg->limit = 0xffff;
+ seg->base = 0;
+}
+
+static u64 __scale_tsc(u64 ratio, u64 tsc)
+{
+ u64 mult, frac, _tsc;
+
+ mult = ratio >> 32;
+ frac = ratio & ((1ULL << 32) - 1);
+
+ _tsc = tsc;
+ _tsc *= mult;
+ _tsc += (tsc >> 32) * frac;
+ _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
+
+ return _tsc;
+}
+
+static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+ u64 _tsc = tsc;
+
+ if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
+ _tsc = __scale_tsc(svm->tsc_ratio, tsc);
+
+ return _tsc;
+}
+
+static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+ u64 ratio;
+ u64 khz;
+
+ /* Guest TSC same frequency as host TSC? */
+ if (!scale) {
+ svm->tsc_ratio = TSC_RATIO_DEFAULT;
+ return;
+ }
+
+ /* TSC scaling supported? */
+ if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
+ if (user_tsc_khz > tsc_khz) {
+ vcpu->arch.tsc_catchup = 1;
+ vcpu->arch.tsc_always_catchup = 1;
+ } else
+ WARN(1, "user requested TSC rate below hardware speed\n");
+ return;
+ }
+
+ khz = user_tsc_khz;
+
+ /* TSC scaling required - calculate ratio */
+ ratio = khz << 32;
+ do_div(ratio, tsc_khz);
+
+ if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
+ WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
+ user_tsc_khz);
+ return;
+ }
+ svm->tsc_ratio = ratio;
+}
+
+static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ return svm->vmcb->control.tsc_offset;
+}
+
+static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+ u64 g_tsc_offset = 0;
+
+ if (is_guest_mode(vcpu)) {
+ g_tsc_offset = svm->vmcb->control.tsc_offset -
+ svm->nested.hsave->control.tsc_offset;
+ svm->nested.hsave->control.tsc_offset = offset;
+ } else
+ trace_kvm_write_tsc_offset(vcpu->vcpu_id,
+ svm->vmcb->control.tsc_offset,
+ offset);
+
+ svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
+
+ mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
+}
+
+static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ if (host) {
+ if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
+ WARN_ON(adjustment < 0);
+ adjustment = svm_scale_tsc(vcpu, (u64)adjustment);
+ }
+
+ svm->vmcb->control.tsc_offset += adjustment;
+ if (is_guest_mode(vcpu))
+ svm->nested.hsave->control.tsc_offset += adjustment;
+ else
+ trace_kvm_write_tsc_offset(vcpu->vcpu_id,
+ svm->vmcb->control.tsc_offset - adjustment,
+ svm->vmcb->control.tsc_offset);
+
+ mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
+}
+
+static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
+{
+ u64 tsc;
+
+ tsc = svm_scale_tsc(vcpu, native_read_tsc());
+
+ return target_tsc - tsc;
+}
+
+static void init_vmcb(struct vcpu_svm *svm)
+{
+ struct vmcb_control_area *control = &svm->vmcb->control;
+ struct vmcb_save_area *save = &svm->vmcb->save;
+
+ svm->vcpu.fpu_active = 1;
+ svm->vcpu.arch.hflags = 0;
+
+ set_cr_intercept(svm, INTERCEPT_CR0_READ);
+ set_cr_intercept(svm, INTERCEPT_CR3_READ);
+ set_cr_intercept(svm, INTERCEPT_CR4_READ);
+ set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
+ set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
+ set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
+ set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
+
+ set_dr_intercepts(svm);
+
+ set_exception_intercept(svm, PF_VECTOR);
+ set_exception_intercept(svm, UD_VECTOR);
+ set_exception_intercept(svm, MC_VECTOR);
+
+ set_intercept(svm, INTERCEPT_INTR);
+ set_intercept(svm, INTERCEPT_NMI);
+ set_intercept(svm, INTERCEPT_SMI);
+ set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
+ set_intercept(svm, INTERCEPT_RDPMC);
+ set_intercept(svm, INTERCEPT_CPUID);
+ set_intercept(svm, INTERCEPT_INVD);
+ set_intercept(svm, INTERCEPT_HLT);
+ set_intercept(svm, INTERCEPT_INVLPG);
+ set_intercept(svm, INTERCEPT_INVLPGA);
+ set_intercept(svm, INTERCEPT_IOIO_PROT);
+ set_intercept(svm, INTERCEPT_MSR_PROT);
+ set_intercept(svm, INTERCEPT_TASK_SWITCH);
+ set_intercept(svm, INTERCEPT_SHUTDOWN);
+ set_intercept(svm, INTERCEPT_VMRUN);
+ set_intercept(svm, INTERCEPT_VMMCALL);
+ set_intercept(svm, INTERCEPT_VMLOAD);
+ set_intercept(svm, INTERCEPT_VMSAVE);
+ set_intercept(svm, INTERCEPT_STGI);
+ set_intercept(svm, INTERCEPT_CLGI);
+ set_intercept(svm, INTERCEPT_SKINIT);
+ set_intercept(svm, INTERCEPT_WBINVD);
+ set_intercept(svm, INTERCEPT_MONITOR);
+ set_intercept(svm, INTERCEPT_MWAIT);
+ set_intercept(svm, INTERCEPT_XSETBV);
+
+ control->iopm_base_pa = iopm_base;
+ control->msrpm_base_pa = __pa(svm->msrpm);
+ control->int_ctl = V_INTR_MASKING_MASK;
+
+ init_seg(&save->es);
+ init_seg(&save->ss);
+ init_seg(&save->ds);
+ init_seg(&save->fs);
+ init_seg(&save->gs);
+
+ save->cs.selector = 0xf000;
+ save->cs.base = 0xffff0000;
+ /* Executable/Readable Code Segment */
+ save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
+ SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
+ save->cs.limit = 0xffff;
+
+ save->gdtr.limit = 0xffff;
+ save->idtr.limit = 0xffff;
+
+ init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
+ init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
+
+ svm_set_efer(&svm->vcpu, 0);
+ save->dr6 = 0xffff0ff0;
+ kvm_set_rflags(&svm->vcpu, 2);
+ save->rip = 0x0000fff0;
+ svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
+
+ /*
+ * This is the guest-visible cr0 value.
+ * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
+ */
+ svm->vcpu.arch.cr0 = 0;
+ (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
+
+ save->cr4 = X86_CR4_PAE;
+ /* rdx = ?? */
+
+ if (npt_enabled) {
+ /* Setup VMCB for Nested Paging */
+ control->nested_ctl = 1;
+ clr_intercept(svm, INTERCEPT_INVLPG);
+ clr_exception_intercept(svm, PF_VECTOR);
+ clr_cr_intercept(svm, INTERCEPT_CR3_READ);
+ clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
+ save->g_pat = 0x0007040600070406ULL;
+ save->cr3 = 0;
+ save->cr4 = 0;
+ }
+ svm->asid_generation = 0;
+
+ svm->nested.vmcb = 0;
+ svm->vcpu.arch.hflags = 0;
+
+ if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
+ control->pause_filter_count = 3000;
+ set_intercept(svm, INTERCEPT_PAUSE);
+ }
+
+ mark_all_dirty(svm->vmcb);
+
+ enable_gif(svm);
+}
+
+static void svm_vcpu_reset(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+ u32 dummy;
+ u32 eax = 1;
+
+ init_vmcb(svm);
+
+ kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
+ kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
+}
+
+static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
+{
+ struct vcpu_svm *svm;
+ struct page *page;
+ struct page *msrpm_pages;
+ struct page *hsave_page;
+ struct page *nested_msrpm_pages;
+ int err;
+
+ svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
+ if (!svm) {
+ err = -ENOMEM;
+ goto out;
+ }
+
+ svm->tsc_ratio = TSC_RATIO_DEFAULT;
+
+ err = kvm_vcpu_init(&svm->vcpu, kvm, id);
+ if (err)
+ goto free_svm;
+
+ err = -ENOMEM;
+ page = alloc_page(GFP_KERNEL);
+ if (!page)
+ goto uninit;
+
+ msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
+ if (!msrpm_pages)
+ goto free_page1;
+
+ nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
+ if (!nested_msrpm_pages)
+ goto free_page2;
+
+ hsave_page = alloc_page(GFP_KERNEL);
+ if (!hsave_page)
+ goto free_page3;
+
+ svm->nested.hsave = page_address(hsave_page);
+
+ svm->msrpm = page_address(msrpm_pages);
+ svm_vcpu_init_msrpm(svm->msrpm);
+
+ svm->nested.msrpm = page_address(nested_msrpm_pages);
+ svm_vcpu_init_msrpm(svm->nested.msrpm);
+
+ svm->vmcb = page_address(page);
+ clear_page(svm->vmcb);
+ svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
+ svm->asid_generation = 0;
+ init_vmcb(svm);
+
+ svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
+ MSR_IA32_APICBASE_ENABLE;
+ if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
+ svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
+
+ svm_init_osvw(&svm->vcpu);
+
+ return &svm->vcpu;
+
+free_page3:
+ __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
+free_page2:
+ __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
+free_page1:
+ __free_page(page);
+uninit:
+ kvm_vcpu_uninit(&svm->vcpu);
+free_svm:
+ kmem_cache_free(kvm_vcpu_cache, svm);
+out:
+ return ERR_PTR(err);
+}
+
+static void svm_free_vcpu(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
+ __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
+ __free_page(virt_to_page(svm->nested.hsave));
+ __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
+ kvm_vcpu_uninit(vcpu);
+ kmem_cache_free(kvm_vcpu_cache, svm);
+}
+
+static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+ int i;
+
+ if (unlikely(cpu != vcpu->cpu)) {
+ svm->asid_generation = 0;
+ mark_all_dirty(svm->vmcb);
+ }
+
+#ifdef CONFIG_X86_64
+ rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
+#endif
+ savesegment(fs, svm->host.fs);
+ savesegment(gs, svm->host.gs);
+ svm->host.ldt = kvm_read_ldt();
+
+ for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
+ rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
+
+ if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
+ svm->tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
+ __this_cpu_write(current_tsc_ratio, svm->tsc_ratio);
+ wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
+ }
+}
+
+static void svm_vcpu_put(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+ int i;
+
+ ++vcpu->stat.host_state_reload;
+ kvm_load_ldt(svm->host.ldt);
+#ifdef CONFIG_X86_64
+ loadsegment(fs, svm->host.fs);
+ wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
+ load_gs_index(svm->host.gs);
+#else
+#ifdef CONFIG_X86_32_LAZY_GS
+ loadsegment(gs, svm->host.gs);
+#endif
+#endif
+ for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
+ wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
+}
+
+static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
+{
+ return to_svm(vcpu)->vmcb->save.rflags;
+}
+
+static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
+{
+ /*
+ * Any change of EFLAGS.VM is accompained by a reload of SS
+ * (caused by either a task switch or an inter-privilege IRET),
+ * so we do not need to update the CPL here.
+ */
+ to_svm(vcpu)->vmcb->save.rflags = rflags;
+}
+
+static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
+{
+ switch (reg) {
+ case VCPU_EXREG_PDPTR:
+ BUG_ON(!npt_enabled);
+ load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
+ break;
+ default:
+ BUG();
+ }
+}
+
+static void svm_set_vintr(struct vcpu_svm *svm)
+{
+ set_intercept(svm, INTERCEPT_VINTR);
+}
+
+static void svm_clear_vintr(struct vcpu_svm *svm)
+{
+ clr_intercept(svm, INTERCEPT_VINTR);
+}
+
+static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
+{
+ struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
+
+ switch (seg) {
+ case VCPU_SREG_CS: return &save->cs;
+ case VCPU_SREG_DS: return &save->ds;
+ case VCPU_SREG_ES: return &save->es;
+ case VCPU_SREG_FS: return &save->fs;
+ case VCPU_SREG_GS: return &save->gs;
+ case VCPU_SREG_SS: return &save->ss;
+ case VCPU_SREG_TR: return &save->tr;
+ case VCPU_SREG_LDTR: return &save->ldtr;
+ }
+ BUG();
+ return NULL;
+}
+
+static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
+{
+ struct vmcb_seg *s = svm_seg(vcpu, seg);
+
+ return s->base;
+}
+
+static void svm_get_segment(struct kvm_vcpu *vcpu,
+ struct kvm_segment *var, int seg)
+{
+ struct vmcb_seg *s = svm_seg(vcpu, seg);
+
+ var->base = s->base;
+ var->limit = s->limit;
+ var->selector = s->selector;
+ var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
+ var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
+ var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
+ var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
+ var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
+ var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
+ var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
+
+ /*
+ * AMD CPUs circa 2014 track the G bit for all segments except CS.
+ * However, the SVM spec states that the G bit is not observed by the
+ * CPU, and some VMware virtual CPUs drop the G bit for all segments.
+ * So let's synthesize a legal G bit for all segments, this helps
+ * running KVM nested. It also helps cross-vendor migration, because
+ * Intel's vmentry has a check on the 'G' bit.
+ */
+ var->g = s->limit > 0xfffff;
+
+ /*
+ * AMD's VMCB does not have an explicit unusable field, so emulate it
+ * for cross vendor migration purposes by "not present"
+ */
+ var->unusable = !var->present || (var->type == 0);
+
+ switch (seg) {
+ case VCPU_SREG_TR:
+ /*
+ * Work around a bug where the busy flag in the tr selector
+ * isn't exposed
+ */
+ var->type |= 0x2;
+ break;
+ case VCPU_SREG_DS:
+ case VCPU_SREG_ES:
+ case VCPU_SREG_FS:
+ case VCPU_SREG_GS:
+ /*
+ * The accessed bit must always be set in the segment
+ * descriptor cache, although it can be cleared in the
+ * descriptor, the cached bit always remains at 1. Since
+ * Intel has a check on this, set it here to support
+ * cross-vendor migration.
+ */
+ if (!var->unusable)
+ var->type |= 0x1;
+ break;
+ case VCPU_SREG_SS:
+ /*
+ * On AMD CPUs sometimes the DB bit in the segment
+ * descriptor is left as 1, although the whole segment has
+ * been made unusable. Clear it here to pass an Intel VMX
+ * entry check when cross vendor migrating.
+ */
+ if (var->unusable)
+ var->db = 0;
+ var->dpl = to_svm(vcpu)->vmcb->save.cpl;
+ break;
+ }
+}
+
+static int svm_get_cpl(struct kvm_vcpu *vcpu)
+{
+ struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
+
+ return save->cpl;
+}
+
+static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ dt->size = svm->vmcb->save.idtr.limit;
+ dt->address = svm->vmcb->save.idtr.base;
+}
+
+static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ svm->vmcb->save.idtr.limit = dt->size;
+ svm->vmcb->save.idtr.base = dt->address ;
+ mark_dirty(svm->vmcb, VMCB_DT);
+}
+
+static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ dt->size = svm->vmcb->save.gdtr.limit;
+ dt->address = svm->vmcb->save.gdtr.base;
+}
+
+static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ svm->vmcb->save.gdtr.limit = dt->size;
+ svm->vmcb->save.gdtr.base = dt->address ;
+ mark_dirty(svm->vmcb, VMCB_DT);
+}
+
+static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
+{
+}
+
+static void svm_decache_cr3(struct kvm_vcpu *vcpu)
+{
+}
+
+static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
+{
+}
+
+static void update_cr0_intercept(struct vcpu_svm *svm)
+{
+ ulong gcr0 = svm->vcpu.arch.cr0;
+ u64 *hcr0 = &svm->vmcb->save.cr0;
+
+ if (!svm->vcpu.fpu_active)
+ *hcr0 |= SVM_CR0_SELECTIVE_MASK;
+ else
+ *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
+ | (gcr0 & SVM_CR0_SELECTIVE_MASK);
+
+ mark_dirty(svm->vmcb, VMCB_CR);
+
+ if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
+ clr_cr_intercept(svm, INTERCEPT_CR0_READ);
+ clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
+ } else {
+ set_cr_intercept(svm, INTERCEPT_CR0_READ);
+ set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
+ }
+}
+
+static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+#ifdef CONFIG_X86_64
+ if (vcpu->arch.efer & EFER_LME) {
+ if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
+ vcpu->arch.efer |= EFER_LMA;
+ svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
+ }
+
+ if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
+ vcpu->arch.efer &= ~EFER_LMA;
+ svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
+ }
+ }
+#endif
+ vcpu->arch.cr0 = cr0;
+
+ if (!npt_enabled)
+ cr0 |= X86_CR0_PG | X86_CR0_WP;
+
+ if (!vcpu->fpu_active)
+ cr0 |= X86_CR0_TS;
+ /*
+ * re-enable caching here because the QEMU bios
+ * does not do it - this results in some delay at
+ * reboot
+ */
+ cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
+ svm->vmcb->save.cr0 = cr0;
+ mark_dirty(svm->vmcb, VMCB_CR);
+ update_cr0_intercept(svm);
+}
+
+static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
+{
+ unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
+ unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
+
+ if (cr4 & X86_CR4_VMXE)
+ return 1;
+
+ if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
+ svm_flush_tlb(vcpu);
+
+ vcpu->arch.cr4 = cr4;
+ if (!npt_enabled)
+ cr4 |= X86_CR4_PAE;
+ cr4 |= host_cr4_mce;
+ to_svm(vcpu)->vmcb->save.cr4 = cr4;
+ mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
+ return 0;
+}
+
+static void svm_set_segment(struct kvm_vcpu *vcpu,
+ struct kvm_segment *var, int seg)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+ struct vmcb_seg *s = svm_seg(vcpu, seg);
+
+ s->base = var->base;
+ s->limit = var->limit;
+ s->selector = var->selector;
+ if (var->unusable)
+ s->attrib = 0;
+ else {
+ s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
+ s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
+ s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
+ s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
+ s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
+ s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
+ s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
+ s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
+ }
+
+ /*
+ * This is always accurate, except if SYSRET returned to a segment
+ * with SS.DPL != 3. Intel does not have this quirk, and always
+ * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
+ * would entail passing the CPL to userspace and back.
+ */
+ if (seg == VCPU_SREG_SS)
+ svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
+
+ mark_dirty(svm->vmcb, VMCB_SEG);
+}
+
+static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ clr_exception_intercept(svm, DB_VECTOR);
+ clr_exception_intercept(svm, BP_VECTOR);
+
+ if (svm->nmi_singlestep)
+ set_exception_intercept(svm, DB_VECTOR);
+
+ if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
+ if (vcpu->guest_debug &
+ (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
+ set_exception_intercept(svm, DB_VECTOR);
+ if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
+ set_exception_intercept(svm, BP_VECTOR);
+ } else
+ vcpu->guest_debug = 0;
+}
+
+static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
+{
+ if (sd->next_asid > sd->max_asid) {
+ ++sd->asid_generation;
+ sd->next_asid = 1;
+ svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
+ }
+
+ svm->asid_generation = sd->asid_generation;
+ svm->vmcb->control.asid = sd->next_asid++;
+
+ mark_dirty(svm->vmcb, VMCB_ASID);
+}
+
+static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
+{
+ return to_svm(vcpu)->vmcb->save.dr6;
+}
+
+static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ svm->vmcb->save.dr6 = value;
+ mark_dirty(svm->vmcb, VMCB_DR);
+}
+
+static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ get_debugreg(vcpu->arch.db[0], 0);
+ get_debugreg(vcpu->arch.db[1], 1);
+ get_debugreg(vcpu->arch.db[2], 2);
+ get_debugreg(vcpu->arch.db[3], 3);
+ vcpu->arch.dr6 = svm_get_dr6(vcpu);
+ vcpu->arch.dr7 = svm->vmcb->save.dr7;
+
+ vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
+ set_dr_intercepts(svm);
+}
+
+static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ svm->vmcb->save.dr7 = value;
+ mark_dirty(svm->vmcb, VMCB_DR);
+}
+
+static int pf_interception(struct vcpu_svm *svm)
+{
+ u64 fault_address = svm->vmcb->control.exit_info_2;
+ u32 error_code;
+ int r = 1;
+
+ switch (svm->apf_reason) {
+ default:
+ error_code = svm->vmcb->control.exit_info_1;
+
+ trace_kvm_page_fault(fault_address, error_code);
+ if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
+ kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
+ r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
+ svm->vmcb->control.insn_bytes,
+ svm->vmcb->control.insn_len);
+ break;
+ case KVM_PV_REASON_PAGE_NOT_PRESENT:
+ svm->apf_reason = 0;
+ local_irq_disable();
+ kvm_async_pf_task_wait(fault_address);
+ local_irq_enable();
+ break;
+ case KVM_PV_REASON_PAGE_READY:
+ svm->apf_reason = 0;
+ local_irq_disable();
+ kvm_async_pf_task_wake(fault_address);
+ local_irq_enable();
+ break;
+ }
+ return r;
+}
+
+static int db_interception(struct vcpu_svm *svm)
+{
+ struct kvm_run *kvm_run = svm->vcpu.run;
+
+ if (!(svm->vcpu.guest_debug &
+ (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
+ !svm->nmi_singlestep) {
+ kvm_queue_exception(&svm->vcpu, DB_VECTOR);
+ return 1;
+ }
+
+ if (svm->nmi_singlestep) {
+ svm->nmi_singlestep = false;
+ if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
+ svm->vmcb->save.rflags &=
+ ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
+ update_db_bp_intercept(&svm->vcpu);
+ }
+
+ if (svm->vcpu.guest_debug &
+ (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
+ kvm_run->exit_reason = KVM_EXIT_DEBUG;
+ kvm_run->debug.arch.pc =
+ svm->vmcb->save.cs.base + svm->vmcb->save.rip;
+ kvm_run->debug.arch.exception = DB_VECTOR;
+ return 0;
+ }
+
+ return 1;
+}
+
+static int bp_interception(struct vcpu_svm *svm)
+{
+ struct kvm_run *kvm_run = svm->vcpu.run;
+
+ kvm_run->exit_reason = KVM_EXIT_DEBUG;
+ kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
+ kvm_run->debug.arch.exception = BP_VECTOR;
+ return 0;
+}
+
+static int ud_interception(struct vcpu_svm *svm)
+{
+ int er;
+
+ er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
+ if (er != EMULATE_DONE)
+ kvm_queue_exception(&svm->vcpu, UD_VECTOR);
+ return 1;
+}
+
+static void svm_fpu_activate(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ clr_exception_intercept(svm, NM_VECTOR);
+
+ svm->vcpu.fpu_active = 1;
+ update_cr0_intercept(svm);
+}
+
+static int nm_interception(struct vcpu_svm *svm)
+{
+ svm_fpu_activate(&svm->vcpu);
+ return 1;
+}
+
+static bool is_erratum_383(void)
+{
+ int err, i;
+ u64 value;
+
+ if (!erratum_383_found)
+ return false;
+
+ value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
+ if (err)
+ return false;
+
+ /* Bit 62 may or may not be set for this mce */
+ value &= ~(1ULL << 62);
+
+ if (value != 0xb600000000010015ULL)
+ return false;
+
+ /* Clear MCi_STATUS registers */
+ for (i = 0; i < 6; ++i)
+ native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
+
+ value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
+ if (!err) {
+ u32 low, high;
+
+ value &= ~(1ULL << 2);
+ low = lower_32_bits(value);
+ high = upper_32_bits(value);
+
+ native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
+ }
+
+ /* Flush tlb to evict multi-match entries */
+ __flush_tlb_all();
+
+ return true;
+}
+
+static void svm_handle_mce(struct vcpu_svm *svm)
+{
+ if (is_erratum_383()) {
+ /*
+ * Erratum 383 triggered. Guest state is corrupt so kill the
+ * guest.
+ */
+ pr_err("KVM: Guest triggered AMD Erratum 383\n");
+
+ kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
+
+ return;
+ }
+
+ /*
+ * On an #MC intercept the MCE handler is not called automatically in
+ * the host. So do it by hand here.
+ */
+ asm volatile (
+ "int $0x12\n");
+ /* not sure if we ever come back to this point */
+
+ return;
+}
+
+static int mc_interception(struct vcpu_svm *svm)
+{
+ return 1;
+}
+
+static int shutdown_interception(struct vcpu_svm *svm)
+{
+ struct kvm_run *kvm_run = svm->vcpu.run;
+
+ /*
+ * VMCB is undefined after a SHUTDOWN intercept
+ * so reinitialize it.
+ */
+ clear_page(svm->vmcb);
+ init_vmcb(svm);
+
+ kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
+ return 0;
+}
+
+static int io_interception(struct vcpu_svm *svm)
+{
+ struct kvm_vcpu *vcpu = &svm->vcpu;
+ u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
+ int size, in, string;
+ unsigned port;
+
+ ++svm->vcpu.stat.io_exits;
+ string = (io_info & SVM_IOIO_STR_MASK) != 0;
+ in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
+ if (string || in)
+ return emulate_instruction(vcpu, 0) == EMULATE_DONE;
+
+ port = io_info >> 16;
+ size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
+ svm->next_rip = svm->vmcb->control.exit_info_2;
+ skip_emulated_instruction(&svm->vcpu);
+
+ return kvm_fast_pio_out(vcpu, size, port);
+}
+
+static int nmi_interception(struct vcpu_svm *svm)
+{
+ return 1;
+}
+
+static int intr_interception(struct vcpu_svm *svm)
+{
+ ++svm->vcpu.stat.irq_exits;
+ return 1;
+}
+
+static int nop_on_interception(struct vcpu_svm *svm)
+{
+ return 1;
+}
+
+static int halt_interception(struct vcpu_svm *svm)
+{
+ svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
+ return kvm_emulate_halt(&svm->vcpu);
+}
+
+static int vmmcall_interception(struct vcpu_svm *svm)
+{
+ svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
+ kvm_emulate_hypercall(&svm->vcpu);
+ return 1;
+}
+
+static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ return svm->nested.nested_cr3;
+}
+
+static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+ u64 cr3 = svm->nested.nested_cr3;
+ u64 pdpte;
+ int ret;
+
+ ret = kvm_read_guest_page(vcpu->kvm, gpa_to_gfn(cr3), &pdpte,
+ offset_in_page(cr3) + index * 8, 8);
+ if (ret)
+ return 0;
+ return pdpte;
+}
+
+static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
+ unsigned long root)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ svm->vmcb->control.nested_cr3 = root;
+ mark_dirty(svm->vmcb, VMCB_NPT);
+ svm_flush_tlb(vcpu);
+}
+
+static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
+ struct x86_exception *fault)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
+ /*
+ * TODO: track the cause of the nested page fault, and
+ * correctly fill in the high bits of exit_info_1.
+ */
+ svm->vmcb->control.exit_code = SVM_EXIT_NPF;
+ svm->vmcb->control.exit_code_hi = 0;
+ svm->vmcb->control.exit_info_1 = (1ULL << 32);
+ svm->vmcb->control.exit_info_2 = fault->address;
+ }
+
+ svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
+ svm->vmcb->control.exit_info_1 |= fault->error_code;
+
+ /*
+ * The present bit is always zero for page structure faults on real
+ * hardware.
+ */
+ if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
+ svm->vmcb->control.exit_info_1 &= ~1;
+
+ nested_svm_vmexit(svm);
+}
+
+static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
+{
+ WARN_ON(mmu_is_nested(vcpu));
+ kvm_init_shadow_mmu(vcpu);
+ vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
+ vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
+ vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
+ vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
+ vcpu->arch.mmu.shadow_root_level = get_npt_level();
+ vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
+}
+
+static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
+{
+ vcpu->arch.walk_mmu = &vcpu->arch.mmu;
+}
+
+static int nested_svm_check_permissions(struct vcpu_svm *svm)
+{
+ if (!(svm->vcpu.arch.efer & EFER_SVME)
+ || !is_paging(&svm->vcpu)) {
+ kvm_queue_exception(&svm->vcpu, UD_VECTOR);
+ return 1;
+ }
+
+ if (svm->vmcb->save.cpl) {
+ kvm_inject_gp(&svm->vcpu, 0);
+ return 1;
+ }
+
+ return 0;
+}
+
+static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
+ bool has_error_code, u32 error_code)
+{
+ int vmexit;
+
+ if (!is_guest_mode(&svm->vcpu))
+ return 0;
+
+ svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
+ svm->vmcb->control.exit_code_hi = 0;
+ svm->vmcb->control.exit_info_1 = error_code;
+ svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
+
+ vmexit = nested_svm_intercept(svm);
+ if (vmexit == NESTED_EXIT_DONE)
+ svm->nested.exit_required = true;
+
+ return vmexit;
+}
+
+/* This function returns true if it is save to enable the irq window */
+static inline bool nested_svm_intr(struct vcpu_svm *svm)
+{
+ if (!is_guest_mode(&svm->vcpu))
+ return true;
+
+ if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
+ return true;
+
+ if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
+ return false;
+
+ /*
+ * if vmexit was already requested (by intercepted exception
+ * for instance) do not overwrite it with "external interrupt"
+ * vmexit.
+ */
+ if (svm->nested.exit_required)
+ return false;
+
+ svm->vmcb->control.exit_code = SVM_EXIT_INTR;
+ svm->vmcb->control.exit_info_1 = 0;
+ svm->vmcb->control.exit_info_2 = 0;
+
+ if (svm->nested.intercept & 1ULL) {
+ /*
+ * The #vmexit can't be emulated here directly because this
+ * code path runs with irqs and preemption disabled. A
+ * #vmexit emulation might sleep. Only signal request for
+ * the #vmexit here.
+ */
+ svm->nested.exit_required = true;
+ trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
+ return false;
+ }
+
+ return true;
+}
+
+/* This function returns true if it is save to enable the nmi window */
+static inline bool nested_svm_nmi(struct vcpu_svm *svm)
+{
+ if (!is_guest_mode(&svm->vcpu))
+ return true;
+
+ if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
+ return true;
+
+ svm->vmcb->control.exit_code = SVM_EXIT_NMI;
+ svm->nested.exit_required = true;
+
+ return false;
+}
+
+static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
+{
+ struct page *page;
+
+ might_sleep();
+
+ page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
+ if (is_error_page(page))
+ goto error;
+
+ *_page = page;
+
+ return kmap(page);
+
+error:
+ kvm_inject_gp(&svm->vcpu, 0);
+
+ return NULL;
+}
+
+static void nested_svm_unmap(struct page *page)
+{
+ kunmap(page);
+ kvm_release_page_dirty(page);
+}
+
+static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
+{
+ unsigned port, size, iopm_len;
+ u16 val, mask;
+ u8 start_bit;
+ u64 gpa;
+
+ if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
+ return NESTED_EXIT_HOST;
+
+ port = svm->vmcb->control.exit_info_1 >> 16;
+ size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
+ SVM_IOIO_SIZE_SHIFT;
+ gpa = svm->nested.vmcb_iopm + (port / 8);
+ start_bit = port % 8;
+ iopm_len = (start_bit + size > 8) ? 2 : 1;
+ mask = (0xf >> (4 - size)) << start_bit;
+ val = 0;
+
+ if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, iopm_len))
+ return NESTED_EXIT_DONE;
+
+ return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
+}
+
+static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
+{
+ u32 offset, msr, value;
+ int write, mask;
+
+ if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
+ return NESTED_EXIT_HOST;
+
+ msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
+ offset = svm_msrpm_offset(msr);
+ write = svm->vmcb->control.exit_info_1 & 1;
+ mask = 1 << ((2 * (msr & 0xf)) + write);
+
+ if (offset == MSR_INVALID)
+ return NESTED_EXIT_DONE;
+
+ /* Offset is in 32 bit units but need in 8 bit units */
+ offset *= 4;
+
+ if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
+ return NESTED_EXIT_DONE;
+
+ return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
+}
+
+static int nested_svm_exit_special(struct vcpu_svm *svm)
+{
+ u32 exit_code = svm->vmcb->control.exit_code;
+
+ switch (exit_code) {
+ case SVM_EXIT_INTR:
+ case SVM_EXIT_NMI:
+ case SVM_EXIT_EXCP_BASE + MC_VECTOR:
+ return NESTED_EXIT_HOST;
+ case SVM_EXIT_NPF:
+ /* For now we are always handling NPFs when using them */
+ if (npt_enabled)
+ return NESTED_EXIT_HOST;
+ break;
+ case SVM_EXIT_EXCP_BASE + PF_VECTOR:
+ /* When we're shadowing, trap PFs, but not async PF */
+ if (!npt_enabled && svm->apf_reason == 0)
+ return NESTED_EXIT_HOST;
+ break;
+ case SVM_EXIT_EXCP_BASE + NM_VECTOR:
+ nm_interception(svm);
+ break;
+ default:
+ break;
+ }
+
+ return NESTED_EXIT_CONTINUE;
+}
+
+/*
+ * If this function returns true, this #vmexit was already handled
+ */
+static int nested_svm_intercept(struct vcpu_svm *svm)
+{
+ u32 exit_code = svm->vmcb->control.exit_code;
+ int vmexit = NESTED_EXIT_HOST;
+
+ switch (exit_code) {
+ case SVM_EXIT_MSR:
+ vmexit = nested_svm_exit_handled_msr(svm);
+ break;
+ case SVM_EXIT_IOIO:
+ vmexit = nested_svm_intercept_ioio(svm);
+ break;
+ case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
+ u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
+ if (svm->nested.intercept_cr & bit)
+ vmexit = NESTED_EXIT_DONE;
+ break;
+ }
+ case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
+ u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
+ if (svm->nested.intercept_dr & bit)
+ vmexit = NESTED_EXIT_DONE;
+ break;
+ }
+ case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
+ u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
+ if (svm->nested.intercept_exceptions & excp_bits)
+ vmexit = NESTED_EXIT_DONE;
+ /* async page fault always cause vmexit */
+ else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
+ svm->apf_reason != 0)
+ vmexit = NESTED_EXIT_DONE;
+ break;
+ }
+ case SVM_EXIT_ERR: {
+ vmexit = NESTED_EXIT_DONE;
+ break;
+ }
+ default: {
+ u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
+ if (svm->nested.intercept & exit_bits)
+ vmexit = NESTED_EXIT_DONE;
+ }
+ }
+
+ return vmexit;
+}
+
+static int nested_svm_exit_handled(struct vcpu_svm *svm)
+{
+ int vmexit;
+
+ vmexit = nested_svm_intercept(svm);
+
+ if (vmexit == NESTED_EXIT_DONE)
+ nested_svm_vmexit(svm);
+
+ return vmexit;
+}
+
+static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
+{
+ struct vmcb_control_area *dst = &dst_vmcb->control;
+ struct vmcb_control_area *from = &from_vmcb->control;
+
+ dst->intercept_cr = from->intercept_cr;
+ dst->intercept_dr = from->intercept_dr;
+ dst->intercept_exceptions = from->intercept_exceptions;
+ dst->intercept = from->intercept;
+ dst->iopm_base_pa = from->iopm_base_pa;
+ dst->msrpm_base_pa = from->msrpm_base_pa;
+ dst->tsc_offset = from->tsc_offset;
+ dst->asid = from->asid;
+ dst->tlb_ctl = from->tlb_ctl;
+ dst->int_ctl = from->int_ctl;
+ dst->int_vector = from->int_vector;
+ dst->int_state = from->int_state;
+ dst->exit_code = from->exit_code;
+ dst->exit_code_hi = from->exit_code_hi;
+ dst->exit_info_1 = from->exit_info_1;
+ dst->exit_info_2 = from->exit_info_2;
+ dst->exit_int_info = from->exit_int_info;
+ dst->exit_int_info_err = from->exit_int_info_err;
+ dst->nested_ctl = from->nested_ctl;
+ dst->event_inj = from->event_inj;
+ dst->event_inj_err = from->event_inj_err;
+ dst->nested_cr3 = from->nested_cr3;
+ dst->lbr_ctl = from->lbr_ctl;
+}
+
+static int nested_svm_vmexit(struct vcpu_svm *svm)
+{
+ struct vmcb *nested_vmcb;
+ struct vmcb *hsave = svm->nested.hsave;
+ struct vmcb *vmcb = svm->vmcb;
+ struct page *page;
+
+ trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
+ vmcb->control.exit_info_1,
+ vmcb->control.exit_info_2,
+ vmcb->control.exit_int_info,
+ vmcb->control.exit_int_info_err,
+ KVM_ISA_SVM);
+
+ nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
+ if (!nested_vmcb)
+ return 1;
+
+ /* Exit Guest-Mode */
+ leave_guest_mode(&svm->vcpu);
+ svm->nested.vmcb = 0;
+
+ /* Give the current vmcb to the guest */
+ disable_gif(svm);
+
+ nested_vmcb->save.es = vmcb->save.es;
+ nested_vmcb->save.cs = vmcb->save.cs;
+ nested_vmcb->save.ss = vmcb->save.ss;
+ nested_vmcb->save.ds = vmcb->save.ds;
+ nested_vmcb->save.gdtr = vmcb->save.gdtr;
+ nested_vmcb->save.idtr = vmcb->save.idtr;
+ nested_vmcb->save.efer = svm->vcpu.arch.efer;
+ nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
+ nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
+ nested_vmcb->save.cr2 = vmcb->save.cr2;
+ nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
+ nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
+ nested_vmcb->save.rip = vmcb->save.rip;
+ nested_vmcb->save.rsp = vmcb->save.rsp;
+ nested_vmcb->save.rax = vmcb->save.rax;
+ nested_vmcb->save.dr7 = vmcb->save.dr7;
+ nested_vmcb->save.dr6 = vmcb->save.dr6;
+ nested_vmcb->save.cpl = vmcb->save.cpl;
+
+ nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
+ nested_vmcb->control.int_vector = vmcb->control.int_vector;
+ nested_vmcb->control.int_state = vmcb->control.int_state;
+ nested_vmcb->control.exit_code = vmcb->control.exit_code;
+ nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
+ nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
+ nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
+ nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
+ nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
+ nested_vmcb->control.next_rip = vmcb->control.next_rip;
+
+ /*
+ * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
+ * to make sure that we do not lose injected events. So check event_inj
+ * here and copy it to exit_int_info if it is valid.
+ * Exit_int_info and event_inj can't be both valid because the case
+ * below only happens on a VMRUN instruction intercept which has
+ * no valid exit_int_info set.
+ */
+ if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
+ struct vmcb_control_area *nc = &nested_vmcb->control;
+
+ nc->exit_int_info = vmcb->control.event_inj;
+ nc->exit_int_info_err = vmcb->control.event_inj_err;
+ }
+
+ nested_vmcb->control.tlb_ctl = 0;
+ nested_vmcb->control.event_inj = 0;
+ nested_vmcb->control.event_inj_err = 0;
+
+ /* We always set V_INTR_MASKING and remember the old value in hflags */
+ if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
+ nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
+
+ /* Restore the original control entries */
+ copy_vmcb_control_area(vmcb, hsave);
+
+ kvm_clear_exception_queue(&svm->vcpu);
+ kvm_clear_interrupt_queue(&svm->vcpu);
+
+ svm->nested.nested_cr3 = 0;
+
+ /* Restore selected save entries */
+ svm->vmcb->save.es = hsave->save.es;
+ svm->vmcb->save.cs = hsave->save.cs;
+ svm->vmcb->save.ss = hsave->save.ss;
+ svm->vmcb->save.ds = hsave->save.ds;
+ svm->vmcb->save.gdtr = hsave->save.gdtr;
+ svm->vmcb->save.idtr = hsave->save.idtr;
+ kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
+ svm_set_efer(&svm->vcpu, hsave->save.efer);
+ svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
+ svm_set_cr4(&svm->vcpu, hsave->save.cr4);
+ if (npt_enabled) {
+ svm->vmcb->save.cr3 = hsave->save.cr3;
+ svm->vcpu.arch.cr3 = hsave->save.cr3;
+ } else {
+ (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
+ }
+ kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
+ kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
+ kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
+ svm->vmcb->save.dr7 = 0;
+ svm->vmcb->save.cpl = 0;
+ svm->vmcb->control.exit_int_info = 0;
+
+ mark_all_dirty(svm->vmcb);
+
+ nested_svm_unmap(page);
+
+ nested_svm_uninit_mmu_context(&svm->vcpu);
+ kvm_mmu_reset_context(&svm->vcpu);
+ kvm_mmu_load(&svm->vcpu);
+
+ return 0;
+}
+
+static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
+{
+ /*
+ * This function merges the msr permission bitmaps of kvm and the
+ * nested vmcb. It is optimized in that it only merges the parts where
+ * the kvm msr permission bitmap may contain zero bits
+ */
+ int i;
+
+ if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
+ return true;
+
+ for (i = 0; i < MSRPM_OFFSETS; i++) {
+ u32 value, p;
+ u64 offset;
+
+ if (msrpm_offsets[i] == 0xffffffff)
+ break;
+
+ p = msrpm_offsets[i];
+ offset = svm->nested.vmcb_msrpm + (p * 4);
+
+ if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
+ return false;
+
+ svm->nested.msrpm[p] = svm->msrpm[p] | value;
+ }
+
+ svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
+
+ return true;
+}
+
+static bool nested_vmcb_checks(struct vmcb *vmcb)
+{
+ if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
+ return false;
+
+ if (vmcb->control.asid == 0)
+ return false;
+
+ if (vmcb->control.nested_ctl && !npt_enabled)
+ return false;
+
+ return true;
+}
+
+static bool nested_svm_vmrun(struct vcpu_svm *svm)
+{
+ struct vmcb *nested_vmcb;
+ struct vmcb *hsave = svm->nested.hsave;
+ struct vmcb *vmcb = svm->vmcb;
+ struct page *page;
+ u64 vmcb_gpa;
+
+ vmcb_gpa = svm->vmcb->save.rax;
+
+ nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
+ if (!nested_vmcb)
+ return false;
+
+ if (!nested_vmcb_checks(nested_vmcb)) {
+ nested_vmcb->control.exit_code = SVM_EXIT_ERR;
+ nested_vmcb->control.exit_code_hi = 0;
+ nested_vmcb->control.exit_info_1 = 0;
+ nested_vmcb->control.exit_info_2 = 0;
+
+ nested_svm_unmap(page);
+
+ return false;
+ }
+
+ trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
+ nested_vmcb->save.rip,
+ nested_vmcb->control.int_ctl,
+ nested_vmcb->control.event_inj,
+ nested_vmcb->control.nested_ctl);
+
+ trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
+ nested_vmcb->control.intercept_cr >> 16,
+ nested_vmcb->control.intercept_exceptions,
+ nested_vmcb->control.intercept);
+
+ /* Clear internal status */
+ kvm_clear_exception_queue(&svm->vcpu);
+ kvm_clear_interrupt_queue(&svm->vcpu);
+
+ /*
+ * Save the old vmcb, so we don't need to pick what we save, but can
+ * restore everything when a VMEXIT occurs
+ */
+ hsave->save.es = vmcb->save.es;
+ hsave->save.cs = vmcb->save.cs;
+ hsave->save.ss = vmcb->save.ss;
+ hsave->save.ds = vmcb->save.ds;
+ hsave->save.gdtr = vmcb->save.gdtr;
+ hsave->save.idtr = vmcb->save.idtr;
+ hsave->save.efer = svm->vcpu.arch.efer;
+ hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
+ hsave->save.cr4 = svm->vcpu.arch.cr4;
+ hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
+ hsave->save.rip = kvm_rip_read(&svm->vcpu);
+ hsave->save.rsp = vmcb->save.rsp;
+ hsave->save.rax = vmcb->save.rax;
+ if (npt_enabled)
+ hsave->save.cr3 = vmcb->save.cr3;
+ else
+ hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
+
+ copy_vmcb_control_area(hsave, vmcb);
+
+ if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
+ svm->vcpu.arch.hflags |= HF_HIF_MASK;
+ else
+ svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
+
+ if (nested_vmcb->control.nested_ctl) {
+ kvm_mmu_unload(&svm->vcpu);
+ svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
+ nested_svm_init_mmu_context(&svm->vcpu);
+ }
+
+ /* Load the nested guest state */
+ svm->vmcb->save.es = nested_vmcb->save.es;
+ svm->vmcb->save.cs = nested_vmcb->save.cs;
+ svm->vmcb->save.ss = nested_vmcb->save.ss;
+ svm->vmcb->save.ds = nested_vmcb->save.ds;
+ svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
+ svm->vmcb->save.idtr = nested_vmcb->save.idtr;
+ kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
+ svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
+ svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
+ svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
+ if (npt_enabled) {
+ svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
+ svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
+ } else
+ (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
+
+ /* Guest paging mode is active - reset mmu */
+ kvm_mmu_reset_context(&svm->vcpu);
+
+ svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
+ kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
+ kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
+ kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
+
+ /* In case we don't even reach vcpu_run, the fields are not updated */
+ svm->vmcb->save.rax = nested_vmcb->save.rax;
+ svm->vmcb->save.rsp = nested_vmcb->save.rsp;
+ svm->vmcb->save.rip = nested_vmcb->save.rip;
+ svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
+ svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
+ svm->vmcb->save.cpl = nested_vmcb->save.cpl;
+
+ svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
+ svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
+
+ /* cache intercepts */
+ svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
+ svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
+ svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
+ svm->nested.intercept = nested_vmcb->control.intercept;
+
+ svm_flush_tlb(&svm->vcpu);
+ svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
+ if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
+ svm->vcpu.arch.hflags |= HF_VINTR_MASK;
+ else
+ svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
+
+ if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
+ /* We only want the cr8 intercept bits of the guest */
+ clr_cr_intercept(svm, INTERCEPT_CR8_READ);
+ clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
+ }
+
+ /* We don't want to see VMMCALLs from a nested guest */
+ clr_intercept(svm, INTERCEPT_VMMCALL);
+
+ svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
+ svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
+ svm->vmcb->control.int_state = nested_vmcb->control.int_state;
+ svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
+ svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
+ svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
+
+ nested_svm_unmap(page);
+
+ /* Enter Guest-Mode */
+ enter_guest_mode(&svm->vcpu);
+
+ /*
+ * Merge guest and host intercepts - must be called with vcpu in
+ * guest-mode to take affect here
+ */
+ recalc_intercepts(svm);
+
+ svm->nested.vmcb = vmcb_gpa;
+
+ enable_gif(svm);
+
+ mark_all_dirty(svm->vmcb);
+
+ return true;
+}
+
+static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
+{
+ to_vmcb->save.fs = from_vmcb->save.fs;
+ to_vmcb->save.gs = from_vmcb->save.gs;
+ to_vmcb->save.tr = from_vmcb->save.tr;
+ to_vmcb->save.ldtr = from_vmcb->save.ldtr;
+ to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
+ to_vmcb->save.star = from_vmcb->save.star;
+ to_vmcb->save.lstar = from_vmcb->save.lstar;
+ to_vmcb->save.cstar = from_vmcb->save.cstar;
+ to_vmcb->save.sfmask = from_vmcb->save.sfmask;
+ to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
+ to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
+ to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
+}
+
+static int vmload_interception(struct vcpu_svm *svm)
+{
+ struct vmcb *nested_vmcb;
+ struct page *page;
+
+ if (nested_svm_check_permissions(svm))
+ return 1;
+
+ nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
+ if (!nested_vmcb)
+ return 1;
+
+ svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
+ skip_emulated_instruction(&svm->vcpu);
+
+ nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
+ nested_svm_unmap(page);
+
+ return 1;
+}
+
+static int vmsave_interception(struct vcpu_svm *svm)
+{
+ struct vmcb *nested_vmcb;
+ struct page *page;
+
+ if (nested_svm_check_permissions(svm))
+ return 1;
+
+ nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
+ if (!nested_vmcb)
+ return 1;
+
+ svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
+ skip_emulated_instruction(&svm->vcpu);
+
+ nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
+ nested_svm_unmap(page);
+
+ return 1;
+}
+
+static int vmrun_interception(struct vcpu_svm *svm)
+{
+ if (nested_svm_check_permissions(svm))
+ return 1;
+
+ /* Save rip after vmrun instruction */
+ kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
+
+ if (!nested_svm_vmrun(svm))
+ return 1;
+
+ if (!nested_svm_vmrun_msrpm(svm))
+ goto failed;
+
+ return 1;
+
+failed:
+
+ svm->vmcb->control.exit_code = SVM_EXIT_ERR;
+ svm->vmcb->control.exit_code_hi = 0;
+ svm->vmcb->control.exit_info_1 = 0;
+ svm->vmcb->control.exit_info_2 = 0;
+
+ nested_svm_vmexit(svm);
+
+ return 1;
+}
+
+static int stgi_interception(struct vcpu_svm *svm)
+{
+ if (nested_svm_check_permissions(svm))
+ return 1;
+
+ svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
+ skip_emulated_instruction(&svm->vcpu);
+ kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
+
+ enable_gif(svm);
+
+ return 1;
+}
+
+static int clgi_interception(struct vcpu_svm *svm)
+{
+ if (nested_svm_check_permissions(svm))
+ return 1;
+
+ svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
+ skip_emulated_instruction(&svm->vcpu);
+
+ disable_gif(svm);
+
+ /* After a CLGI no interrupts should come */
+ svm_clear_vintr(svm);
+ svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
+
+ mark_dirty(svm->vmcb, VMCB_INTR);
+
+ return 1;
+}
+
+static int invlpga_interception(struct vcpu_svm *svm)
+{
+ struct kvm_vcpu *vcpu = &svm->vcpu;
+
+ trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
+ kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
+
+ /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
+ kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
+
+ svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
+ skip_emulated_instruction(&svm->vcpu);
+ return 1;
+}
+
+static int skinit_interception(struct vcpu_svm *svm)
+{
+ trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
+
+ kvm_queue_exception(&svm->vcpu, UD_VECTOR);
+ return 1;
+}
+
+static int wbinvd_interception(struct vcpu_svm *svm)
+{
+ kvm_emulate_wbinvd(&svm->vcpu);
+ return 1;
+}
+
+static int xsetbv_interception(struct vcpu_svm *svm)
+{
+ u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
+ u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
+
+ if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
+ svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
+ skip_emulated_instruction(&svm->vcpu);
+ }
+
+ return 1;
+}
+
+static int task_switch_interception(struct vcpu_svm *svm)
+{
+ u16 tss_selector;
+ int reason;
+ int int_type = svm->vmcb->control.exit_int_info &
+ SVM_EXITINTINFO_TYPE_MASK;
+ int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
+ uint32_t type =
+ svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
+ uint32_t idt_v =
+ svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
+ bool has_error_code = false;
+ u32 error_code = 0;
+
+ tss_selector = (u16)svm->vmcb->control.exit_info_1;
+
+ if (svm->vmcb->control.exit_info_2 &
+ (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
+ reason = TASK_SWITCH_IRET;
+ else if (svm->vmcb->control.exit_info_2 &
+ (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
+ reason = TASK_SWITCH_JMP;
+ else if (idt_v)
+ reason = TASK_SWITCH_GATE;
+ else
+ reason = TASK_SWITCH_CALL;
+
+ if (reason == TASK_SWITCH_GATE) {
+ switch (type) {
+ case SVM_EXITINTINFO_TYPE_NMI:
+ svm->vcpu.arch.nmi_injected = false;
+ break;
+ case SVM_EXITINTINFO_TYPE_EXEPT:
+ if (svm->vmcb->control.exit_info_2 &
+ (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
+ has_error_code = true;
+ error_code =
+ (u32)svm->vmcb->control.exit_info_2;
+ }
+ kvm_clear_exception_queue(&svm->vcpu);
+ break;
+ case SVM_EXITINTINFO_TYPE_INTR:
+ kvm_clear_interrupt_queue(&svm->vcpu);
+ break;
+ default:
+ break;
+ }
+ }
+
+ if (reason != TASK_SWITCH_GATE ||
+ int_type == SVM_EXITINTINFO_TYPE_SOFT ||
+ (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
+ (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
+ skip_emulated_instruction(&svm->vcpu);
+
+ if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
+ int_vec = -1;
+
+ if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
+ has_error_code, error_code) == EMULATE_FAIL) {
+ svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
+ svm->vcpu.run->internal.ndata = 0;
+ return 0;
+ }
+ return 1;
+}
+
+static int cpuid_interception(struct vcpu_svm *svm)
+{
+ svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
+ kvm_emulate_cpuid(&svm->vcpu);
+ return 1;
+}
+
+static int iret_interception(struct vcpu_svm *svm)
+{
+ ++svm->vcpu.stat.nmi_window_exits;
+ clr_intercept(svm, INTERCEPT_IRET);
+ svm->vcpu.arch.hflags |= HF_IRET_MASK;
+ svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
+ kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
+ return 1;
+}
+
+static int invlpg_interception(struct vcpu_svm *svm)
+{
+ if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
+ return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
+
+ kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
+ skip_emulated_instruction(&svm->vcpu);
+ return 1;
+}
+
+static int emulate_on_interception(struct vcpu_svm *svm)
+{
+ return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
+}
+
+static int rdpmc_interception(struct vcpu_svm *svm)
+{
+ int err;
+
+ if (!static_cpu_has(X86_FEATURE_NRIPS))
+ return emulate_on_interception(svm);
+
+ err = kvm_rdpmc(&svm->vcpu);
+ kvm_complete_insn_gp(&svm->vcpu, err);
+
+ return 1;
+}
+
+static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
+ unsigned long val)
+{
+ unsigned long cr0 = svm->vcpu.arch.cr0;
+ bool ret = false;
+ u64 intercept;
+
+ intercept = svm->nested.intercept;
+
+ if (!is_guest_mode(&svm->vcpu) ||
+ (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
+ return false;
+
+ cr0 &= ~SVM_CR0_SELECTIVE_MASK;
+ val &= ~SVM_CR0_SELECTIVE_MASK;
+
+ if (cr0 ^ val) {
+ svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
+ ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
+ }
+
+ return ret;
+}
+
+#define CR_VALID (1ULL << 63)
+
+static int cr_interception(struct vcpu_svm *svm)
+{
+ int reg, cr;
+ unsigned long val;
+ int err;
+
+ if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
+ return emulate_on_interception(svm);
+
+ if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
+ return emulate_on_interception(svm);
+
+ reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
+ if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
+ cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
+ else
+ cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
+
+ err = 0;
+ if (cr >= 16) { /* mov to cr */
+ cr -= 16;
+ val = kvm_register_read(&svm->vcpu, reg);
+ switch (cr) {
+ case 0:
+ if (!check_selective_cr0_intercepted(svm, val))
+ err = kvm_set_cr0(&svm->vcpu, val);
+ else
+ return 1;
+
+ break;
+ case 3:
+ err = kvm_set_cr3(&svm->vcpu, val);
+ break;
+ case 4:
+ err = kvm_set_cr4(&svm->vcpu, val);
+ break;
+ case 8:
+ err = kvm_set_cr8(&svm->vcpu, val);
+ break;
+ default:
+ WARN(1, "unhandled write to CR%d", cr);
+ kvm_queue_exception(&svm->vcpu, UD_VECTOR);
+ return 1;
+ }
+ } else { /* mov from cr */
+ switch (cr) {
+ case 0:
+ val = kvm_read_cr0(&svm->vcpu);
+ break;
+ case 2:
+ val = svm->vcpu.arch.cr2;
+ break;
+ case 3:
+ val = kvm_read_cr3(&svm->vcpu);
+ break;
+ case 4:
+ val = kvm_read_cr4(&svm->vcpu);
+ break;
+ case 8:
+ val = kvm_get_cr8(&svm->vcpu);
+ break;
+ default:
+ WARN(1, "unhandled read from CR%d", cr);
+ kvm_queue_exception(&svm->vcpu, UD_VECTOR);
+ return 1;
+ }
+ kvm_register_write(&svm->vcpu, reg, val);
+ }
+ kvm_complete_insn_gp(&svm->vcpu, err);
+
+ return 1;
+}
+
+static int dr_interception(struct vcpu_svm *svm)
+{
+ int reg, dr;
+ unsigned long val;
+
+ if (svm->vcpu.guest_debug == 0) {
+ /*
+ * No more DR vmexits; force a reload of the debug registers
+ * and reenter on this instruction. The next vmexit will
+ * retrieve the full state of the debug registers.
+ */
+ clr_dr_intercepts(svm);
+ svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
+ return 1;
+ }
+
+ if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
+ return emulate_on_interception(svm);
+
+ reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
+ dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
+
+ if (dr >= 16) { /* mov to DRn */
+ if (!kvm_require_dr(&svm->vcpu, dr - 16))
+ return 1;
+ val = kvm_register_read(&svm->vcpu, reg);
+ kvm_set_dr(&svm->vcpu, dr - 16, val);
+ } else {
+ if (!kvm_require_dr(&svm->vcpu, dr))
+ return 1;
+ kvm_get_dr(&svm->vcpu, dr, &val);
+ kvm_register_write(&svm->vcpu, reg, val);
+ }
+
+ skip_emulated_instruction(&svm->vcpu);
+
+ return 1;
+}
+
+static int cr8_write_interception(struct vcpu_svm *svm)
+{
+ struct kvm_run *kvm_run = svm->vcpu.run;
+ int r;
+
+ u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
+ /* instruction emulation calls kvm_set_cr8() */
+ r = cr_interception(svm);
+ if (irqchip_in_kernel(svm->vcpu.kvm))
+ return r;
+ if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
+ return r;
+ kvm_run->exit_reason = KVM_EXIT_SET_TPR;
+ return 0;
+}
+
+static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
+{
+ struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
+ return vmcb->control.tsc_offset +
+ svm_scale_tsc(vcpu, host_tsc);
+}
+
+static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ switch (ecx) {
+ case MSR_IA32_TSC: {
+ *data = svm->vmcb->control.tsc_offset +
+ svm_scale_tsc(vcpu, native_read_tsc());
+
+ break;
+ }
+ case MSR_STAR:
+ *data = svm->vmcb->save.star;
+ break;
+#ifdef CONFIG_X86_64
+ case MSR_LSTAR:
+ *data = svm->vmcb->save.lstar;
+ break;
+ case MSR_CSTAR:
+ *data = svm->vmcb->save.cstar;
+ break;
+ case MSR_KERNEL_GS_BASE:
+ *data = svm->vmcb->save.kernel_gs_base;
+ break;
+ case MSR_SYSCALL_MASK:
+ *data = svm->vmcb->save.sfmask;
+ break;
+#endif
+ case MSR_IA32_SYSENTER_CS:
+ *data = svm->vmcb->save.sysenter_cs;
+ break;
+ case MSR_IA32_SYSENTER_EIP:
+ *data = svm->sysenter_eip;
+ break;
+ case MSR_IA32_SYSENTER_ESP:
+ *data = svm->sysenter_esp;
+ break;
+ /*
+ * Nobody will change the following 5 values in the VMCB so we can
+ * safely return them on rdmsr. They will always be 0 until LBRV is
+ * implemented.
+ */
+ case MSR_IA32_DEBUGCTLMSR:
+ *data = svm->vmcb->save.dbgctl;
+ break;
+ case MSR_IA32_LASTBRANCHFROMIP:
+ *data = svm->vmcb->save.br_from;
+ break;
+ case MSR_IA32_LASTBRANCHTOIP:
+ *data = svm->vmcb->save.br_to;
+ break;
+ case MSR_IA32_LASTINTFROMIP:
+ *data = svm->vmcb->save.last_excp_from;
+ break;
+ case MSR_IA32_LASTINTTOIP:
+ *data = svm->vmcb->save.last_excp_to;
+ break;
+ case MSR_VM_HSAVE_PA:
+ *data = svm->nested.hsave_msr;
+ break;
+ case MSR_VM_CR:
+ *data = svm->nested.vm_cr_msr;
+ break;
+ case MSR_IA32_UCODE_REV:
+ *data = 0x01000065;
+ break;
+ default:
+ return kvm_get_msr_common(vcpu, ecx, data);
+ }
+ return 0;
+}
+
+static int rdmsr_interception(struct vcpu_svm *svm)
+{
+ u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
+ u64 data;
+
+ if (svm_get_msr(&svm->vcpu, ecx, &data)) {
+ trace_kvm_msr_read_ex(ecx);
+ kvm_inject_gp(&svm->vcpu, 0);
+ } else {
+ trace_kvm_msr_read(ecx, data);
+
+ kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, data & 0xffffffff);
+ kvm_register_write(&svm->vcpu, VCPU_REGS_RDX, data >> 32);
+ svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
+ skip_emulated_instruction(&svm->vcpu);
+ }
+ return 1;
+}
+
+static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+ int svm_dis, chg_mask;
+
+ if (data & ~SVM_VM_CR_VALID_MASK)
+ return 1;
+
+ chg_mask = SVM_VM_CR_VALID_MASK;
+
+ if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
+ chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
+
+ svm->nested.vm_cr_msr &= ~chg_mask;
+ svm->nested.vm_cr_msr |= (data & chg_mask);
+
+ svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
+
+ /* check for svm_disable while efer.svme is set */
+ if (svm_dis && (vcpu->arch.efer & EFER_SVME))
+ return 1;
+
+ return 0;
+}
+
+static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ u32 ecx = msr->index;
+ u64 data = msr->data;
+ switch (ecx) {
+ case MSR_IA32_TSC:
+ kvm_write_tsc(vcpu, msr);
+ break;
+ case MSR_STAR:
+ svm->vmcb->save.star = data;
+ break;
+#ifdef CONFIG_X86_64
+ case MSR_LSTAR:
+ svm->vmcb->save.lstar = data;
+ break;
+ case MSR_CSTAR:
+ svm->vmcb->save.cstar = data;
+ break;
+ case MSR_KERNEL_GS_BASE:
+ svm->vmcb->save.kernel_gs_base = data;
+ break;
+ case MSR_SYSCALL_MASK:
+ svm->vmcb->save.sfmask = data;
+ break;
+#endif
+ case MSR_IA32_SYSENTER_CS:
+ svm->vmcb->save.sysenter_cs = data;
+ break;
+ case MSR_IA32_SYSENTER_EIP:
+ svm->sysenter_eip = data;
+ svm->vmcb->save.sysenter_eip = data;
+ break;
+ case MSR_IA32_SYSENTER_ESP:
+ svm->sysenter_esp = data;
+ svm->vmcb->save.sysenter_esp = data;
+ break;
+ case MSR_IA32_DEBUGCTLMSR:
+ if (!boot_cpu_has(X86_FEATURE_LBRV)) {
+ vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
+ __func__, data);
+ break;
+ }
+ if (data & DEBUGCTL_RESERVED_BITS)
+ return 1;
+
+ svm->vmcb->save.dbgctl = data;
+ mark_dirty(svm->vmcb, VMCB_LBR);
+ if (data & (1ULL<<0))
+ svm_enable_lbrv(svm);
+ else
+ svm_disable_lbrv(svm);
+ break;
+ case MSR_VM_HSAVE_PA:
+ svm->nested.hsave_msr = data;
+ break;
+ case MSR_VM_CR:
+ return svm_set_vm_cr(vcpu, data);
+ case MSR_VM_IGNNE:
+ vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
+ break;
+ default:
+ return kvm_set_msr_common(vcpu, msr);
+ }
+ return 0;
+}
+
+static int wrmsr_interception(struct vcpu_svm *svm)
+{
+ struct msr_data msr;
+ u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
+ u64 data = kvm_read_edx_eax(&svm->vcpu);
+
+ msr.data = data;
+ msr.index = ecx;
+ msr.host_initiated = false;
+
+ svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
+ if (kvm_set_msr(&svm->vcpu, &msr)) {
+ trace_kvm_msr_write_ex(ecx, data);
+ kvm_inject_gp(&svm->vcpu, 0);
+ } else {
+ trace_kvm_msr_write(ecx, data);
+ skip_emulated_instruction(&svm->vcpu);
+ }
+ return 1;
+}
+
+static int msr_interception(struct vcpu_svm *svm)
+{
+ if (svm->vmcb->control.exit_info_1)
+ return wrmsr_interception(svm);
+ else
+ return rdmsr_interception(svm);
+}
+
+static int interrupt_window_interception(struct vcpu_svm *svm)
+{
+ struct kvm_run *kvm_run = svm->vcpu.run;
+
+ kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
+ svm_clear_vintr(svm);
+ svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
+ mark_dirty(svm->vmcb, VMCB_INTR);
+ ++svm->vcpu.stat.irq_window_exits;
+ /*
+ * If the user space waits to inject interrupts, exit as soon as
+ * possible
+ */
+ if (!irqchip_in_kernel(svm->vcpu.kvm) &&
+ kvm_run->request_interrupt_window &&
+ !kvm_cpu_has_interrupt(&svm->vcpu)) {
+ kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
+ return 0;
+ }
+
+ return 1;
+}
+
+static int pause_interception(struct vcpu_svm *svm)
+{
+ kvm_vcpu_on_spin(&(svm->vcpu));
+ return 1;
+}
+
+static int nop_interception(struct vcpu_svm *svm)
+{
+ skip_emulated_instruction(&(svm->vcpu));
+ return 1;
+}
+
+static int monitor_interception(struct vcpu_svm *svm)
+{
+ printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
+ return nop_interception(svm);
+}
+
+static int mwait_interception(struct vcpu_svm *svm)
+{
+ printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
+ return nop_interception(svm);
+}
+
+static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
+ [SVM_EXIT_READ_CR0] = cr_interception,
+ [SVM_EXIT_READ_CR3] = cr_interception,
+ [SVM_EXIT_READ_CR4] = cr_interception,
+ [SVM_EXIT_READ_CR8] = cr_interception,
+ [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
+ [SVM_EXIT_WRITE_CR0] = cr_interception,
+ [SVM_EXIT_WRITE_CR3] = cr_interception,
+ [SVM_EXIT_WRITE_CR4] = cr_interception,
+ [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
+ [SVM_EXIT_READ_DR0] = dr_interception,
+ [SVM_EXIT_READ_DR1] = dr_interception,
+ [SVM_EXIT_READ_DR2] = dr_interception,
+ [SVM_EXIT_READ_DR3] = dr_interception,
+ [SVM_EXIT_READ_DR4] = dr_interception,
+ [SVM_EXIT_READ_DR5] = dr_interception,
+ [SVM_EXIT_READ_DR6] = dr_interception,
+ [SVM_EXIT_READ_DR7] = dr_interception,
+ [SVM_EXIT_WRITE_DR0] = dr_interception,
+ [SVM_EXIT_WRITE_DR1] = dr_interception,
+ [SVM_EXIT_WRITE_DR2] = dr_interception,
+ [SVM_EXIT_WRITE_DR3] = dr_interception,
+ [SVM_EXIT_WRITE_DR4] = dr_interception,
+ [SVM_EXIT_WRITE_DR5] = dr_interception,
+ [SVM_EXIT_WRITE_DR6] = dr_interception,
+ [SVM_EXIT_WRITE_DR7] = dr_interception,
+ [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
+ [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
+ [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
+ [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
+ [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
+ [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
+ [SVM_EXIT_INTR] = intr_interception,
+ [SVM_EXIT_NMI] = nmi_interception,
+ [SVM_EXIT_SMI] = nop_on_interception,
+ [SVM_EXIT_INIT] = nop_on_interception,
+ [SVM_EXIT_VINTR] = interrupt_window_interception,
+ [SVM_EXIT_RDPMC] = rdpmc_interception,
+ [SVM_EXIT_CPUID] = cpuid_interception,
+ [SVM_EXIT_IRET] = iret_interception,
+ [SVM_EXIT_INVD] = emulate_on_interception,
+ [SVM_EXIT_PAUSE] = pause_interception,
+ [SVM_EXIT_HLT] = halt_interception,
+ [SVM_EXIT_INVLPG] = invlpg_interception,
+ [SVM_EXIT_INVLPGA] = invlpga_interception,
+ [SVM_EXIT_IOIO] = io_interception,
+ [SVM_EXIT_MSR] = msr_interception,
+ [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
+ [SVM_EXIT_SHUTDOWN] = shutdown_interception,
+ [SVM_EXIT_VMRUN] = vmrun_interception,
+ [SVM_EXIT_VMMCALL] = vmmcall_interception,
+ [SVM_EXIT_VMLOAD] = vmload_interception,
+ [SVM_EXIT_VMSAVE] = vmsave_interception,
+ [SVM_EXIT_STGI] = stgi_interception,
+ [SVM_EXIT_CLGI] = clgi_interception,
+ [SVM_EXIT_SKINIT] = skinit_interception,
+ [SVM_EXIT_WBINVD] = wbinvd_interception,
+ [SVM_EXIT_MONITOR] = monitor_interception,
+ [SVM_EXIT_MWAIT] = mwait_interception,
+ [SVM_EXIT_XSETBV] = xsetbv_interception,
+ [SVM_EXIT_NPF] = pf_interception,
+};
+
+static void dump_vmcb(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+ struct vmcb_control_area *control = &svm->vmcb->control;
+ struct vmcb_save_area *save = &svm->vmcb->save;
+
+ pr_err("VMCB Control Area:\n");
+ pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
+ pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
+ pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
+ pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
+ pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
+ pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
+ pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
+ pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
+ pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
+ pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
+ pr_err("%-20s%d\n", "asid:", control->asid);
+ pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
+ pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
+ pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
+ pr_err("%-20s%08x\n", "int_state:", control->int_state);
+ pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
+ pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
+ pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
+ pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
+ pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
+ pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
+ pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
+ pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
+ pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
+ pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
+ pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
+ pr_err("VMCB State Save Area:\n");
+ pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
+ "es:",
+ save->es.selector, save->es.attrib,
+ save->es.limit, save->es.base);
+ pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
+ "cs:",
+ save->cs.selector, save->cs.attrib,
+ save->cs.limit, save->cs.base);
+ pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
+ "ss:",
+ save->ss.selector, save->ss.attrib,
+ save->ss.limit, save->ss.base);
+ pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
+ "ds:",
+ save->ds.selector, save->ds.attrib,
+ save->ds.limit, save->ds.base);
+ pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
+ "fs:",
+ save->fs.selector, save->fs.attrib,
+ save->fs.limit, save->fs.base);
+ pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
+ "gs:",
+ save->gs.selector, save->gs.attrib,
+ save->gs.limit, save->gs.base);
+ pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
+ "gdtr:",
+ save->gdtr.selector, save->gdtr.attrib,
+ save->gdtr.limit, save->gdtr.base);
+ pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
+ "ldtr:",
+ save->ldtr.selector, save->ldtr.attrib,
+ save->ldtr.limit, save->ldtr.base);
+ pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
+ "idtr:",
+ save->idtr.selector, save->idtr.attrib,
+ save->idtr.limit, save->idtr.base);
+ pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
+ "tr:",
+ save->tr.selector, save->tr.attrib,
+ save->tr.limit, save->tr.base);
+ pr_err("cpl: %d efer: %016llx\n",
+ save->cpl, save->efer);
+ pr_err("%-15s %016llx %-13s %016llx\n",
+ "cr0:", save->cr0, "cr2:", save->cr2);
+ pr_err("%-15s %016llx %-13s %016llx\n",
+ "cr3:", save->cr3, "cr4:", save->cr4);
+ pr_err("%-15s %016llx %-13s %016llx\n",
+ "dr6:", save->dr6, "dr7:", save->dr7);
+ pr_err("%-15s %016llx %-13s %016llx\n",
+ "rip:", save->rip, "rflags:", save->rflags);
+ pr_err("%-15s %016llx %-13s %016llx\n",
+ "rsp:", save->rsp, "rax:", save->rax);
+ pr_err("%-15s %016llx %-13s %016llx\n",
+ "star:", save->star, "lstar:", save->lstar);
+ pr_err("%-15s %016llx %-13s %016llx\n",
+ "cstar:", save->cstar, "sfmask:", save->sfmask);
+ pr_err("%-15s %016llx %-13s %016llx\n",
+ "kernel_gs_base:", save->kernel_gs_base,
+ "sysenter_cs:", save->sysenter_cs);
+ pr_err("%-15s %016llx %-13s %016llx\n",
+ "sysenter_esp:", save->sysenter_esp,
+ "sysenter_eip:", save->sysenter_eip);
+ pr_err("%-15s %016llx %-13s %016llx\n",
+ "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
+ pr_err("%-15s %016llx %-13s %016llx\n",
+ "br_from:", save->br_from, "br_to:", save->br_to);
+ pr_err("%-15s %016llx %-13s %016llx\n",
+ "excp_from:", save->last_excp_from,
+ "excp_to:", save->last_excp_to);
+}
+
+static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
+{
+ struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
+
+ *info1 = control->exit_info_1;
+ *info2 = control->exit_info_2;
+}
+
+static int handle_exit(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+ struct kvm_run *kvm_run = vcpu->run;
+ u32 exit_code = svm->vmcb->control.exit_code;
+
+ if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
+ vcpu->arch.cr0 = svm->vmcb->save.cr0;
+ if (npt_enabled)
+ vcpu->arch.cr3 = svm->vmcb->save.cr3;
+
+ if (unlikely(svm->nested.exit_required)) {
+ nested_svm_vmexit(svm);
+ svm->nested.exit_required = false;
+
+ return 1;
+ }
+
+ if (is_guest_mode(vcpu)) {
+ int vmexit;
+
+ trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
+ svm->vmcb->control.exit_info_1,
+ svm->vmcb->control.exit_info_2,
+ svm->vmcb->control.exit_int_info,
+ svm->vmcb->control.exit_int_info_err,
+ KVM_ISA_SVM);
+
+ vmexit = nested_svm_exit_special(svm);
+
+ if (vmexit == NESTED_EXIT_CONTINUE)
+ vmexit = nested_svm_exit_handled(svm);
+
+ if (vmexit == NESTED_EXIT_DONE)
+ return 1;
+ }
+
+ svm_complete_interrupts(svm);
+
+ if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
+ kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
+ kvm_run->fail_entry.hardware_entry_failure_reason
+ = svm->vmcb->control.exit_code;
+ pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
+ dump_vmcb(vcpu);
+ return 0;
+ }
+
+ if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
+ exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
+ exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
+ exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
+ printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
+ "exit_code 0x%x\n",
+ __func__, svm->vmcb->control.exit_int_info,
+ exit_code);
+
+ if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
+ || !svm_exit_handlers[exit_code]) {
+ WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+ }
+
+ return svm_exit_handlers[exit_code](svm);
+}
+
+static void reload_tss(struct kvm_vcpu *vcpu)
+{
+ int cpu = raw_smp_processor_id();
+
+ struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
+ sd->tss_desc->type = 9; /* available 32/64-bit TSS */
+ load_TR_desc();
+}
+
+static void pre_svm_run(struct vcpu_svm *svm)
+{
+ int cpu = raw_smp_processor_id();
+
+ struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
+
+ /* FIXME: handle wraparound of asid_generation */
+ if (svm->asid_generation != sd->asid_generation)
+ new_asid(svm, sd);
+}
+
+static void svm_inject_nmi(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
+ vcpu->arch.hflags |= HF_NMI_MASK;
+ set_intercept(svm, INTERCEPT_IRET);
+ ++vcpu->stat.nmi_injections;
+}
+
+static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
+{
+ struct vmcb_control_area *control;
+
+ control = &svm->vmcb->control;
+ control->int_vector = irq;
+ control->int_ctl &= ~V_INTR_PRIO_MASK;
+ control->int_ctl |= V_IRQ_MASK |
+ ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
+ mark_dirty(svm->vmcb, VMCB_INTR);
+}
+
+static void svm_set_irq(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ BUG_ON(!(gif_set(svm)));
+
+ trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
+ ++vcpu->stat.irq_injections;
+
+ svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
+ SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
+}
+
+static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
+ return;
+
+ clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
+
+ if (irr == -1)
+ return;
+
+ if (tpr >= irr)
+ set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
+}
+
+static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
+{
+ return;
+}
+
+static int svm_vm_has_apicv(struct kvm *kvm)
+{
+ return 0;
+}
+
+static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
+{
+ return;
+}
+
+static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
+{
+ return;
+}
+
+static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+ struct vmcb *vmcb = svm->vmcb;
+ int ret;
+ ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
+ !(svm->vcpu.arch.hflags & HF_NMI_MASK);
+ ret = ret && gif_set(svm) && nested_svm_nmi(svm);
+
+ return ret;
+}
+
+static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
+}
+
+static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ if (masked) {
+ svm->vcpu.arch.hflags |= HF_NMI_MASK;
+ set_intercept(svm, INTERCEPT_IRET);
+ } else {
+ svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
+ clr_intercept(svm, INTERCEPT_IRET);
+ }
+}
+
+static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+ struct vmcb *vmcb = svm->vmcb;
+ int ret;
+
+ if (!gif_set(svm) ||
+ (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
+ return 0;
+
+ ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
+
+ if (is_guest_mode(vcpu))
+ return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
+
+ return ret;
+}
+
+static void enable_irq_window(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ /*
+ * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
+ * 1, because that's a separate STGI/VMRUN intercept. The next time we
+ * get that intercept, this function will be called again though and
+ * we'll get the vintr intercept.
+ */
+ if (gif_set(svm) && nested_svm_intr(svm)) {
+ svm_set_vintr(svm);
+ svm_inject_irq(svm, 0x0);
+ }
+}
+
+static void enable_nmi_window(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
+ == HF_NMI_MASK)
+ return; /* IRET will cause a vm exit */
+
+ /*
+ * Something prevents NMI from been injected. Single step over possible
+ * problem (IRET or exception injection or interrupt shadow)
+ */
+ svm->nmi_singlestep = true;
+ svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
+ update_db_bp_intercept(vcpu);
+}
+
+static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
+{
+ return 0;
+}
+
+static void svm_flush_tlb(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
+ svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
+ else
+ svm->asid_generation--;
+}
+
+static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
+{
+}
+
+static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
+ return;
+
+ if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
+ int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
+ kvm_set_cr8(vcpu, cr8);
+ }
+}
+
+static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+ u64 cr8;
+
+ if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
+ return;
+
+ cr8 = kvm_get_cr8(vcpu);
+ svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
+ svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
+}
+
+static void svm_complete_interrupts(struct vcpu_svm *svm)
+{
+ u8 vector;
+ int type;
+ u32 exitintinfo = svm->vmcb->control.exit_int_info;
+ unsigned int3_injected = svm->int3_injected;
+
+ svm->int3_injected = 0;
+
+ /*
+ * If we've made progress since setting HF_IRET_MASK, we've
+ * executed an IRET and can allow NMI injection.
+ */
+ if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
+ && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
+ svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
+ kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
+ }
+
+ svm->vcpu.arch.nmi_injected = false;
+ kvm_clear_exception_queue(&svm->vcpu);
+ kvm_clear_interrupt_queue(&svm->vcpu);
+
+ if (!(exitintinfo & SVM_EXITINTINFO_VALID))
+ return;
+
+ kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
+
+ vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
+ type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
+
+ switch (type) {
+ case SVM_EXITINTINFO_TYPE_NMI:
+ svm->vcpu.arch.nmi_injected = true;
+ break;
+ case SVM_EXITINTINFO_TYPE_EXEPT:
+ /*
+ * In case of software exceptions, do not reinject the vector,
+ * but re-execute the instruction instead. Rewind RIP first
+ * if we emulated INT3 before.
+ */
+ if (kvm_exception_is_soft(vector)) {
+ if (vector == BP_VECTOR && int3_injected &&
+ kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
+ kvm_rip_write(&svm->vcpu,
+ kvm_rip_read(&svm->vcpu) -
+ int3_injected);
+ break;
+ }
+ if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
+ u32 err = svm->vmcb->control.exit_int_info_err;
+ kvm_requeue_exception_e(&svm->vcpu, vector, err);
+
+ } else
+ kvm_requeue_exception(&svm->vcpu, vector);
+ break;
+ case SVM_EXITINTINFO_TYPE_INTR:
+ kvm_queue_interrupt(&svm->vcpu, vector, false);
+ break;
+ default:
+ break;
+ }
+}
+
+static void svm_cancel_injection(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+ struct vmcb_control_area *control = &svm->vmcb->control;
+
+ control->exit_int_info = control->event_inj;
+ control->exit_int_info_err = control->event_inj_err;
+ control->event_inj = 0;
+ svm_complete_interrupts(svm);
+}
+
+static void svm_vcpu_run(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
+ svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
+ svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
+
+ /*
+ * A vmexit emulation is required before the vcpu can be executed
+ * again.
+ */
+ if (unlikely(svm->nested.exit_required))
+ return;
+
+ pre_svm_run(svm);
+
+ sync_lapic_to_cr8(vcpu);
+
+ svm->vmcb->save.cr2 = vcpu->arch.cr2;
+
+ clgi();
+
+ local_irq_enable();
+
+ asm volatile (
+ "push %%" _ASM_BP "; \n\t"
+ "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
+ "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
+ "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
+ "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
+ "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
+ "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
+#ifdef CONFIG_X86_64
+ "mov %c[r8](%[svm]), %%r8 \n\t"
+ "mov %c[r9](%[svm]), %%r9 \n\t"
+ "mov %c[r10](%[svm]), %%r10 \n\t"
+ "mov %c[r11](%[svm]), %%r11 \n\t"
+ "mov %c[r12](%[svm]), %%r12 \n\t"
+ "mov %c[r13](%[svm]), %%r13 \n\t"
+ "mov %c[r14](%[svm]), %%r14 \n\t"
+ "mov %c[r15](%[svm]), %%r15 \n\t"
+#endif
+
+ /* Enter guest mode */
+ "push %%" _ASM_AX " \n\t"
+ "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
+ __ex(SVM_VMLOAD) "\n\t"
+ __ex(SVM_VMRUN) "\n\t"
+ __ex(SVM_VMSAVE) "\n\t"
+ "pop %%" _ASM_AX " \n\t"
+
+ /* Save guest registers, load host registers */
+ "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
+ "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
+ "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
+ "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
+ "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
+ "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
+#ifdef CONFIG_X86_64
+ "mov %%r8, %c[r8](%[svm]) \n\t"
+ "mov %%r9, %c[r9](%[svm]) \n\t"
+ "mov %%r10, %c[r10](%[svm]) \n\t"
+ "mov %%r11, %c[r11](%[svm]) \n\t"
+ "mov %%r12, %c[r12](%[svm]) \n\t"
+ "mov %%r13, %c[r13](%[svm]) \n\t"
+ "mov %%r14, %c[r14](%[svm]) \n\t"
+ "mov %%r15, %c[r15](%[svm]) \n\t"
+#endif
+ "pop %%" _ASM_BP
+ :
+ : [svm]"a"(svm),
+ [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
+ [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
+ [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
+ [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
+ [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
+ [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
+ [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
+#ifdef CONFIG_X86_64
+ , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
+ [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
+ [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
+ [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
+ [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
+ [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
+ [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
+ [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
+#endif
+ : "cc", "memory"
+#ifdef CONFIG_X86_64
+ , "rbx", "rcx", "rdx", "rsi", "rdi"
+ , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
+#else
+ , "ebx", "ecx", "edx", "esi", "edi"
+#endif
+ );
+
+#ifdef CONFIG_X86_64
+ wrmsrl(MSR_GS_BASE, svm->host.gs_base);
+#else
+ loadsegment(fs, svm->host.fs);
+#ifndef CONFIG_X86_32_LAZY_GS
+ loadsegment(gs, svm->host.gs);
+#endif
+#endif
+
+ reload_tss(vcpu);
+
+ local_irq_disable();
+
+ vcpu->arch.cr2 = svm->vmcb->save.cr2;
+ vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
+ vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
+ vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
+
+ trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
+
+ if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
+ kvm_before_handle_nmi(&svm->vcpu);
+
+ stgi();
+
+ /* Any pending NMI will happen here */
+
+ if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
+ kvm_after_handle_nmi(&svm->vcpu);
+
+ sync_cr8_to_lapic(vcpu);
+
+ svm->next_rip = 0;
+
+ svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
+
+ /* if exit due to PF check for async PF */
+ if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
+ svm->apf_reason = kvm_read_and_reset_pf_reason();
+
+ if (npt_enabled) {
+ vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
+ vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
+ }
+
+ /*
+ * We need to handle MC intercepts here before the vcpu has a chance to
+ * change the physical cpu
+ */
+ if (unlikely(svm->vmcb->control.exit_code ==
+ SVM_EXIT_EXCP_BASE + MC_VECTOR))
+ svm_handle_mce(svm);
+
+ mark_all_clean(svm->vmcb);
+}
+
+static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ svm->vmcb->save.cr3 = root;
+ mark_dirty(svm->vmcb, VMCB_CR);
+ svm_flush_tlb(vcpu);
+}
+
+static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ svm->vmcb->control.nested_cr3 = root;
+ mark_dirty(svm->vmcb, VMCB_NPT);
+
+ /* Also sync guest cr3 here in case we live migrate */
+ svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
+ mark_dirty(svm->vmcb, VMCB_CR);
+
+ svm_flush_tlb(vcpu);
+}
+
+static int is_disabled(void)
+{
+ u64 vm_cr;
+
+ rdmsrl(MSR_VM_CR, vm_cr);
+ if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
+ return 1;
+
+ return 0;
+}
+
+static void
+svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
+{
+ /*
+ * Patch in the VMMCALL instruction:
+ */
+ hypercall[0] = 0x0f;
+ hypercall[1] = 0x01;
+ hypercall[2] = 0xd9;
+}
+
+static void svm_check_processor_compat(void *rtn)
+{
+ *(int *)rtn = 0;
+}
+
+static bool svm_cpu_has_accelerated_tpr(void)
+{
+ return false;
+}
+
+static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
+{
+ return 0;
+}
+
+static void svm_cpuid_update(struct kvm_vcpu *vcpu)
+{
+}
+
+static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
+{
+ switch (func) {
+ case 0x80000001:
+ if (nested)
+ entry->ecx |= (1 << 2); /* Set SVM bit */
+ break;
+ case 0x8000000A:
+ entry->eax = 1; /* SVM revision 1 */
+ entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
+ ASID emulation to nested SVM */
+ entry->ecx = 0; /* Reserved */
+ entry->edx = 0; /* Per default do not support any
+ additional features */
+
+ /* Support next_rip if host supports it */
+ if (boot_cpu_has(X86_FEATURE_NRIPS))
+ entry->edx |= SVM_FEATURE_NRIP;
+
+ /* Support NPT for the guest if enabled */
+ if (npt_enabled)
+ entry->edx |= SVM_FEATURE_NPT;
+
+ break;
+ }
+}
+
+static int svm_get_lpage_level(void)
+{
+ return PT_PDPE_LEVEL;
+}
+
+static bool svm_rdtscp_supported(void)
+{
+ return false;
+}
+
+static bool svm_invpcid_supported(void)
+{
+ return false;
+}
+
+static bool svm_mpx_supported(void)
+{
+ return false;
+}
+
+static bool svm_xsaves_supported(void)
+{
+ return false;
+}
+
+static bool svm_has_wbinvd_exit(void)
+{
+ return true;
+}
+
+static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+
+ set_exception_intercept(svm, NM_VECTOR);
+ update_cr0_intercept(svm);
+}
+
+#define PRE_EX(exit) { .exit_code = (exit), \
+ .stage = X86_ICPT_PRE_EXCEPT, }
+#define POST_EX(exit) { .exit_code = (exit), \
+ .stage = X86_ICPT_POST_EXCEPT, }
+#define POST_MEM(exit) { .exit_code = (exit), \
+ .stage = X86_ICPT_POST_MEMACCESS, }
+
+static const struct __x86_intercept {
+ u32 exit_code;
+ enum x86_intercept_stage stage;
+} x86_intercept_map[] = {
+ [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
+ [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
+ [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
+ [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
+ [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
+ [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
+ [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
+ [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
+ [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
+ [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
+ [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
+ [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
+ [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
+ [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
+ [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
+ [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
+ [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
+ [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
+ [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
+ [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
+ [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
+ [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
+ [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
+ [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
+ [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
+ [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
+ [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
+ [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
+ [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
+ [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
+ [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
+ [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
+ [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
+ [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
+ [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
+ [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
+ [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
+ [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
+ [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
+ [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
+ [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
+ [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
+ [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
+ [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
+ [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
+ [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
+};
+
+#undef PRE_EX
+#undef POST_EX
+#undef POST_MEM
+
+static int svm_check_intercept(struct kvm_vcpu *vcpu,
+ struct x86_instruction_info *info,
+ enum x86_intercept_stage stage)
+{
+ struct vcpu_svm *svm = to_svm(vcpu);
+ int vmexit, ret = X86EMUL_CONTINUE;
+ struct __x86_intercept icpt_info;
+ struct vmcb *vmcb = svm->vmcb;
+
+ if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
+ goto out;
+
+ icpt_info = x86_intercept_map[info->intercept];
+
+ if (stage != icpt_info.stage)
+ goto out;
+
+ switch (icpt_info.exit_code) {
+ case SVM_EXIT_READ_CR0:
+ if (info->intercept == x86_intercept_cr_read)
+ icpt_info.exit_code += info->modrm_reg;
+ break;
+ case SVM_EXIT_WRITE_CR0: {
+ unsigned long cr0, val;
+ u64 intercept;
+
+ if (info->intercept == x86_intercept_cr_write)
+ icpt_info.exit_code += info->modrm_reg;
+
+ if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
+ info->intercept == x86_intercept_clts)
+ break;
+
+ intercept = svm->nested.intercept;
+
+ if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
+ break;
+
+ cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
+ val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
+
+ if (info->intercept == x86_intercept_lmsw) {
+ cr0 &= 0xfUL;
+ val &= 0xfUL;
+ /* lmsw can't clear PE - catch this here */
+ if (cr0 & X86_CR0_PE)
+ val |= X86_CR0_PE;
+ }
+
+ if (cr0 ^ val)
+ icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
+
+ break;
+ }
+ case SVM_EXIT_READ_DR0:
+ case SVM_EXIT_WRITE_DR0:
+ icpt_info.exit_code += info->modrm_reg;
+ break;
+ case SVM_EXIT_MSR:
+ if (info->intercept == x86_intercept_wrmsr)
+ vmcb->control.exit_info_1 = 1;
+ else
+ vmcb->control.exit_info_1 = 0;
+ break;
+ case SVM_EXIT_PAUSE:
+ /*
+ * We get this for NOP only, but pause
+ * is rep not, check this here
+ */
+ if (info->rep_prefix != REPE_PREFIX)
+ goto out;
+ case SVM_EXIT_IOIO: {
+ u64 exit_info;
+ u32 bytes;
+
+ if (info->intercept == x86_intercept_in ||
+ info->intercept == x86_intercept_ins) {
+ exit_info = ((info->src_val & 0xffff) << 16) |
+ SVM_IOIO_TYPE_MASK;
+ bytes = info->dst_bytes;
+ } else {
+ exit_info = (info->dst_val & 0xffff) << 16;
+ bytes = info->src_bytes;
+ }
+
+ if (info->intercept == x86_intercept_outs ||
+ info->intercept == x86_intercept_ins)
+ exit_info |= SVM_IOIO_STR_MASK;
+
+ if (info->rep_prefix)
+ exit_info |= SVM_IOIO_REP_MASK;
+
+ bytes = min(bytes, 4u);
+
+ exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
+
+ exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
+
+ vmcb->control.exit_info_1 = exit_info;
+ vmcb->control.exit_info_2 = info->next_rip;
+
+ break;
+ }
+ default:
+ break;
+ }
+
+ /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
+ if (static_cpu_has(X86_FEATURE_NRIPS))
+ vmcb->control.next_rip = info->next_rip;
+ vmcb->control.exit_code = icpt_info.exit_code;
+ vmexit = nested_svm_exit_handled(svm);
+
+ ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
+ : X86EMUL_CONTINUE;
+
+out:
+ return ret;
+}
+
+static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
+{
+ local_irq_enable();
+}
+
+static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
+{
+}
+
+static struct kvm_x86_ops svm_x86_ops = {
+ .cpu_has_kvm_support = has_svm,
+ .disabled_by_bios = is_disabled,
+ .hardware_setup = svm_hardware_setup,
+ .hardware_unsetup = svm_hardware_unsetup,
+ .check_processor_compatibility = svm_check_processor_compat,
+ .hardware_enable = svm_hardware_enable,
+ .hardware_disable = svm_hardware_disable,
+ .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
+
+ .vcpu_create = svm_create_vcpu,
+ .vcpu_free = svm_free_vcpu,
+ .vcpu_reset = svm_vcpu_reset,
+
+ .prepare_guest_switch = svm_prepare_guest_switch,
+ .vcpu_load = svm_vcpu_load,
+ .vcpu_put = svm_vcpu_put,
+
+ .update_db_bp_intercept = update_db_bp_intercept,
+ .get_msr = svm_get_msr,
+ .set_msr = svm_set_msr,
+ .get_segment_base = svm_get_segment_base,
+ .get_segment = svm_get_segment,
+ .set_segment = svm_set_segment,
+ .get_cpl = svm_get_cpl,
+ .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
+ .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
+ .decache_cr3 = svm_decache_cr3,
+ .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
+ .set_cr0 = svm_set_cr0,
+ .set_cr3 = svm_set_cr3,
+ .set_cr4 = svm_set_cr4,
+ .set_efer = svm_set_efer,
+ .get_idt = svm_get_idt,
+ .set_idt = svm_set_idt,
+ .get_gdt = svm_get_gdt,
+ .set_gdt = svm_set_gdt,
+ .get_dr6 = svm_get_dr6,
+ .set_dr6 = svm_set_dr6,
+ .set_dr7 = svm_set_dr7,
+ .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
+ .cache_reg = svm_cache_reg,
+ .get_rflags = svm_get_rflags,
+ .set_rflags = svm_set_rflags,
+ .fpu_activate = svm_fpu_activate,
+ .fpu_deactivate = svm_fpu_deactivate,
+
+ .tlb_flush = svm_flush_tlb,
+
+ .run = svm_vcpu_run,
+ .handle_exit = handle_exit,
+ .skip_emulated_instruction = skip_emulated_instruction,
+ .set_interrupt_shadow = svm_set_interrupt_shadow,
+ .get_interrupt_shadow = svm_get_interrupt_shadow,
+ .patch_hypercall = svm_patch_hypercall,
+ .set_irq = svm_set_irq,
+ .set_nmi = svm_inject_nmi,
+ .queue_exception = svm_queue_exception,
+ .cancel_injection = svm_cancel_injection,
+ .interrupt_allowed = svm_interrupt_allowed,
+ .nmi_allowed = svm_nmi_allowed,
+ .get_nmi_mask = svm_get_nmi_mask,
+ .set_nmi_mask = svm_set_nmi_mask,
+ .enable_nmi_window = enable_nmi_window,
+ .enable_irq_window = enable_irq_window,
+ .update_cr8_intercept = update_cr8_intercept,
+ .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
+ .vm_has_apicv = svm_vm_has_apicv,
+ .load_eoi_exitmap = svm_load_eoi_exitmap,
+ .sync_pir_to_irr = svm_sync_pir_to_irr,
+
+ .set_tss_addr = svm_set_tss_addr,
+ .get_tdp_level = get_npt_level,
+ .get_mt_mask = svm_get_mt_mask,
+
+ .get_exit_info = svm_get_exit_info,
+
+ .get_lpage_level = svm_get_lpage_level,
+
+ .cpuid_update = svm_cpuid_update,
+
+ .rdtscp_supported = svm_rdtscp_supported,
+ .invpcid_supported = svm_invpcid_supported,
+ .mpx_supported = svm_mpx_supported,
+ .xsaves_supported = svm_xsaves_supported,
+
+ .set_supported_cpuid = svm_set_supported_cpuid,
+
+ .has_wbinvd_exit = svm_has_wbinvd_exit,
+
+ .set_tsc_khz = svm_set_tsc_khz,
+ .read_tsc_offset = svm_read_tsc_offset,
+ .write_tsc_offset = svm_write_tsc_offset,
+ .adjust_tsc_offset = svm_adjust_tsc_offset,
+ .compute_tsc_offset = svm_compute_tsc_offset,
+ .read_l1_tsc = svm_read_l1_tsc,
+
+ .set_tdp_cr3 = set_tdp_cr3,
+
+ .check_intercept = svm_check_intercept,
+ .handle_external_intr = svm_handle_external_intr,
+
+ .sched_in = svm_sched_in,
+};
+
+static int __init svm_init(void)
+{
+ return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
+ __alignof__(struct vcpu_svm), THIS_MODULE);
+}
+
+static void __exit svm_exit(void)
+{
+ kvm_exit();
+}
+
+module_init(svm_init)
+module_exit(svm_exit)
diff --git a/kernel/arch/x86/kvm/trace.h b/kernel/arch/x86/kvm/trace.h
new file mode 100644
index 000000000..7c7bc8bef
--- /dev/null
+++ b/kernel/arch/x86/kvm/trace.h
@@ -0,0 +1,963 @@
+#if !defined(_TRACE_KVM_H) || defined(TRACE_HEADER_MULTI_READ)
+#define _TRACE_KVM_H
+
+#include <linux/tracepoint.h>
+#include <asm/vmx.h>
+#include <asm/svm.h>
+#include <asm/clocksource.h>
+#include <asm/pvclock-abi.h>
+
+#undef TRACE_SYSTEM
+#define TRACE_SYSTEM kvm
+
+/*
+ * Tracepoint for guest mode entry.
+ */
+TRACE_EVENT(kvm_entry,
+ TP_PROTO(unsigned int vcpu_id),
+ TP_ARGS(vcpu_id),
+
+ TP_STRUCT__entry(
+ __field( unsigned int, vcpu_id )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_id = vcpu_id;
+ ),
+
+ TP_printk("vcpu %u", __entry->vcpu_id)
+);
+
+/*
+ * Tracepoint for hypercall.
+ */
+TRACE_EVENT(kvm_hypercall,
+ TP_PROTO(unsigned long nr, unsigned long a0, unsigned long a1,
+ unsigned long a2, unsigned long a3),
+ TP_ARGS(nr, a0, a1, a2, a3),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, nr )
+ __field( unsigned long, a0 )
+ __field( unsigned long, a1 )
+ __field( unsigned long, a2 )
+ __field( unsigned long, a3 )
+ ),
+
+ TP_fast_assign(
+ __entry->nr = nr;
+ __entry->a0 = a0;
+ __entry->a1 = a1;
+ __entry->a2 = a2;
+ __entry->a3 = a3;
+ ),
+
+ TP_printk("nr 0x%lx a0 0x%lx a1 0x%lx a2 0x%lx a3 0x%lx",
+ __entry->nr, __entry->a0, __entry->a1, __entry->a2,
+ __entry->a3)
+);
+
+/*
+ * Tracepoint for hypercall.
+ */
+TRACE_EVENT(kvm_hv_hypercall,
+ TP_PROTO(__u16 code, bool fast, __u16 rep_cnt, __u16 rep_idx,
+ __u64 ingpa, __u64 outgpa),
+ TP_ARGS(code, fast, rep_cnt, rep_idx, ingpa, outgpa),
+
+ TP_STRUCT__entry(
+ __field( __u16, rep_cnt )
+ __field( __u16, rep_idx )
+ __field( __u64, ingpa )
+ __field( __u64, outgpa )
+ __field( __u16, code )
+ __field( bool, fast )
+ ),
+
+ TP_fast_assign(
+ __entry->rep_cnt = rep_cnt;
+ __entry->rep_idx = rep_idx;
+ __entry->ingpa = ingpa;
+ __entry->outgpa = outgpa;
+ __entry->code = code;
+ __entry->fast = fast;
+ ),
+
+ TP_printk("code 0x%x %s cnt 0x%x idx 0x%x in 0x%llx out 0x%llx",
+ __entry->code, __entry->fast ? "fast" : "slow",
+ __entry->rep_cnt, __entry->rep_idx, __entry->ingpa,
+ __entry->outgpa)
+);
+
+/*
+ * Tracepoint for PIO.
+ */
+
+#define KVM_PIO_IN 0
+#define KVM_PIO_OUT 1
+
+TRACE_EVENT(kvm_pio,
+ TP_PROTO(unsigned int rw, unsigned int port, unsigned int size,
+ unsigned int count, void *data),
+ TP_ARGS(rw, port, size, count, data),
+
+ TP_STRUCT__entry(
+ __field( unsigned int, rw )
+ __field( unsigned int, port )
+ __field( unsigned int, size )
+ __field( unsigned int, count )
+ __field( unsigned int, val )
+ ),
+
+ TP_fast_assign(
+ __entry->rw = rw;
+ __entry->port = port;
+ __entry->size = size;
+ __entry->count = count;
+ if (size == 1)
+ __entry->val = *(unsigned char *)data;
+ else if (size == 2)
+ __entry->val = *(unsigned short *)data;
+ else
+ __entry->val = *(unsigned int *)data;
+ ),
+
+ TP_printk("pio_%s at 0x%x size %d count %d val 0x%x %s",
+ __entry->rw ? "write" : "read",
+ __entry->port, __entry->size, __entry->count, __entry->val,
+ __entry->count > 1 ? "(...)" : "")
+);
+
+/*
+ * Tracepoint for cpuid.
+ */
+TRACE_EVENT(kvm_cpuid,
+ TP_PROTO(unsigned int function, unsigned long rax, unsigned long rbx,
+ unsigned long rcx, unsigned long rdx),
+ TP_ARGS(function, rax, rbx, rcx, rdx),
+
+ TP_STRUCT__entry(
+ __field( unsigned int, function )
+ __field( unsigned long, rax )
+ __field( unsigned long, rbx )
+ __field( unsigned long, rcx )
+ __field( unsigned long, rdx )
+ ),
+
+ TP_fast_assign(
+ __entry->function = function;
+ __entry->rax = rax;
+ __entry->rbx = rbx;
+ __entry->rcx = rcx;
+ __entry->rdx = rdx;
+ ),
+
+ TP_printk("func %x rax %lx rbx %lx rcx %lx rdx %lx",
+ __entry->function, __entry->rax,
+ __entry->rbx, __entry->rcx, __entry->rdx)
+);
+
+#define AREG(x) { APIC_##x, "APIC_" #x }
+
+#define kvm_trace_symbol_apic \
+ AREG(ID), AREG(LVR), AREG(TASKPRI), AREG(ARBPRI), AREG(PROCPRI), \
+ AREG(EOI), AREG(RRR), AREG(LDR), AREG(DFR), AREG(SPIV), AREG(ISR), \
+ AREG(TMR), AREG(IRR), AREG(ESR), AREG(ICR), AREG(ICR2), AREG(LVTT), \
+ AREG(LVTTHMR), AREG(LVTPC), AREG(LVT0), AREG(LVT1), AREG(LVTERR), \
+ AREG(TMICT), AREG(TMCCT), AREG(TDCR), AREG(SELF_IPI), AREG(EFEAT), \
+ AREG(ECTRL)
+/*
+ * Tracepoint for apic access.
+ */
+TRACE_EVENT(kvm_apic,
+ TP_PROTO(unsigned int rw, unsigned int reg, unsigned int val),
+ TP_ARGS(rw, reg, val),
+
+ TP_STRUCT__entry(
+ __field( unsigned int, rw )
+ __field( unsigned int, reg )
+ __field( unsigned int, val )
+ ),
+
+ TP_fast_assign(
+ __entry->rw = rw;
+ __entry->reg = reg;
+ __entry->val = val;
+ ),
+
+ TP_printk("apic_%s %s = 0x%x",
+ __entry->rw ? "write" : "read",
+ __print_symbolic(__entry->reg, kvm_trace_symbol_apic),
+ __entry->val)
+);
+
+#define trace_kvm_apic_read(reg, val) trace_kvm_apic(0, reg, val)
+#define trace_kvm_apic_write(reg, val) trace_kvm_apic(1, reg, val)
+
+#define KVM_ISA_VMX 1
+#define KVM_ISA_SVM 2
+
+/*
+ * Tracepoint for kvm guest exit:
+ */
+TRACE_EVENT(kvm_exit,
+ TP_PROTO(unsigned int exit_reason, struct kvm_vcpu *vcpu, u32 isa),
+ TP_ARGS(exit_reason, vcpu, isa),
+
+ TP_STRUCT__entry(
+ __field( unsigned int, exit_reason )
+ __field( unsigned long, guest_rip )
+ __field( u32, isa )
+ __field( u64, info1 )
+ __field( u64, info2 )
+ ),
+
+ TP_fast_assign(
+ __entry->exit_reason = exit_reason;
+ __entry->guest_rip = kvm_rip_read(vcpu);
+ __entry->isa = isa;
+ kvm_x86_ops->get_exit_info(vcpu, &__entry->info1,
+ &__entry->info2);
+ ),
+
+ TP_printk("reason %s rip 0x%lx info %llx %llx",
+ (__entry->isa == KVM_ISA_VMX) ?
+ __print_symbolic(__entry->exit_reason, VMX_EXIT_REASONS) :
+ __print_symbolic(__entry->exit_reason, SVM_EXIT_REASONS),
+ __entry->guest_rip, __entry->info1, __entry->info2)
+);
+
+/*
+ * Tracepoint for kvm interrupt injection:
+ */
+TRACE_EVENT(kvm_inj_virq,
+ TP_PROTO(unsigned int irq),
+ TP_ARGS(irq),
+
+ TP_STRUCT__entry(
+ __field( unsigned int, irq )
+ ),
+
+ TP_fast_assign(
+ __entry->irq = irq;
+ ),
+
+ TP_printk("irq %u", __entry->irq)
+);
+
+#define EXS(x) { x##_VECTOR, "#" #x }
+
+#define kvm_trace_sym_exc \
+ EXS(DE), EXS(DB), EXS(BP), EXS(OF), EXS(BR), EXS(UD), EXS(NM), \
+ EXS(DF), EXS(TS), EXS(NP), EXS(SS), EXS(GP), EXS(PF), \
+ EXS(MF), EXS(MC)
+
+/*
+ * Tracepoint for kvm interrupt injection:
+ */
+TRACE_EVENT(kvm_inj_exception,
+ TP_PROTO(unsigned exception, bool has_error, unsigned error_code),
+ TP_ARGS(exception, has_error, error_code),
+
+ TP_STRUCT__entry(
+ __field( u8, exception )
+ __field( u8, has_error )
+ __field( u32, error_code )
+ ),
+
+ TP_fast_assign(
+ __entry->exception = exception;
+ __entry->has_error = has_error;
+ __entry->error_code = error_code;
+ ),
+
+ TP_printk("%s (0x%x)",
+ __print_symbolic(__entry->exception, kvm_trace_sym_exc),
+ /* FIXME: don't print error_code if not present */
+ __entry->has_error ? __entry->error_code : 0)
+);
+
+/*
+ * Tracepoint for page fault.
+ */
+TRACE_EVENT(kvm_page_fault,
+ TP_PROTO(unsigned long fault_address, unsigned int error_code),
+ TP_ARGS(fault_address, error_code),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, fault_address )
+ __field( unsigned int, error_code )
+ ),
+
+ TP_fast_assign(
+ __entry->fault_address = fault_address;
+ __entry->error_code = error_code;
+ ),
+
+ TP_printk("address %lx error_code %x",
+ __entry->fault_address, __entry->error_code)
+);
+
+/*
+ * Tracepoint for guest MSR access.
+ */
+TRACE_EVENT(kvm_msr,
+ TP_PROTO(unsigned write, u32 ecx, u64 data, bool exception),
+ TP_ARGS(write, ecx, data, exception),
+
+ TP_STRUCT__entry(
+ __field( unsigned, write )
+ __field( u32, ecx )
+ __field( u64, data )
+ __field( u8, exception )
+ ),
+
+ TP_fast_assign(
+ __entry->write = write;
+ __entry->ecx = ecx;
+ __entry->data = data;
+ __entry->exception = exception;
+ ),
+
+ TP_printk("msr_%s %x = 0x%llx%s",
+ __entry->write ? "write" : "read",
+ __entry->ecx, __entry->data,
+ __entry->exception ? " (#GP)" : "")
+);
+
+#define trace_kvm_msr_read(ecx, data) trace_kvm_msr(0, ecx, data, false)
+#define trace_kvm_msr_write(ecx, data) trace_kvm_msr(1, ecx, data, false)
+#define trace_kvm_msr_read_ex(ecx) trace_kvm_msr(0, ecx, 0, true)
+#define trace_kvm_msr_write_ex(ecx, data) trace_kvm_msr(1, ecx, data, true)
+
+/*
+ * Tracepoint for guest CR access.
+ */
+TRACE_EVENT(kvm_cr,
+ TP_PROTO(unsigned int rw, unsigned int cr, unsigned long val),
+ TP_ARGS(rw, cr, val),
+
+ TP_STRUCT__entry(
+ __field( unsigned int, rw )
+ __field( unsigned int, cr )
+ __field( unsigned long, val )
+ ),
+
+ TP_fast_assign(
+ __entry->rw = rw;
+ __entry->cr = cr;
+ __entry->val = val;
+ ),
+
+ TP_printk("cr_%s %x = 0x%lx",
+ __entry->rw ? "write" : "read",
+ __entry->cr, __entry->val)
+);
+
+#define trace_kvm_cr_read(cr, val) trace_kvm_cr(0, cr, val)
+#define trace_kvm_cr_write(cr, val) trace_kvm_cr(1, cr, val)
+
+TRACE_EVENT(kvm_pic_set_irq,
+ TP_PROTO(__u8 chip, __u8 pin, __u8 elcr, __u8 imr, bool coalesced),
+ TP_ARGS(chip, pin, elcr, imr, coalesced),
+
+ TP_STRUCT__entry(
+ __field( __u8, chip )
+ __field( __u8, pin )
+ __field( __u8, elcr )
+ __field( __u8, imr )
+ __field( bool, coalesced )
+ ),
+
+ TP_fast_assign(
+ __entry->chip = chip;
+ __entry->pin = pin;
+ __entry->elcr = elcr;
+ __entry->imr = imr;
+ __entry->coalesced = coalesced;
+ ),
+
+ TP_printk("chip %u pin %u (%s%s)%s",
+ __entry->chip, __entry->pin,
+ (__entry->elcr & (1 << __entry->pin)) ? "level":"edge",
+ (__entry->imr & (1 << __entry->pin)) ? "|masked":"",
+ __entry->coalesced ? " (coalesced)" : "")
+);
+
+#define kvm_apic_dst_shorthand \
+ {0x0, "dst"}, \
+ {0x1, "self"}, \
+ {0x2, "all"}, \
+ {0x3, "all-but-self"}
+
+TRACE_EVENT(kvm_apic_ipi,
+ TP_PROTO(__u32 icr_low, __u32 dest_id),
+ TP_ARGS(icr_low, dest_id),
+
+ TP_STRUCT__entry(
+ __field( __u32, icr_low )
+ __field( __u32, dest_id )
+ ),
+
+ TP_fast_assign(
+ __entry->icr_low = icr_low;
+ __entry->dest_id = dest_id;
+ ),
+
+ TP_printk("dst %x vec %u (%s|%s|%s|%s|%s)",
+ __entry->dest_id, (u8)__entry->icr_low,
+ __print_symbolic((__entry->icr_low >> 8 & 0x7),
+ kvm_deliver_mode),
+ (__entry->icr_low & (1<<11)) ? "logical" : "physical",
+ (__entry->icr_low & (1<<14)) ? "assert" : "de-assert",
+ (__entry->icr_low & (1<<15)) ? "level" : "edge",
+ __print_symbolic((__entry->icr_low >> 18 & 0x3),
+ kvm_apic_dst_shorthand))
+);
+
+TRACE_EVENT(kvm_apic_accept_irq,
+ TP_PROTO(__u32 apicid, __u16 dm, __u8 tm, __u8 vec),
+ TP_ARGS(apicid, dm, tm, vec),
+
+ TP_STRUCT__entry(
+ __field( __u32, apicid )
+ __field( __u16, dm )
+ __field( __u8, tm )
+ __field( __u8, vec )
+ ),
+
+ TP_fast_assign(
+ __entry->apicid = apicid;
+ __entry->dm = dm;
+ __entry->tm = tm;
+ __entry->vec = vec;
+ ),
+
+ TP_printk("apicid %x vec %u (%s|%s)",
+ __entry->apicid, __entry->vec,
+ __print_symbolic((__entry->dm >> 8 & 0x7), kvm_deliver_mode),
+ __entry->tm ? "level" : "edge")
+);
+
+TRACE_EVENT(kvm_eoi,
+ TP_PROTO(struct kvm_lapic *apic, int vector),
+ TP_ARGS(apic, vector),
+
+ TP_STRUCT__entry(
+ __field( __u32, apicid )
+ __field( int, vector )
+ ),
+
+ TP_fast_assign(
+ __entry->apicid = apic->vcpu->vcpu_id;
+ __entry->vector = vector;
+ ),
+
+ TP_printk("apicid %x vector %d", __entry->apicid, __entry->vector)
+);
+
+TRACE_EVENT(kvm_pv_eoi,
+ TP_PROTO(struct kvm_lapic *apic, int vector),
+ TP_ARGS(apic, vector),
+
+ TP_STRUCT__entry(
+ __field( __u32, apicid )
+ __field( int, vector )
+ ),
+
+ TP_fast_assign(
+ __entry->apicid = apic->vcpu->vcpu_id;
+ __entry->vector = vector;
+ ),
+
+ TP_printk("apicid %x vector %d", __entry->apicid, __entry->vector)
+);
+
+/*
+ * Tracepoint for nested VMRUN
+ */
+TRACE_EVENT(kvm_nested_vmrun,
+ TP_PROTO(__u64 rip, __u64 vmcb, __u64 nested_rip, __u32 int_ctl,
+ __u32 event_inj, bool npt),
+ TP_ARGS(rip, vmcb, nested_rip, int_ctl, event_inj, npt),
+
+ TP_STRUCT__entry(
+ __field( __u64, rip )
+ __field( __u64, vmcb )
+ __field( __u64, nested_rip )
+ __field( __u32, int_ctl )
+ __field( __u32, event_inj )
+ __field( bool, npt )
+ ),
+
+ TP_fast_assign(
+ __entry->rip = rip;
+ __entry->vmcb = vmcb;
+ __entry->nested_rip = nested_rip;
+ __entry->int_ctl = int_ctl;
+ __entry->event_inj = event_inj;
+ __entry->npt = npt;
+ ),
+
+ TP_printk("rip: 0x%016llx vmcb: 0x%016llx nrip: 0x%016llx int_ctl: 0x%08x "
+ "event_inj: 0x%08x npt: %s",
+ __entry->rip, __entry->vmcb, __entry->nested_rip,
+ __entry->int_ctl, __entry->event_inj,
+ __entry->npt ? "on" : "off")
+);
+
+TRACE_EVENT(kvm_nested_intercepts,
+ TP_PROTO(__u16 cr_read, __u16 cr_write, __u32 exceptions, __u64 intercept),
+ TP_ARGS(cr_read, cr_write, exceptions, intercept),
+
+ TP_STRUCT__entry(
+ __field( __u16, cr_read )
+ __field( __u16, cr_write )
+ __field( __u32, exceptions )
+ __field( __u64, intercept )
+ ),
+
+ TP_fast_assign(
+ __entry->cr_read = cr_read;
+ __entry->cr_write = cr_write;
+ __entry->exceptions = exceptions;
+ __entry->intercept = intercept;
+ ),
+
+ TP_printk("cr_read: %04x cr_write: %04x excp: %08x intercept: %016llx",
+ __entry->cr_read, __entry->cr_write, __entry->exceptions,
+ __entry->intercept)
+);
+/*
+ * Tracepoint for #VMEXIT while nested
+ */
+TRACE_EVENT(kvm_nested_vmexit,
+ TP_PROTO(__u64 rip, __u32 exit_code,
+ __u64 exit_info1, __u64 exit_info2,
+ __u32 exit_int_info, __u32 exit_int_info_err, __u32 isa),
+ TP_ARGS(rip, exit_code, exit_info1, exit_info2,
+ exit_int_info, exit_int_info_err, isa),
+
+ TP_STRUCT__entry(
+ __field( __u64, rip )
+ __field( __u32, exit_code )
+ __field( __u64, exit_info1 )
+ __field( __u64, exit_info2 )
+ __field( __u32, exit_int_info )
+ __field( __u32, exit_int_info_err )
+ __field( __u32, isa )
+ ),
+
+ TP_fast_assign(
+ __entry->rip = rip;
+ __entry->exit_code = exit_code;
+ __entry->exit_info1 = exit_info1;
+ __entry->exit_info2 = exit_info2;
+ __entry->exit_int_info = exit_int_info;
+ __entry->exit_int_info_err = exit_int_info_err;
+ __entry->isa = isa;
+ ),
+ TP_printk("rip: 0x%016llx reason: %s ext_inf1: 0x%016llx "
+ "ext_inf2: 0x%016llx ext_int: 0x%08x ext_int_err: 0x%08x",
+ __entry->rip,
+ (__entry->isa == KVM_ISA_VMX) ?
+ __print_symbolic(__entry->exit_code, VMX_EXIT_REASONS) :
+ __print_symbolic(__entry->exit_code, SVM_EXIT_REASONS),
+ __entry->exit_info1, __entry->exit_info2,
+ __entry->exit_int_info, __entry->exit_int_info_err)
+);
+
+/*
+ * Tracepoint for #VMEXIT reinjected to the guest
+ */
+TRACE_EVENT(kvm_nested_vmexit_inject,
+ TP_PROTO(__u32 exit_code,
+ __u64 exit_info1, __u64 exit_info2,
+ __u32 exit_int_info, __u32 exit_int_info_err, __u32 isa),
+ TP_ARGS(exit_code, exit_info1, exit_info2,
+ exit_int_info, exit_int_info_err, isa),
+
+ TP_STRUCT__entry(
+ __field( __u32, exit_code )
+ __field( __u64, exit_info1 )
+ __field( __u64, exit_info2 )
+ __field( __u32, exit_int_info )
+ __field( __u32, exit_int_info_err )
+ __field( __u32, isa )
+ ),
+
+ TP_fast_assign(
+ __entry->exit_code = exit_code;
+ __entry->exit_info1 = exit_info1;
+ __entry->exit_info2 = exit_info2;
+ __entry->exit_int_info = exit_int_info;
+ __entry->exit_int_info_err = exit_int_info_err;
+ __entry->isa = isa;
+ ),
+
+ TP_printk("reason: %s ext_inf1: 0x%016llx "
+ "ext_inf2: 0x%016llx ext_int: 0x%08x ext_int_err: 0x%08x",
+ (__entry->isa == KVM_ISA_VMX) ?
+ __print_symbolic(__entry->exit_code, VMX_EXIT_REASONS) :
+ __print_symbolic(__entry->exit_code, SVM_EXIT_REASONS),
+ __entry->exit_info1, __entry->exit_info2,
+ __entry->exit_int_info, __entry->exit_int_info_err)
+);
+
+/*
+ * Tracepoint for nested #vmexit because of interrupt pending
+ */
+TRACE_EVENT(kvm_nested_intr_vmexit,
+ TP_PROTO(__u64 rip),
+ TP_ARGS(rip),
+
+ TP_STRUCT__entry(
+ __field( __u64, rip )
+ ),
+
+ TP_fast_assign(
+ __entry->rip = rip
+ ),
+
+ TP_printk("rip: 0x%016llx", __entry->rip)
+);
+
+/*
+ * Tracepoint for nested #vmexit because of interrupt pending
+ */
+TRACE_EVENT(kvm_invlpga,
+ TP_PROTO(__u64 rip, int asid, u64 address),
+ TP_ARGS(rip, asid, address),
+
+ TP_STRUCT__entry(
+ __field( __u64, rip )
+ __field( int, asid )
+ __field( __u64, address )
+ ),
+
+ TP_fast_assign(
+ __entry->rip = rip;
+ __entry->asid = asid;
+ __entry->address = address;
+ ),
+
+ TP_printk("rip: 0x%016llx asid: %d address: 0x%016llx",
+ __entry->rip, __entry->asid, __entry->address)
+);
+
+/*
+ * Tracepoint for nested #vmexit because of interrupt pending
+ */
+TRACE_EVENT(kvm_skinit,
+ TP_PROTO(__u64 rip, __u32 slb),
+ TP_ARGS(rip, slb),
+
+ TP_STRUCT__entry(
+ __field( __u64, rip )
+ __field( __u32, slb )
+ ),
+
+ TP_fast_assign(
+ __entry->rip = rip;
+ __entry->slb = slb;
+ ),
+
+ TP_printk("rip: 0x%016llx slb: 0x%08x",
+ __entry->rip, __entry->slb)
+);
+
+#define KVM_EMUL_INSN_F_CR0_PE (1 << 0)
+#define KVM_EMUL_INSN_F_EFL_VM (1 << 1)
+#define KVM_EMUL_INSN_F_CS_D (1 << 2)
+#define KVM_EMUL_INSN_F_CS_L (1 << 3)
+
+#define kvm_trace_symbol_emul_flags \
+ { 0, "real" }, \
+ { KVM_EMUL_INSN_F_CR0_PE \
+ | KVM_EMUL_INSN_F_EFL_VM, "vm16" }, \
+ { KVM_EMUL_INSN_F_CR0_PE, "prot16" }, \
+ { KVM_EMUL_INSN_F_CR0_PE \
+ | KVM_EMUL_INSN_F_CS_D, "prot32" }, \
+ { KVM_EMUL_INSN_F_CR0_PE \
+ | KVM_EMUL_INSN_F_CS_L, "prot64" }
+
+#define kei_decode_mode(mode) ({ \
+ u8 flags = 0xff; \
+ switch (mode) { \
+ case X86EMUL_MODE_REAL: \
+ flags = 0; \
+ break; \
+ case X86EMUL_MODE_VM86: \
+ flags = KVM_EMUL_INSN_F_EFL_VM; \
+ break; \
+ case X86EMUL_MODE_PROT16: \
+ flags = KVM_EMUL_INSN_F_CR0_PE; \
+ break; \
+ case X86EMUL_MODE_PROT32: \
+ flags = KVM_EMUL_INSN_F_CR0_PE \
+ | KVM_EMUL_INSN_F_CS_D; \
+ break; \
+ case X86EMUL_MODE_PROT64: \
+ flags = KVM_EMUL_INSN_F_CR0_PE \
+ | KVM_EMUL_INSN_F_CS_L; \
+ break; \
+ } \
+ flags; \
+ })
+
+TRACE_EVENT(kvm_emulate_insn,
+ TP_PROTO(struct kvm_vcpu *vcpu, __u8 failed),
+ TP_ARGS(vcpu, failed),
+
+ TP_STRUCT__entry(
+ __field( __u64, rip )
+ __field( __u32, csbase )
+ __field( __u8, len )
+ __array( __u8, insn, 15 )
+ __field( __u8, flags )
+ __field( __u8, failed )
+ ),
+
+ TP_fast_assign(
+ __entry->csbase = kvm_x86_ops->get_segment_base(vcpu, VCPU_SREG_CS);
+ __entry->len = vcpu->arch.emulate_ctxt.fetch.ptr
+ - vcpu->arch.emulate_ctxt.fetch.data;
+ __entry->rip = vcpu->arch.emulate_ctxt._eip - __entry->len;
+ memcpy(__entry->insn,
+ vcpu->arch.emulate_ctxt.fetch.data,
+ 15);
+ __entry->flags = kei_decode_mode(vcpu->arch.emulate_ctxt.mode);
+ __entry->failed = failed;
+ ),
+
+ TP_printk("%x:%llx:%s (%s)%s",
+ __entry->csbase, __entry->rip,
+ __print_hex(__entry->insn, __entry->len),
+ __print_symbolic(__entry->flags,
+ kvm_trace_symbol_emul_flags),
+ __entry->failed ? " failed" : ""
+ )
+ );
+
+#define trace_kvm_emulate_insn_start(vcpu) trace_kvm_emulate_insn(vcpu, 0)
+#define trace_kvm_emulate_insn_failed(vcpu) trace_kvm_emulate_insn(vcpu, 1)
+
+TRACE_EVENT(
+ vcpu_match_mmio,
+ TP_PROTO(gva_t gva, gpa_t gpa, bool write, bool gpa_match),
+ TP_ARGS(gva, gpa, write, gpa_match),
+
+ TP_STRUCT__entry(
+ __field(gva_t, gva)
+ __field(gpa_t, gpa)
+ __field(bool, write)
+ __field(bool, gpa_match)
+ ),
+
+ TP_fast_assign(
+ __entry->gva = gva;
+ __entry->gpa = gpa;
+ __entry->write = write;
+ __entry->gpa_match = gpa_match
+ ),
+
+ TP_printk("gva %#lx gpa %#llx %s %s", __entry->gva, __entry->gpa,
+ __entry->write ? "Write" : "Read",
+ __entry->gpa_match ? "GPA" : "GVA")
+);
+
+TRACE_EVENT(kvm_write_tsc_offset,
+ TP_PROTO(unsigned int vcpu_id, __u64 previous_tsc_offset,
+ __u64 next_tsc_offset),
+ TP_ARGS(vcpu_id, previous_tsc_offset, next_tsc_offset),
+
+ TP_STRUCT__entry(
+ __field( unsigned int, vcpu_id )
+ __field( __u64, previous_tsc_offset )
+ __field( __u64, next_tsc_offset )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_id = vcpu_id;
+ __entry->previous_tsc_offset = previous_tsc_offset;
+ __entry->next_tsc_offset = next_tsc_offset;
+ ),
+
+ TP_printk("vcpu=%u prev=%llu next=%llu", __entry->vcpu_id,
+ __entry->previous_tsc_offset, __entry->next_tsc_offset)
+);
+
+#ifdef CONFIG_X86_64
+
+#define host_clocks \
+ {VCLOCK_NONE, "none"}, \
+ {VCLOCK_TSC, "tsc"}, \
+ {VCLOCK_HPET, "hpet"} \
+
+TRACE_EVENT(kvm_update_master_clock,
+ TP_PROTO(bool use_master_clock, unsigned int host_clock, bool offset_matched),
+ TP_ARGS(use_master_clock, host_clock, offset_matched),
+
+ TP_STRUCT__entry(
+ __field( bool, use_master_clock )
+ __field( unsigned int, host_clock )
+ __field( bool, offset_matched )
+ ),
+
+ TP_fast_assign(
+ __entry->use_master_clock = use_master_clock;
+ __entry->host_clock = host_clock;
+ __entry->offset_matched = offset_matched;
+ ),
+
+ TP_printk("masterclock %d hostclock %s offsetmatched %u",
+ __entry->use_master_clock,
+ __print_symbolic(__entry->host_clock, host_clocks),
+ __entry->offset_matched)
+);
+
+TRACE_EVENT(kvm_track_tsc,
+ TP_PROTO(unsigned int vcpu_id, unsigned int nr_matched,
+ unsigned int online_vcpus, bool use_master_clock,
+ unsigned int host_clock),
+ TP_ARGS(vcpu_id, nr_matched, online_vcpus, use_master_clock,
+ host_clock),
+
+ TP_STRUCT__entry(
+ __field( unsigned int, vcpu_id )
+ __field( unsigned int, nr_vcpus_matched_tsc )
+ __field( unsigned int, online_vcpus )
+ __field( bool, use_master_clock )
+ __field( unsigned int, host_clock )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_id = vcpu_id;
+ __entry->nr_vcpus_matched_tsc = nr_matched;
+ __entry->online_vcpus = online_vcpus;
+ __entry->use_master_clock = use_master_clock;
+ __entry->host_clock = host_clock;
+ ),
+
+ TP_printk("vcpu_id %u masterclock %u offsetmatched %u nr_online %u"
+ " hostclock %s",
+ __entry->vcpu_id, __entry->use_master_clock,
+ __entry->nr_vcpus_matched_tsc, __entry->online_vcpus,
+ __print_symbolic(__entry->host_clock, host_clocks))
+);
+
+#endif /* CONFIG_X86_64 */
+
+/*
+ * Tracepoint for PML full VMEXIT.
+ */
+TRACE_EVENT(kvm_pml_full,
+ TP_PROTO(unsigned int vcpu_id),
+ TP_ARGS(vcpu_id),
+
+ TP_STRUCT__entry(
+ __field( unsigned int, vcpu_id )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_id = vcpu_id;
+ ),
+
+ TP_printk("vcpu %d: PML full", __entry->vcpu_id)
+);
+
+TRACE_EVENT(kvm_ple_window,
+ TP_PROTO(bool grow, unsigned int vcpu_id, int new, int old),
+ TP_ARGS(grow, vcpu_id, new, old),
+
+ TP_STRUCT__entry(
+ __field( bool, grow )
+ __field( unsigned int, vcpu_id )
+ __field( int, new )
+ __field( int, old )
+ ),
+
+ TP_fast_assign(
+ __entry->grow = grow;
+ __entry->vcpu_id = vcpu_id;
+ __entry->new = new;
+ __entry->old = old;
+ ),
+
+ TP_printk("vcpu %u: ple_window %d (%s %d)",
+ __entry->vcpu_id,
+ __entry->new,
+ __entry->grow ? "grow" : "shrink",
+ __entry->old)
+);
+
+#define trace_kvm_ple_window_grow(vcpu_id, new, old) \
+ trace_kvm_ple_window(true, vcpu_id, new, old)
+#define trace_kvm_ple_window_shrink(vcpu_id, new, old) \
+ trace_kvm_ple_window(false, vcpu_id, new, old)
+
+TRACE_EVENT(kvm_pvclock_update,
+ TP_PROTO(unsigned int vcpu_id, struct pvclock_vcpu_time_info *pvclock),
+ TP_ARGS(vcpu_id, pvclock),
+
+ TP_STRUCT__entry(
+ __field( unsigned int, vcpu_id )
+ __field( __u32, version )
+ __field( __u64, tsc_timestamp )
+ __field( __u64, system_time )
+ __field( __u32, tsc_to_system_mul )
+ __field( __s8, tsc_shift )
+ __field( __u8, flags )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_id = vcpu_id;
+ __entry->version = pvclock->version;
+ __entry->tsc_timestamp = pvclock->tsc_timestamp;
+ __entry->system_time = pvclock->system_time;
+ __entry->tsc_to_system_mul = pvclock->tsc_to_system_mul;
+ __entry->tsc_shift = pvclock->tsc_shift;
+ __entry->flags = pvclock->flags;
+ ),
+
+ TP_printk("vcpu_id %u, pvclock { version %u, tsc_timestamp 0x%llx, "
+ "system_time 0x%llx, tsc_to_system_mul 0x%x, tsc_shift %d, "
+ "flags 0x%x }",
+ __entry->vcpu_id,
+ __entry->version,
+ __entry->tsc_timestamp,
+ __entry->system_time,
+ __entry->tsc_to_system_mul,
+ __entry->tsc_shift,
+ __entry->flags)
+);
+
+TRACE_EVENT(kvm_wait_lapic_expire,
+ TP_PROTO(unsigned int vcpu_id, s64 delta),
+ TP_ARGS(vcpu_id, delta),
+
+ TP_STRUCT__entry(
+ __field( unsigned int, vcpu_id )
+ __field( s64, delta )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_id = vcpu_id;
+ __entry->delta = delta;
+ ),
+
+ TP_printk("vcpu %u: delta %lld (%s)",
+ __entry->vcpu_id,
+ __entry->delta,
+ __entry->delta < 0 ? "early" : "late")
+);
+
+#endif /* _TRACE_KVM_H */
+
+#undef TRACE_INCLUDE_PATH
+#define TRACE_INCLUDE_PATH arch/x86/kvm
+#undef TRACE_INCLUDE_FILE
+#define TRACE_INCLUDE_FILE trace
+
+/* This part must be outside protection */
+#include <trace/define_trace.h>
diff --git a/kernel/arch/x86/kvm/tss.h b/kernel/arch/x86/kvm/tss.h
new file mode 100644
index 000000000..622aa10f6
--- /dev/null
+++ b/kernel/arch/x86/kvm/tss.h
@@ -0,0 +1,59 @@
+#ifndef __TSS_SEGMENT_H
+#define __TSS_SEGMENT_H
+
+struct tss_segment_32 {
+ u32 prev_task_link;
+ u32 esp0;
+ u32 ss0;
+ u32 esp1;
+ u32 ss1;
+ u32 esp2;
+ u32 ss2;
+ u32 cr3;
+ u32 eip;
+ u32 eflags;
+ u32 eax;
+ u32 ecx;
+ u32 edx;
+ u32 ebx;
+ u32 esp;
+ u32 ebp;
+ u32 esi;
+ u32 edi;
+ u32 es;
+ u32 cs;
+ u32 ss;
+ u32 ds;
+ u32 fs;
+ u32 gs;
+ u32 ldt_selector;
+ u16 t;
+ u16 io_map;
+};
+
+struct tss_segment_16 {
+ u16 prev_task_link;
+ u16 sp0;
+ u16 ss0;
+ u16 sp1;
+ u16 ss1;
+ u16 sp2;
+ u16 ss2;
+ u16 ip;
+ u16 flag;
+ u16 ax;
+ u16 cx;
+ u16 dx;
+ u16 bx;
+ u16 sp;
+ u16 bp;
+ u16 si;
+ u16 di;
+ u16 es;
+ u16 cs;
+ u16 ss;
+ u16 ds;
+ u16 ldt;
+};
+
+#endif
diff --git a/kernel/arch/x86/kvm/vmx.c b/kernel/arch/x86/kvm/vmx.c
new file mode 100644
index 000000000..2d73807f0
--- /dev/null
+++ b/kernel/arch/x86/kvm/vmx.c
@@ -0,0 +1,10286 @@
+/*
+ * Kernel-based Virtual Machine driver for Linux
+ *
+ * This module enables machines with Intel VT-x extensions to run virtual
+ * machines without emulation or binary translation.
+ *
+ * Copyright (C) 2006 Qumranet, Inc.
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
+ *
+ * Authors:
+ * Avi Kivity <avi@qumranet.com>
+ * Yaniv Kamay <yaniv@qumranet.com>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2. See
+ * the COPYING file in the top-level directory.
+ *
+ */
+
+#include "irq.h"
+#include "mmu.h"
+#include "cpuid.h"
+
+#include <linux/kvm_host.h>
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/mm.h>
+#include <linux/highmem.h>
+#include <linux/sched.h>
+#include <linux/moduleparam.h>
+#include <linux/mod_devicetable.h>
+#include <linux/ftrace_event.h>
+#include <linux/slab.h>
+#include <linux/tboot.h>
+#include <linux/hrtimer.h>
+#include "kvm_cache_regs.h"
+#include "x86.h"
+
+#include <asm/io.h>
+#include <asm/desc.h>
+#include <asm/vmx.h>
+#include <asm/virtext.h>
+#include <asm/mce.h>
+#include <asm/i387.h>
+#include <asm/xcr.h>
+#include <asm/perf_event.h>
+#include <asm/debugreg.h>
+#include <asm/kexec.h>
+#include <asm/apic.h>
+
+#include "trace.h"
+
+#define __ex(x) __kvm_handle_fault_on_reboot(x)
+#define __ex_clear(x, reg) \
+ ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
+
+MODULE_AUTHOR("Qumranet");
+MODULE_LICENSE("GPL");
+
+static const struct x86_cpu_id vmx_cpu_id[] = {
+ X86_FEATURE_MATCH(X86_FEATURE_VMX),
+ {}
+};
+MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
+
+static bool __read_mostly enable_vpid = 1;
+module_param_named(vpid, enable_vpid, bool, 0444);
+
+static bool __read_mostly flexpriority_enabled = 1;
+module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
+
+static bool __read_mostly enable_ept = 1;
+module_param_named(ept, enable_ept, bool, S_IRUGO);
+
+static bool __read_mostly enable_unrestricted_guest = 1;
+module_param_named(unrestricted_guest,
+ enable_unrestricted_guest, bool, S_IRUGO);
+
+static bool __read_mostly enable_ept_ad_bits = 1;
+module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
+
+static bool __read_mostly emulate_invalid_guest_state = true;
+module_param(emulate_invalid_guest_state, bool, S_IRUGO);
+
+static bool __read_mostly vmm_exclusive = 1;
+module_param(vmm_exclusive, bool, S_IRUGO);
+
+static bool __read_mostly fasteoi = 1;
+module_param(fasteoi, bool, S_IRUGO);
+
+static bool __read_mostly enable_apicv = 1;
+module_param(enable_apicv, bool, S_IRUGO);
+
+static bool __read_mostly enable_shadow_vmcs = 1;
+module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
+/*
+ * If nested=1, nested virtualization is supported, i.e., guests may use
+ * VMX and be a hypervisor for its own guests. If nested=0, guests may not
+ * use VMX instructions.
+ */
+static bool __read_mostly nested = 0;
+module_param(nested, bool, S_IRUGO);
+
+static u64 __read_mostly host_xss;
+
+static bool __read_mostly enable_pml = 1;
+module_param_named(pml, enable_pml, bool, S_IRUGO);
+
+#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
+#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
+#define KVM_VM_CR0_ALWAYS_ON \
+ (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
+#define KVM_CR4_GUEST_OWNED_BITS \
+ (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
+ | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
+
+#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
+#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
+
+#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
+
+#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
+
+/*
+ * These 2 parameters are used to config the controls for Pause-Loop Exiting:
+ * ple_gap: upper bound on the amount of time between two successive
+ * executions of PAUSE in a loop. Also indicate if ple enabled.
+ * According to test, this time is usually smaller than 128 cycles.
+ * ple_window: upper bound on the amount of time a guest is allowed to execute
+ * in a PAUSE loop. Tests indicate that most spinlocks are held for
+ * less than 2^12 cycles
+ * Time is measured based on a counter that runs at the same rate as the TSC,
+ * refer SDM volume 3b section 21.6.13 & 22.1.3.
+ */
+#define KVM_VMX_DEFAULT_PLE_GAP 128
+#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
+#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
+#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
+#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
+ INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
+
+static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
+module_param(ple_gap, int, S_IRUGO);
+
+static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
+module_param(ple_window, int, S_IRUGO);
+
+/* Default doubles per-vcpu window every exit. */
+static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
+module_param(ple_window_grow, int, S_IRUGO);
+
+/* Default resets per-vcpu window every exit to ple_window. */
+static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
+module_param(ple_window_shrink, int, S_IRUGO);
+
+/* Default is to compute the maximum so we can never overflow. */
+static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
+static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
+module_param(ple_window_max, int, S_IRUGO);
+
+extern const ulong vmx_return;
+
+#define NR_AUTOLOAD_MSRS 8
+#define VMCS02_POOL_SIZE 1
+
+struct vmcs {
+ u32 revision_id;
+ u32 abort;
+ char data[0];
+};
+
+/*
+ * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
+ * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
+ * loaded on this CPU (so we can clear them if the CPU goes down).
+ */
+struct loaded_vmcs {
+ struct vmcs *vmcs;
+ int cpu;
+ int launched;
+ struct list_head loaded_vmcss_on_cpu_link;
+};
+
+struct shared_msr_entry {
+ unsigned index;
+ u64 data;
+ u64 mask;
+};
+
+/*
+ * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
+ * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
+ * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
+ * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
+ * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
+ * More than one of these structures may exist, if L1 runs multiple L2 guests.
+ * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
+ * underlying hardware which will be used to run L2.
+ * This structure is packed to ensure that its layout is identical across
+ * machines (necessary for live migration).
+ * If there are changes in this struct, VMCS12_REVISION must be changed.
+ */
+typedef u64 natural_width;
+struct __packed vmcs12 {
+ /* According to the Intel spec, a VMCS region must start with the
+ * following two fields. Then follow implementation-specific data.
+ */
+ u32 revision_id;
+ u32 abort;
+
+ u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
+ u32 padding[7]; /* room for future expansion */
+
+ u64 io_bitmap_a;
+ u64 io_bitmap_b;
+ u64 msr_bitmap;
+ u64 vm_exit_msr_store_addr;
+ u64 vm_exit_msr_load_addr;
+ u64 vm_entry_msr_load_addr;
+ u64 tsc_offset;
+ u64 virtual_apic_page_addr;
+ u64 apic_access_addr;
+ u64 posted_intr_desc_addr;
+ u64 ept_pointer;
+ u64 eoi_exit_bitmap0;
+ u64 eoi_exit_bitmap1;
+ u64 eoi_exit_bitmap2;
+ u64 eoi_exit_bitmap3;
+ u64 xss_exit_bitmap;
+ u64 guest_physical_address;
+ u64 vmcs_link_pointer;
+ u64 guest_ia32_debugctl;
+ u64 guest_ia32_pat;
+ u64 guest_ia32_efer;
+ u64 guest_ia32_perf_global_ctrl;
+ u64 guest_pdptr0;
+ u64 guest_pdptr1;
+ u64 guest_pdptr2;
+ u64 guest_pdptr3;
+ u64 guest_bndcfgs;
+ u64 host_ia32_pat;
+ u64 host_ia32_efer;
+ u64 host_ia32_perf_global_ctrl;
+ u64 padding64[8]; /* room for future expansion */
+ /*
+ * To allow migration of L1 (complete with its L2 guests) between
+ * machines of different natural widths (32 or 64 bit), we cannot have
+ * unsigned long fields with no explict size. We use u64 (aliased
+ * natural_width) instead. Luckily, x86 is little-endian.
+ */
+ natural_width cr0_guest_host_mask;
+ natural_width cr4_guest_host_mask;
+ natural_width cr0_read_shadow;
+ natural_width cr4_read_shadow;
+ natural_width cr3_target_value0;
+ natural_width cr3_target_value1;
+ natural_width cr3_target_value2;
+ natural_width cr3_target_value3;
+ natural_width exit_qualification;
+ natural_width guest_linear_address;
+ natural_width guest_cr0;
+ natural_width guest_cr3;
+ natural_width guest_cr4;
+ natural_width guest_es_base;
+ natural_width guest_cs_base;
+ natural_width guest_ss_base;
+ natural_width guest_ds_base;
+ natural_width guest_fs_base;
+ natural_width guest_gs_base;
+ natural_width guest_ldtr_base;
+ natural_width guest_tr_base;
+ natural_width guest_gdtr_base;
+ natural_width guest_idtr_base;
+ natural_width guest_dr7;
+ natural_width guest_rsp;
+ natural_width guest_rip;
+ natural_width guest_rflags;
+ natural_width guest_pending_dbg_exceptions;
+ natural_width guest_sysenter_esp;
+ natural_width guest_sysenter_eip;
+ natural_width host_cr0;
+ natural_width host_cr3;
+ natural_width host_cr4;
+ natural_width host_fs_base;
+ natural_width host_gs_base;
+ natural_width host_tr_base;
+ natural_width host_gdtr_base;
+ natural_width host_idtr_base;
+ natural_width host_ia32_sysenter_esp;
+ natural_width host_ia32_sysenter_eip;
+ natural_width host_rsp;
+ natural_width host_rip;
+ natural_width paddingl[8]; /* room for future expansion */
+ u32 pin_based_vm_exec_control;
+ u32 cpu_based_vm_exec_control;
+ u32 exception_bitmap;
+ u32 page_fault_error_code_mask;
+ u32 page_fault_error_code_match;
+ u32 cr3_target_count;
+ u32 vm_exit_controls;
+ u32 vm_exit_msr_store_count;
+ u32 vm_exit_msr_load_count;
+ u32 vm_entry_controls;
+ u32 vm_entry_msr_load_count;
+ u32 vm_entry_intr_info_field;
+ u32 vm_entry_exception_error_code;
+ u32 vm_entry_instruction_len;
+ u32 tpr_threshold;
+ u32 secondary_vm_exec_control;
+ u32 vm_instruction_error;
+ u32 vm_exit_reason;
+ u32 vm_exit_intr_info;
+ u32 vm_exit_intr_error_code;
+ u32 idt_vectoring_info_field;
+ u32 idt_vectoring_error_code;
+ u32 vm_exit_instruction_len;
+ u32 vmx_instruction_info;
+ u32 guest_es_limit;
+ u32 guest_cs_limit;
+ u32 guest_ss_limit;
+ u32 guest_ds_limit;
+ u32 guest_fs_limit;
+ u32 guest_gs_limit;
+ u32 guest_ldtr_limit;
+ u32 guest_tr_limit;
+ u32 guest_gdtr_limit;
+ u32 guest_idtr_limit;
+ u32 guest_es_ar_bytes;
+ u32 guest_cs_ar_bytes;
+ u32 guest_ss_ar_bytes;
+ u32 guest_ds_ar_bytes;
+ u32 guest_fs_ar_bytes;
+ u32 guest_gs_ar_bytes;
+ u32 guest_ldtr_ar_bytes;
+ u32 guest_tr_ar_bytes;
+ u32 guest_interruptibility_info;
+ u32 guest_activity_state;
+ u32 guest_sysenter_cs;
+ u32 host_ia32_sysenter_cs;
+ u32 vmx_preemption_timer_value;
+ u32 padding32[7]; /* room for future expansion */
+ u16 virtual_processor_id;
+ u16 posted_intr_nv;
+ u16 guest_es_selector;
+ u16 guest_cs_selector;
+ u16 guest_ss_selector;
+ u16 guest_ds_selector;
+ u16 guest_fs_selector;
+ u16 guest_gs_selector;
+ u16 guest_ldtr_selector;
+ u16 guest_tr_selector;
+ u16 guest_intr_status;
+ u16 host_es_selector;
+ u16 host_cs_selector;
+ u16 host_ss_selector;
+ u16 host_ds_selector;
+ u16 host_fs_selector;
+ u16 host_gs_selector;
+ u16 host_tr_selector;
+};
+
+/*
+ * VMCS12_REVISION is an arbitrary id that should be changed if the content or
+ * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
+ * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
+ */
+#define VMCS12_REVISION 0x11e57ed0
+
+/*
+ * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
+ * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
+ * current implementation, 4K are reserved to avoid future complications.
+ */
+#define VMCS12_SIZE 0x1000
+
+/* Used to remember the last vmcs02 used for some recently used vmcs12s */
+struct vmcs02_list {
+ struct list_head list;
+ gpa_t vmptr;
+ struct loaded_vmcs vmcs02;
+};
+
+/*
+ * The nested_vmx structure is part of vcpu_vmx, and holds information we need
+ * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
+ */
+struct nested_vmx {
+ /* Has the level1 guest done vmxon? */
+ bool vmxon;
+ gpa_t vmxon_ptr;
+
+ /* The guest-physical address of the current VMCS L1 keeps for L2 */
+ gpa_t current_vmptr;
+ /* The host-usable pointer to the above */
+ struct page *current_vmcs12_page;
+ struct vmcs12 *current_vmcs12;
+ struct vmcs *current_shadow_vmcs;
+ /*
+ * Indicates if the shadow vmcs must be updated with the
+ * data hold by vmcs12
+ */
+ bool sync_shadow_vmcs;
+
+ /* vmcs02_list cache of VMCSs recently used to run L2 guests */
+ struct list_head vmcs02_pool;
+ int vmcs02_num;
+ u64 vmcs01_tsc_offset;
+ /* L2 must run next, and mustn't decide to exit to L1. */
+ bool nested_run_pending;
+ /*
+ * Guest pages referred to in vmcs02 with host-physical pointers, so
+ * we must keep them pinned while L2 runs.
+ */
+ struct page *apic_access_page;
+ struct page *virtual_apic_page;
+ struct page *pi_desc_page;
+ struct pi_desc *pi_desc;
+ bool pi_pending;
+ u16 posted_intr_nv;
+ u64 msr_ia32_feature_control;
+
+ struct hrtimer preemption_timer;
+ bool preemption_timer_expired;
+
+ /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
+ u64 vmcs01_debugctl;
+
+ u32 nested_vmx_procbased_ctls_low;
+ u32 nested_vmx_procbased_ctls_high;
+ u32 nested_vmx_true_procbased_ctls_low;
+ u32 nested_vmx_secondary_ctls_low;
+ u32 nested_vmx_secondary_ctls_high;
+ u32 nested_vmx_pinbased_ctls_low;
+ u32 nested_vmx_pinbased_ctls_high;
+ u32 nested_vmx_exit_ctls_low;
+ u32 nested_vmx_exit_ctls_high;
+ u32 nested_vmx_true_exit_ctls_low;
+ u32 nested_vmx_entry_ctls_low;
+ u32 nested_vmx_entry_ctls_high;
+ u32 nested_vmx_true_entry_ctls_low;
+ u32 nested_vmx_misc_low;
+ u32 nested_vmx_misc_high;
+ u32 nested_vmx_ept_caps;
+};
+
+#define POSTED_INTR_ON 0
+/* Posted-Interrupt Descriptor */
+struct pi_desc {
+ u32 pir[8]; /* Posted interrupt requested */
+ u32 control; /* bit 0 of control is outstanding notification bit */
+ u32 rsvd[7];
+} __aligned(64);
+
+static bool pi_test_and_set_on(struct pi_desc *pi_desc)
+{
+ return test_and_set_bit(POSTED_INTR_ON,
+ (unsigned long *)&pi_desc->control);
+}
+
+static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
+{
+ return test_and_clear_bit(POSTED_INTR_ON,
+ (unsigned long *)&pi_desc->control);
+}
+
+static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
+{
+ return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
+}
+
+struct vcpu_vmx {
+ struct kvm_vcpu vcpu;
+ unsigned long host_rsp;
+ u8 fail;
+ bool nmi_known_unmasked;
+ u32 exit_intr_info;
+ u32 idt_vectoring_info;
+ ulong rflags;
+ struct shared_msr_entry *guest_msrs;
+ int nmsrs;
+ int save_nmsrs;
+ unsigned long host_idt_base;
+#ifdef CONFIG_X86_64
+ u64 msr_host_kernel_gs_base;
+ u64 msr_guest_kernel_gs_base;
+#endif
+ u32 vm_entry_controls_shadow;
+ u32 vm_exit_controls_shadow;
+ /*
+ * loaded_vmcs points to the VMCS currently used in this vcpu. For a
+ * non-nested (L1) guest, it always points to vmcs01. For a nested
+ * guest (L2), it points to a different VMCS.
+ */
+ struct loaded_vmcs vmcs01;
+ struct loaded_vmcs *loaded_vmcs;
+ bool __launched; /* temporary, used in vmx_vcpu_run */
+ struct msr_autoload {
+ unsigned nr;
+ struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
+ struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
+ } msr_autoload;
+ struct {
+ int loaded;
+ u16 fs_sel, gs_sel, ldt_sel;
+#ifdef CONFIG_X86_64
+ u16 ds_sel, es_sel;
+#endif
+ int gs_ldt_reload_needed;
+ int fs_reload_needed;
+ u64 msr_host_bndcfgs;
+ unsigned long vmcs_host_cr4; /* May not match real cr4 */
+ } host_state;
+ struct {
+ int vm86_active;
+ ulong save_rflags;
+ struct kvm_segment segs[8];
+ } rmode;
+ struct {
+ u32 bitmask; /* 4 bits per segment (1 bit per field) */
+ struct kvm_save_segment {
+ u16 selector;
+ unsigned long base;
+ u32 limit;
+ u32 ar;
+ } seg[8];
+ } segment_cache;
+ int vpid;
+ bool emulation_required;
+
+ /* Support for vnmi-less CPUs */
+ int soft_vnmi_blocked;
+ ktime_t entry_time;
+ s64 vnmi_blocked_time;
+ u32 exit_reason;
+
+ bool rdtscp_enabled;
+
+ /* Posted interrupt descriptor */
+ struct pi_desc pi_desc;
+
+ /* Support for a guest hypervisor (nested VMX) */
+ struct nested_vmx nested;
+
+ /* Dynamic PLE window. */
+ int ple_window;
+ bool ple_window_dirty;
+
+ /* Support for PML */
+#define PML_ENTITY_NUM 512
+ struct page *pml_pg;
+};
+
+enum segment_cache_field {
+ SEG_FIELD_SEL = 0,
+ SEG_FIELD_BASE = 1,
+ SEG_FIELD_LIMIT = 2,
+ SEG_FIELD_AR = 3,
+
+ SEG_FIELD_NR = 4
+};
+
+static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
+{
+ return container_of(vcpu, struct vcpu_vmx, vcpu);
+}
+
+#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
+#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
+#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
+ [number##_HIGH] = VMCS12_OFFSET(name)+4
+
+
+static unsigned long shadow_read_only_fields[] = {
+ /*
+ * We do NOT shadow fields that are modified when L0
+ * traps and emulates any vmx instruction (e.g. VMPTRLD,
+ * VMXON...) executed by L1.
+ * For example, VM_INSTRUCTION_ERROR is read
+ * by L1 if a vmx instruction fails (part of the error path).
+ * Note the code assumes this logic. If for some reason
+ * we start shadowing these fields then we need to
+ * force a shadow sync when L0 emulates vmx instructions
+ * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
+ * by nested_vmx_failValid)
+ */
+ VM_EXIT_REASON,
+ VM_EXIT_INTR_INFO,
+ VM_EXIT_INSTRUCTION_LEN,
+ IDT_VECTORING_INFO_FIELD,
+ IDT_VECTORING_ERROR_CODE,
+ VM_EXIT_INTR_ERROR_CODE,
+ EXIT_QUALIFICATION,
+ GUEST_LINEAR_ADDRESS,
+ GUEST_PHYSICAL_ADDRESS
+};
+static int max_shadow_read_only_fields =
+ ARRAY_SIZE(shadow_read_only_fields);
+
+static unsigned long shadow_read_write_fields[] = {
+ TPR_THRESHOLD,
+ GUEST_RIP,
+ GUEST_RSP,
+ GUEST_CR0,
+ GUEST_CR3,
+ GUEST_CR4,
+ GUEST_INTERRUPTIBILITY_INFO,
+ GUEST_RFLAGS,
+ GUEST_CS_SELECTOR,
+ GUEST_CS_AR_BYTES,
+ GUEST_CS_LIMIT,
+ GUEST_CS_BASE,
+ GUEST_ES_BASE,
+ GUEST_BNDCFGS,
+ CR0_GUEST_HOST_MASK,
+ CR0_READ_SHADOW,
+ CR4_READ_SHADOW,
+ TSC_OFFSET,
+ EXCEPTION_BITMAP,
+ CPU_BASED_VM_EXEC_CONTROL,
+ VM_ENTRY_EXCEPTION_ERROR_CODE,
+ VM_ENTRY_INTR_INFO_FIELD,
+ VM_ENTRY_INSTRUCTION_LEN,
+ VM_ENTRY_EXCEPTION_ERROR_CODE,
+ HOST_FS_BASE,
+ HOST_GS_BASE,
+ HOST_FS_SELECTOR,
+ HOST_GS_SELECTOR
+};
+static int max_shadow_read_write_fields =
+ ARRAY_SIZE(shadow_read_write_fields);
+
+static const unsigned short vmcs_field_to_offset_table[] = {
+ FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
+ FIELD(POSTED_INTR_NV, posted_intr_nv),
+ FIELD(GUEST_ES_SELECTOR, guest_es_selector),
+ FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
+ FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
+ FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
+ FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
+ FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
+ FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
+ FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
+ FIELD(GUEST_INTR_STATUS, guest_intr_status),
+ FIELD(HOST_ES_SELECTOR, host_es_selector),
+ FIELD(HOST_CS_SELECTOR, host_cs_selector),
+ FIELD(HOST_SS_SELECTOR, host_ss_selector),
+ FIELD(HOST_DS_SELECTOR, host_ds_selector),
+ FIELD(HOST_FS_SELECTOR, host_fs_selector),
+ FIELD(HOST_GS_SELECTOR, host_gs_selector),
+ FIELD(HOST_TR_SELECTOR, host_tr_selector),
+ FIELD64(IO_BITMAP_A, io_bitmap_a),
+ FIELD64(IO_BITMAP_B, io_bitmap_b),
+ FIELD64(MSR_BITMAP, msr_bitmap),
+ FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
+ FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
+ FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
+ FIELD64(TSC_OFFSET, tsc_offset),
+ FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
+ FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
+ FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
+ FIELD64(EPT_POINTER, ept_pointer),
+ FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
+ FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
+ FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
+ FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
+ FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
+ FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
+ FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
+ FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
+ FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
+ FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
+ FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
+ FIELD64(GUEST_PDPTR0, guest_pdptr0),
+ FIELD64(GUEST_PDPTR1, guest_pdptr1),
+ FIELD64(GUEST_PDPTR2, guest_pdptr2),
+ FIELD64(GUEST_PDPTR3, guest_pdptr3),
+ FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
+ FIELD64(HOST_IA32_PAT, host_ia32_pat),
+ FIELD64(HOST_IA32_EFER, host_ia32_efer),
+ FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
+ FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
+ FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
+ FIELD(EXCEPTION_BITMAP, exception_bitmap),
+ FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
+ FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
+ FIELD(CR3_TARGET_COUNT, cr3_target_count),
+ FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
+ FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
+ FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
+ FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
+ FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
+ FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
+ FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
+ FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
+ FIELD(TPR_THRESHOLD, tpr_threshold),
+ FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
+ FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
+ FIELD(VM_EXIT_REASON, vm_exit_reason),
+ FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
+ FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
+ FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
+ FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
+ FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
+ FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
+ FIELD(GUEST_ES_LIMIT, guest_es_limit),
+ FIELD(GUEST_CS_LIMIT, guest_cs_limit),
+ FIELD(GUEST_SS_LIMIT, guest_ss_limit),
+ FIELD(GUEST_DS_LIMIT, guest_ds_limit),
+ FIELD(GUEST_FS_LIMIT, guest_fs_limit),
+ FIELD(GUEST_GS_LIMIT, guest_gs_limit),
+ FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
+ FIELD(GUEST_TR_LIMIT, guest_tr_limit),
+ FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
+ FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
+ FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
+ FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
+ FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
+ FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
+ FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
+ FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
+ FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
+ FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
+ FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
+ FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
+ FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
+ FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
+ FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
+ FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
+ FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
+ FIELD(CR0_READ_SHADOW, cr0_read_shadow),
+ FIELD(CR4_READ_SHADOW, cr4_read_shadow),
+ FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
+ FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
+ FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
+ FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
+ FIELD(EXIT_QUALIFICATION, exit_qualification),
+ FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
+ FIELD(GUEST_CR0, guest_cr0),
+ FIELD(GUEST_CR3, guest_cr3),
+ FIELD(GUEST_CR4, guest_cr4),
+ FIELD(GUEST_ES_BASE, guest_es_base),
+ FIELD(GUEST_CS_BASE, guest_cs_base),
+ FIELD(GUEST_SS_BASE, guest_ss_base),
+ FIELD(GUEST_DS_BASE, guest_ds_base),
+ FIELD(GUEST_FS_BASE, guest_fs_base),
+ FIELD(GUEST_GS_BASE, guest_gs_base),
+ FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
+ FIELD(GUEST_TR_BASE, guest_tr_base),
+ FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
+ FIELD(GUEST_IDTR_BASE, guest_idtr_base),
+ FIELD(GUEST_DR7, guest_dr7),
+ FIELD(GUEST_RSP, guest_rsp),
+ FIELD(GUEST_RIP, guest_rip),
+ FIELD(GUEST_RFLAGS, guest_rflags),
+ FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
+ FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
+ FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
+ FIELD(HOST_CR0, host_cr0),
+ FIELD(HOST_CR3, host_cr3),
+ FIELD(HOST_CR4, host_cr4),
+ FIELD(HOST_FS_BASE, host_fs_base),
+ FIELD(HOST_GS_BASE, host_gs_base),
+ FIELD(HOST_TR_BASE, host_tr_base),
+ FIELD(HOST_GDTR_BASE, host_gdtr_base),
+ FIELD(HOST_IDTR_BASE, host_idtr_base),
+ FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
+ FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
+ FIELD(HOST_RSP, host_rsp),
+ FIELD(HOST_RIP, host_rip),
+};
+
+static inline short vmcs_field_to_offset(unsigned long field)
+{
+ BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
+
+ if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
+ vmcs_field_to_offset_table[field] == 0)
+ return -ENOENT;
+
+ return vmcs_field_to_offset_table[field];
+}
+
+static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
+{
+ return to_vmx(vcpu)->nested.current_vmcs12;
+}
+
+static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
+{
+ struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
+ if (is_error_page(page))
+ return NULL;
+
+ return page;
+}
+
+static void nested_release_page(struct page *page)
+{
+ kvm_release_page_dirty(page);
+}
+
+static void nested_release_page_clean(struct page *page)
+{
+ kvm_release_page_clean(page);
+}
+
+static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
+static u64 construct_eptp(unsigned long root_hpa);
+static void kvm_cpu_vmxon(u64 addr);
+static void kvm_cpu_vmxoff(void);
+static bool vmx_mpx_supported(void);
+static bool vmx_xsaves_supported(void);
+static int vmx_vm_has_apicv(struct kvm *kvm);
+static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
+static void vmx_set_segment(struct kvm_vcpu *vcpu,
+ struct kvm_segment *var, int seg);
+static void vmx_get_segment(struct kvm_vcpu *vcpu,
+ struct kvm_segment *var, int seg);
+static bool guest_state_valid(struct kvm_vcpu *vcpu);
+static u32 vmx_segment_access_rights(struct kvm_segment *var);
+static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
+static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
+static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
+static int alloc_identity_pagetable(struct kvm *kvm);
+
+static DEFINE_PER_CPU(struct vmcs *, vmxarea);
+static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
+/*
+ * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
+ * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
+ */
+static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
+static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
+
+static unsigned long *vmx_io_bitmap_a;
+static unsigned long *vmx_io_bitmap_b;
+static unsigned long *vmx_msr_bitmap_legacy;
+static unsigned long *vmx_msr_bitmap_longmode;
+static unsigned long *vmx_msr_bitmap_legacy_x2apic;
+static unsigned long *vmx_msr_bitmap_longmode_x2apic;
+static unsigned long *vmx_msr_bitmap_nested;
+static unsigned long *vmx_vmread_bitmap;
+static unsigned long *vmx_vmwrite_bitmap;
+
+static bool cpu_has_load_ia32_efer;
+static bool cpu_has_load_perf_global_ctrl;
+
+static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
+static DEFINE_SPINLOCK(vmx_vpid_lock);
+
+static struct vmcs_config {
+ int size;
+ int order;
+ u32 revision_id;
+ u32 pin_based_exec_ctrl;
+ u32 cpu_based_exec_ctrl;
+ u32 cpu_based_2nd_exec_ctrl;
+ u32 vmexit_ctrl;
+ u32 vmentry_ctrl;
+} vmcs_config;
+
+static struct vmx_capability {
+ u32 ept;
+ u32 vpid;
+} vmx_capability;
+
+#define VMX_SEGMENT_FIELD(seg) \
+ [VCPU_SREG_##seg] = { \
+ .selector = GUEST_##seg##_SELECTOR, \
+ .base = GUEST_##seg##_BASE, \
+ .limit = GUEST_##seg##_LIMIT, \
+ .ar_bytes = GUEST_##seg##_AR_BYTES, \
+ }
+
+static const struct kvm_vmx_segment_field {
+ unsigned selector;
+ unsigned base;
+ unsigned limit;
+ unsigned ar_bytes;
+} kvm_vmx_segment_fields[] = {
+ VMX_SEGMENT_FIELD(CS),
+ VMX_SEGMENT_FIELD(DS),
+ VMX_SEGMENT_FIELD(ES),
+ VMX_SEGMENT_FIELD(FS),
+ VMX_SEGMENT_FIELD(GS),
+ VMX_SEGMENT_FIELD(SS),
+ VMX_SEGMENT_FIELD(TR),
+ VMX_SEGMENT_FIELD(LDTR),
+};
+
+static u64 host_efer;
+
+static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
+
+/*
+ * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
+ * away by decrementing the array size.
+ */
+static const u32 vmx_msr_index[] = {
+#ifdef CONFIG_X86_64
+ MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
+#endif
+ MSR_EFER, MSR_TSC_AUX, MSR_STAR,
+};
+
+static inline bool is_page_fault(u32 intr_info)
+{
+ return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
+ INTR_INFO_VALID_MASK)) ==
+ (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
+}
+
+static inline bool is_no_device(u32 intr_info)
+{
+ return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
+ INTR_INFO_VALID_MASK)) ==
+ (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
+}
+
+static inline bool is_invalid_opcode(u32 intr_info)
+{
+ return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
+ INTR_INFO_VALID_MASK)) ==
+ (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
+}
+
+static inline bool is_external_interrupt(u32 intr_info)
+{
+ return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
+ == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
+}
+
+static inline bool is_machine_check(u32 intr_info)
+{
+ return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
+ INTR_INFO_VALID_MASK)) ==
+ (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
+}
+
+static inline bool cpu_has_vmx_msr_bitmap(void)
+{
+ return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
+}
+
+static inline bool cpu_has_vmx_tpr_shadow(void)
+{
+ return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
+}
+
+static inline bool vm_need_tpr_shadow(struct kvm *kvm)
+{
+ return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
+}
+
+static inline bool cpu_has_secondary_exec_ctrls(void)
+{
+ return vmcs_config.cpu_based_exec_ctrl &
+ CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
+}
+
+static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+}
+
+static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
+}
+
+static inline bool cpu_has_vmx_apic_register_virt(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_APIC_REGISTER_VIRT;
+}
+
+static inline bool cpu_has_vmx_virtual_intr_delivery(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
+}
+
+static inline bool cpu_has_vmx_posted_intr(void)
+{
+ return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
+}
+
+static inline bool cpu_has_vmx_apicv(void)
+{
+ return cpu_has_vmx_apic_register_virt() &&
+ cpu_has_vmx_virtual_intr_delivery() &&
+ cpu_has_vmx_posted_intr();
+}
+
+static inline bool cpu_has_vmx_flexpriority(void)
+{
+ return cpu_has_vmx_tpr_shadow() &&
+ cpu_has_vmx_virtualize_apic_accesses();
+}
+
+static inline bool cpu_has_vmx_ept_execute_only(void)
+{
+ return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
+}
+
+static inline bool cpu_has_vmx_ept_2m_page(void)
+{
+ return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
+}
+
+static inline bool cpu_has_vmx_ept_1g_page(void)
+{
+ return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
+}
+
+static inline bool cpu_has_vmx_ept_4levels(void)
+{
+ return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
+}
+
+static inline bool cpu_has_vmx_ept_ad_bits(void)
+{
+ return vmx_capability.ept & VMX_EPT_AD_BIT;
+}
+
+static inline bool cpu_has_vmx_invept_context(void)
+{
+ return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
+}
+
+static inline bool cpu_has_vmx_invept_global(void)
+{
+ return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
+}
+
+static inline bool cpu_has_vmx_invvpid_single(void)
+{
+ return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
+}
+
+static inline bool cpu_has_vmx_invvpid_global(void)
+{
+ return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
+}
+
+static inline bool cpu_has_vmx_ept(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_ENABLE_EPT;
+}
+
+static inline bool cpu_has_vmx_unrestricted_guest(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_UNRESTRICTED_GUEST;
+}
+
+static inline bool cpu_has_vmx_ple(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_PAUSE_LOOP_EXITING;
+}
+
+static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
+{
+ return flexpriority_enabled && irqchip_in_kernel(kvm);
+}
+
+static inline bool cpu_has_vmx_vpid(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_ENABLE_VPID;
+}
+
+static inline bool cpu_has_vmx_rdtscp(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_RDTSCP;
+}
+
+static inline bool cpu_has_vmx_invpcid(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_ENABLE_INVPCID;
+}
+
+static inline bool cpu_has_virtual_nmis(void)
+{
+ return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
+}
+
+static inline bool cpu_has_vmx_wbinvd_exit(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_WBINVD_EXITING;
+}
+
+static inline bool cpu_has_vmx_shadow_vmcs(void)
+{
+ u64 vmx_msr;
+ rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
+ /* check if the cpu supports writing r/o exit information fields */
+ if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
+ return false;
+
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_SHADOW_VMCS;
+}
+
+static inline bool cpu_has_vmx_pml(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
+}
+
+static inline bool report_flexpriority(void)
+{
+ return flexpriority_enabled;
+}
+
+static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
+{
+ return vmcs12->cpu_based_vm_exec_control & bit;
+}
+
+static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
+{
+ return (vmcs12->cpu_based_vm_exec_control &
+ CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
+ (vmcs12->secondary_vm_exec_control & bit);
+}
+
+static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
+{
+ return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
+}
+
+static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
+{
+ return vmcs12->pin_based_vm_exec_control &
+ PIN_BASED_VMX_PREEMPTION_TIMER;
+}
+
+static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
+{
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
+}
+
+static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
+{
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
+ vmx_xsaves_supported();
+}
+
+static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
+{
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
+}
+
+static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
+{
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
+}
+
+static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
+{
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
+}
+
+static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
+{
+ return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
+}
+
+static inline bool is_exception(u32 intr_info)
+{
+ return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
+ == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
+}
+
+static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
+ u32 exit_intr_info,
+ unsigned long exit_qualification);
+static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12,
+ u32 reason, unsigned long qualification);
+
+static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
+{
+ int i;
+
+ for (i = 0; i < vmx->nmsrs; ++i)
+ if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
+ return i;
+ return -1;
+}
+
+static inline void __invvpid(int ext, u16 vpid, gva_t gva)
+{
+ struct {
+ u64 vpid : 16;
+ u64 rsvd : 48;
+ u64 gva;
+ } operand = { vpid, 0, gva };
+
+ asm volatile (__ex(ASM_VMX_INVVPID)
+ /* CF==1 or ZF==1 --> rc = -1 */
+ "; ja 1f ; ud2 ; 1:"
+ : : "a"(&operand), "c"(ext) : "cc", "memory");
+}
+
+static inline void __invept(int ext, u64 eptp, gpa_t gpa)
+{
+ struct {
+ u64 eptp, gpa;
+ } operand = {eptp, gpa};
+
+ asm volatile (__ex(ASM_VMX_INVEPT)
+ /* CF==1 or ZF==1 --> rc = -1 */
+ "; ja 1f ; ud2 ; 1:\n"
+ : : "a" (&operand), "c" (ext) : "cc", "memory");
+}
+
+static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
+{
+ int i;
+
+ i = __find_msr_index(vmx, msr);
+ if (i >= 0)
+ return &vmx->guest_msrs[i];
+ return NULL;
+}
+
+static void vmcs_clear(struct vmcs *vmcs)
+{
+ u64 phys_addr = __pa(vmcs);
+ u8 error;
+
+ asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
+ : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
+ : "cc", "memory");
+ if (error)
+ printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
+ vmcs, phys_addr);
+}
+
+static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
+{
+ vmcs_clear(loaded_vmcs->vmcs);
+ loaded_vmcs->cpu = -1;
+ loaded_vmcs->launched = 0;
+}
+
+static void vmcs_load(struct vmcs *vmcs)
+{
+ u64 phys_addr = __pa(vmcs);
+ u8 error;
+
+ asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
+ : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
+ : "cc", "memory");
+ if (error)
+ printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
+ vmcs, phys_addr);
+}
+
+#ifdef CONFIG_KEXEC
+/*
+ * This bitmap is used to indicate whether the vmclear
+ * operation is enabled on all cpus. All disabled by
+ * default.
+ */
+static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
+
+static inline void crash_enable_local_vmclear(int cpu)
+{
+ cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
+}
+
+static inline void crash_disable_local_vmclear(int cpu)
+{
+ cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
+}
+
+static inline int crash_local_vmclear_enabled(int cpu)
+{
+ return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
+}
+
+static void crash_vmclear_local_loaded_vmcss(void)
+{
+ int cpu = raw_smp_processor_id();
+ struct loaded_vmcs *v;
+
+ if (!crash_local_vmclear_enabled(cpu))
+ return;
+
+ list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
+ loaded_vmcss_on_cpu_link)
+ vmcs_clear(v->vmcs);
+}
+#else
+static inline void crash_enable_local_vmclear(int cpu) { }
+static inline void crash_disable_local_vmclear(int cpu) { }
+#endif /* CONFIG_KEXEC */
+
+static void __loaded_vmcs_clear(void *arg)
+{
+ struct loaded_vmcs *loaded_vmcs = arg;
+ int cpu = raw_smp_processor_id();
+
+ if (loaded_vmcs->cpu != cpu)
+ return; /* vcpu migration can race with cpu offline */
+ if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
+ per_cpu(current_vmcs, cpu) = NULL;
+ crash_disable_local_vmclear(cpu);
+ list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
+
+ /*
+ * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
+ * is before setting loaded_vmcs->vcpu to -1 which is done in
+ * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
+ * then adds the vmcs into percpu list before it is deleted.
+ */
+ smp_wmb();
+
+ loaded_vmcs_init(loaded_vmcs);
+ crash_enable_local_vmclear(cpu);
+}
+
+static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
+{
+ int cpu = loaded_vmcs->cpu;
+
+ if (cpu != -1)
+ smp_call_function_single(cpu,
+ __loaded_vmcs_clear, loaded_vmcs, 1);
+}
+
+static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
+{
+ if (vmx->vpid == 0)
+ return;
+
+ if (cpu_has_vmx_invvpid_single())
+ __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
+}
+
+static inline void vpid_sync_vcpu_global(void)
+{
+ if (cpu_has_vmx_invvpid_global())
+ __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
+}
+
+static inline void vpid_sync_context(struct vcpu_vmx *vmx)
+{
+ if (cpu_has_vmx_invvpid_single())
+ vpid_sync_vcpu_single(vmx);
+ else
+ vpid_sync_vcpu_global();
+}
+
+static inline void ept_sync_global(void)
+{
+ if (cpu_has_vmx_invept_global())
+ __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
+}
+
+static inline void ept_sync_context(u64 eptp)
+{
+ if (enable_ept) {
+ if (cpu_has_vmx_invept_context())
+ __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
+ else
+ ept_sync_global();
+ }
+}
+
+static __always_inline unsigned long vmcs_readl(unsigned long field)
+{
+ unsigned long value;
+
+ asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
+ : "=a"(value) : "d"(field) : "cc");
+ return value;
+}
+
+static __always_inline u16 vmcs_read16(unsigned long field)
+{
+ return vmcs_readl(field);
+}
+
+static __always_inline u32 vmcs_read32(unsigned long field)
+{
+ return vmcs_readl(field);
+}
+
+static __always_inline u64 vmcs_read64(unsigned long field)
+{
+#ifdef CONFIG_X86_64
+ return vmcs_readl(field);
+#else
+ return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
+#endif
+}
+
+static noinline void vmwrite_error(unsigned long field, unsigned long value)
+{
+ printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
+ field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
+ dump_stack();
+}
+
+static void vmcs_writel(unsigned long field, unsigned long value)
+{
+ u8 error;
+
+ asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
+ : "=q"(error) : "a"(value), "d"(field) : "cc");
+ if (unlikely(error))
+ vmwrite_error(field, value);
+}
+
+static void vmcs_write16(unsigned long field, u16 value)
+{
+ vmcs_writel(field, value);
+}
+
+static void vmcs_write32(unsigned long field, u32 value)
+{
+ vmcs_writel(field, value);
+}
+
+static void vmcs_write64(unsigned long field, u64 value)
+{
+ vmcs_writel(field, value);
+#ifndef CONFIG_X86_64
+ asm volatile ("");
+ vmcs_writel(field+1, value >> 32);
+#endif
+}
+
+static void vmcs_clear_bits(unsigned long field, u32 mask)
+{
+ vmcs_writel(field, vmcs_readl(field) & ~mask);
+}
+
+static void vmcs_set_bits(unsigned long field, u32 mask)
+{
+ vmcs_writel(field, vmcs_readl(field) | mask);
+}
+
+static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
+{
+ vmcs_write32(VM_ENTRY_CONTROLS, val);
+ vmx->vm_entry_controls_shadow = val;
+}
+
+static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
+{
+ if (vmx->vm_entry_controls_shadow != val)
+ vm_entry_controls_init(vmx, val);
+}
+
+static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
+{
+ return vmx->vm_entry_controls_shadow;
+}
+
+
+static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
+{
+ vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
+}
+
+static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
+{
+ vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
+}
+
+static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
+{
+ vmcs_write32(VM_EXIT_CONTROLS, val);
+ vmx->vm_exit_controls_shadow = val;
+}
+
+static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
+{
+ if (vmx->vm_exit_controls_shadow != val)
+ vm_exit_controls_init(vmx, val);
+}
+
+static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
+{
+ return vmx->vm_exit_controls_shadow;
+}
+
+
+static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
+{
+ vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
+}
+
+static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
+{
+ vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
+}
+
+static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
+{
+ vmx->segment_cache.bitmask = 0;
+}
+
+static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
+ unsigned field)
+{
+ bool ret;
+ u32 mask = 1 << (seg * SEG_FIELD_NR + field);
+
+ if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
+ vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
+ vmx->segment_cache.bitmask = 0;
+ }
+ ret = vmx->segment_cache.bitmask & mask;
+ vmx->segment_cache.bitmask |= mask;
+ return ret;
+}
+
+static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
+{
+ u16 *p = &vmx->segment_cache.seg[seg].selector;
+
+ if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
+ *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
+ return *p;
+}
+
+static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
+{
+ ulong *p = &vmx->segment_cache.seg[seg].base;
+
+ if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
+ *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
+ return *p;
+}
+
+static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
+{
+ u32 *p = &vmx->segment_cache.seg[seg].limit;
+
+ if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
+ *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
+ return *p;
+}
+
+static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
+{
+ u32 *p = &vmx->segment_cache.seg[seg].ar;
+
+ if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
+ *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
+ return *p;
+}
+
+static void update_exception_bitmap(struct kvm_vcpu *vcpu)
+{
+ u32 eb;
+
+ eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
+ (1u << NM_VECTOR) | (1u << DB_VECTOR);
+ if ((vcpu->guest_debug &
+ (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
+ (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
+ eb |= 1u << BP_VECTOR;
+ if (to_vmx(vcpu)->rmode.vm86_active)
+ eb = ~0;
+ if (enable_ept)
+ eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
+ if (vcpu->fpu_active)
+ eb &= ~(1u << NM_VECTOR);
+
+ /* When we are running a nested L2 guest and L1 specified for it a
+ * certain exception bitmap, we must trap the same exceptions and pass
+ * them to L1. When running L2, we will only handle the exceptions
+ * specified above if L1 did not want them.
+ */
+ if (is_guest_mode(vcpu))
+ eb |= get_vmcs12(vcpu)->exception_bitmap;
+
+ vmcs_write32(EXCEPTION_BITMAP, eb);
+}
+
+static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
+ unsigned long entry, unsigned long exit)
+{
+ vm_entry_controls_clearbit(vmx, entry);
+ vm_exit_controls_clearbit(vmx, exit);
+}
+
+static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
+{
+ unsigned i;
+ struct msr_autoload *m = &vmx->msr_autoload;
+
+ switch (msr) {
+ case MSR_EFER:
+ if (cpu_has_load_ia32_efer) {
+ clear_atomic_switch_msr_special(vmx,
+ VM_ENTRY_LOAD_IA32_EFER,
+ VM_EXIT_LOAD_IA32_EFER);
+ return;
+ }
+ break;
+ case MSR_CORE_PERF_GLOBAL_CTRL:
+ if (cpu_has_load_perf_global_ctrl) {
+ clear_atomic_switch_msr_special(vmx,
+ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
+ VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
+ return;
+ }
+ break;
+ }
+
+ for (i = 0; i < m->nr; ++i)
+ if (m->guest[i].index == msr)
+ break;
+
+ if (i == m->nr)
+ return;
+ --m->nr;
+ m->guest[i] = m->guest[m->nr];
+ m->host[i] = m->host[m->nr];
+ vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
+ vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
+}
+
+static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
+ unsigned long entry, unsigned long exit,
+ unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
+ u64 guest_val, u64 host_val)
+{
+ vmcs_write64(guest_val_vmcs, guest_val);
+ vmcs_write64(host_val_vmcs, host_val);
+ vm_entry_controls_setbit(vmx, entry);
+ vm_exit_controls_setbit(vmx, exit);
+}
+
+static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
+ u64 guest_val, u64 host_val)
+{
+ unsigned i;
+ struct msr_autoload *m = &vmx->msr_autoload;
+
+ switch (msr) {
+ case MSR_EFER:
+ if (cpu_has_load_ia32_efer) {
+ add_atomic_switch_msr_special(vmx,
+ VM_ENTRY_LOAD_IA32_EFER,
+ VM_EXIT_LOAD_IA32_EFER,
+ GUEST_IA32_EFER,
+ HOST_IA32_EFER,
+ guest_val, host_val);
+ return;
+ }
+ break;
+ case MSR_CORE_PERF_GLOBAL_CTRL:
+ if (cpu_has_load_perf_global_ctrl) {
+ add_atomic_switch_msr_special(vmx,
+ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
+ VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
+ GUEST_IA32_PERF_GLOBAL_CTRL,
+ HOST_IA32_PERF_GLOBAL_CTRL,
+ guest_val, host_val);
+ return;
+ }
+ break;
+ }
+
+ for (i = 0; i < m->nr; ++i)
+ if (m->guest[i].index == msr)
+ break;
+
+ if (i == NR_AUTOLOAD_MSRS) {
+ printk_once(KERN_WARNING "Not enough msr switch entries. "
+ "Can't add msr %x\n", msr);
+ return;
+ } else if (i == m->nr) {
+ ++m->nr;
+ vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
+ vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
+ }
+
+ m->guest[i].index = msr;
+ m->guest[i].value = guest_val;
+ m->host[i].index = msr;
+ m->host[i].value = host_val;
+}
+
+static void reload_tss(void)
+{
+ /*
+ * VT restores TR but not its size. Useless.
+ */
+ struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
+ struct desc_struct *descs;
+
+ descs = (void *)gdt->address;
+ descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
+ load_TR_desc();
+}
+
+static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
+{
+ u64 guest_efer;
+ u64 ignore_bits;
+
+ guest_efer = vmx->vcpu.arch.efer;
+
+ /*
+ * NX is emulated; LMA and LME handled by hardware; SCE meaningless
+ * outside long mode
+ */
+ ignore_bits = EFER_NX | EFER_SCE;
+#ifdef CONFIG_X86_64
+ ignore_bits |= EFER_LMA | EFER_LME;
+ /* SCE is meaningful only in long mode on Intel */
+ if (guest_efer & EFER_LMA)
+ ignore_bits &= ~(u64)EFER_SCE;
+#endif
+ guest_efer &= ~ignore_bits;
+ guest_efer |= host_efer & ignore_bits;
+ vmx->guest_msrs[efer_offset].data = guest_efer;
+ vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
+
+ clear_atomic_switch_msr(vmx, MSR_EFER);
+
+ /*
+ * On EPT, we can't emulate NX, so we must switch EFER atomically.
+ * On CPUs that support "load IA32_EFER", always switch EFER
+ * atomically, since it's faster than switching it manually.
+ */
+ if (cpu_has_load_ia32_efer ||
+ (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
+ guest_efer = vmx->vcpu.arch.efer;
+ if (!(guest_efer & EFER_LMA))
+ guest_efer &= ~EFER_LME;
+ if (guest_efer != host_efer)
+ add_atomic_switch_msr(vmx, MSR_EFER,
+ guest_efer, host_efer);
+ return false;
+ }
+
+ return true;
+}
+
+static unsigned long segment_base(u16 selector)
+{
+ struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
+ struct desc_struct *d;
+ unsigned long table_base;
+ unsigned long v;
+
+ if (!(selector & ~3))
+ return 0;
+
+ table_base = gdt->address;
+
+ if (selector & 4) { /* from ldt */
+ u16 ldt_selector = kvm_read_ldt();
+
+ if (!(ldt_selector & ~3))
+ return 0;
+
+ table_base = segment_base(ldt_selector);
+ }
+ d = (struct desc_struct *)(table_base + (selector & ~7));
+ v = get_desc_base(d);
+#ifdef CONFIG_X86_64
+ if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
+ v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
+#endif
+ return v;
+}
+
+static inline unsigned long kvm_read_tr_base(void)
+{
+ u16 tr;
+ asm("str %0" : "=g"(tr));
+ return segment_base(tr);
+}
+
+static void vmx_save_host_state(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ int i;
+
+ if (vmx->host_state.loaded)
+ return;
+
+ vmx->host_state.loaded = 1;
+ /*
+ * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
+ * allow segment selectors with cpl > 0 or ti == 1.
+ */
+ vmx->host_state.ldt_sel = kvm_read_ldt();
+ vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
+ savesegment(fs, vmx->host_state.fs_sel);
+ if (!(vmx->host_state.fs_sel & 7)) {
+ vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
+ vmx->host_state.fs_reload_needed = 0;
+ } else {
+ vmcs_write16(HOST_FS_SELECTOR, 0);
+ vmx->host_state.fs_reload_needed = 1;
+ }
+ savesegment(gs, vmx->host_state.gs_sel);
+ if (!(vmx->host_state.gs_sel & 7))
+ vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
+ else {
+ vmcs_write16(HOST_GS_SELECTOR, 0);
+ vmx->host_state.gs_ldt_reload_needed = 1;
+ }
+
+#ifdef CONFIG_X86_64
+ savesegment(ds, vmx->host_state.ds_sel);
+ savesegment(es, vmx->host_state.es_sel);
+#endif
+
+#ifdef CONFIG_X86_64
+ vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
+ vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
+#else
+ vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
+ vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
+#endif
+
+#ifdef CONFIG_X86_64
+ rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
+ if (is_long_mode(&vmx->vcpu))
+ wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
+#endif
+ if (boot_cpu_has(X86_FEATURE_MPX))
+ rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
+ for (i = 0; i < vmx->save_nmsrs; ++i)
+ kvm_set_shared_msr(vmx->guest_msrs[i].index,
+ vmx->guest_msrs[i].data,
+ vmx->guest_msrs[i].mask);
+}
+
+static void __vmx_load_host_state(struct vcpu_vmx *vmx)
+{
+ if (!vmx->host_state.loaded)
+ return;
+
+ ++vmx->vcpu.stat.host_state_reload;
+ vmx->host_state.loaded = 0;
+#ifdef CONFIG_X86_64
+ if (is_long_mode(&vmx->vcpu))
+ rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
+#endif
+ if (vmx->host_state.gs_ldt_reload_needed) {
+ kvm_load_ldt(vmx->host_state.ldt_sel);
+#ifdef CONFIG_X86_64
+ load_gs_index(vmx->host_state.gs_sel);
+#else
+ loadsegment(gs, vmx->host_state.gs_sel);
+#endif
+ }
+ if (vmx->host_state.fs_reload_needed)
+ loadsegment(fs, vmx->host_state.fs_sel);
+#ifdef CONFIG_X86_64
+ if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
+ loadsegment(ds, vmx->host_state.ds_sel);
+ loadsegment(es, vmx->host_state.es_sel);
+ }
+#endif
+ reload_tss();
+#ifdef CONFIG_X86_64
+ wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
+#endif
+ if (vmx->host_state.msr_host_bndcfgs)
+ wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
+ /*
+ * If the FPU is not active (through the host task or
+ * the guest vcpu), then restore the cr0.TS bit.
+ */
+ if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
+ stts();
+ load_gdt(this_cpu_ptr(&host_gdt));
+}
+
+static void vmx_load_host_state(struct vcpu_vmx *vmx)
+{
+ preempt_disable();
+ __vmx_load_host_state(vmx);
+ preempt_enable();
+}
+
+/*
+ * Switches to specified vcpu, until a matching vcpu_put(), but assumes
+ * vcpu mutex is already taken.
+ */
+static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
+
+ if (!vmm_exclusive)
+ kvm_cpu_vmxon(phys_addr);
+ else if (vmx->loaded_vmcs->cpu != cpu)
+ loaded_vmcs_clear(vmx->loaded_vmcs);
+
+ if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
+ per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
+ vmcs_load(vmx->loaded_vmcs->vmcs);
+ }
+
+ if (vmx->loaded_vmcs->cpu != cpu) {
+ struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
+ unsigned long sysenter_esp;
+
+ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+ local_irq_disable();
+ crash_disable_local_vmclear(cpu);
+
+ /*
+ * Read loaded_vmcs->cpu should be before fetching
+ * loaded_vmcs->loaded_vmcss_on_cpu_link.
+ * See the comments in __loaded_vmcs_clear().
+ */
+ smp_rmb();
+
+ list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
+ &per_cpu(loaded_vmcss_on_cpu, cpu));
+ crash_enable_local_vmclear(cpu);
+ local_irq_enable();
+
+ /*
+ * Linux uses per-cpu TSS and GDT, so set these when switching
+ * processors.
+ */
+ vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
+ vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
+
+ rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
+ vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
+ vmx->loaded_vmcs->cpu = cpu;
+ }
+}
+
+static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
+{
+ __vmx_load_host_state(to_vmx(vcpu));
+ if (!vmm_exclusive) {
+ __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
+ vcpu->cpu = -1;
+ kvm_cpu_vmxoff();
+ }
+}
+
+static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
+{
+ ulong cr0;
+
+ if (vcpu->fpu_active)
+ return;
+ vcpu->fpu_active = 1;
+ cr0 = vmcs_readl(GUEST_CR0);
+ cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
+ cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
+ vmcs_writel(GUEST_CR0, cr0);
+ update_exception_bitmap(vcpu);
+ vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
+ if (is_guest_mode(vcpu))
+ vcpu->arch.cr0_guest_owned_bits &=
+ ~get_vmcs12(vcpu)->cr0_guest_host_mask;
+ vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
+}
+
+static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
+
+/*
+ * Return the cr0 value that a nested guest would read. This is a combination
+ * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
+ * its hypervisor (cr0_read_shadow).
+ */
+static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
+{
+ return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
+ (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
+}
+static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
+{
+ return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
+ (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
+}
+
+static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
+{
+ /* Note that there is no vcpu->fpu_active = 0 here. The caller must
+ * set this *before* calling this function.
+ */
+ vmx_decache_cr0_guest_bits(vcpu);
+ vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
+ update_exception_bitmap(vcpu);
+ vcpu->arch.cr0_guest_owned_bits = 0;
+ vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
+ if (is_guest_mode(vcpu)) {
+ /*
+ * L1's specified read shadow might not contain the TS bit,
+ * so now that we turned on shadowing of this bit, we need to
+ * set this bit of the shadow. Like in nested_vmx_run we need
+ * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
+ * up-to-date here because we just decached cr0.TS (and we'll
+ * only update vmcs12->guest_cr0 on nested exit).
+ */
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
+ (vcpu->arch.cr0 & X86_CR0_TS);
+ vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
+ } else
+ vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
+}
+
+static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
+{
+ unsigned long rflags, save_rflags;
+
+ if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
+ __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
+ rflags = vmcs_readl(GUEST_RFLAGS);
+ if (to_vmx(vcpu)->rmode.vm86_active) {
+ rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
+ save_rflags = to_vmx(vcpu)->rmode.save_rflags;
+ rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
+ }
+ to_vmx(vcpu)->rflags = rflags;
+ }
+ return to_vmx(vcpu)->rflags;
+}
+
+static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
+{
+ __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
+ to_vmx(vcpu)->rflags = rflags;
+ if (to_vmx(vcpu)->rmode.vm86_active) {
+ to_vmx(vcpu)->rmode.save_rflags = rflags;
+ rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
+ }
+ vmcs_writel(GUEST_RFLAGS, rflags);
+}
+
+static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
+{
+ u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
+ int ret = 0;
+
+ if (interruptibility & GUEST_INTR_STATE_STI)
+ ret |= KVM_X86_SHADOW_INT_STI;
+ if (interruptibility & GUEST_INTR_STATE_MOV_SS)
+ ret |= KVM_X86_SHADOW_INT_MOV_SS;
+
+ return ret;
+}
+
+static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
+{
+ u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
+ u32 interruptibility = interruptibility_old;
+
+ interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
+
+ if (mask & KVM_X86_SHADOW_INT_MOV_SS)
+ interruptibility |= GUEST_INTR_STATE_MOV_SS;
+ else if (mask & KVM_X86_SHADOW_INT_STI)
+ interruptibility |= GUEST_INTR_STATE_STI;
+
+ if ((interruptibility != interruptibility_old))
+ vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
+}
+
+static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
+{
+ unsigned long rip;
+
+ rip = kvm_rip_read(vcpu);
+ rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+ kvm_rip_write(vcpu, rip);
+
+ /* skipping an emulated instruction also counts */
+ vmx_set_interrupt_shadow(vcpu, 0);
+}
+
+/*
+ * KVM wants to inject page-faults which it got to the guest. This function
+ * checks whether in a nested guest, we need to inject them to L1 or L2.
+ */
+static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
+{
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+ if (!(vmcs12->exception_bitmap & (1u << nr)))
+ return 0;
+
+ nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
+ vmcs_read32(VM_EXIT_INTR_INFO),
+ vmcs_readl(EXIT_QUALIFICATION));
+ return 1;
+}
+
+static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
+ bool has_error_code, u32 error_code,
+ bool reinject)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ u32 intr_info = nr | INTR_INFO_VALID_MASK;
+
+ if (!reinject && is_guest_mode(vcpu) &&
+ nested_vmx_check_exception(vcpu, nr))
+ return;
+
+ if (has_error_code) {
+ vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
+ intr_info |= INTR_INFO_DELIVER_CODE_MASK;
+ }
+
+ if (vmx->rmode.vm86_active) {
+ int inc_eip = 0;
+ if (kvm_exception_is_soft(nr))
+ inc_eip = vcpu->arch.event_exit_inst_len;
+ if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
+ kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+ return;
+ }
+
+ if (kvm_exception_is_soft(nr)) {
+ vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
+ vmx->vcpu.arch.event_exit_inst_len);
+ intr_info |= INTR_TYPE_SOFT_EXCEPTION;
+ } else
+ intr_info |= INTR_TYPE_HARD_EXCEPTION;
+
+ vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
+}
+
+static bool vmx_rdtscp_supported(void)
+{
+ return cpu_has_vmx_rdtscp();
+}
+
+static bool vmx_invpcid_supported(void)
+{
+ return cpu_has_vmx_invpcid() && enable_ept;
+}
+
+/*
+ * Swap MSR entry in host/guest MSR entry array.
+ */
+static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
+{
+ struct shared_msr_entry tmp;
+
+ tmp = vmx->guest_msrs[to];
+ vmx->guest_msrs[to] = vmx->guest_msrs[from];
+ vmx->guest_msrs[from] = tmp;
+}
+
+static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
+{
+ unsigned long *msr_bitmap;
+
+ if (is_guest_mode(vcpu))
+ msr_bitmap = vmx_msr_bitmap_nested;
+ else if (irqchip_in_kernel(vcpu->kvm) &&
+ apic_x2apic_mode(vcpu->arch.apic)) {
+ if (is_long_mode(vcpu))
+ msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
+ else
+ msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
+ } else {
+ if (is_long_mode(vcpu))
+ msr_bitmap = vmx_msr_bitmap_longmode;
+ else
+ msr_bitmap = vmx_msr_bitmap_legacy;
+ }
+
+ vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
+}
+
+/*
+ * Set up the vmcs to automatically save and restore system
+ * msrs. Don't touch the 64-bit msrs if the guest is in legacy
+ * mode, as fiddling with msrs is very expensive.
+ */
+static void setup_msrs(struct vcpu_vmx *vmx)
+{
+ int save_nmsrs, index;
+
+ save_nmsrs = 0;
+#ifdef CONFIG_X86_64
+ if (is_long_mode(&vmx->vcpu)) {
+ index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
+ if (index >= 0)
+ move_msr_up(vmx, index, save_nmsrs++);
+ index = __find_msr_index(vmx, MSR_LSTAR);
+ if (index >= 0)
+ move_msr_up(vmx, index, save_nmsrs++);
+ index = __find_msr_index(vmx, MSR_CSTAR);
+ if (index >= 0)
+ move_msr_up(vmx, index, save_nmsrs++);
+ index = __find_msr_index(vmx, MSR_TSC_AUX);
+ if (index >= 0 && vmx->rdtscp_enabled)
+ move_msr_up(vmx, index, save_nmsrs++);
+ /*
+ * MSR_STAR is only needed on long mode guests, and only
+ * if efer.sce is enabled.
+ */
+ index = __find_msr_index(vmx, MSR_STAR);
+ if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
+ move_msr_up(vmx, index, save_nmsrs++);
+ }
+#endif
+ index = __find_msr_index(vmx, MSR_EFER);
+ if (index >= 0 && update_transition_efer(vmx, index))
+ move_msr_up(vmx, index, save_nmsrs++);
+
+ vmx->save_nmsrs = save_nmsrs;
+
+ if (cpu_has_vmx_msr_bitmap())
+ vmx_set_msr_bitmap(&vmx->vcpu);
+}
+
+/*
+ * reads and returns guest's timestamp counter "register"
+ * guest_tsc = host_tsc + tsc_offset -- 21.3
+ */
+static u64 guest_read_tsc(void)
+{
+ u64 host_tsc, tsc_offset;
+
+ rdtscll(host_tsc);
+ tsc_offset = vmcs_read64(TSC_OFFSET);
+ return host_tsc + tsc_offset;
+}
+
+/*
+ * Like guest_read_tsc, but always returns L1's notion of the timestamp
+ * counter, even if a nested guest (L2) is currently running.
+ */
+static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
+{
+ u64 tsc_offset;
+
+ tsc_offset = is_guest_mode(vcpu) ?
+ to_vmx(vcpu)->nested.vmcs01_tsc_offset :
+ vmcs_read64(TSC_OFFSET);
+ return host_tsc + tsc_offset;
+}
+
+/*
+ * Engage any workarounds for mis-matched TSC rates. Currently limited to
+ * software catchup for faster rates on slower CPUs.
+ */
+static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
+{
+ if (!scale)
+ return;
+
+ if (user_tsc_khz > tsc_khz) {
+ vcpu->arch.tsc_catchup = 1;
+ vcpu->arch.tsc_always_catchup = 1;
+ } else
+ WARN(1, "user requested TSC rate below hardware speed\n");
+}
+
+static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
+{
+ return vmcs_read64(TSC_OFFSET);
+}
+
+/*
+ * writes 'offset' into guest's timestamp counter offset register
+ */
+static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
+{
+ if (is_guest_mode(vcpu)) {
+ /*
+ * We're here if L1 chose not to trap WRMSR to TSC. According
+ * to the spec, this should set L1's TSC; The offset that L1
+ * set for L2 remains unchanged, and still needs to be added
+ * to the newly set TSC to get L2's TSC.
+ */
+ struct vmcs12 *vmcs12;
+ to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
+ /* recalculate vmcs02.TSC_OFFSET: */
+ vmcs12 = get_vmcs12(vcpu);
+ vmcs_write64(TSC_OFFSET, offset +
+ (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
+ vmcs12->tsc_offset : 0));
+ } else {
+ trace_kvm_write_tsc_offset(vcpu->vcpu_id,
+ vmcs_read64(TSC_OFFSET), offset);
+ vmcs_write64(TSC_OFFSET, offset);
+ }
+}
+
+static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
+{
+ u64 offset = vmcs_read64(TSC_OFFSET);
+
+ vmcs_write64(TSC_OFFSET, offset + adjustment);
+ if (is_guest_mode(vcpu)) {
+ /* Even when running L2, the adjustment needs to apply to L1 */
+ to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
+ } else
+ trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
+ offset + adjustment);
+}
+
+static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
+{
+ return target_tsc - native_read_tsc();
+}
+
+static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
+ return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
+}
+
+/*
+ * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
+ * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
+ * all guests if the "nested" module option is off, and can also be disabled
+ * for a single guest by disabling its VMX cpuid bit.
+ */
+static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
+{
+ return nested && guest_cpuid_has_vmx(vcpu);
+}
+
+/*
+ * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
+ * returned for the various VMX controls MSRs when nested VMX is enabled.
+ * The same values should also be used to verify that vmcs12 control fields are
+ * valid during nested entry from L1 to L2.
+ * Each of these control msrs has a low and high 32-bit half: A low bit is on
+ * if the corresponding bit in the (32-bit) control field *must* be on, and a
+ * bit in the high half is on if the corresponding bit in the control field
+ * may be on. See also vmx_control_verify().
+ */
+static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
+{
+ /*
+ * Note that as a general rule, the high half of the MSRs (bits in
+ * the control fields which may be 1) should be initialized by the
+ * intersection of the underlying hardware's MSR (i.e., features which
+ * can be supported) and the list of features we want to expose -
+ * because they are known to be properly supported in our code.
+ * Also, usually, the low half of the MSRs (bits which must be 1) can
+ * be set to 0, meaning that L1 may turn off any of these bits. The
+ * reason is that if one of these bits is necessary, it will appear
+ * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
+ * fields of vmcs01 and vmcs02, will turn these bits off - and
+ * nested_vmx_exit_handled() will not pass related exits to L1.
+ * These rules have exceptions below.
+ */
+
+ /* pin-based controls */
+ rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
+ vmx->nested.nested_vmx_pinbased_ctls_low,
+ vmx->nested.nested_vmx_pinbased_ctls_high);
+ vmx->nested.nested_vmx_pinbased_ctls_low |=
+ PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
+ vmx->nested.nested_vmx_pinbased_ctls_high &=
+ PIN_BASED_EXT_INTR_MASK |
+ PIN_BASED_NMI_EXITING |
+ PIN_BASED_VIRTUAL_NMIS;
+ vmx->nested.nested_vmx_pinbased_ctls_high |=
+ PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
+ PIN_BASED_VMX_PREEMPTION_TIMER;
+ if (vmx_vm_has_apicv(vmx->vcpu.kvm))
+ vmx->nested.nested_vmx_pinbased_ctls_high |=
+ PIN_BASED_POSTED_INTR;
+
+ /* exit controls */
+ rdmsr(MSR_IA32_VMX_EXIT_CTLS,
+ vmx->nested.nested_vmx_exit_ctls_low,
+ vmx->nested.nested_vmx_exit_ctls_high);
+ vmx->nested.nested_vmx_exit_ctls_low =
+ VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
+
+ vmx->nested.nested_vmx_exit_ctls_high &=
+#ifdef CONFIG_X86_64
+ VM_EXIT_HOST_ADDR_SPACE_SIZE |
+#endif
+ VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
+ vmx->nested.nested_vmx_exit_ctls_high |=
+ VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
+ VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
+ VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
+
+ if (vmx_mpx_supported())
+ vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
+
+ /* We support free control of debug control saving. */
+ vmx->nested.nested_vmx_true_exit_ctls_low =
+ vmx->nested.nested_vmx_exit_ctls_low &
+ ~VM_EXIT_SAVE_DEBUG_CONTROLS;
+
+ /* entry controls */
+ rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
+ vmx->nested.nested_vmx_entry_ctls_low,
+ vmx->nested.nested_vmx_entry_ctls_high);
+ vmx->nested.nested_vmx_entry_ctls_low =
+ VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
+ vmx->nested.nested_vmx_entry_ctls_high &=
+#ifdef CONFIG_X86_64
+ VM_ENTRY_IA32E_MODE |
+#endif
+ VM_ENTRY_LOAD_IA32_PAT;
+ vmx->nested.nested_vmx_entry_ctls_high |=
+ (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
+ if (vmx_mpx_supported())
+ vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
+
+ /* We support free control of debug control loading. */
+ vmx->nested.nested_vmx_true_entry_ctls_low =
+ vmx->nested.nested_vmx_entry_ctls_low &
+ ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
+
+ /* cpu-based controls */
+ rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
+ vmx->nested.nested_vmx_procbased_ctls_low,
+ vmx->nested.nested_vmx_procbased_ctls_high);
+ vmx->nested.nested_vmx_procbased_ctls_low =
+ CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
+ vmx->nested.nested_vmx_procbased_ctls_high &=
+ CPU_BASED_VIRTUAL_INTR_PENDING |
+ CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
+ CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
+ CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
+ CPU_BASED_CR3_STORE_EXITING |
+#ifdef CONFIG_X86_64
+ CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
+#endif
+ CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
+ CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
+ CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
+ CPU_BASED_PAUSE_EXITING | CPU_BASED_TPR_SHADOW |
+ CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
+ /*
+ * We can allow some features even when not supported by the
+ * hardware. For example, L1 can specify an MSR bitmap - and we
+ * can use it to avoid exits to L1 - even when L0 runs L2
+ * without MSR bitmaps.
+ */
+ vmx->nested.nested_vmx_procbased_ctls_high |=
+ CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
+ CPU_BASED_USE_MSR_BITMAPS;
+
+ /* We support free control of CR3 access interception. */
+ vmx->nested.nested_vmx_true_procbased_ctls_low =
+ vmx->nested.nested_vmx_procbased_ctls_low &
+ ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
+
+ /* secondary cpu-based controls */
+ rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
+ vmx->nested.nested_vmx_secondary_ctls_low,
+ vmx->nested.nested_vmx_secondary_ctls_high);
+ vmx->nested.nested_vmx_secondary_ctls_low = 0;
+ vmx->nested.nested_vmx_secondary_ctls_high &=
+ SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
+ SECONDARY_EXEC_RDTSCP |
+ SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
+ SECONDARY_EXEC_APIC_REGISTER_VIRT |
+ SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
+ SECONDARY_EXEC_WBINVD_EXITING |
+ SECONDARY_EXEC_XSAVES;
+
+ if (enable_ept) {
+ /* nested EPT: emulate EPT also to L1 */
+ vmx->nested.nested_vmx_secondary_ctls_high |=
+ SECONDARY_EXEC_ENABLE_EPT;
+ vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
+ VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
+ VMX_EPT_INVEPT_BIT;
+ vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
+ /*
+ * For nested guests, we don't do anything specific
+ * for single context invalidation. Hence, only advertise
+ * support for global context invalidation.
+ */
+ vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
+ } else
+ vmx->nested.nested_vmx_ept_caps = 0;
+
+ if (enable_unrestricted_guest)
+ vmx->nested.nested_vmx_secondary_ctls_high |=
+ SECONDARY_EXEC_UNRESTRICTED_GUEST;
+
+ /* miscellaneous data */
+ rdmsr(MSR_IA32_VMX_MISC,
+ vmx->nested.nested_vmx_misc_low,
+ vmx->nested.nested_vmx_misc_high);
+ vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
+ vmx->nested.nested_vmx_misc_low |=
+ VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
+ VMX_MISC_ACTIVITY_HLT;
+ vmx->nested.nested_vmx_misc_high = 0;
+}
+
+static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
+{
+ /*
+ * Bits 0 in high must be 0, and bits 1 in low must be 1.
+ */
+ return ((control & high) | low) == control;
+}
+
+static inline u64 vmx_control_msr(u32 low, u32 high)
+{
+ return low | ((u64)high << 32);
+}
+
+/* Returns 0 on success, non-0 otherwise. */
+static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ switch (msr_index) {
+ case MSR_IA32_VMX_BASIC:
+ /*
+ * This MSR reports some information about VMX support. We
+ * should return information about the VMX we emulate for the
+ * guest, and the VMCS structure we give it - not about the
+ * VMX support of the underlying hardware.
+ */
+ *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
+ ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
+ (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
+ break;
+ case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
+ case MSR_IA32_VMX_PINBASED_CTLS:
+ *pdata = vmx_control_msr(
+ vmx->nested.nested_vmx_pinbased_ctls_low,
+ vmx->nested.nested_vmx_pinbased_ctls_high);
+ break;
+ case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
+ *pdata = vmx_control_msr(
+ vmx->nested.nested_vmx_true_procbased_ctls_low,
+ vmx->nested.nested_vmx_procbased_ctls_high);
+ break;
+ case MSR_IA32_VMX_PROCBASED_CTLS:
+ *pdata = vmx_control_msr(
+ vmx->nested.nested_vmx_procbased_ctls_low,
+ vmx->nested.nested_vmx_procbased_ctls_high);
+ break;
+ case MSR_IA32_VMX_TRUE_EXIT_CTLS:
+ *pdata = vmx_control_msr(
+ vmx->nested.nested_vmx_true_exit_ctls_low,
+ vmx->nested.nested_vmx_exit_ctls_high);
+ break;
+ case MSR_IA32_VMX_EXIT_CTLS:
+ *pdata = vmx_control_msr(
+ vmx->nested.nested_vmx_exit_ctls_low,
+ vmx->nested.nested_vmx_exit_ctls_high);
+ break;
+ case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
+ *pdata = vmx_control_msr(
+ vmx->nested.nested_vmx_true_entry_ctls_low,
+ vmx->nested.nested_vmx_entry_ctls_high);
+ break;
+ case MSR_IA32_VMX_ENTRY_CTLS:
+ *pdata = vmx_control_msr(
+ vmx->nested.nested_vmx_entry_ctls_low,
+ vmx->nested.nested_vmx_entry_ctls_high);
+ break;
+ case MSR_IA32_VMX_MISC:
+ *pdata = vmx_control_msr(
+ vmx->nested.nested_vmx_misc_low,
+ vmx->nested.nested_vmx_misc_high);
+ break;
+ /*
+ * These MSRs specify bits which the guest must keep fixed (on or off)
+ * while L1 is in VMXON mode (in L1's root mode, or running an L2).
+ * We picked the standard core2 setting.
+ */
+#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
+#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
+ case MSR_IA32_VMX_CR0_FIXED0:
+ *pdata = VMXON_CR0_ALWAYSON;
+ break;
+ case MSR_IA32_VMX_CR0_FIXED1:
+ *pdata = -1ULL;
+ break;
+ case MSR_IA32_VMX_CR4_FIXED0:
+ *pdata = VMXON_CR4_ALWAYSON;
+ break;
+ case MSR_IA32_VMX_CR4_FIXED1:
+ *pdata = -1ULL;
+ break;
+ case MSR_IA32_VMX_VMCS_ENUM:
+ *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
+ break;
+ case MSR_IA32_VMX_PROCBASED_CTLS2:
+ *pdata = vmx_control_msr(
+ vmx->nested.nested_vmx_secondary_ctls_low,
+ vmx->nested.nested_vmx_secondary_ctls_high);
+ break;
+ case MSR_IA32_VMX_EPT_VPID_CAP:
+ /* Currently, no nested vpid support */
+ *pdata = vmx->nested.nested_vmx_ept_caps;
+ break;
+ default:
+ return 1;
+ }
+
+ return 0;
+}
+
+/*
+ * Reads an msr value (of 'msr_index') into 'pdata'.
+ * Returns 0 on success, non-0 otherwise.
+ * Assumes vcpu_load() was already called.
+ */
+static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
+{
+ u64 data;
+ struct shared_msr_entry *msr;
+
+ if (!pdata) {
+ printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
+ return -EINVAL;
+ }
+
+ switch (msr_index) {
+#ifdef CONFIG_X86_64
+ case MSR_FS_BASE:
+ data = vmcs_readl(GUEST_FS_BASE);
+ break;
+ case MSR_GS_BASE:
+ data = vmcs_readl(GUEST_GS_BASE);
+ break;
+ case MSR_KERNEL_GS_BASE:
+ vmx_load_host_state(to_vmx(vcpu));
+ data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
+ break;
+#endif
+ case MSR_EFER:
+ return kvm_get_msr_common(vcpu, msr_index, pdata);
+ case MSR_IA32_TSC:
+ data = guest_read_tsc();
+ break;
+ case MSR_IA32_SYSENTER_CS:
+ data = vmcs_read32(GUEST_SYSENTER_CS);
+ break;
+ case MSR_IA32_SYSENTER_EIP:
+ data = vmcs_readl(GUEST_SYSENTER_EIP);
+ break;
+ case MSR_IA32_SYSENTER_ESP:
+ data = vmcs_readl(GUEST_SYSENTER_ESP);
+ break;
+ case MSR_IA32_BNDCFGS:
+ if (!vmx_mpx_supported())
+ return 1;
+ data = vmcs_read64(GUEST_BNDCFGS);
+ break;
+ case MSR_IA32_FEATURE_CONTROL:
+ if (!nested_vmx_allowed(vcpu))
+ return 1;
+ data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
+ break;
+ case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
+ if (!nested_vmx_allowed(vcpu))
+ return 1;
+ return vmx_get_vmx_msr(vcpu, msr_index, pdata);
+ case MSR_IA32_XSS:
+ if (!vmx_xsaves_supported())
+ return 1;
+ data = vcpu->arch.ia32_xss;
+ break;
+ case MSR_TSC_AUX:
+ if (!to_vmx(vcpu)->rdtscp_enabled)
+ return 1;
+ /* Otherwise falls through */
+ default:
+ msr = find_msr_entry(to_vmx(vcpu), msr_index);
+ if (msr) {
+ data = msr->data;
+ break;
+ }
+ return kvm_get_msr_common(vcpu, msr_index, pdata);
+ }
+
+ *pdata = data;
+ return 0;
+}
+
+static void vmx_leave_nested(struct kvm_vcpu *vcpu);
+
+/*
+ * Writes msr value into into the appropriate "register".
+ * Returns 0 on success, non-0 otherwise.
+ * Assumes vcpu_load() was already called.
+ */
+static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct shared_msr_entry *msr;
+ int ret = 0;
+ u32 msr_index = msr_info->index;
+ u64 data = msr_info->data;
+
+ switch (msr_index) {
+ case MSR_EFER:
+ ret = kvm_set_msr_common(vcpu, msr_info);
+ break;
+#ifdef CONFIG_X86_64
+ case MSR_FS_BASE:
+ vmx_segment_cache_clear(vmx);
+ vmcs_writel(GUEST_FS_BASE, data);
+ break;
+ case MSR_GS_BASE:
+ vmx_segment_cache_clear(vmx);
+ vmcs_writel(GUEST_GS_BASE, data);
+ break;
+ case MSR_KERNEL_GS_BASE:
+ vmx_load_host_state(vmx);
+ vmx->msr_guest_kernel_gs_base = data;
+ break;
+#endif
+ case MSR_IA32_SYSENTER_CS:
+ vmcs_write32(GUEST_SYSENTER_CS, data);
+ break;
+ case MSR_IA32_SYSENTER_EIP:
+ vmcs_writel(GUEST_SYSENTER_EIP, data);
+ break;
+ case MSR_IA32_SYSENTER_ESP:
+ vmcs_writel(GUEST_SYSENTER_ESP, data);
+ break;
+ case MSR_IA32_BNDCFGS:
+ if (!vmx_mpx_supported())
+ return 1;
+ vmcs_write64(GUEST_BNDCFGS, data);
+ break;
+ case MSR_IA32_TSC:
+ kvm_write_tsc(vcpu, msr_info);
+ break;
+ case MSR_IA32_CR_PAT:
+ if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
+ if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
+ return 1;
+ vmcs_write64(GUEST_IA32_PAT, data);
+ vcpu->arch.pat = data;
+ break;
+ }
+ ret = kvm_set_msr_common(vcpu, msr_info);
+ break;
+ case MSR_IA32_TSC_ADJUST:
+ ret = kvm_set_msr_common(vcpu, msr_info);
+ break;
+ case MSR_IA32_FEATURE_CONTROL:
+ if (!nested_vmx_allowed(vcpu) ||
+ (to_vmx(vcpu)->nested.msr_ia32_feature_control &
+ FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
+ return 1;
+ vmx->nested.msr_ia32_feature_control = data;
+ if (msr_info->host_initiated && data == 0)
+ vmx_leave_nested(vcpu);
+ break;
+ case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
+ return 1; /* they are read-only */
+ case MSR_IA32_XSS:
+ if (!vmx_xsaves_supported())
+ return 1;
+ /*
+ * The only supported bit as of Skylake is bit 8, but
+ * it is not supported on KVM.
+ */
+ if (data != 0)
+ return 1;
+ vcpu->arch.ia32_xss = data;
+ if (vcpu->arch.ia32_xss != host_xss)
+ add_atomic_switch_msr(vmx, MSR_IA32_XSS,
+ vcpu->arch.ia32_xss, host_xss);
+ else
+ clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
+ break;
+ case MSR_TSC_AUX:
+ if (!vmx->rdtscp_enabled)
+ return 1;
+ /* Check reserved bit, higher 32 bits should be zero */
+ if ((data >> 32) != 0)
+ return 1;
+ /* Otherwise falls through */
+ default:
+ msr = find_msr_entry(vmx, msr_index);
+ if (msr) {
+ u64 old_msr_data = msr->data;
+ msr->data = data;
+ if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
+ preempt_disable();
+ ret = kvm_set_shared_msr(msr->index, msr->data,
+ msr->mask);
+ preempt_enable();
+ if (ret)
+ msr->data = old_msr_data;
+ }
+ break;
+ }
+ ret = kvm_set_msr_common(vcpu, msr_info);
+ }
+
+ return ret;
+}
+
+static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
+{
+ __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
+ switch (reg) {
+ case VCPU_REGS_RSP:
+ vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
+ break;
+ case VCPU_REGS_RIP:
+ vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
+ break;
+ case VCPU_EXREG_PDPTR:
+ if (enable_ept)
+ ept_save_pdptrs(vcpu);
+ break;
+ default:
+ break;
+ }
+}
+
+static __init int cpu_has_kvm_support(void)
+{
+ return cpu_has_vmx();
+}
+
+static __init int vmx_disabled_by_bios(void)
+{
+ u64 msr;
+
+ rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
+ if (msr & FEATURE_CONTROL_LOCKED) {
+ /* launched w/ TXT and VMX disabled */
+ if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
+ && tboot_enabled())
+ return 1;
+ /* launched w/o TXT and VMX only enabled w/ TXT */
+ if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
+ && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
+ && !tboot_enabled()) {
+ printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
+ "activate TXT before enabling KVM\n");
+ return 1;
+ }
+ /* launched w/o TXT and VMX disabled */
+ if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
+ && !tboot_enabled())
+ return 1;
+ }
+
+ return 0;
+}
+
+static void kvm_cpu_vmxon(u64 addr)
+{
+ asm volatile (ASM_VMX_VMXON_RAX
+ : : "a"(&addr), "m"(addr)
+ : "memory", "cc");
+}
+
+static int hardware_enable(void)
+{
+ int cpu = raw_smp_processor_id();
+ u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
+ u64 old, test_bits;
+
+ if (cr4_read_shadow() & X86_CR4_VMXE)
+ return -EBUSY;
+
+ INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
+
+ /*
+ * Now we can enable the vmclear operation in kdump
+ * since the loaded_vmcss_on_cpu list on this cpu
+ * has been initialized.
+ *
+ * Though the cpu is not in VMX operation now, there
+ * is no problem to enable the vmclear operation
+ * for the loaded_vmcss_on_cpu list is empty!
+ */
+ crash_enable_local_vmclear(cpu);
+
+ rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
+
+ test_bits = FEATURE_CONTROL_LOCKED;
+ test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
+ if (tboot_enabled())
+ test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
+
+ if ((old & test_bits) != test_bits) {
+ /* enable and lock */
+ wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
+ }
+ cr4_set_bits(X86_CR4_VMXE);
+
+ if (vmm_exclusive) {
+ kvm_cpu_vmxon(phys_addr);
+ ept_sync_global();
+ }
+
+ native_store_gdt(this_cpu_ptr(&host_gdt));
+
+ return 0;
+}
+
+static void vmclear_local_loaded_vmcss(void)
+{
+ int cpu = raw_smp_processor_id();
+ struct loaded_vmcs *v, *n;
+
+ list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
+ loaded_vmcss_on_cpu_link)
+ __loaded_vmcs_clear(v);
+}
+
+
+/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
+ * tricks.
+ */
+static void kvm_cpu_vmxoff(void)
+{
+ asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
+}
+
+static void hardware_disable(void)
+{
+ if (vmm_exclusive) {
+ vmclear_local_loaded_vmcss();
+ kvm_cpu_vmxoff();
+ }
+ cr4_clear_bits(X86_CR4_VMXE);
+}
+
+static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
+ u32 msr, u32 *result)
+{
+ u32 vmx_msr_low, vmx_msr_high;
+ u32 ctl = ctl_min | ctl_opt;
+
+ rdmsr(msr, vmx_msr_low, vmx_msr_high);
+
+ ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
+ ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
+
+ /* Ensure minimum (required) set of control bits are supported. */
+ if (ctl_min & ~ctl)
+ return -EIO;
+
+ *result = ctl;
+ return 0;
+}
+
+static __init bool allow_1_setting(u32 msr, u32 ctl)
+{
+ u32 vmx_msr_low, vmx_msr_high;
+
+ rdmsr(msr, vmx_msr_low, vmx_msr_high);
+ return vmx_msr_high & ctl;
+}
+
+static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
+{
+ u32 vmx_msr_low, vmx_msr_high;
+ u32 min, opt, min2, opt2;
+ u32 _pin_based_exec_control = 0;
+ u32 _cpu_based_exec_control = 0;
+ u32 _cpu_based_2nd_exec_control = 0;
+ u32 _vmexit_control = 0;
+ u32 _vmentry_control = 0;
+
+ min = CPU_BASED_HLT_EXITING |
+#ifdef CONFIG_X86_64
+ CPU_BASED_CR8_LOAD_EXITING |
+ CPU_BASED_CR8_STORE_EXITING |
+#endif
+ CPU_BASED_CR3_LOAD_EXITING |
+ CPU_BASED_CR3_STORE_EXITING |
+ CPU_BASED_USE_IO_BITMAPS |
+ CPU_BASED_MOV_DR_EXITING |
+ CPU_BASED_USE_TSC_OFFSETING |
+ CPU_BASED_MWAIT_EXITING |
+ CPU_BASED_MONITOR_EXITING |
+ CPU_BASED_INVLPG_EXITING |
+ CPU_BASED_RDPMC_EXITING;
+
+ opt = CPU_BASED_TPR_SHADOW |
+ CPU_BASED_USE_MSR_BITMAPS |
+ CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
+ if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
+ &_cpu_based_exec_control) < 0)
+ return -EIO;
+#ifdef CONFIG_X86_64
+ if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
+ _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
+ ~CPU_BASED_CR8_STORE_EXITING;
+#endif
+ if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
+ min2 = 0;
+ opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
+ SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
+ SECONDARY_EXEC_WBINVD_EXITING |
+ SECONDARY_EXEC_ENABLE_VPID |
+ SECONDARY_EXEC_ENABLE_EPT |
+ SECONDARY_EXEC_UNRESTRICTED_GUEST |
+ SECONDARY_EXEC_PAUSE_LOOP_EXITING |
+ SECONDARY_EXEC_RDTSCP |
+ SECONDARY_EXEC_ENABLE_INVPCID |
+ SECONDARY_EXEC_APIC_REGISTER_VIRT |
+ SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
+ SECONDARY_EXEC_SHADOW_VMCS |
+ SECONDARY_EXEC_XSAVES |
+ SECONDARY_EXEC_ENABLE_PML;
+ if (adjust_vmx_controls(min2, opt2,
+ MSR_IA32_VMX_PROCBASED_CTLS2,
+ &_cpu_based_2nd_exec_control) < 0)
+ return -EIO;
+ }
+#ifndef CONFIG_X86_64
+ if (!(_cpu_based_2nd_exec_control &
+ SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
+ _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
+#endif
+
+ if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
+ _cpu_based_2nd_exec_control &= ~(
+ SECONDARY_EXEC_APIC_REGISTER_VIRT |
+ SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
+ SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
+
+ if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
+ /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
+ enabled */
+ _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
+ CPU_BASED_CR3_STORE_EXITING |
+ CPU_BASED_INVLPG_EXITING);
+ rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
+ vmx_capability.ept, vmx_capability.vpid);
+ }
+
+ min = VM_EXIT_SAVE_DEBUG_CONTROLS;
+#ifdef CONFIG_X86_64
+ min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
+#endif
+ opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
+ VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
+ if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
+ &_vmexit_control) < 0)
+ return -EIO;
+
+ min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
+ opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
+ if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
+ &_pin_based_exec_control) < 0)
+ return -EIO;
+
+ if (!(_cpu_based_2nd_exec_control &
+ SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
+ !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
+ _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
+
+ min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
+ opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
+ if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
+ &_vmentry_control) < 0)
+ return -EIO;
+
+ rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
+
+ /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
+ if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
+ return -EIO;
+
+#ifdef CONFIG_X86_64
+ /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
+ if (vmx_msr_high & (1u<<16))
+ return -EIO;
+#endif
+
+ /* Require Write-Back (WB) memory type for VMCS accesses. */
+ if (((vmx_msr_high >> 18) & 15) != 6)
+ return -EIO;
+
+ vmcs_conf->size = vmx_msr_high & 0x1fff;
+ vmcs_conf->order = get_order(vmcs_config.size);
+ vmcs_conf->revision_id = vmx_msr_low;
+
+ vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
+ vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
+ vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
+ vmcs_conf->vmexit_ctrl = _vmexit_control;
+ vmcs_conf->vmentry_ctrl = _vmentry_control;
+
+ cpu_has_load_ia32_efer =
+ allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
+ VM_ENTRY_LOAD_IA32_EFER)
+ && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
+ VM_EXIT_LOAD_IA32_EFER);
+
+ cpu_has_load_perf_global_ctrl =
+ allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
+ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
+ && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
+ VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
+
+ /*
+ * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
+ * but due to arrata below it can't be used. Workaround is to use
+ * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
+ *
+ * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
+ *
+ * AAK155 (model 26)
+ * AAP115 (model 30)
+ * AAT100 (model 37)
+ * BC86,AAY89,BD102 (model 44)
+ * BA97 (model 46)
+ *
+ */
+ if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
+ switch (boot_cpu_data.x86_model) {
+ case 26:
+ case 30:
+ case 37:
+ case 44:
+ case 46:
+ cpu_has_load_perf_global_ctrl = false;
+ printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
+ "does not work properly. Using workaround\n");
+ break;
+ default:
+ break;
+ }
+ }
+
+ if (cpu_has_xsaves)
+ rdmsrl(MSR_IA32_XSS, host_xss);
+
+ return 0;
+}
+
+static struct vmcs *alloc_vmcs_cpu(int cpu)
+{
+ int node = cpu_to_node(cpu);
+ struct page *pages;
+ struct vmcs *vmcs;
+
+ pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
+ if (!pages)
+ return NULL;
+ vmcs = page_address(pages);
+ memset(vmcs, 0, vmcs_config.size);
+ vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
+ return vmcs;
+}
+
+static struct vmcs *alloc_vmcs(void)
+{
+ return alloc_vmcs_cpu(raw_smp_processor_id());
+}
+
+static void free_vmcs(struct vmcs *vmcs)
+{
+ free_pages((unsigned long)vmcs, vmcs_config.order);
+}
+
+/*
+ * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
+ */
+static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
+{
+ if (!loaded_vmcs->vmcs)
+ return;
+ loaded_vmcs_clear(loaded_vmcs);
+ free_vmcs(loaded_vmcs->vmcs);
+ loaded_vmcs->vmcs = NULL;
+}
+
+static void free_kvm_area(void)
+{
+ int cpu;
+
+ for_each_possible_cpu(cpu) {
+ free_vmcs(per_cpu(vmxarea, cpu));
+ per_cpu(vmxarea, cpu) = NULL;
+ }
+}
+
+static void init_vmcs_shadow_fields(void)
+{
+ int i, j;
+
+ /* No checks for read only fields yet */
+
+ for (i = j = 0; i < max_shadow_read_write_fields; i++) {
+ switch (shadow_read_write_fields[i]) {
+ case GUEST_BNDCFGS:
+ if (!vmx_mpx_supported())
+ continue;
+ break;
+ default:
+ break;
+ }
+
+ if (j < i)
+ shadow_read_write_fields[j] =
+ shadow_read_write_fields[i];
+ j++;
+ }
+ max_shadow_read_write_fields = j;
+
+ /* shadowed fields guest access without vmexit */
+ for (i = 0; i < max_shadow_read_write_fields; i++) {
+ clear_bit(shadow_read_write_fields[i],
+ vmx_vmwrite_bitmap);
+ clear_bit(shadow_read_write_fields[i],
+ vmx_vmread_bitmap);
+ }
+ for (i = 0; i < max_shadow_read_only_fields; i++)
+ clear_bit(shadow_read_only_fields[i],
+ vmx_vmread_bitmap);
+}
+
+static __init int alloc_kvm_area(void)
+{
+ int cpu;
+
+ for_each_possible_cpu(cpu) {
+ struct vmcs *vmcs;
+
+ vmcs = alloc_vmcs_cpu(cpu);
+ if (!vmcs) {
+ free_kvm_area();
+ return -ENOMEM;
+ }
+
+ per_cpu(vmxarea, cpu) = vmcs;
+ }
+ return 0;
+}
+
+static bool emulation_required(struct kvm_vcpu *vcpu)
+{
+ return emulate_invalid_guest_state && !guest_state_valid(vcpu);
+}
+
+static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
+ struct kvm_segment *save)
+{
+ if (!emulate_invalid_guest_state) {
+ /*
+ * CS and SS RPL should be equal during guest entry according
+ * to VMX spec, but in reality it is not always so. Since vcpu
+ * is in the middle of the transition from real mode to
+ * protected mode it is safe to assume that RPL 0 is a good
+ * default value.
+ */
+ if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
+ save->selector &= ~SEGMENT_RPL_MASK;
+ save->dpl = save->selector & SEGMENT_RPL_MASK;
+ save->s = 1;
+ }
+ vmx_set_segment(vcpu, save, seg);
+}
+
+static void enter_pmode(struct kvm_vcpu *vcpu)
+{
+ unsigned long flags;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ /*
+ * Update real mode segment cache. It may be not up-to-date if sement
+ * register was written while vcpu was in a guest mode.
+ */
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
+
+ vmx->rmode.vm86_active = 0;
+
+ vmx_segment_cache_clear(vmx);
+
+ vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
+
+ flags = vmcs_readl(GUEST_RFLAGS);
+ flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
+ flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
+ vmcs_writel(GUEST_RFLAGS, flags);
+
+ vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
+ (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
+
+ update_exception_bitmap(vcpu);
+
+ fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
+ fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
+ fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
+ fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
+ fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
+ fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
+}
+
+static void fix_rmode_seg(int seg, struct kvm_segment *save)
+{
+ const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
+ struct kvm_segment var = *save;
+
+ var.dpl = 0x3;
+ if (seg == VCPU_SREG_CS)
+ var.type = 0x3;
+
+ if (!emulate_invalid_guest_state) {
+ var.selector = var.base >> 4;
+ var.base = var.base & 0xffff0;
+ var.limit = 0xffff;
+ var.g = 0;
+ var.db = 0;
+ var.present = 1;
+ var.s = 1;
+ var.l = 0;
+ var.unusable = 0;
+ var.type = 0x3;
+ var.avl = 0;
+ if (save->base & 0xf)
+ printk_once(KERN_WARNING "kvm: segment base is not "
+ "paragraph aligned when entering "
+ "protected mode (seg=%d)", seg);
+ }
+
+ vmcs_write16(sf->selector, var.selector);
+ vmcs_write32(sf->base, var.base);
+ vmcs_write32(sf->limit, var.limit);
+ vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
+}
+
+static void enter_rmode(struct kvm_vcpu *vcpu)
+{
+ unsigned long flags;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
+
+ vmx->rmode.vm86_active = 1;
+
+ /*
+ * Very old userspace does not call KVM_SET_TSS_ADDR before entering
+ * vcpu. Warn the user that an update is overdue.
+ */
+ if (!vcpu->kvm->arch.tss_addr)
+ printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
+ "called before entering vcpu\n");
+
+ vmx_segment_cache_clear(vmx);
+
+ vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
+ vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
+ vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
+
+ flags = vmcs_readl(GUEST_RFLAGS);
+ vmx->rmode.save_rflags = flags;
+
+ flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
+
+ vmcs_writel(GUEST_RFLAGS, flags);
+ vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
+ update_exception_bitmap(vcpu);
+
+ fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
+ fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
+ fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
+ fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
+ fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
+ fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
+
+ kvm_mmu_reset_context(vcpu);
+}
+
+static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
+
+ if (!msr)
+ return;
+
+ /*
+ * Force kernel_gs_base reloading before EFER changes, as control
+ * of this msr depends on is_long_mode().
+ */
+ vmx_load_host_state(to_vmx(vcpu));
+ vcpu->arch.efer = efer;
+ if (efer & EFER_LMA) {
+ vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
+ msr->data = efer;
+ } else {
+ vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
+
+ msr->data = efer & ~EFER_LME;
+ }
+ setup_msrs(vmx);
+}
+
+#ifdef CONFIG_X86_64
+
+static void enter_lmode(struct kvm_vcpu *vcpu)
+{
+ u32 guest_tr_ar;
+
+ vmx_segment_cache_clear(to_vmx(vcpu));
+
+ guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
+ if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
+ pr_debug_ratelimited("%s: tss fixup for long mode. \n",
+ __func__);
+ vmcs_write32(GUEST_TR_AR_BYTES,
+ (guest_tr_ar & ~AR_TYPE_MASK)
+ | AR_TYPE_BUSY_64_TSS);
+ }
+ vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
+}
+
+static void exit_lmode(struct kvm_vcpu *vcpu)
+{
+ vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
+ vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
+}
+
+#endif
+
+static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
+{
+ vpid_sync_context(to_vmx(vcpu));
+ if (enable_ept) {
+ if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
+ return;
+ ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
+ }
+}
+
+static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
+{
+ ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
+
+ vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
+ vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
+}
+
+static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
+{
+ if (enable_ept && is_paging(vcpu))
+ vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
+ __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
+}
+
+static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
+{
+ ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
+
+ vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
+ vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
+}
+
+static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
+{
+ struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
+
+ if (!test_bit(VCPU_EXREG_PDPTR,
+ (unsigned long *)&vcpu->arch.regs_dirty))
+ return;
+
+ if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
+ vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
+ vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
+ vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
+ vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
+ }
+}
+
+static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
+{
+ struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
+
+ if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
+ mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
+ mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
+ mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
+ mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
+ }
+
+ __set_bit(VCPU_EXREG_PDPTR,
+ (unsigned long *)&vcpu->arch.regs_avail);
+ __set_bit(VCPU_EXREG_PDPTR,
+ (unsigned long *)&vcpu->arch.regs_dirty);
+}
+
+static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
+
+static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
+ unsigned long cr0,
+ struct kvm_vcpu *vcpu)
+{
+ if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
+ vmx_decache_cr3(vcpu);
+ if (!(cr0 & X86_CR0_PG)) {
+ /* From paging/starting to nonpaging */
+ vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
+ vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
+ (CPU_BASED_CR3_LOAD_EXITING |
+ CPU_BASED_CR3_STORE_EXITING));
+ vcpu->arch.cr0 = cr0;
+ vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
+ } else if (!is_paging(vcpu)) {
+ /* From nonpaging to paging */
+ vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
+ vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
+ ~(CPU_BASED_CR3_LOAD_EXITING |
+ CPU_BASED_CR3_STORE_EXITING));
+ vcpu->arch.cr0 = cr0;
+ vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
+ }
+
+ if (!(cr0 & X86_CR0_WP))
+ *hw_cr0 &= ~X86_CR0_WP;
+}
+
+static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ unsigned long hw_cr0;
+
+ hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
+ if (enable_unrestricted_guest)
+ hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
+ else {
+ hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
+
+ if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
+ enter_pmode(vcpu);
+
+ if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
+ enter_rmode(vcpu);
+ }
+
+#ifdef CONFIG_X86_64
+ if (vcpu->arch.efer & EFER_LME) {
+ if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
+ enter_lmode(vcpu);
+ if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
+ exit_lmode(vcpu);
+ }
+#endif
+
+ if (enable_ept)
+ ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
+
+ if (!vcpu->fpu_active)
+ hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
+
+ vmcs_writel(CR0_READ_SHADOW, cr0);
+ vmcs_writel(GUEST_CR0, hw_cr0);
+ vcpu->arch.cr0 = cr0;
+
+ /* depends on vcpu->arch.cr0 to be set to a new value */
+ vmx->emulation_required = emulation_required(vcpu);
+}
+
+static u64 construct_eptp(unsigned long root_hpa)
+{
+ u64 eptp;
+
+ /* TODO write the value reading from MSR */
+ eptp = VMX_EPT_DEFAULT_MT |
+ VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
+ if (enable_ept_ad_bits)
+ eptp |= VMX_EPT_AD_ENABLE_BIT;
+ eptp |= (root_hpa & PAGE_MASK);
+
+ return eptp;
+}
+
+static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
+{
+ unsigned long guest_cr3;
+ u64 eptp;
+
+ guest_cr3 = cr3;
+ if (enable_ept) {
+ eptp = construct_eptp(cr3);
+ vmcs_write64(EPT_POINTER, eptp);
+ if (is_paging(vcpu) || is_guest_mode(vcpu))
+ guest_cr3 = kvm_read_cr3(vcpu);
+ else
+ guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
+ ept_load_pdptrs(vcpu);
+ }
+
+ vmx_flush_tlb(vcpu);
+ vmcs_writel(GUEST_CR3, guest_cr3);
+}
+
+static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
+{
+ /*
+ * Pass through host's Machine Check Enable value to hw_cr4, which
+ * is in force while we are in guest mode. Do not let guests control
+ * this bit, even if host CR4.MCE == 0.
+ */
+ unsigned long hw_cr4 =
+ (cr4_read_shadow() & X86_CR4_MCE) |
+ (cr4 & ~X86_CR4_MCE) |
+ (to_vmx(vcpu)->rmode.vm86_active ?
+ KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
+
+ if (cr4 & X86_CR4_VMXE) {
+ /*
+ * To use VMXON (and later other VMX instructions), a guest
+ * must first be able to turn on cr4.VMXE (see handle_vmon()).
+ * So basically the check on whether to allow nested VMX
+ * is here.
+ */
+ if (!nested_vmx_allowed(vcpu))
+ return 1;
+ }
+ if (to_vmx(vcpu)->nested.vmxon &&
+ ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
+ return 1;
+
+ vcpu->arch.cr4 = cr4;
+ if (enable_ept) {
+ if (!is_paging(vcpu)) {
+ hw_cr4 &= ~X86_CR4_PAE;
+ hw_cr4 |= X86_CR4_PSE;
+ /*
+ * SMEP/SMAP is disabled if CPU is in non-paging mode
+ * in hardware. However KVM always uses paging mode to
+ * emulate guest non-paging mode with TDP.
+ * To emulate this behavior, SMEP/SMAP needs to be
+ * manually disabled when guest switches to non-paging
+ * mode.
+ */
+ hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
+ } else if (!(cr4 & X86_CR4_PAE)) {
+ hw_cr4 &= ~X86_CR4_PAE;
+ }
+ }
+
+ vmcs_writel(CR4_READ_SHADOW, cr4);
+ vmcs_writel(GUEST_CR4, hw_cr4);
+ return 0;
+}
+
+static void vmx_get_segment(struct kvm_vcpu *vcpu,
+ struct kvm_segment *var, int seg)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ u32 ar;
+
+ if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
+ *var = vmx->rmode.segs[seg];
+ if (seg == VCPU_SREG_TR
+ || var->selector == vmx_read_guest_seg_selector(vmx, seg))
+ return;
+ var->base = vmx_read_guest_seg_base(vmx, seg);
+ var->selector = vmx_read_guest_seg_selector(vmx, seg);
+ return;
+ }
+ var->base = vmx_read_guest_seg_base(vmx, seg);
+ var->limit = vmx_read_guest_seg_limit(vmx, seg);
+ var->selector = vmx_read_guest_seg_selector(vmx, seg);
+ ar = vmx_read_guest_seg_ar(vmx, seg);
+ var->unusable = (ar >> 16) & 1;
+ var->type = ar & 15;
+ var->s = (ar >> 4) & 1;
+ var->dpl = (ar >> 5) & 3;
+ /*
+ * Some userspaces do not preserve unusable property. Since usable
+ * segment has to be present according to VMX spec we can use present
+ * property to amend userspace bug by making unusable segment always
+ * nonpresent. vmx_segment_access_rights() already marks nonpresent
+ * segment as unusable.
+ */
+ var->present = !var->unusable;
+ var->avl = (ar >> 12) & 1;
+ var->l = (ar >> 13) & 1;
+ var->db = (ar >> 14) & 1;
+ var->g = (ar >> 15) & 1;
+}
+
+static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
+{
+ struct kvm_segment s;
+
+ if (to_vmx(vcpu)->rmode.vm86_active) {
+ vmx_get_segment(vcpu, &s, seg);
+ return s.base;
+ }
+ return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
+}
+
+static int vmx_get_cpl(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (unlikely(vmx->rmode.vm86_active))
+ return 0;
+ else {
+ int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
+ return AR_DPL(ar);
+ }
+}
+
+static u32 vmx_segment_access_rights(struct kvm_segment *var)
+{
+ u32 ar;
+
+ if (var->unusable || !var->present)
+ ar = 1 << 16;
+ else {
+ ar = var->type & 15;
+ ar |= (var->s & 1) << 4;
+ ar |= (var->dpl & 3) << 5;
+ ar |= (var->present & 1) << 7;
+ ar |= (var->avl & 1) << 12;
+ ar |= (var->l & 1) << 13;
+ ar |= (var->db & 1) << 14;
+ ar |= (var->g & 1) << 15;
+ }
+
+ return ar;
+}
+
+static void vmx_set_segment(struct kvm_vcpu *vcpu,
+ struct kvm_segment *var, int seg)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
+
+ vmx_segment_cache_clear(vmx);
+
+ if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
+ vmx->rmode.segs[seg] = *var;
+ if (seg == VCPU_SREG_TR)
+ vmcs_write16(sf->selector, var->selector);
+ else if (var->s)
+ fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
+ goto out;
+ }
+
+ vmcs_writel(sf->base, var->base);
+ vmcs_write32(sf->limit, var->limit);
+ vmcs_write16(sf->selector, var->selector);
+
+ /*
+ * Fix the "Accessed" bit in AR field of segment registers for older
+ * qemu binaries.
+ * IA32 arch specifies that at the time of processor reset the
+ * "Accessed" bit in the AR field of segment registers is 1. And qemu
+ * is setting it to 0 in the userland code. This causes invalid guest
+ * state vmexit when "unrestricted guest" mode is turned on.
+ * Fix for this setup issue in cpu_reset is being pushed in the qemu
+ * tree. Newer qemu binaries with that qemu fix would not need this
+ * kvm hack.
+ */
+ if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
+ var->type |= 0x1; /* Accessed */
+
+ vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
+
+out:
+ vmx->emulation_required = emulation_required(vcpu);
+}
+
+static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
+{
+ u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
+
+ *db = (ar >> 14) & 1;
+ *l = (ar >> 13) & 1;
+}
+
+static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+ dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
+ dt->address = vmcs_readl(GUEST_IDTR_BASE);
+}
+
+static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+ vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
+ vmcs_writel(GUEST_IDTR_BASE, dt->address);
+}
+
+static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+ dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
+ dt->address = vmcs_readl(GUEST_GDTR_BASE);
+}
+
+static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+ vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
+ vmcs_writel(GUEST_GDTR_BASE, dt->address);
+}
+
+static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
+{
+ struct kvm_segment var;
+ u32 ar;
+
+ vmx_get_segment(vcpu, &var, seg);
+ var.dpl = 0x3;
+ if (seg == VCPU_SREG_CS)
+ var.type = 0x3;
+ ar = vmx_segment_access_rights(&var);
+
+ if (var.base != (var.selector << 4))
+ return false;
+ if (var.limit != 0xffff)
+ return false;
+ if (ar != 0xf3)
+ return false;
+
+ return true;
+}
+
+static bool code_segment_valid(struct kvm_vcpu *vcpu)
+{
+ struct kvm_segment cs;
+ unsigned int cs_rpl;
+
+ vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
+ cs_rpl = cs.selector & SEGMENT_RPL_MASK;
+
+ if (cs.unusable)
+ return false;
+ if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
+ return false;
+ if (!cs.s)
+ return false;
+ if (cs.type & AR_TYPE_WRITEABLE_MASK) {
+ if (cs.dpl > cs_rpl)
+ return false;
+ } else {
+ if (cs.dpl != cs_rpl)
+ return false;
+ }
+ if (!cs.present)
+ return false;
+
+ /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
+ return true;
+}
+
+static bool stack_segment_valid(struct kvm_vcpu *vcpu)
+{
+ struct kvm_segment ss;
+ unsigned int ss_rpl;
+
+ vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
+ ss_rpl = ss.selector & SEGMENT_RPL_MASK;
+
+ if (ss.unusable)
+ return true;
+ if (ss.type != 3 && ss.type != 7)
+ return false;
+ if (!ss.s)
+ return false;
+ if (ss.dpl != ss_rpl) /* DPL != RPL */
+ return false;
+ if (!ss.present)
+ return false;
+
+ return true;
+}
+
+static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
+{
+ struct kvm_segment var;
+ unsigned int rpl;
+
+ vmx_get_segment(vcpu, &var, seg);
+ rpl = var.selector & SEGMENT_RPL_MASK;
+
+ if (var.unusable)
+ return true;
+ if (!var.s)
+ return false;
+ if (!var.present)
+ return false;
+ if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
+ if (var.dpl < rpl) /* DPL < RPL */
+ return false;
+ }
+
+ /* TODO: Add other members to kvm_segment_field to allow checking for other access
+ * rights flags
+ */
+ return true;
+}
+
+static bool tr_valid(struct kvm_vcpu *vcpu)
+{
+ struct kvm_segment tr;
+
+ vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
+
+ if (tr.unusable)
+ return false;
+ if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
+ return false;
+ if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
+ return false;
+ if (!tr.present)
+ return false;
+
+ return true;
+}
+
+static bool ldtr_valid(struct kvm_vcpu *vcpu)
+{
+ struct kvm_segment ldtr;
+
+ vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
+
+ if (ldtr.unusable)
+ return true;
+ if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
+ return false;
+ if (ldtr.type != 2)
+ return false;
+ if (!ldtr.present)
+ return false;
+
+ return true;
+}
+
+static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
+{
+ struct kvm_segment cs, ss;
+
+ vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
+ vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
+
+ return ((cs.selector & SEGMENT_RPL_MASK) ==
+ (ss.selector & SEGMENT_RPL_MASK));
+}
+
+/*
+ * Check if guest state is valid. Returns true if valid, false if
+ * not.
+ * We assume that registers are always usable
+ */
+static bool guest_state_valid(struct kvm_vcpu *vcpu)
+{
+ if (enable_unrestricted_guest)
+ return true;
+
+ /* real mode guest state checks */
+ if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
+ if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
+ return false;
+ if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
+ return false;
+ if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
+ return false;
+ if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
+ return false;
+ if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
+ return false;
+ if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
+ return false;
+ } else {
+ /* protected mode guest state checks */
+ if (!cs_ss_rpl_check(vcpu))
+ return false;
+ if (!code_segment_valid(vcpu))
+ return false;
+ if (!stack_segment_valid(vcpu))
+ return false;
+ if (!data_segment_valid(vcpu, VCPU_SREG_DS))
+ return false;
+ if (!data_segment_valid(vcpu, VCPU_SREG_ES))
+ return false;
+ if (!data_segment_valid(vcpu, VCPU_SREG_FS))
+ return false;
+ if (!data_segment_valid(vcpu, VCPU_SREG_GS))
+ return false;
+ if (!tr_valid(vcpu))
+ return false;
+ if (!ldtr_valid(vcpu))
+ return false;
+ }
+ /* TODO:
+ * - Add checks on RIP
+ * - Add checks on RFLAGS
+ */
+
+ return true;
+}
+
+static int init_rmode_tss(struct kvm *kvm)
+{
+ gfn_t fn;
+ u16 data = 0;
+ int idx, r;
+
+ idx = srcu_read_lock(&kvm->srcu);
+ fn = kvm->arch.tss_addr >> PAGE_SHIFT;
+ r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
+ if (r < 0)
+ goto out;
+ data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
+ r = kvm_write_guest_page(kvm, fn++, &data,
+ TSS_IOPB_BASE_OFFSET, sizeof(u16));
+ if (r < 0)
+ goto out;
+ r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
+ if (r < 0)
+ goto out;
+ r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
+ if (r < 0)
+ goto out;
+ data = ~0;
+ r = kvm_write_guest_page(kvm, fn, &data,
+ RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
+ sizeof(u8));
+out:
+ srcu_read_unlock(&kvm->srcu, idx);
+ return r;
+}
+
+static int init_rmode_identity_map(struct kvm *kvm)
+{
+ int i, idx, r = 0;
+ pfn_t identity_map_pfn;
+ u32 tmp;
+
+ if (!enable_ept)
+ return 0;
+
+ /* Protect kvm->arch.ept_identity_pagetable_done. */
+ mutex_lock(&kvm->slots_lock);
+
+ if (likely(kvm->arch.ept_identity_pagetable_done))
+ goto out2;
+
+ identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
+
+ r = alloc_identity_pagetable(kvm);
+ if (r < 0)
+ goto out2;
+
+ idx = srcu_read_lock(&kvm->srcu);
+ r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
+ if (r < 0)
+ goto out;
+ /* Set up identity-mapping pagetable for EPT in real mode */
+ for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
+ tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
+ _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
+ r = kvm_write_guest_page(kvm, identity_map_pfn,
+ &tmp, i * sizeof(tmp), sizeof(tmp));
+ if (r < 0)
+ goto out;
+ }
+ kvm->arch.ept_identity_pagetable_done = true;
+
+out:
+ srcu_read_unlock(&kvm->srcu, idx);
+
+out2:
+ mutex_unlock(&kvm->slots_lock);
+ return r;
+}
+
+static void seg_setup(int seg)
+{
+ const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
+ unsigned int ar;
+
+ vmcs_write16(sf->selector, 0);
+ vmcs_writel(sf->base, 0);
+ vmcs_write32(sf->limit, 0xffff);
+ ar = 0x93;
+ if (seg == VCPU_SREG_CS)
+ ar |= 0x08; /* code segment */
+
+ vmcs_write32(sf->ar_bytes, ar);
+}
+
+static int alloc_apic_access_page(struct kvm *kvm)
+{
+ struct page *page;
+ struct kvm_userspace_memory_region kvm_userspace_mem;
+ int r = 0;
+
+ mutex_lock(&kvm->slots_lock);
+ if (kvm->arch.apic_access_page_done)
+ goto out;
+ kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
+ kvm_userspace_mem.flags = 0;
+ kvm_userspace_mem.guest_phys_addr = APIC_DEFAULT_PHYS_BASE;
+ kvm_userspace_mem.memory_size = PAGE_SIZE;
+ r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
+ if (r)
+ goto out;
+
+ page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
+ if (is_error_page(page)) {
+ r = -EFAULT;
+ goto out;
+ }
+
+ /*
+ * Do not pin the page in memory, so that memory hot-unplug
+ * is able to migrate it.
+ */
+ put_page(page);
+ kvm->arch.apic_access_page_done = true;
+out:
+ mutex_unlock(&kvm->slots_lock);
+ return r;
+}
+
+static int alloc_identity_pagetable(struct kvm *kvm)
+{
+ /* Called with kvm->slots_lock held. */
+
+ struct kvm_userspace_memory_region kvm_userspace_mem;
+ int r = 0;
+
+ BUG_ON(kvm->arch.ept_identity_pagetable_done);
+
+ kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
+ kvm_userspace_mem.flags = 0;
+ kvm_userspace_mem.guest_phys_addr =
+ kvm->arch.ept_identity_map_addr;
+ kvm_userspace_mem.memory_size = PAGE_SIZE;
+ r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
+
+ return r;
+}
+
+static void allocate_vpid(struct vcpu_vmx *vmx)
+{
+ int vpid;
+
+ vmx->vpid = 0;
+ if (!enable_vpid)
+ return;
+ spin_lock(&vmx_vpid_lock);
+ vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
+ if (vpid < VMX_NR_VPIDS) {
+ vmx->vpid = vpid;
+ __set_bit(vpid, vmx_vpid_bitmap);
+ }
+ spin_unlock(&vmx_vpid_lock);
+}
+
+static void free_vpid(struct vcpu_vmx *vmx)
+{
+ if (!enable_vpid)
+ return;
+ spin_lock(&vmx_vpid_lock);
+ if (vmx->vpid != 0)
+ __clear_bit(vmx->vpid, vmx_vpid_bitmap);
+ spin_unlock(&vmx_vpid_lock);
+}
+
+#define MSR_TYPE_R 1
+#define MSR_TYPE_W 2
+static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
+ u32 msr, int type)
+{
+ int f = sizeof(unsigned long);
+
+ if (!cpu_has_vmx_msr_bitmap())
+ return;
+
+ /*
+ * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
+ * have the write-low and read-high bitmap offsets the wrong way round.
+ * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
+ */
+ if (msr <= 0x1fff) {
+ if (type & MSR_TYPE_R)
+ /* read-low */
+ __clear_bit(msr, msr_bitmap + 0x000 / f);
+
+ if (type & MSR_TYPE_W)
+ /* write-low */
+ __clear_bit(msr, msr_bitmap + 0x800 / f);
+
+ } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
+ msr &= 0x1fff;
+ if (type & MSR_TYPE_R)
+ /* read-high */
+ __clear_bit(msr, msr_bitmap + 0x400 / f);
+
+ if (type & MSR_TYPE_W)
+ /* write-high */
+ __clear_bit(msr, msr_bitmap + 0xc00 / f);
+
+ }
+}
+
+static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
+ u32 msr, int type)
+{
+ int f = sizeof(unsigned long);
+
+ if (!cpu_has_vmx_msr_bitmap())
+ return;
+
+ /*
+ * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
+ * have the write-low and read-high bitmap offsets the wrong way round.
+ * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
+ */
+ if (msr <= 0x1fff) {
+ if (type & MSR_TYPE_R)
+ /* read-low */
+ __set_bit(msr, msr_bitmap + 0x000 / f);
+
+ if (type & MSR_TYPE_W)
+ /* write-low */
+ __set_bit(msr, msr_bitmap + 0x800 / f);
+
+ } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
+ msr &= 0x1fff;
+ if (type & MSR_TYPE_R)
+ /* read-high */
+ __set_bit(msr, msr_bitmap + 0x400 / f);
+
+ if (type & MSR_TYPE_W)
+ /* write-high */
+ __set_bit(msr, msr_bitmap + 0xc00 / f);
+
+ }
+}
+
+/*
+ * If a msr is allowed by L0, we should check whether it is allowed by L1.
+ * The corresponding bit will be cleared unless both of L0 and L1 allow it.
+ */
+static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
+ unsigned long *msr_bitmap_nested,
+ u32 msr, int type)
+{
+ int f = sizeof(unsigned long);
+
+ if (!cpu_has_vmx_msr_bitmap()) {
+ WARN_ON(1);
+ return;
+ }
+
+ /*
+ * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
+ * have the write-low and read-high bitmap offsets the wrong way round.
+ * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
+ */
+ if (msr <= 0x1fff) {
+ if (type & MSR_TYPE_R &&
+ !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
+ /* read-low */
+ __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
+
+ if (type & MSR_TYPE_W &&
+ !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
+ /* write-low */
+ __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
+
+ } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
+ msr &= 0x1fff;
+ if (type & MSR_TYPE_R &&
+ !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
+ /* read-high */
+ __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
+
+ if (type & MSR_TYPE_W &&
+ !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
+ /* write-high */
+ __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
+
+ }
+}
+
+static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
+{
+ if (!longmode_only)
+ __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
+ msr, MSR_TYPE_R | MSR_TYPE_W);
+ __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
+ msr, MSR_TYPE_R | MSR_TYPE_W);
+}
+
+static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
+{
+ __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
+ msr, MSR_TYPE_R);
+ __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
+ msr, MSR_TYPE_R);
+}
+
+static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
+{
+ __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
+ msr, MSR_TYPE_R);
+ __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
+ msr, MSR_TYPE_R);
+}
+
+static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
+{
+ __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
+ msr, MSR_TYPE_W);
+ __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
+ msr, MSR_TYPE_W);
+}
+
+static int vmx_vm_has_apicv(struct kvm *kvm)
+{
+ return enable_apicv && irqchip_in_kernel(kvm);
+}
+
+static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ int max_irr;
+ void *vapic_page;
+ u16 status;
+
+ if (vmx->nested.pi_desc &&
+ vmx->nested.pi_pending) {
+ vmx->nested.pi_pending = false;
+ if (!pi_test_and_clear_on(vmx->nested.pi_desc))
+ return 0;
+
+ max_irr = find_last_bit(
+ (unsigned long *)vmx->nested.pi_desc->pir, 256);
+
+ if (max_irr == 256)
+ return 0;
+
+ vapic_page = kmap(vmx->nested.virtual_apic_page);
+ if (!vapic_page) {
+ WARN_ON(1);
+ return -ENOMEM;
+ }
+ __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
+ kunmap(vmx->nested.virtual_apic_page);
+
+ status = vmcs_read16(GUEST_INTR_STATUS);
+ if ((u8)max_irr > ((u8)status & 0xff)) {
+ status &= ~0xff;
+ status |= (u8)max_irr;
+ vmcs_write16(GUEST_INTR_STATUS, status);
+ }
+ }
+ return 0;
+}
+
+static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
+{
+#ifdef CONFIG_SMP
+ if (vcpu->mode == IN_GUEST_MODE) {
+ apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
+ POSTED_INTR_VECTOR);
+ return true;
+ }
+#endif
+ return false;
+}
+
+static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
+ int vector)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (is_guest_mode(vcpu) &&
+ vector == vmx->nested.posted_intr_nv) {
+ /* the PIR and ON have been set by L1. */
+ kvm_vcpu_trigger_posted_interrupt(vcpu);
+ /*
+ * If a posted intr is not recognized by hardware,
+ * we will accomplish it in the next vmentry.
+ */
+ vmx->nested.pi_pending = true;
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+ return 0;
+ }
+ return -1;
+}
+/*
+ * Send interrupt to vcpu via posted interrupt way.
+ * 1. If target vcpu is running(non-root mode), send posted interrupt
+ * notification to vcpu and hardware will sync PIR to vIRR atomically.
+ * 2. If target vcpu isn't running(root mode), kick it to pick up the
+ * interrupt from PIR in next vmentry.
+ */
+static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ int r;
+
+ r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
+ if (!r)
+ return;
+
+ if (pi_test_and_set_pir(vector, &vmx->pi_desc))
+ return;
+
+ r = pi_test_and_set_on(&vmx->pi_desc);
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+ if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
+ kvm_vcpu_kick(vcpu);
+}
+
+static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (!pi_test_and_clear_on(&vmx->pi_desc))
+ return;
+
+ kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
+}
+
+static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
+{
+ return;
+}
+
+/*
+ * Set up the vmcs's constant host-state fields, i.e., host-state fields that
+ * will not change in the lifetime of the guest.
+ * Note that host-state that does change is set elsewhere. E.g., host-state
+ * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
+ */
+static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
+{
+ u32 low32, high32;
+ unsigned long tmpl;
+ struct desc_ptr dt;
+ unsigned long cr4;
+
+ vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
+ vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
+
+ /* Save the most likely value for this task's CR4 in the VMCS. */
+ cr4 = cr4_read_shadow();
+ vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
+ vmx->host_state.vmcs_host_cr4 = cr4;
+
+ vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
+#ifdef CONFIG_X86_64
+ /*
+ * Load null selectors, so we can avoid reloading them in
+ * __vmx_load_host_state(), in case userspace uses the null selectors
+ * too (the expected case).
+ */
+ vmcs_write16(HOST_DS_SELECTOR, 0);
+ vmcs_write16(HOST_ES_SELECTOR, 0);
+#else
+ vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
+ vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
+#endif
+ vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
+ vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
+
+ native_store_idt(&dt);
+ vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
+ vmx->host_idt_base = dt.address;
+
+ vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
+
+ rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
+ vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
+ rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
+ vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
+
+ if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
+ rdmsr(MSR_IA32_CR_PAT, low32, high32);
+ vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
+ }
+}
+
+static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
+{
+ vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
+ if (enable_ept)
+ vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
+ if (is_guest_mode(&vmx->vcpu))
+ vmx->vcpu.arch.cr4_guest_owned_bits &=
+ ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
+ vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
+}
+
+static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
+{
+ u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
+
+ if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
+ pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
+ return pin_based_exec_ctrl;
+}
+
+static u32 vmx_exec_control(struct vcpu_vmx *vmx)
+{
+ u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
+
+ if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
+ exec_control &= ~CPU_BASED_MOV_DR_EXITING;
+
+ if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
+ exec_control &= ~CPU_BASED_TPR_SHADOW;
+#ifdef CONFIG_X86_64
+ exec_control |= CPU_BASED_CR8_STORE_EXITING |
+ CPU_BASED_CR8_LOAD_EXITING;
+#endif
+ }
+ if (!enable_ept)
+ exec_control |= CPU_BASED_CR3_STORE_EXITING |
+ CPU_BASED_CR3_LOAD_EXITING |
+ CPU_BASED_INVLPG_EXITING;
+ return exec_control;
+}
+
+static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
+{
+ u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
+ if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
+ exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+ if (vmx->vpid == 0)
+ exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
+ if (!enable_ept) {
+ exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
+ enable_unrestricted_guest = 0;
+ /* Enable INVPCID for non-ept guests may cause performance regression. */
+ exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
+ }
+ if (!enable_unrestricted_guest)
+ exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
+ if (!ple_gap)
+ exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
+ if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
+ exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
+ SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
+ exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
+ /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
+ (handle_vmptrld).
+ We can NOT enable shadow_vmcs here because we don't have yet
+ a current VMCS12
+ */
+ exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
+ /* PML is enabled/disabled in creating/destorying vcpu */
+ exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
+
+ return exec_control;
+}
+
+static void ept_set_mmio_spte_mask(void)
+{
+ /*
+ * EPT Misconfigurations can be generated if the value of bits 2:0
+ * of an EPT paging-structure entry is 110b (write/execute).
+ * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
+ * spte.
+ */
+ kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
+}
+
+#define VMX_XSS_EXIT_BITMAP 0
+/*
+ * Sets up the vmcs for emulated real mode.
+ */
+static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
+{
+#ifdef CONFIG_X86_64
+ unsigned long a;
+#endif
+ int i;
+
+ /* I/O */
+ vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
+ vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
+
+ if (enable_shadow_vmcs) {
+ vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
+ vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
+ }
+ if (cpu_has_vmx_msr_bitmap())
+ vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
+
+ vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
+
+ /* Control */
+ vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
+
+ vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
+
+ if (cpu_has_secondary_exec_ctrls()) {
+ vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
+ vmx_secondary_exec_control(vmx));
+ }
+
+ if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
+ vmcs_write64(EOI_EXIT_BITMAP0, 0);
+ vmcs_write64(EOI_EXIT_BITMAP1, 0);
+ vmcs_write64(EOI_EXIT_BITMAP2, 0);
+ vmcs_write64(EOI_EXIT_BITMAP3, 0);
+
+ vmcs_write16(GUEST_INTR_STATUS, 0);
+
+ vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
+ vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
+ }
+
+ if (ple_gap) {
+ vmcs_write32(PLE_GAP, ple_gap);
+ vmx->ple_window = ple_window;
+ vmx->ple_window_dirty = true;
+ }
+
+ vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
+ vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
+ vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
+
+ vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
+ vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
+ vmx_set_constant_host_state(vmx);
+#ifdef CONFIG_X86_64
+ rdmsrl(MSR_FS_BASE, a);
+ vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
+ rdmsrl(MSR_GS_BASE, a);
+ vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
+#else
+ vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
+ vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
+#endif
+
+ vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
+ vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
+ vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
+ vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
+ vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
+
+ if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
+ u32 msr_low, msr_high;
+ u64 host_pat;
+ rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
+ host_pat = msr_low | ((u64) msr_high << 32);
+ /* Write the default value follow host pat */
+ vmcs_write64(GUEST_IA32_PAT, host_pat);
+ /* Keep arch.pat sync with GUEST_IA32_PAT */
+ vmx->vcpu.arch.pat = host_pat;
+ }
+
+ for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
+ u32 index = vmx_msr_index[i];
+ u32 data_low, data_high;
+ int j = vmx->nmsrs;
+
+ if (rdmsr_safe(index, &data_low, &data_high) < 0)
+ continue;
+ if (wrmsr_safe(index, data_low, data_high) < 0)
+ continue;
+ vmx->guest_msrs[j].index = i;
+ vmx->guest_msrs[j].data = 0;
+ vmx->guest_msrs[j].mask = -1ull;
+ ++vmx->nmsrs;
+ }
+
+
+ vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
+
+ /* 22.2.1, 20.8.1 */
+ vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
+
+ vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
+ set_cr4_guest_host_mask(vmx);
+
+ if (vmx_xsaves_supported())
+ vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
+
+ return 0;
+}
+
+static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct msr_data apic_base_msr;
+
+ vmx->rmode.vm86_active = 0;
+
+ vmx->soft_vnmi_blocked = 0;
+
+ vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
+ kvm_set_cr8(&vmx->vcpu, 0);
+ apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
+ if (kvm_vcpu_is_reset_bsp(&vmx->vcpu))
+ apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
+ apic_base_msr.host_initiated = true;
+ kvm_set_apic_base(&vmx->vcpu, &apic_base_msr);
+
+ vmx_segment_cache_clear(vmx);
+
+ seg_setup(VCPU_SREG_CS);
+ vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
+ vmcs_write32(GUEST_CS_BASE, 0xffff0000);
+
+ seg_setup(VCPU_SREG_DS);
+ seg_setup(VCPU_SREG_ES);
+ seg_setup(VCPU_SREG_FS);
+ seg_setup(VCPU_SREG_GS);
+ seg_setup(VCPU_SREG_SS);
+
+ vmcs_write16(GUEST_TR_SELECTOR, 0);
+ vmcs_writel(GUEST_TR_BASE, 0);
+ vmcs_write32(GUEST_TR_LIMIT, 0xffff);
+ vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
+
+ vmcs_write16(GUEST_LDTR_SELECTOR, 0);
+ vmcs_writel(GUEST_LDTR_BASE, 0);
+ vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
+ vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
+
+ vmcs_write32(GUEST_SYSENTER_CS, 0);
+ vmcs_writel(GUEST_SYSENTER_ESP, 0);
+ vmcs_writel(GUEST_SYSENTER_EIP, 0);
+
+ vmcs_writel(GUEST_RFLAGS, 0x02);
+ kvm_rip_write(vcpu, 0xfff0);
+
+ vmcs_writel(GUEST_GDTR_BASE, 0);
+ vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
+
+ vmcs_writel(GUEST_IDTR_BASE, 0);
+ vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
+
+ vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
+ vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
+ vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
+
+ /* Special registers */
+ vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
+
+ setup_msrs(vmx);
+
+ vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
+
+ if (cpu_has_vmx_tpr_shadow()) {
+ vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
+ if (vm_need_tpr_shadow(vmx->vcpu.kvm))
+ vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
+ __pa(vmx->vcpu.arch.apic->regs));
+ vmcs_write32(TPR_THRESHOLD, 0);
+ }
+
+ kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
+
+ if (vmx_vm_has_apicv(vcpu->kvm))
+ memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
+
+ if (vmx->vpid != 0)
+ vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
+
+ vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
+ vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
+ vmx_set_cr4(&vmx->vcpu, 0);
+ vmx_set_efer(&vmx->vcpu, 0);
+ vmx_fpu_activate(&vmx->vcpu);
+ update_exception_bitmap(&vmx->vcpu);
+
+ vpid_sync_context(vmx);
+}
+
+/*
+ * In nested virtualization, check if L1 asked to exit on external interrupts.
+ * For most existing hypervisors, this will always return true.
+ */
+static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
+{
+ return get_vmcs12(vcpu)->pin_based_vm_exec_control &
+ PIN_BASED_EXT_INTR_MASK;
+}
+
+/*
+ * In nested virtualization, check if L1 has set
+ * VM_EXIT_ACK_INTR_ON_EXIT
+ */
+static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
+{
+ return get_vmcs12(vcpu)->vm_exit_controls &
+ VM_EXIT_ACK_INTR_ON_EXIT;
+}
+
+static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
+{
+ return get_vmcs12(vcpu)->pin_based_vm_exec_control &
+ PIN_BASED_NMI_EXITING;
+}
+
+static void enable_irq_window(struct kvm_vcpu *vcpu)
+{
+ u32 cpu_based_vm_exec_control;
+
+ cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
+ cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
+ vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
+}
+
+static void enable_nmi_window(struct kvm_vcpu *vcpu)
+{
+ u32 cpu_based_vm_exec_control;
+
+ if (!cpu_has_virtual_nmis() ||
+ vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
+ enable_irq_window(vcpu);
+ return;
+ }
+
+ cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
+ cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
+ vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
+}
+
+static void vmx_inject_irq(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ uint32_t intr;
+ int irq = vcpu->arch.interrupt.nr;
+
+ trace_kvm_inj_virq(irq);
+
+ ++vcpu->stat.irq_injections;
+ if (vmx->rmode.vm86_active) {
+ int inc_eip = 0;
+ if (vcpu->arch.interrupt.soft)
+ inc_eip = vcpu->arch.event_exit_inst_len;
+ if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
+ kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+ return;
+ }
+ intr = irq | INTR_INFO_VALID_MASK;
+ if (vcpu->arch.interrupt.soft) {
+ intr |= INTR_TYPE_SOFT_INTR;
+ vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
+ vmx->vcpu.arch.event_exit_inst_len);
+ } else
+ intr |= INTR_TYPE_EXT_INTR;
+ vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
+}
+
+static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (is_guest_mode(vcpu))
+ return;
+
+ if (!cpu_has_virtual_nmis()) {
+ /*
+ * Tracking the NMI-blocked state in software is built upon
+ * finding the next open IRQ window. This, in turn, depends on
+ * well-behaving guests: They have to keep IRQs disabled at
+ * least as long as the NMI handler runs. Otherwise we may
+ * cause NMI nesting, maybe breaking the guest. But as this is
+ * highly unlikely, we can live with the residual risk.
+ */
+ vmx->soft_vnmi_blocked = 1;
+ vmx->vnmi_blocked_time = 0;
+ }
+
+ ++vcpu->stat.nmi_injections;
+ vmx->nmi_known_unmasked = false;
+ if (vmx->rmode.vm86_active) {
+ if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
+ kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+ return;
+ }
+ vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
+ INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
+}
+
+static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
+{
+ if (!cpu_has_virtual_nmis())
+ return to_vmx(vcpu)->soft_vnmi_blocked;
+ if (to_vmx(vcpu)->nmi_known_unmasked)
+ return false;
+ return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
+}
+
+static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (!cpu_has_virtual_nmis()) {
+ if (vmx->soft_vnmi_blocked != masked) {
+ vmx->soft_vnmi_blocked = masked;
+ vmx->vnmi_blocked_time = 0;
+ }
+ } else {
+ vmx->nmi_known_unmasked = !masked;
+ if (masked)
+ vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
+ GUEST_INTR_STATE_NMI);
+ else
+ vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
+ GUEST_INTR_STATE_NMI);
+ }
+}
+
+static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
+{
+ if (to_vmx(vcpu)->nested.nested_run_pending)
+ return 0;
+
+ if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
+ return 0;
+
+ return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
+ (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
+ | GUEST_INTR_STATE_NMI));
+}
+
+static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
+{
+ return (!to_vmx(vcpu)->nested.nested_run_pending &&
+ vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
+ !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
+ (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
+}
+
+static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
+{
+ int ret;
+ struct kvm_userspace_memory_region tss_mem = {
+ .slot = TSS_PRIVATE_MEMSLOT,
+ .guest_phys_addr = addr,
+ .memory_size = PAGE_SIZE * 3,
+ .flags = 0,
+ };
+
+ ret = kvm_set_memory_region(kvm, &tss_mem);
+ if (ret)
+ return ret;
+ kvm->arch.tss_addr = addr;
+ return init_rmode_tss(kvm);
+}
+
+static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
+{
+ switch (vec) {
+ case BP_VECTOR:
+ /*
+ * Update instruction length as we may reinject the exception
+ * from user space while in guest debugging mode.
+ */
+ to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
+ vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+ if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
+ return false;
+ /* fall through */
+ case DB_VECTOR:
+ if (vcpu->guest_debug &
+ (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
+ return false;
+ /* fall through */
+ case DE_VECTOR:
+ case OF_VECTOR:
+ case BR_VECTOR:
+ case UD_VECTOR:
+ case DF_VECTOR:
+ case SS_VECTOR:
+ case GP_VECTOR:
+ case MF_VECTOR:
+ return true;
+ break;
+ }
+ return false;
+}
+
+static int handle_rmode_exception(struct kvm_vcpu *vcpu,
+ int vec, u32 err_code)
+{
+ /*
+ * Instruction with address size override prefix opcode 0x67
+ * Cause the #SS fault with 0 error code in VM86 mode.
+ */
+ if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
+ if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
+ if (vcpu->arch.halt_request) {
+ vcpu->arch.halt_request = 0;
+ return kvm_vcpu_halt(vcpu);
+ }
+ return 1;
+ }
+ return 0;
+ }
+
+ /*
+ * Forward all other exceptions that are valid in real mode.
+ * FIXME: Breaks guest debugging in real mode, needs to be fixed with
+ * the required debugging infrastructure rework.
+ */
+ kvm_queue_exception(vcpu, vec);
+ return 1;
+}
+
+/*
+ * Trigger machine check on the host. We assume all the MSRs are already set up
+ * by the CPU and that we still run on the same CPU as the MCE occurred on.
+ * We pass a fake environment to the machine check handler because we want
+ * the guest to be always treated like user space, no matter what context
+ * it used internally.
+ */
+static void kvm_machine_check(void)
+{
+#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
+ struct pt_regs regs = {
+ .cs = 3, /* Fake ring 3 no matter what the guest ran on */
+ .flags = X86_EFLAGS_IF,
+ };
+
+ do_machine_check(&regs, 0);
+#endif
+}
+
+static int handle_machine_check(struct kvm_vcpu *vcpu)
+{
+ /* already handled by vcpu_run */
+ return 1;
+}
+
+static int handle_exception(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct kvm_run *kvm_run = vcpu->run;
+ u32 intr_info, ex_no, error_code;
+ unsigned long cr2, rip, dr6;
+ u32 vect_info;
+ enum emulation_result er;
+
+ vect_info = vmx->idt_vectoring_info;
+ intr_info = vmx->exit_intr_info;
+
+ if (is_machine_check(intr_info))
+ return handle_machine_check(vcpu);
+
+ if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
+ return 1; /* already handled by vmx_vcpu_run() */
+
+ if (is_no_device(intr_info)) {
+ vmx_fpu_activate(vcpu);
+ return 1;
+ }
+
+ if (is_invalid_opcode(intr_info)) {
+ if (is_guest_mode(vcpu)) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+ }
+ er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
+ if (er != EMULATE_DONE)
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+ }
+
+ error_code = 0;
+ if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
+ error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
+
+ /*
+ * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
+ * MMIO, it is better to report an internal error.
+ * See the comments in vmx_handle_exit.
+ */
+ if ((vect_info & VECTORING_INFO_VALID_MASK) &&
+ !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
+ vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
+ vcpu->run->internal.ndata = 3;
+ vcpu->run->internal.data[0] = vect_info;
+ vcpu->run->internal.data[1] = intr_info;
+ vcpu->run->internal.data[2] = error_code;
+ return 0;
+ }
+
+ if (is_page_fault(intr_info)) {
+ /* EPT won't cause page fault directly */
+ BUG_ON(enable_ept);
+ cr2 = vmcs_readl(EXIT_QUALIFICATION);
+ trace_kvm_page_fault(cr2, error_code);
+
+ if (kvm_event_needs_reinjection(vcpu))
+ kvm_mmu_unprotect_page_virt(vcpu, cr2);
+ return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
+ }
+
+ ex_no = intr_info & INTR_INFO_VECTOR_MASK;
+
+ if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
+ return handle_rmode_exception(vcpu, ex_no, error_code);
+
+ switch (ex_no) {
+ case DB_VECTOR:
+ dr6 = vmcs_readl(EXIT_QUALIFICATION);
+ if (!(vcpu->guest_debug &
+ (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
+ vcpu->arch.dr6 &= ~15;
+ vcpu->arch.dr6 |= dr6 | DR6_RTM;
+ if (!(dr6 & ~DR6_RESERVED)) /* icebp */
+ skip_emulated_instruction(vcpu);
+
+ kvm_queue_exception(vcpu, DB_VECTOR);
+ return 1;
+ }
+ kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
+ kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
+ /* fall through */
+ case BP_VECTOR:
+ /*
+ * Update instruction length as we may reinject #BP from
+ * user space while in guest debugging mode. Reading it for
+ * #DB as well causes no harm, it is not used in that case.
+ */
+ vmx->vcpu.arch.event_exit_inst_len =
+ vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+ kvm_run->exit_reason = KVM_EXIT_DEBUG;
+ rip = kvm_rip_read(vcpu);
+ kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
+ kvm_run->debug.arch.exception = ex_no;
+ break;
+ default:
+ kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
+ kvm_run->ex.exception = ex_no;
+ kvm_run->ex.error_code = error_code;
+ break;
+ }
+ return 0;
+}
+
+static int handle_external_interrupt(struct kvm_vcpu *vcpu)
+{
+ ++vcpu->stat.irq_exits;
+ return 1;
+}
+
+static int handle_triple_fault(struct kvm_vcpu *vcpu)
+{
+ vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
+ return 0;
+}
+
+static int handle_io(struct kvm_vcpu *vcpu)
+{
+ unsigned long exit_qualification;
+ int size, in, string;
+ unsigned port;
+
+ exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+ string = (exit_qualification & 16) != 0;
+ in = (exit_qualification & 8) != 0;
+
+ ++vcpu->stat.io_exits;
+
+ if (string || in)
+ return emulate_instruction(vcpu, 0) == EMULATE_DONE;
+
+ port = exit_qualification >> 16;
+ size = (exit_qualification & 7) + 1;
+ skip_emulated_instruction(vcpu);
+
+ return kvm_fast_pio_out(vcpu, size, port);
+}
+
+static void
+vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
+{
+ /*
+ * Patch in the VMCALL instruction:
+ */
+ hypercall[0] = 0x0f;
+ hypercall[1] = 0x01;
+ hypercall[2] = 0xc1;
+}
+
+static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
+{
+ unsigned long always_on = VMXON_CR0_ALWAYSON;
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+ if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
+ SECONDARY_EXEC_UNRESTRICTED_GUEST &&
+ nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
+ always_on &= ~(X86_CR0_PE | X86_CR0_PG);
+ return (val & always_on) == always_on;
+}
+
+/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
+static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
+{
+ if (is_guest_mode(vcpu)) {
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ unsigned long orig_val = val;
+
+ /*
+ * We get here when L2 changed cr0 in a way that did not change
+ * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
+ * but did change L0 shadowed bits. So we first calculate the
+ * effective cr0 value that L1 would like to write into the
+ * hardware. It consists of the L2-owned bits from the new
+ * value combined with the L1-owned bits from L1's guest_cr0.
+ */
+ val = (val & ~vmcs12->cr0_guest_host_mask) |
+ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
+
+ if (!nested_cr0_valid(vcpu, val))
+ return 1;
+
+ if (kvm_set_cr0(vcpu, val))
+ return 1;
+ vmcs_writel(CR0_READ_SHADOW, orig_val);
+ return 0;
+ } else {
+ if (to_vmx(vcpu)->nested.vmxon &&
+ ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
+ return 1;
+ return kvm_set_cr0(vcpu, val);
+ }
+}
+
+static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
+{
+ if (is_guest_mode(vcpu)) {
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ unsigned long orig_val = val;
+
+ /* analogously to handle_set_cr0 */
+ val = (val & ~vmcs12->cr4_guest_host_mask) |
+ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
+ if (kvm_set_cr4(vcpu, val))
+ return 1;
+ vmcs_writel(CR4_READ_SHADOW, orig_val);
+ return 0;
+ } else
+ return kvm_set_cr4(vcpu, val);
+}
+
+/* called to set cr0 as approriate for clts instruction exit. */
+static void handle_clts(struct kvm_vcpu *vcpu)
+{
+ if (is_guest_mode(vcpu)) {
+ /*
+ * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
+ * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
+ * just pretend it's off (also in arch.cr0 for fpu_activate).
+ */
+ vmcs_writel(CR0_READ_SHADOW,
+ vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
+ vcpu->arch.cr0 &= ~X86_CR0_TS;
+ } else
+ vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
+}
+
+static int handle_cr(struct kvm_vcpu *vcpu)
+{
+ unsigned long exit_qualification, val;
+ int cr;
+ int reg;
+ int err;
+
+ exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+ cr = exit_qualification & 15;
+ reg = (exit_qualification >> 8) & 15;
+ switch ((exit_qualification >> 4) & 3) {
+ case 0: /* mov to cr */
+ val = kvm_register_readl(vcpu, reg);
+ trace_kvm_cr_write(cr, val);
+ switch (cr) {
+ case 0:
+ err = handle_set_cr0(vcpu, val);
+ kvm_complete_insn_gp(vcpu, err);
+ return 1;
+ case 3:
+ err = kvm_set_cr3(vcpu, val);
+ kvm_complete_insn_gp(vcpu, err);
+ return 1;
+ case 4:
+ err = handle_set_cr4(vcpu, val);
+ kvm_complete_insn_gp(vcpu, err);
+ return 1;
+ case 8: {
+ u8 cr8_prev = kvm_get_cr8(vcpu);
+ u8 cr8 = (u8)val;
+ err = kvm_set_cr8(vcpu, cr8);
+ kvm_complete_insn_gp(vcpu, err);
+ if (irqchip_in_kernel(vcpu->kvm))
+ return 1;
+ if (cr8_prev <= cr8)
+ return 1;
+ vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
+ return 0;
+ }
+ }
+ break;
+ case 2: /* clts */
+ handle_clts(vcpu);
+ trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
+ skip_emulated_instruction(vcpu);
+ vmx_fpu_activate(vcpu);
+ return 1;
+ case 1: /*mov from cr*/
+ switch (cr) {
+ case 3:
+ val = kvm_read_cr3(vcpu);
+ kvm_register_write(vcpu, reg, val);
+ trace_kvm_cr_read(cr, val);
+ skip_emulated_instruction(vcpu);
+ return 1;
+ case 8:
+ val = kvm_get_cr8(vcpu);
+ kvm_register_write(vcpu, reg, val);
+ trace_kvm_cr_read(cr, val);
+ skip_emulated_instruction(vcpu);
+ return 1;
+ }
+ break;
+ case 3: /* lmsw */
+ val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
+ trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
+ kvm_lmsw(vcpu, val);
+
+ skip_emulated_instruction(vcpu);
+ return 1;
+ default:
+ break;
+ }
+ vcpu->run->exit_reason = 0;
+ vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
+ (int)(exit_qualification >> 4) & 3, cr);
+ return 0;
+}
+
+static int handle_dr(struct kvm_vcpu *vcpu)
+{
+ unsigned long exit_qualification;
+ int dr, dr7, reg;
+
+ exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+ dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
+
+ /* First, if DR does not exist, trigger UD */
+ if (!kvm_require_dr(vcpu, dr))
+ return 1;
+
+ /* Do not handle if the CPL > 0, will trigger GP on re-entry */
+ if (!kvm_require_cpl(vcpu, 0))
+ return 1;
+ dr7 = vmcs_readl(GUEST_DR7);
+ if (dr7 & DR7_GD) {
+ /*
+ * As the vm-exit takes precedence over the debug trap, we
+ * need to emulate the latter, either for the host or the
+ * guest debugging itself.
+ */
+ if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
+ vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
+ vcpu->run->debug.arch.dr7 = dr7;
+ vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
+ vcpu->run->debug.arch.exception = DB_VECTOR;
+ vcpu->run->exit_reason = KVM_EXIT_DEBUG;
+ return 0;
+ } else {
+ vcpu->arch.dr6 &= ~15;
+ vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
+ kvm_queue_exception(vcpu, DB_VECTOR);
+ return 1;
+ }
+ }
+
+ if (vcpu->guest_debug == 0) {
+ u32 cpu_based_vm_exec_control;
+
+ cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
+ cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
+ vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
+
+ /*
+ * No more DR vmexits; force a reload of the debug registers
+ * and reenter on this instruction. The next vmexit will
+ * retrieve the full state of the debug registers.
+ */
+ vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
+ return 1;
+ }
+
+ reg = DEBUG_REG_ACCESS_REG(exit_qualification);
+ if (exit_qualification & TYPE_MOV_FROM_DR) {
+ unsigned long val;
+
+ if (kvm_get_dr(vcpu, dr, &val))
+ return 1;
+ kvm_register_write(vcpu, reg, val);
+ } else
+ if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
+ return 1;
+
+ skip_emulated_instruction(vcpu);
+ return 1;
+}
+
+static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
+{
+ return vcpu->arch.dr6;
+}
+
+static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
+{
+}
+
+static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
+{
+ u32 cpu_based_vm_exec_control;
+
+ get_debugreg(vcpu->arch.db[0], 0);
+ get_debugreg(vcpu->arch.db[1], 1);
+ get_debugreg(vcpu->arch.db[2], 2);
+ get_debugreg(vcpu->arch.db[3], 3);
+ get_debugreg(vcpu->arch.dr6, 6);
+ vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
+
+ vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
+
+ cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
+ cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
+ vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
+}
+
+static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
+{
+ vmcs_writel(GUEST_DR7, val);
+}
+
+static int handle_cpuid(struct kvm_vcpu *vcpu)
+{
+ kvm_emulate_cpuid(vcpu);
+ return 1;
+}
+
+static int handle_rdmsr(struct kvm_vcpu *vcpu)
+{
+ u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
+ u64 data;
+
+ if (vmx_get_msr(vcpu, ecx, &data)) {
+ trace_kvm_msr_read_ex(ecx);
+ kvm_inject_gp(vcpu, 0);
+ return 1;
+ }
+
+ trace_kvm_msr_read(ecx, data);
+
+ /* FIXME: handling of bits 32:63 of rax, rdx */
+ vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
+ vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
+ skip_emulated_instruction(vcpu);
+ return 1;
+}
+
+static int handle_wrmsr(struct kvm_vcpu *vcpu)
+{
+ struct msr_data msr;
+ u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
+ u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
+ | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
+
+ msr.data = data;
+ msr.index = ecx;
+ msr.host_initiated = false;
+ if (kvm_set_msr(vcpu, &msr) != 0) {
+ trace_kvm_msr_write_ex(ecx, data);
+ kvm_inject_gp(vcpu, 0);
+ return 1;
+ }
+
+ trace_kvm_msr_write(ecx, data);
+ skip_emulated_instruction(vcpu);
+ return 1;
+}
+
+static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
+{
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+ return 1;
+}
+
+static int handle_interrupt_window(struct kvm_vcpu *vcpu)
+{
+ u32 cpu_based_vm_exec_control;
+
+ /* clear pending irq */
+ cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
+ cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
+ vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
+
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+ ++vcpu->stat.irq_window_exits;
+
+ /*
+ * If the user space waits to inject interrupts, exit as soon as
+ * possible
+ */
+ if (!irqchip_in_kernel(vcpu->kvm) &&
+ vcpu->run->request_interrupt_window &&
+ !kvm_cpu_has_interrupt(vcpu)) {
+ vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
+ return 0;
+ }
+ return 1;
+}
+
+static int handle_halt(struct kvm_vcpu *vcpu)
+{
+ return kvm_emulate_halt(vcpu);
+}
+
+static int handle_vmcall(struct kvm_vcpu *vcpu)
+{
+ kvm_emulate_hypercall(vcpu);
+ return 1;
+}
+
+static int handle_invd(struct kvm_vcpu *vcpu)
+{
+ return emulate_instruction(vcpu, 0) == EMULATE_DONE;
+}
+
+static int handle_invlpg(struct kvm_vcpu *vcpu)
+{
+ unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+
+ kvm_mmu_invlpg(vcpu, exit_qualification);
+ skip_emulated_instruction(vcpu);
+ return 1;
+}
+
+static int handle_rdpmc(struct kvm_vcpu *vcpu)
+{
+ int err;
+
+ err = kvm_rdpmc(vcpu);
+ kvm_complete_insn_gp(vcpu, err);
+
+ return 1;
+}
+
+static int handle_wbinvd(struct kvm_vcpu *vcpu)
+{
+ kvm_emulate_wbinvd(vcpu);
+ return 1;
+}
+
+static int handle_xsetbv(struct kvm_vcpu *vcpu)
+{
+ u64 new_bv = kvm_read_edx_eax(vcpu);
+ u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
+
+ if (kvm_set_xcr(vcpu, index, new_bv) == 0)
+ skip_emulated_instruction(vcpu);
+ return 1;
+}
+
+static int handle_xsaves(struct kvm_vcpu *vcpu)
+{
+ skip_emulated_instruction(vcpu);
+ WARN(1, "this should never happen\n");
+ return 1;
+}
+
+static int handle_xrstors(struct kvm_vcpu *vcpu)
+{
+ skip_emulated_instruction(vcpu);
+ WARN(1, "this should never happen\n");
+ return 1;
+}
+
+static int handle_apic_access(struct kvm_vcpu *vcpu)
+{
+ if (likely(fasteoi)) {
+ unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+ int access_type, offset;
+
+ access_type = exit_qualification & APIC_ACCESS_TYPE;
+ offset = exit_qualification & APIC_ACCESS_OFFSET;
+ /*
+ * Sane guest uses MOV to write EOI, with written value
+ * not cared. So make a short-circuit here by avoiding
+ * heavy instruction emulation.
+ */
+ if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
+ (offset == APIC_EOI)) {
+ kvm_lapic_set_eoi(vcpu);
+ skip_emulated_instruction(vcpu);
+ return 1;
+ }
+ }
+ return emulate_instruction(vcpu, 0) == EMULATE_DONE;
+}
+
+static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
+{
+ unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+ int vector = exit_qualification & 0xff;
+
+ /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
+ kvm_apic_set_eoi_accelerated(vcpu, vector);
+ return 1;
+}
+
+static int handle_apic_write(struct kvm_vcpu *vcpu)
+{
+ unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+ u32 offset = exit_qualification & 0xfff;
+
+ /* APIC-write VM exit is trap-like and thus no need to adjust IP */
+ kvm_apic_write_nodecode(vcpu, offset);
+ return 1;
+}
+
+static int handle_task_switch(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ unsigned long exit_qualification;
+ bool has_error_code = false;
+ u32 error_code = 0;
+ u16 tss_selector;
+ int reason, type, idt_v, idt_index;
+
+ idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
+ idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
+ type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
+
+ exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+
+ reason = (u32)exit_qualification >> 30;
+ if (reason == TASK_SWITCH_GATE && idt_v) {
+ switch (type) {
+ case INTR_TYPE_NMI_INTR:
+ vcpu->arch.nmi_injected = false;
+ vmx_set_nmi_mask(vcpu, true);
+ break;
+ case INTR_TYPE_EXT_INTR:
+ case INTR_TYPE_SOFT_INTR:
+ kvm_clear_interrupt_queue(vcpu);
+ break;
+ case INTR_TYPE_HARD_EXCEPTION:
+ if (vmx->idt_vectoring_info &
+ VECTORING_INFO_DELIVER_CODE_MASK) {
+ has_error_code = true;
+ error_code =
+ vmcs_read32(IDT_VECTORING_ERROR_CODE);
+ }
+ /* fall through */
+ case INTR_TYPE_SOFT_EXCEPTION:
+ kvm_clear_exception_queue(vcpu);
+ break;
+ default:
+ break;
+ }
+ }
+ tss_selector = exit_qualification;
+
+ if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
+ type != INTR_TYPE_EXT_INTR &&
+ type != INTR_TYPE_NMI_INTR))
+ skip_emulated_instruction(vcpu);
+
+ if (kvm_task_switch(vcpu, tss_selector,
+ type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
+ has_error_code, error_code) == EMULATE_FAIL) {
+ vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
+ vcpu->run->internal.ndata = 0;
+ return 0;
+ }
+
+ /* clear all local breakpoint enable flags */
+ vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~0x155);
+
+ /*
+ * TODO: What about debug traps on tss switch?
+ * Are we supposed to inject them and update dr6?
+ */
+
+ return 1;
+}
+
+static int handle_ept_violation(struct kvm_vcpu *vcpu)
+{
+ unsigned long exit_qualification;
+ gpa_t gpa;
+ u32 error_code;
+ int gla_validity;
+
+ exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+
+ gla_validity = (exit_qualification >> 7) & 0x3;
+ if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
+ printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
+ printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
+ (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
+ vmcs_readl(GUEST_LINEAR_ADDRESS));
+ printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
+ (long unsigned int)exit_qualification);
+ vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
+ vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
+ return 0;
+ }
+
+ /*
+ * EPT violation happened while executing iret from NMI,
+ * "blocked by NMI" bit has to be set before next VM entry.
+ * There are errata that may cause this bit to not be set:
+ * AAK134, BY25.
+ */
+ if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
+ cpu_has_virtual_nmis() &&
+ (exit_qualification & INTR_INFO_UNBLOCK_NMI))
+ vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
+
+ gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
+ trace_kvm_page_fault(gpa, exit_qualification);
+
+ /* It is a write fault? */
+ error_code = exit_qualification & PFERR_WRITE_MASK;
+ /* It is a fetch fault? */
+ error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
+ /* ept page table is present? */
+ error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
+
+ vcpu->arch.exit_qualification = exit_qualification;
+
+ return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
+}
+
+static u64 ept_rsvd_mask(u64 spte, int level)
+{
+ int i;
+ u64 mask = 0;
+
+ for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
+ mask |= (1ULL << i);
+
+ if (level == 4)
+ /* bits 7:3 reserved */
+ mask |= 0xf8;
+ else if (spte & (1ULL << 7))
+ /*
+ * 1GB/2MB page, bits 29:12 or 20:12 reserved respectively,
+ * level == 1 if the hypervisor is using the ignored bit 7.
+ */
+ mask |= (PAGE_SIZE << ((level - 1) * 9)) - PAGE_SIZE;
+ else if (level > 1)
+ /* bits 6:3 reserved */
+ mask |= 0x78;
+
+ return mask;
+}
+
+static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
+ int level)
+{
+ printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
+
+ /* 010b (write-only) */
+ WARN_ON((spte & 0x7) == 0x2);
+
+ /* 110b (write/execute) */
+ WARN_ON((spte & 0x7) == 0x6);
+
+ /* 100b (execute-only) and value not supported by logical processor */
+ if (!cpu_has_vmx_ept_execute_only())
+ WARN_ON((spte & 0x7) == 0x4);
+
+ /* not 000b */
+ if ((spte & 0x7)) {
+ u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
+
+ if (rsvd_bits != 0) {
+ printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
+ __func__, rsvd_bits);
+ WARN_ON(1);
+ }
+
+ /* bits 5:3 are _not_ reserved for large page or leaf page */
+ if ((rsvd_bits & 0x38) == 0) {
+ u64 ept_mem_type = (spte & 0x38) >> 3;
+
+ if (ept_mem_type == 2 || ept_mem_type == 3 ||
+ ept_mem_type == 7) {
+ printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
+ __func__, ept_mem_type);
+ WARN_ON(1);
+ }
+ }
+ }
+}
+
+static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
+{
+ u64 sptes[4];
+ int nr_sptes, i, ret;
+ gpa_t gpa;
+
+ gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
+ if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
+ skip_emulated_instruction(vcpu);
+ return 1;
+ }
+
+ ret = handle_mmio_page_fault_common(vcpu, gpa, true);
+ if (likely(ret == RET_MMIO_PF_EMULATE))
+ return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
+ EMULATE_DONE;
+
+ if (unlikely(ret == RET_MMIO_PF_INVALID))
+ return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
+
+ if (unlikely(ret == RET_MMIO_PF_RETRY))
+ return 1;
+
+ /* It is the real ept misconfig */
+ printk(KERN_ERR "EPT: Misconfiguration.\n");
+ printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
+
+ nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
+
+ for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
+ ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
+
+ vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
+ vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
+
+ return 0;
+}
+
+static int handle_nmi_window(struct kvm_vcpu *vcpu)
+{
+ u32 cpu_based_vm_exec_control;
+
+ /* clear pending NMI */
+ cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
+ cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
+ vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
+ ++vcpu->stat.nmi_window_exits;
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+ return 1;
+}
+
+static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ enum emulation_result err = EMULATE_DONE;
+ int ret = 1;
+ u32 cpu_exec_ctrl;
+ bool intr_window_requested;
+ unsigned count = 130;
+
+ cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
+ intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
+
+ while (vmx->emulation_required && count-- != 0) {
+ if (intr_window_requested && vmx_interrupt_allowed(vcpu))
+ return handle_interrupt_window(&vmx->vcpu);
+
+ if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
+ return 1;
+
+ err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
+
+ if (err == EMULATE_USER_EXIT) {
+ ++vcpu->stat.mmio_exits;
+ ret = 0;
+ goto out;
+ }
+
+ if (err != EMULATE_DONE) {
+ vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
+ vcpu->run->internal.ndata = 0;
+ return 0;
+ }
+
+ if (vcpu->arch.halt_request) {
+ vcpu->arch.halt_request = 0;
+ ret = kvm_vcpu_halt(vcpu);
+ goto out;
+ }
+
+ if (signal_pending(current))
+ goto out;
+ if (need_resched())
+ schedule();
+ }
+
+out:
+ return ret;
+}
+
+static int __grow_ple_window(int val)
+{
+ if (ple_window_grow < 1)
+ return ple_window;
+
+ val = min(val, ple_window_actual_max);
+
+ if (ple_window_grow < ple_window)
+ val *= ple_window_grow;
+ else
+ val += ple_window_grow;
+
+ return val;
+}
+
+static int __shrink_ple_window(int val, int modifier, int minimum)
+{
+ if (modifier < 1)
+ return ple_window;
+
+ if (modifier < ple_window)
+ val /= modifier;
+ else
+ val -= modifier;
+
+ return max(val, minimum);
+}
+
+static void grow_ple_window(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ int old = vmx->ple_window;
+
+ vmx->ple_window = __grow_ple_window(old);
+
+ if (vmx->ple_window != old)
+ vmx->ple_window_dirty = true;
+
+ trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
+}
+
+static void shrink_ple_window(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ int old = vmx->ple_window;
+
+ vmx->ple_window = __shrink_ple_window(old,
+ ple_window_shrink, ple_window);
+
+ if (vmx->ple_window != old)
+ vmx->ple_window_dirty = true;
+
+ trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
+}
+
+/*
+ * ple_window_actual_max is computed to be one grow_ple_window() below
+ * ple_window_max. (See __grow_ple_window for the reason.)
+ * This prevents overflows, because ple_window_max is int.
+ * ple_window_max effectively rounded down to a multiple of ple_window_grow in
+ * this process.
+ * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
+ */
+static void update_ple_window_actual_max(void)
+{
+ ple_window_actual_max =
+ __shrink_ple_window(max(ple_window_max, ple_window),
+ ple_window_grow, INT_MIN);
+}
+
+static __init int hardware_setup(void)
+{
+ int r = -ENOMEM, i, msr;
+
+ rdmsrl_safe(MSR_EFER, &host_efer);
+
+ for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
+ kvm_define_shared_msr(i, vmx_msr_index[i]);
+
+ vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
+ if (!vmx_io_bitmap_a)
+ return r;
+
+ vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
+ if (!vmx_io_bitmap_b)
+ goto out;
+
+ vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
+ if (!vmx_msr_bitmap_legacy)
+ goto out1;
+
+ vmx_msr_bitmap_legacy_x2apic =
+ (unsigned long *)__get_free_page(GFP_KERNEL);
+ if (!vmx_msr_bitmap_legacy_x2apic)
+ goto out2;
+
+ vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
+ if (!vmx_msr_bitmap_longmode)
+ goto out3;
+
+ vmx_msr_bitmap_longmode_x2apic =
+ (unsigned long *)__get_free_page(GFP_KERNEL);
+ if (!vmx_msr_bitmap_longmode_x2apic)
+ goto out4;
+
+ if (nested) {
+ vmx_msr_bitmap_nested =
+ (unsigned long *)__get_free_page(GFP_KERNEL);
+ if (!vmx_msr_bitmap_nested)
+ goto out5;
+ }
+
+ vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
+ if (!vmx_vmread_bitmap)
+ goto out6;
+
+ vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
+ if (!vmx_vmwrite_bitmap)
+ goto out7;
+
+ memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
+ memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
+
+ /*
+ * Allow direct access to the PC debug port (it is often used for I/O
+ * delays, but the vmexits simply slow things down).
+ */
+ memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
+ clear_bit(0x80, vmx_io_bitmap_a);
+
+ memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
+
+ memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
+ memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
+ if (nested)
+ memset(vmx_msr_bitmap_nested, 0xff, PAGE_SIZE);
+
+ if (setup_vmcs_config(&vmcs_config) < 0) {
+ r = -EIO;
+ goto out8;
+ }
+
+ if (boot_cpu_has(X86_FEATURE_NX))
+ kvm_enable_efer_bits(EFER_NX);
+
+ if (!cpu_has_vmx_vpid())
+ enable_vpid = 0;
+ if (!cpu_has_vmx_shadow_vmcs())
+ enable_shadow_vmcs = 0;
+ if (enable_shadow_vmcs)
+ init_vmcs_shadow_fields();
+
+ if (!cpu_has_vmx_ept() ||
+ !cpu_has_vmx_ept_4levels()) {
+ enable_ept = 0;
+ enable_unrestricted_guest = 0;
+ enable_ept_ad_bits = 0;
+ }
+
+ if (!cpu_has_vmx_ept_ad_bits())
+ enable_ept_ad_bits = 0;
+
+ if (!cpu_has_vmx_unrestricted_guest())
+ enable_unrestricted_guest = 0;
+
+ if (!cpu_has_vmx_flexpriority())
+ flexpriority_enabled = 0;
+
+ /*
+ * set_apic_access_page_addr() is used to reload apic access
+ * page upon invalidation. No need to do anything if not
+ * using the APIC_ACCESS_ADDR VMCS field.
+ */
+ if (!flexpriority_enabled)
+ kvm_x86_ops->set_apic_access_page_addr = NULL;
+
+ if (!cpu_has_vmx_tpr_shadow())
+ kvm_x86_ops->update_cr8_intercept = NULL;
+
+ if (enable_ept && !cpu_has_vmx_ept_2m_page())
+ kvm_disable_largepages();
+
+ if (!cpu_has_vmx_ple())
+ ple_gap = 0;
+
+ if (!cpu_has_vmx_apicv())
+ enable_apicv = 0;
+
+ if (enable_apicv)
+ kvm_x86_ops->update_cr8_intercept = NULL;
+ else {
+ kvm_x86_ops->hwapic_irr_update = NULL;
+ kvm_x86_ops->hwapic_isr_update = NULL;
+ kvm_x86_ops->deliver_posted_interrupt = NULL;
+ kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
+ }
+
+ vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
+ vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
+ vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
+ vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
+ vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
+ vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
+ vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
+
+ memcpy(vmx_msr_bitmap_legacy_x2apic,
+ vmx_msr_bitmap_legacy, PAGE_SIZE);
+ memcpy(vmx_msr_bitmap_longmode_x2apic,
+ vmx_msr_bitmap_longmode, PAGE_SIZE);
+
+ if (enable_apicv) {
+ for (msr = 0x800; msr <= 0x8ff; msr++)
+ vmx_disable_intercept_msr_read_x2apic(msr);
+
+ /* According SDM, in x2apic mode, the whole id reg is used.
+ * But in KVM, it only use the highest eight bits. Need to
+ * intercept it */
+ vmx_enable_intercept_msr_read_x2apic(0x802);
+ /* TMCCT */
+ vmx_enable_intercept_msr_read_x2apic(0x839);
+ /* TPR */
+ vmx_disable_intercept_msr_write_x2apic(0x808);
+ /* EOI */
+ vmx_disable_intercept_msr_write_x2apic(0x80b);
+ /* SELF-IPI */
+ vmx_disable_intercept_msr_write_x2apic(0x83f);
+ }
+
+ if (enable_ept) {
+ kvm_mmu_set_mask_ptes(0ull,
+ (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
+ (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
+ 0ull, VMX_EPT_EXECUTABLE_MASK);
+ ept_set_mmio_spte_mask();
+ kvm_enable_tdp();
+ } else
+ kvm_disable_tdp();
+
+ update_ple_window_actual_max();
+
+ /*
+ * Only enable PML when hardware supports PML feature, and both EPT
+ * and EPT A/D bit features are enabled -- PML depends on them to work.
+ */
+ if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
+ enable_pml = 0;
+
+ if (!enable_pml) {
+ kvm_x86_ops->slot_enable_log_dirty = NULL;
+ kvm_x86_ops->slot_disable_log_dirty = NULL;
+ kvm_x86_ops->flush_log_dirty = NULL;
+ kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
+ }
+
+ return alloc_kvm_area();
+
+out8:
+ free_page((unsigned long)vmx_vmwrite_bitmap);
+out7:
+ free_page((unsigned long)vmx_vmread_bitmap);
+out6:
+ if (nested)
+ free_page((unsigned long)vmx_msr_bitmap_nested);
+out5:
+ free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
+out4:
+ free_page((unsigned long)vmx_msr_bitmap_longmode);
+out3:
+ free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
+out2:
+ free_page((unsigned long)vmx_msr_bitmap_legacy);
+out1:
+ free_page((unsigned long)vmx_io_bitmap_b);
+out:
+ free_page((unsigned long)vmx_io_bitmap_a);
+
+ return r;
+}
+
+static __exit void hardware_unsetup(void)
+{
+ free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
+ free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
+ free_page((unsigned long)vmx_msr_bitmap_legacy);
+ free_page((unsigned long)vmx_msr_bitmap_longmode);
+ free_page((unsigned long)vmx_io_bitmap_b);
+ free_page((unsigned long)vmx_io_bitmap_a);
+ free_page((unsigned long)vmx_vmwrite_bitmap);
+ free_page((unsigned long)vmx_vmread_bitmap);
+ if (nested)
+ free_page((unsigned long)vmx_msr_bitmap_nested);
+
+ free_kvm_area();
+}
+
+/*
+ * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
+ * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
+ */
+static int handle_pause(struct kvm_vcpu *vcpu)
+{
+ if (ple_gap)
+ grow_ple_window(vcpu);
+
+ skip_emulated_instruction(vcpu);
+ kvm_vcpu_on_spin(vcpu);
+
+ return 1;
+}
+
+static int handle_nop(struct kvm_vcpu *vcpu)
+{
+ skip_emulated_instruction(vcpu);
+ return 1;
+}
+
+static int handle_mwait(struct kvm_vcpu *vcpu)
+{
+ printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
+ return handle_nop(vcpu);
+}
+
+static int handle_monitor(struct kvm_vcpu *vcpu)
+{
+ printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
+ return handle_nop(vcpu);
+}
+
+/*
+ * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
+ * We could reuse a single VMCS for all the L2 guests, but we also want the
+ * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
+ * allows keeping them loaded on the processor, and in the future will allow
+ * optimizations where prepare_vmcs02 doesn't need to set all the fields on
+ * every entry if they never change.
+ * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
+ * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
+ *
+ * The following functions allocate and free a vmcs02 in this pool.
+ */
+
+/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
+static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
+{
+ struct vmcs02_list *item;
+ list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
+ if (item->vmptr == vmx->nested.current_vmptr) {
+ list_move(&item->list, &vmx->nested.vmcs02_pool);
+ return &item->vmcs02;
+ }
+
+ if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
+ /* Recycle the least recently used VMCS. */
+ item = list_entry(vmx->nested.vmcs02_pool.prev,
+ struct vmcs02_list, list);
+ item->vmptr = vmx->nested.current_vmptr;
+ list_move(&item->list, &vmx->nested.vmcs02_pool);
+ return &item->vmcs02;
+ }
+
+ /* Create a new VMCS */
+ item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
+ if (!item)
+ return NULL;
+ item->vmcs02.vmcs = alloc_vmcs();
+ if (!item->vmcs02.vmcs) {
+ kfree(item);
+ return NULL;
+ }
+ loaded_vmcs_init(&item->vmcs02);
+ item->vmptr = vmx->nested.current_vmptr;
+ list_add(&(item->list), &(vmx->nested.vmcs02_pool));
+ vmx->nested.vmcs02_num++;
+ return &item->vmcs02;
+}
+
+/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
+static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
+{
+ struct vmcs02_list *item;
+ list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
+ if (item->vmptr == vmptr) {
+ free_loaded_vmcs(&item->vmcs02);
+ list_del(&item->list);
+ kfree(item);
+ vmx->nested.vmcs02_num--;
+ return;
+ }
+}
+
+/*
+ * Free all VMCSs saved for this vcpu, except the one pointed by
+ * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
+ * must be &vmx->vmcs01.
+ */
+static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
+{
+ struct vmcs02_list *item, *n;
+
+ WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
+ list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
+ /*
+ * Something will leak if the above WARN triggers. Better than
+ * a use-after-free.
+ */
+ if (vmx->loaded_vmcs == &item->vmcs02)
+ continue;
+
+ free_loaded_vmcs(&item->vmcs02);
+ list_del(&item->list);
+ kfree(item);
+ vmx->nested.vmcs02_num--;
+ }
+}
+
+/*
+ * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
+ * set the success or error code of an emulated VMX instruction, as specified
+ * by Vol 2B, VMX Instruction Reference, "Conventions".
+ */
+static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
+{
+ vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
+ & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
+ X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
+}
+
+static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
+{
+ vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
+ & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
+ X86_EFLAGS_SF | X86_EFLAGS_OF))
+ | X86_EFLAGS_CF);
+}
+
+static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
+ u32 vm_instruction_error)
+{
+ if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
+ /*
+ * failValid writes the error number to the current VMCS, which
+ * can't be done there isn't a current VMCS.
+ */
+ nested_vmx_failInvalid(vcpu);
+ return;
+ }
+ vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
+ & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
+ X86_EFLAGS_SF | X86_EFLAGS_OF))
+ | X86_EFLAGS_ZF);
+ get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
+ /*
+ * We don't need to force a shadow sync because
+ * VM_INSTRUCTION_ERROR is not shadowed
+ */
+}
+
+static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
+{
+ /* TODO: not to reset guest simply here. */
+ kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+ pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
+}
+
+static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
+{
+ struct vcpu_vmx *vmx =
+ container_of(timer, struct vcpu_vmx, nested.preemption_timer);
+
+ vmx->nested.preemption_timer_expired = true;
+ kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
+ kvm_vcpu_kick(&vmx->vcpu);
+
+ return HRTIMER_NORESTART;
+}
+
+/*
+ * Decode the memory-address operand of a vmx instruction, as recorded on an
+ * exit caused by such an instruction (run by a guest hypervisor).
+ * On success, returns 0. When the operand is invalid, returns 1 and throws
+ * #UD or #GP.
+ */
+static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
+ unsigned long exit_qualification,
+ u32 vmx_instruction_info, gva_t *ret)
+{
+ /*
+ * According to Vol. 3B, "Information for VM Exits Due to Instruction
+ * Execution", on an exit, vmx_instruction_info holds most of the
+ * addressing components of the operand. Only the displacement part
+ * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
+ * For how an actual address is calculated from all these components,
+ * refer to Vol. 1, "Operand Addressing".
+ */
+ int scaling = vmx_instruction_info & 3;
+ int addr_size = (vmx_instruction_info >> 7) & 7;
+ bool is_reg = vmx_instruction_info & (1u << 10);
+ int seg_reg = (vmx_instruction_info >> 15) & 7;
+ int index_reg = (vmx_instruction_info >> 18) & 0xf;
+ bool index_is_valid = !(vmx_instruction_info & (1u << 22));
+ int base_reg = (vmx_instruction_info >> 23) & 0xf;
+ bool base_is_valid = !(vmx_instruction_info & (1u << 27));
+
+ if (is_reg) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+ }
+
+ /* Addr = segment_base + offset */
+ /* offset = base + [index * scale] + displacement */
+ *ret = vmx_get_segment_base(vcpu, seg_reg);
+ if (base_is_valid)
+ *ret += kvm_register_read(vcpu, base_reg);
+ if (index_is_valid)
+ *ret += kvm_register_read(vcpu, index_reg)<<scaling;
+ *ret += exit_qualification; /* holds the displacement */
+
+ if (addr_size == 1) /* 32 bit */
+ *ret &= 0xffffffff;
+
+ /*
+ * TODO: throw #GP (and return 1) in various cases that the VM*
+ * instructions require it - e.g., offset beyond segment limit,
+ * unusable or unreadable/unwritable segment, non-canonical 64-bit
+ * address, and so on. Currently these are not checked.
+ */
+ return 0;
+}
+
+/*
+ * This function performs the various checks including
+ * - if it's 4KB aligned
+ * - No bits beyond the physical address width are set
+ * - Returns 0 on success or else 1
+ * (Intel SDM Section 30.3)
+ */
+static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
+ gpa_t *vmpointer)
+{
+ gva_t gva;
+ gpa_t vmptr;
+ struct x86_exception e;
+ struct page *page;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ int maxphyaddr = cpuid_maxphyaddr(vcpu);
+
+ if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
+ vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
+ return 1;
+
+ if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
+ sizeof(vmptr), &e)) {
+ kvm_inject_page_fault(vcpu, &e);
+ return 1;
+ }
+
+ switch (exit_reason) {
+ case EXIT_REASON_VMON:
+ /*
+ * SDM 3: 24.11.5
+ * The first 4 bytes of VMXON region contain the supported
+ * VMCS revision identifier
+ *
+ * Note - IA32_VMX_BASIC[48] will never be 1
+ * for the nested case;
+ * which replaces physical address width with 32
+ *
+ */
+ if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
+ nested_vmx_failInvalid(vcpu);
+ skip_emulated_instruction(vcpu);
+ return 1;
+ }
+
+ page = nested_get_page(vcpu, vmptr);
+ if (page == NULL ||
+ *(u32 *)kmap(page) != VMCS12_REVISION) {
+ nested_vmx_failInvalid(vcpu);
+ kunmap(page);
+ skip_emulated_instruction(vcpu);
+ return 1;
+ }
+ kunmap(page);
+ vmx->nested.vmxon_ptr = vmptr;
+ break;
+ case EXIT_REASON_VMCLEAR:
+ if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
+ nested_vmx_failValid(vcpu,
+ VMXERR_VMCLEAR_INVALID_ADDRESS);
+ skip_emulated_instruction(vcpu);
+ return 1;
+ }
+
+ if (vmptr == vmx->nested.vmxon_ptr) {
+ nested_vmx_failValid(vcpu,
+ VMXERR_VMCLEAR_VMXON_POINTER);
+ skip_emulated_instruction(vcpu);
+ return 1;
+ }
+ break;
+ case EXIT_REASON_VMPTRLD:
+ if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
+ nested_vmx_failValid(vcpu,
+ VMXERR_VMPTRLD_INVALID_ADDRESS);
+ skip_emulated_instruction(vcpu);
+ return 1;
+ }
+
+ if (vmptr == vmx->nested.vmxon_ptr) {
+ nested_vmx_failValid(vcpu,
+ VMXERR_VMCLEAR_VMXON_POINTER);
+ skip_emulated_instruction(vcpu);
+ return 1;
+ }
+ break;
+ default:
+ return 1; /* shouldn't happen */
+ }
+
+ if (vmpointer)
+ *vmpointer = vmptr;
+ return 0;
+}
+
+/*
+ * Emulate the VMXON instruction.
+ * Currently, we just remember that VMX is active, and do not save or even
+ * inspect the argument to VMXON (the so-called "VMXON pointer") because we
+ * do not currently need to store anything in that guest-allocated memory
+ * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
+ * argument is different from the VMXON pointer (which the spec says they do).
+ */
+static int handle_vmon(struct kvm_vcpu *vcpu)
+{
+ struct kvm_segment cs;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct vmcs *shadow_vmcs;
+ const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
+ | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
+
+ /* The Intel VMX Instruction Reference lists a bunch of bits that
+ * are prerequisite to running VMXON, most notably cr4.VMXE must be
+ * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
+ * Otherwise, we should fail with #UD. We test these now:
+ */
+ if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
+ !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
+ (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+ }
+
+ vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
+ if (is_long_mode(vcpu) && !cs.l) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+ }
+
+ if (vmx_get_cpl(vcpu)) {
+ kvm_inject_gp(vcpu, 0);
+ return 1;
+ }
+
+ if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
+ return 1;
+
+ if (vmx->nested.vmxon) {
+ nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
+ skip_emulated_instruction(vcpu);
+ return 1;
+ }
+
+ if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
+ != VMXON_NEEDED_FEATURES) {
+ kvm_inject_gp(vcpu, 0);
+ return 1;
+ }
+
+ if (enable_shadow_vmcs) {
+ shadow_vmcs = alloc_vmcs();
+ if (!shadow_vmcs)
+ return -ENOMEM;
+ /* mark vmcs as shadow */
+ shadow_vmcs->revision_id |= (1u << 31);
+ /* init shadow vmcs */
+ vmcs_clear(shadow_vmcs);
+ vmx->nested.current_shadow_vmcs = shadow_vmcs;
+ }
+
+ INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
+ vmx->nested.vmcs02_num = 0;
+
+ hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
+ HRTIMER_MODE_REL);
+ vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
+
+ vmx->nested.vmxon = true;
+
+ skip_emulated_instruction(vcpu);
+ nested_vmx_succeed(vcpu);
+ return 1;
+}
+
+/*
+ * Intel's VMX Instruction Reference specifies a common set of prerequisites
+ * for running VMX instructions (except VMXON, whose prerequisites are
+ * slightly different). It also specifies what exception to inject otherwise.
+ */
+static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
+{
+ struct kvm_segment cs;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (!vmx->nested.vmxon) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 0;
+ }
+
+ vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
+ if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
+ (is_long_mode(vcpu) && !cs.l)) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 0;
+ }
+
+ if (vmx_get_cpl(vcpu)) {
+ kvm_inject_gp(vcpu, 0);
+ return 0;
+ }
+
+ return 1;
+}
+
+static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
+{
+ u32 exec_control;
+ if (vmx->nested.current_vmptr == -1ull)
+ return;
+
+ /* current_vmptr and current_vmcs12 are always set/reset together */
+ if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
+ return;
+
+ if (enable_shadow_vmcs) {
+ /* copy to memory all shadowed fields in case
+ they were modified */
+ copy_shadow_to_vmcs12(vmx);
+ vmx->nested.sync_shadow_vmcs = false;
+ exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
+ exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
+ vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
+ vmcs_write64(VMCS_LINK_POINTER, -1ull);
+ }
+ vmx->nested.posted_intr_nv = -1;
+ kunmap(vmx->nested.current_vmcs12_page);
+ nested_release_page(vmx->nested.current_vmcs12_page);
+ vmx->nested.current_vmptr = -1ull;
+ vmx->nested.current_vmcs12 = NULL;
+}
+
+/*
+ * Free whatever needs to be freed from vmx->nested when L1 goes down, or
+ * just stops using VMX.
+ */
+static void free_nested(struct vcpu_vmx *vmx)
+{
+ if (!vmx->nested.vmxon)
+ return;
+
+ vmx->nested.vmxon = false;
+ nested_release_vmcs12(vmx);
+ if (enable_shadow_vmcs)
+ free_vmcs(vmx->nested.current_shadow_vmcs);
+ /* Unpin physical memory we referred to in current vmcs02 */
+ if (vmx->nested.apic_access_page) {
+ nested_release_page(vmx->nested.apic_access_page);
+ vmx->nested.apic_access_page = NULL;
+ }
+ if (vmx->nested.virtual_apic_page) {
+ nested_release_page(vmx->nested.virtual_apic_page);
+ vmx->nested.virtual_apic_page = NULL;
+ }
+ if (vmx->nested.pi_desc_page) {
+ kunmap(vmx->nested.pi_desc_page);
+ nested_release_page(vmx->nested.pi_desc_page);
+ vmx->nested.pi_desc_page = NULL;
+ vmx->nested.pi_desc = NULL;
+ }
+
+ nested_free_all_saved_vmcss(vmx);
+}
+
+/* Emulate the VMXOFF instruction */
+static int handle_vmoff(struct kvm_vcpu *vcpu)
+{
+ if (!nested_vmx_check_permission(vcpu))
+ return 1;
+ free_nested(to_vmx(vcpu));
+ skip_emulated_instruction(vcpu);
+ nested_vmx_succeed(vcpu);
+ return 1;
+}
+
+/* Emulate the VMCLEAR instruction */
+static int handle_vmclear(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ gpa_t vmptr;
+ struct vmcs12 *vmcs12;
+ struct page *page;
+
+ if (!nested_vmx_check_permission(vcpu))
+ return 1;
+
+ if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
+ return 1;
+
+ if (vmptr == vmx->nested.current_vmptr)
+ nested_release_vmcs12(vmx);
+
+ page = nested_get_page(vcpu, vmptr);
+ if (page == NULL) {
+ /*
+ * For accurate processor emulation, VMCLEAR beyond available
+ * physical memory should do nothing at all. However, it is
+ * possible that a nested vmx bug, not a guest hypervisor bug,
+ * resulted in this case, so let's shut down before doing any
+ * more damage:
+ */
+ kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+ return 1;
+ }
+ vmcs12 = kmap(page);
+ vmcs12->launch_state = 0;
+ kunmap(page);
+ nested_release_page(page);
+
+ nested_free_vmcs02(vmx, vmptr);
+
+ skip_emulated_instruction(vcpu);
+ nested_vmx_succeed(vcpu);
+ return 1;
+}
+
+static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
+
+/* Emulate the VMLAUNCH instruction */
+static int handle_vmlaunch(struct kvm_vcpu *vcpu)
+{
+ return nested_vmx_run(vcpu, true);
+}
+
+/* Emulate the VMRESUME instruction */
+static int handle_vmresume(struct kvm_vcpu *vcpu)
+{
+
+ return nested_vmx_run(vcpu, false);
+}
+
+enum vmcs_field_type {
+ VMCS_FIELD_TYPE_U16 = 0,
+ VMCS_FIELD_TYPE_U64 = 1,
+ VMCS_FIELD_TYPE_U32 = 2,
+ VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
+};
+
+static inline int vmcs_field_type(unsigned long field)
+{
+ if (0x1 & field) /* the *_HIGH fields are all 32 bit */
+ return VMCS_FIELD_TYPE_U32;
+ return (field >> 13) & 0x3 ;
+}
+
+static inline int vmcs_field_readonly(unsigned long field)
+{
+ return (((field >> 10) & 0x3) == 1);
+}
+
+/*
+ * Read a vmcs12 field. Since these can have varying lengths and we return
+ * one type, we chose the biggest type (u64) and zero-extend the return value
+ * to that size. Note that the caller, handle_vmread, might need to use only
+ * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
+ * 64-bit fields are to be returned).
+ */
+static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
+ unsigned long field, u64 *ret)
+{
+ short offset = vmcs_field_to_offset(field);
+ char *p;
+
+ if (offset < 0)
+ return offset;
+
+ p = ((char *)(get_vmcs12(vcpu))) + offset;
+
+ switch (vmcs_field_type(field)) {
+ case VMCS_FIELD_TYPE_NATURAL_WIDTH:
+ *ret = *((natural_width *)p);
+ return 0;
+ case VMCS_FIELD_TYPE_U16:
+ *ret = *((u16 *)p);
+ return 0;
+ case VMCS_FIELD_TYPE_U32:
+ *ret = *((u32 *)p);
+ return 0;
+ case VMCS_FIELD_TYPE_U64:
+ *ret = *((u64 *)p);
+ return 0;
+ default:
+ WARN_ON(1);
+ return -ENOENT;
+ }
+}
+
+
+static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
+ unsigned long field, u64 field_value){
+ short offset = vmcs_field_to_offset(field);
+ char *p = ((char *) get_vmcs12(vcpu)) + offset;
+ if (offset < 0)
+ return offset;
+
+ switch (vmcs_field_type(field)) {
+ case VMCS_FIELD_TYPE_U16:
+ *(u16 *)p = field_value;
+ return 0;
+ case VMCS_FIELD_TYPE_U32:
+ *(u32 *)p = field_value;
+ return 0;
+ case VMCS_FIELD_TYPE_U64:
+ *(u64 *)p = field_value;
+ return 0;
+ case VMCS_FIELD_TYPE_NATURAL_WIDTH:
+ *(natural_width *)p = field_value;
+ return 0;
+ default:
+ WARN_ON(1);
+ return -ENOENT;
+ }
+
+}
+
+static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
+{
+ int i;
+ unsigned long field;
+ u64 field_value;
+ struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
+ const unsigned long *fields = shadow_read_write_fields;
+ const int num_fields = max_shadow_read_write_fields;
+
+ preempt_disable();
+
+ vmcs_load(shadow_vmcs);
+
+ for (i = 0; i < num_fields; i++) {
+ field = fields[i];
+ switch (vmcs_field_type(field)) {
+ case VMCS_FIELD_TYPE_U16:
+ field_value = vmcs_read16(field);
+ break;
+ case VMCS_FIELD_TYPE_U32:
+ field_value = vmcs_read32(field);
+ break;
+ case VMCS_FIELD_TYPE_U64:
+ field_value = vmcs_read64(field);
+ break;
+ case VMCS_FIELD_TYPE_NATURAL_WIDTH:
+ field_value = vmcs_readl(field);
+ break;
+ default:
+ WARN_ON(1);
+ continue;
+ }
+ vmcs12_write_any(&vmx->vcpu, field, field_value);
+ }
+
+ vmcs_clear(shadow_vmcs);
+ vmcs_load(vmx->loaded_vmcs->vmcs);
+
+ preempt_enable();
+}
+
+static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
+{
+ const unsigned long *fields[] = {
+ shadow_read_write_fields,
+ shadow_read_only_fields
+ };
+ const int max_fields[] = {
+ max_shadow_read_write_fields,
+ max_shadow_read_only_fields
+ };
+ int i, q;
+ unsigned long field;
+ u64 field_value = 0;
+ struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
+
+ vmcs_load(shadow_vmcs);
+
+ for (q = 0; q < ARRAY_SIZE(fields); q++) {
+ for (i = 0; i < max_fields[q]; i++) {
+ field = fields[q][i];
+ vmcs12_read_any(&vmx->vcpu, field, &field_value);
+
+ switch (vmcs_field_type(field)) {
+ case VMCS_FIELD_TYPE_U16:
+ vmcs_write16(field, (u16)field_value);
+ break;
+ case VMCS_FIELD_TYPE_U32:
+ vmcs_write32(field, (u32)field_value);
+ break;
+ case VMCS_FIELD_TYPE_U64:
+ vmcs_write64(field, (u64)field_value);
+ break;
+ case VMCS_FIELD_TYPE_NATURAL_WIDTH:
+ vmcs_writel(field, (long)field_value);
+ break;
+ default:
+ WARN_ON(1);
+ break;
+ }
+ }
+ }
+
+ vmcs_clear(shadow_vmcs);
+ vmcs_load(vmx->loaded_vmcs->vmcs);
+}
+
+/*
+ * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
+ * used before) all generate the same failure when it is missing.
+ */
+static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ if (vmx->nested.current_vmptr == -1ull) {
+ nested_vmx_failInvalid(vcpu);
+ skip_emulated_instruction(vcpu);
+ return 0;
+ }
+ return 1;
+}
+
+static int handle_vmread(struct kvm_vcpu *vcpu)
+{
+ unsigned long field;
+ u64 field_value;
+ unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+ u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+ gva_t gva = 0;
+
+ if (!nested_vmx_check_permission(vcpu) ||
+ !nested_vmx_check_vmcs12(vcpu))
+ return 1;
+
+ /* Decode instruction info and find the field to read */
+ field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
+ /* Read the field, zero-extended to a u64 field_value */
+ if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
+ nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
+ skip_emulated_instruction(vcpu);
+ return 1;
+ }
+ /*
+ * Now copy part of this value to register or memory, as requested.
+ * Note that the number of bits actually copied is 32 or 64 depending
+ * on the guest's mode (32 or 64 bit), not on the given field's length.
+ */
+ if (vmx_instruction_info & (1u << 10)) {
+ kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
+ field_value);
+ } else {
+ if (get_vmx_mem_address(vcpu, exit_qualification,
+ vmx_instruction_info, &gva))
+ return 1;
+ /* _system ok, as nested_vmx_check_permission verified cpl=0 */
+ kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
+ &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
+ }
+
+ nested_vmx_succeed(vcpu);
+ skip_emulated_instruction(vcpu);
+ return 1;
+}
+
+
+static int handle_vmwrite(struct kvm_vcpu *vcpu)
+{
+ unsigned long field;
+ gva_t gva;
+ unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+ u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+ /* The value to write might be 32 or 64 bits, depending on L1's long
+ * mode, and eventually we need to write that into a field of several
+ * possible lengths. The code below first zero-extends the value to 64
+ * bit (field_value), and then copies only the approriate number of
+ * bits into the vmcs12 field.
+ */
+ u64 field_value = 0;
+ struct x86_exception e;
+
+ if (!nested_vmx_check_permission(vcpu) ||
+ !nested_vmx_check_vmcs12(vcpu))
+ return 1;
+
+ if (vmx_instruction_info & (1u << 10))
+ field_value = kvm_register_readl(vcpu,
+ (((vmx_instruction_info) >> 3) & 0xf));
+ else {
+ if (get_vmx_mem_address(vcpu, exit_qualification,
+ vmx_instruction_info, &gva))
+ return 1;
+ if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
+ &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
+ kvm_inject_page_fault(vcpu, &e);
+ return 1;
+ }
+ }
+
+
+ field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
+ if (vmcs_field_readonly(field)) {
+ nested_vmx_failValid(vcpu,
+ VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
+ skip_emulated_instruction(vcpu);
+ return 1;
+ }
+
+ if (vmcs12_write_any(vcpu, field, field_value) < 0) {
+ nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
+ skip_emulated_instruction(vcpu);
+ return 1;
+ }
+
+ nested_vmx_succeed(vcpu);
+ skip_emulated_instruction(vcpu);
+ return 1;
+}
+
+/* Emulate the VMPTRLD instruction */
+static int handle_vmptrld(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ gpa_t vmptr;
+ u32 exec_control;
+
+ if (!nested_vmx_check_permission(vcpu))
+ return 1;
+
+ if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
+ return 1;
+
+ if (vmx->nested.current_vmptr != vmptr) {
+ struct vmcs12 *new_vmcs12;
+ struct page *page;
+ page = nested_get_page(vcpu, vmptr);
+ if (page == NULL) {
+ nested_vmx_failInvalid(vcpu);
+ skip_emulated_instruction(vcpu);
+ return 1;
+ }
+ new_vmcs12 = kmap(page);
+ if (new_vmcs12->revision_id != VMCS12_REVISION) {
+ kunmap(page);
+ nested_release_page_clean(page);
+ nested_vmx_failValid(vcpu,
+ VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
+ skip_emulated_instruction(vcpu);
+ return 1;
+ }
+
+ nested_release_vmcs12(vmx);
+ vmx->nested.current_vmptr = vmptr;
+ vmx->nested.current_vmcs12 = new_vmcs12;
+ vmx->nested.current_vmcs12_page = page;
+ if (enable_shadow_vmcs) {
+ exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
+ exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
+ vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
+ vmcs_write64(VMCS_LINK_POINTER,
+ __pa(vmx->nested.current_shadow_vmcs));
+ vmx->nested.sync_shadow_vmcs = true;
+ }
+ }
+
+ nested_vmx_succeed(vcpu);
+ skip_emulated_instruction(vcpu);
+ return 1;
+}
+
+/* Emulate the VMPTRST instruction */
+static int handle_vmptrst(struct kvm_vcpu *vcpu)
+{
+ unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+ u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+ gva_t vmcs_gva;
+ struct x86_exception e;
+
+ if (!nested_vmx_check_permission(vcpu))
+ return 1;
+
+ if (get_vmx_mem_address(vcpu, exit_qualification,
+ vmx_instruction_info, &vmcs_gva))
+ return 1;
+ /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
+ if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
+ (void *)&to_vmx(vcpu)->nested.current_vmptr,
+ sizeof(u64), &e)) {
+ kvm_inject_page_fault(vcpu, &e);
+ return 1;
+ }
+ nested_vmx_succeed(vcpu);
+ skip_emulated_instruction(vcpu);
+ return 1;
+}
+
+/* Emulate the INVEPT instruction */
+static int handle_invept(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ u32 vmx_instruction_info, types;
+ unsigned long type;
+ gva_t gva;
+ struct x86_exception e;
+ struct {
+ u64 eptp, gpa;
+ } operand;
+
+ if (!(vmx->nested.nested_vmx_secondary_ctls_high &
+ SECONDARY_EXEC_ENABLE_EPT) ||
+ !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+ }
+
+ if (!nested_vmx_check_permission(vcpu))
+ return 1;
+
+ if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+ }
+
+ vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+ type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
+
+ types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
+
+ if (!(types & (1UL << type))) {
+ nested_vmx_failValid(vcpu,
+ VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
+ return 1;
+ }
+
+ /* According to the Intel VMX instruction reference, the memory
+ * operand is read even if it isn't needed (e.g., for type==global)
+ */
+ if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
+ vmx_instruction_info, &gva))
+ return 1;
+ if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
+ sizeof(operand), &e)) {
+ kvm_inject_page_fault(vcpu, &e);
+ return 1;
+ }
+
+ switch (type) {
+ case VMX_EPT_EXTENT_GLOBAL:
+ kvm_mmu_sync_roots(vcpu);
+ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+ nested_vmx_succeed(vcpu);
+ break;
+ default:
+ /* Trap single context invalidation invept calls */
+ BUG_ON(1);
+ break;
+ }
+
+ skip_emulated_instruction(vcpu);
+ return 1;
+}
+
+static int handle_invvpid(struct kvm_vcpu *vcpu)
+{
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+}
+
+static int handle_pml_full(struct kvm_vcpu *vcpu)
+{
+ unsigned long exit_qualification;
+
+ trace_kvm_pml_full(vcpu->vcpu_id);
+
+ exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+
+ /*
+ * PML buffer FULL happened while executing iret from NMI,
+ * "blocked by NMI" bit has to be set before next VM entry.
+ */
+ if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
+ cpu_has_virtual_nmis() &&
+ (exit_qualification & INTR_INFO_UNBLOCK_NMI))
+ vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
+ GUEST_INTR_STATE_NMI);
+
+ /*
+ * PML buffer already flushed at beginning of VMEXIT. Nothing to do
+ * here.., and there's no userspace involvement needed for PML.
+ */
+ return 1;
+}
+
+/*
+ * The exit handlers return 1 if the exit was handled fully and guest execution
+ * may resume. Otherwise they set the kvm_run parameter to indicate what needs
+ * to be done to userspace and return 0.
+ */
+static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
+ [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
+ [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
+ [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
+ [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
+ [EXIT_REASON_IO_INSTRUCTION] = handle_io,
+ [EXIT_REASON_CR_ACCESS] = handle_cr,
+ [EXIT_REASON_DR_ACCESS] = handle_dr,
+ [EXIT_REASON_CPUID] = handle_cpuid,
+ [EXIT_REASON_MSR_READ] = handle_rdmsr,
+ [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
+ [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
+ [EXIT_REASON_HLT] = handle_halt,
+ [EXIT_REASON_INVD] = handle_invd,
+ [EXIT_REASON_INVLPG] = handle_invlpg,
+ [EXIT_REASON_RDPMC] = handle_rdpmc,
+ [EXIT_REASON_VMCALL] = handle_vmcall,
+ [EXIT_REASON_VMCLEAR] = handle_vmclear,
+ [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
+ [EXIT_REASON_VMPTRLD] = handle_vmptrld,
+ [EXIT_REASON_VMPTRST] = handle_vmptrst,
+ [EXIT_REASON_VMREAD] = handle_vmread,
+ [EXIT_REASON_VMRESUME] = handle_vmresume,
+ [EXIT_REASON_VMWRITE] = handle_vmwrite,
+ [EXIT_REASON_VMOFF] = handle_vmoff,
+ [EXIT_REASON_VMON] = handle_vmon,
+ [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
+ [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
+ [EXIT_REASON_APIC_WRITE] = handle_apic_write,
+ [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
+ [EXIT_REASON_WBINVD] = handle_wbinvd,
+ [EXIT_REASON_XSETBV] = handle_xsetbv,
+ [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
+ [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
+ [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
+ [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
+ [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
+ [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
+ [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
+ [EXIT_REASON_INVEPT] = handle_invept,
+ [EXIT_REASON_INVVPID] = handle_invvpid,
+ [EXIT_REASON_XSAVES] = handle_xsaves,
+ [EXIT_REASON_XRSTORS] = handle_xrstors,
+ [EXIT_REASON_PML_FULL] = handle_pml_full,
+};
+
+static const int kvm_vmx_max_exit_handlers =
+ ARRAY_SIZE(kvm_vmx_exit_handlers);
+
+static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ unsigned long exit_qualification;
+ gpa_t bitmap, last_bitmap;
+ unsigned int port;
+ int size;
+ u8 b;
+
+ if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
+ return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
+
+ exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+
+ port = exit_qualification >> 16;
+ size = (exit_qualification & 7) + 1;
+
+ last_bitmap = (gpa_t)-1;
+ b = -1;
+
+ while (size > 0) {
+ if (port < 0x8000)
+ bitmap = vmcs12->io_bitmap_a;
+ else if (port < 0x10000)
+ bitmap = vmcs12->io_bitmap_b;
+ else
+ return true;
+ bitmap += (port & 0x7fff) / 8;
+
+ if (last_bitmap != bitmap)
+ if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
+ return true;
+ if (b & (1 << (port & 7)))
+ return true;
+
+ port++;
+ size--;
+ last_bitmap = bitmap;
+ }
+
+ return false;
+}
+
+/*
+ * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
+ * rather than handle it ourselves in L0. I.e., check whether L1 expressed
+ * disinterest in the current event (read or write a specific MSR) by using an
+ * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
+ */
+static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12, u32 exit_reason)
+{
+ u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
+ gpa_t bitmap;
+
+ if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
+ return true;
+
+ /*
+ * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
+ * for the four combinations of read/write and low/high MSR numbers.
+ * First we need to figure out which of the four to use:
+ */
+ bitmap = vmcs12->msr_bitmap;
+ if (exit_reason == EXIT_REASON_MSR_WRITE)
+ bitmap += 2048;
+ if (msr_index >= 0xc0000000) {
+ msr_index -= 0xc0000000;
+ bitmap += 1024;
+ }
+
+ /* Then read the msr_index'th bit from this bitmap: */
+ if (msr_index < 1024*8) {
+ unsigned char b;
+ if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
+ return true;
+ return 1 & (b >> (msr_index & 7));
+ } else
+ return true; /* let L1 handle the wrong parameter */
+}
+
+/*
+ * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
+ * rather than handle it ourselves in L0. I.e., check if L1 wanted to
+ * intercept (via guest_host_mask etc.) the current event.
+ */
+static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+ int cr = exit_qualification & 15;
+ int reg = (exit_qualification >> 8) & 15;
+ unsigned long val = kvm_register_readl(vcpu, reg);
+
+ switch ((exit_qualification >> 4) & 3) {
+ case 0: /* mov to cr */
+ switch (cr) {
+ case 0:
+ if (vmcs12->cr0_guest_host_mask &
+ (val ^ vmcs12->cr0_read_shadow))
+ return true;
+ break;
+ case 3:
+ if ((vmcs12->cr3_target_count >= 1 &&
+ vmcs12->cr3_target_value0 == val) ||
+ (vmcs12->cr3_target_count >= 2 &&
+ vmcs12->cr3_target_value1 == val) ||
+ (vmcs12->cr3_target_count >= 3 &&
+ vmcs12->cr3_target_value2 == val) ||
+ (vmcs12->cr3_target_count >= 4 &&
+ vmcs12->cr3_target_value3 == val))
+ return false;
+ if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
+ return true;
+ break;
+ case 4:
+ if (vmcs12->cr4_guest_host_mask &
+ (vmcs12->cr4_read_shadow ^ val))
+ return true;
+ break;
+ case 8:
+ if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
+ return true;
+ break;
+ }
+ break;
+ case 2: /* clts */
+ if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
+ (vmcs12->cr0_read_shadow & X86_CR0_TS))
+ return true;
+ break;
+ case 1: /* mov from cr */
+ switch (cr) {
+ case 3:
+ if (vmcs12->cpu_based_vm_exec_control &
+ CPU_BASED_CR3_STORE_EXITING)
+ return true;
+ break;
+ case 8:
+ if (vmcs12->cpu_based_vm_exec_control &
+ CPU_BASED_CR8_STORE_EXITING)
+ return true;
+ break;
+ }
+ break;
+ case 3: /* lmsw */
+ /*
+ * lmsw can change bits 1..3 of cr0, and only set bit 0 of
+ * cr0. Other attempted changes are ignored, with no exit.
+ */
+ if (vmcs12->cr0_guest_host_mask & 0xe &
+ (val ^ vmcs12->cr0_read_shadow))
+ return true;
+ if ((vmcs12->cr0_guest_host_mask & 0x1) &&
+ !(vmcs12->cr0_read_shadow & 0x1) &&
+ (val & 0x1))
+ return true;
+ break;
+ }
+ return false;
+}
+
+/*
+ * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
+ * should handle it ourselves in L0 (and then continue L2). Only call this
+ * when in is_guest_mode (L2).
+ */
+static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
+{
+ u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ u32 exit_reason = vmx->exit_reason;
+
+ trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
+ vmcs_readl(EXIT_QUALIFICATION),
+ vmx->idt_vectoring_info,
+ intr_info,
+ vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
+ KVM_ISA_VMX);
+
+ if (vmx->nested.nested_run_pending)
+ return false;
+
+ if (unlikely(vmx->fail)) {
+ pr_info_ratelimited("%s failed vm entry %x\n", __func__,
+ vmcs_read32(VM_INSTRUCTION_ERROR));
+ return true;
+ }
+
+ switch (exit_reason) {
+ case EXIT_REASON_EXCEPTION_NMI:
+ if (!is_exception(intr_info))
+ return false;
+ else if (is_page_fault(intr_info))
+ return enable_ept;
+ else if (is_no_device(intr_info) &&
+ !(vmcs12->guest_cr0 & X86_CR0_TS))
+ return false;
+ return vmcs12->exception_bitmap &
+ (1u << (intr_info & INTR_INFO_VECTOR_MASK));
+ case EXIT_REASON_EXTERNAL_INTERRUPT:
+ return false;
+ case EXIT_REASON_TRIPLE_FAULT:
+ return true;
+ case EXIT_REASON_PENDING_INTERRUPT:
+ return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
+ case EXIT_REASON_NMI_WINDOW:
+ return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
+ case EXIT_REASON_TASK_SWITCH:
+ return true;
+ case EXIT_REASON_CPUID:
+ if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
+ return false;
+ return true;
+ case EXIT_REASON_HLT:
+ return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
+ case EXIT_REASON_INVD:
+ return true;
+ case EXIT_REASON_INVLPG:
+ return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
+ case EXIT_REASON_RDPMC:
+ return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
+ case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
+ return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
+ case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
+ case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
+ case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
+ case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
+ case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
+ case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
+ /*
+ * VMX instructions trap unconditionally. This allows L1 to
+ * emulate them for its L2 guest, i.e., allows 3-level nesting!
+ */
+ return true;
+ case EXIT_REASON_CR_ACCESS:
+ return nested_vmx_exit_handled_cr(vcpu, vmcs12);
+ case EXIT_REASON_DR_ACCESS:
+ return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
+ case EXIT_REASON_IO_INSTRUCTION:
+ return nested_vmx_exit_handled_io(vcpu, vmcs12);
+ case EXIT_REASON_MSR_READ:
+ case EXIT_REASON_MSR_WRITE:
+ return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
+ case EXIT_REASON_INVALID_STATE:
+ return true;
+ case EXIT_REASON_MWAIT_INSTRUCTION:
+ return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
+ case EXIT_REASON_MONITOR_INSTRUCTION:
+ return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
+ case EXIT_REASON_PAUSE_INSTRUCTION:
+ return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
+ nested_cpu_has2(vmcs12,
+ SECONDARY_EXEC_PAUSE_LOOP_EXITING);
+ case EXIT_REASON_MCE_DURING_VMENTRY:
+ return false;
+ case EXIT_REASON_TPR_BELOW_THRESHOLD:
+ return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
+ case EXIT_REASON_APIC_ACCESS:
+ return nested_cpu_has2(vmcs12,
+ SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
+ case EXIT_REASON_APIC_WRITE:
+ case EXIT_REASON_EOI_INDUCED:
+ /* apic_write and eoi_induced should exit unconditionally. */
+ return true;
+ case EXIT_REASON_EPT_VIOLATION:
+ /*
+ * L0 always deals with the EPT violation. If nested EPT is
+ * used, and the nested mmu code discovers that the address is
+ * missing in the guest EPT table (EPT12), the EPT violation
+ * will be injected with nested_ept_inject_page_fault()
+ */
+ return false;
+ case EXIT_REASON_EPT_MISCONFIG:
+ /*
+ * L2 never uses directly L1's EPT, but rather L0's own EPT
+ * table (shadow on EPT) or a merged EPT table that L0 built
+ * (EPT on EPT). So any problems with the structure of the
+ * table is L0's fault.
+ */
+ return false;
+ case EXIT_REASON_WBINVD:
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
+ case EXIT_REASON_XSETBV:
+ return true;
+ case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
+ /*
+ * This should never happen, since it is not possible to
+ * set XSS to a non-zero value---neither in L1 nor in L2.
+ * If if it were, XSS would have to be checked against
+ * the XSS exit bitmap in vmcs12.
+ */
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
+ default:
+ return true;
+ }
+}
+
+static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
+{
+ *info1 = vmcs_readl(EXIT_QUALIFICATION);
+ *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
+}
+
+static int vmx_enable_pml(struct vcpu_vmx *vmx)
+{
+ struct page *pml_pg;
+ u32 exec_control;
+
+ pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
+ if (!pml_pg)
+ return -ENOMEM;
+
+ vmx->pml_pg = pml_pg;
+
+ vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
+ vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
+
+ exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
+ exec_control |= SECONDARY_EXEC_ENABLE_PML;
+ vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
+
+ return 0;
+}
+
+static void vmx_disable_pml(struct vcpu_vmx *vmx)
+{
+ u32 exec_control;
+
+ ASSERT(vmx->pml_pg);
+ __free_page(vmx->pml_pg);
+ vmx->pml_pg = NULL;
+
+ exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
+ exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
+ vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
+}
+
+static void vmx_flush_pml_buffer(struct vcpu_vmx *vmx)
+{
+ struct kvm *kvm = vmx->vcpu.kvm;
+ u64 *pml_buf;
+ u16 pml_idx;
+
+ pml_idx = vmcs_read16(GUEST_PML_INDEX);
+
+ /* Do nothing if PML buffer is empty */
+ if (pml_idx == (PML_ENTITY_NUM - 1))
+ return;
+
+ /* PML index always points to next available PML buffer entity */
+ if (pml_idx >= PML_ENTITY_NUM)
+ pml_idx = 0;
+ else
+ pml_idx++;
+
+ pml_buf = page_address(vmx->pml_pg);
+ for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
+ u64 gpa;
+
+ gpa = pml_buf[pml_idx];
+ WARN_ON(gpa & (PAGE_SIZE - 1));
+ mark_page_dirty(kvm, gpa >> PAGE_SHIFT);
+ }
+
+ /* reset PML index */
+ vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
+}
+
+/*
+ * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
+ * Called before reporting dirty_bitmap to userspace.
+ */
+static void kvm_flush_pml_buffers(struct kvm *kvm)
+{
+ int i;
+ struct kvm_vcpu *vcpu;
+ /*
+ * We only need to kick vcpu out of guest mode here, as PML buffer
+ * is flushed at beginning of all VMEXITs, and it's obvious that only
+ * vcpus running in guest are possible to have unflushed GPAs in PML
+ * buffer.
+ */
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ kvm_vcpu_kick(vcpu);
+}
+
+/*
+ * The guest has exited. See if we can fix it or if we need userspace
+ * assistance.
+ */
+static int vmx_handle_exit(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ u32 exit_reason = vmx->exit_reason;
+ u32 vectoring_info = vmx->idt_vectoring_info;
+
+ /*
+ * Flush logged GPAs PML buffer, this will make dirty_bitmap more
+ * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
+ * querying dirty_bitmap, we only need to kick all vcpus out of guest
+ * mode as if vcpus is in root mode, the PML buffer must has been
+ * flushed already.
+ */
+ if (enable_pml)
+ vmx_flush_pml_buffer(vmx);
+
+ /* If guest state is invalid, start emulating */
+ if (vmx->emulation_required)
+ return handle_invalid_guest_state(vcpu);
+
+ if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
+ nested_vmx_vmexit(vcpu, exit_reason,
+ vmcs_read32(VM_EXIT_INTR_INFO),
+ vmcs_readl(EXIT_QUALIFICATION));
+ return 1;
+ }
+
+ if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
+ vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
+ vcpu->run->fail_entry.hardware_entry_failure_reason
+ = exit_reason;
+ return 0;
+ }
+
+ if (unlikely(vmx->fail)) {
+ vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
+ vcpu->run->fail_entry.hardware_entry_failure_reason
+ = vmcs_read32(VM_INSTRUCTION_ERROR);
+ return 0;
+ }
+
+ /*
+ * Note:
+ * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
+ * delivery event since it indicates guest is accessing MMIO.
+ * The vm-exit can be triggered again after return to guest that
+ * will cause infinite loop.
+ */
+ if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
+ (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
+ exit_reason != EXIT_REASON_EPT_VIOLATION &&
+ exit_reason != EXIT_REASON_TASK_SWITCH)) {
+ vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
+ vcpu->run->internal.ndata = 2;
+ vcpu->run->internal.data[0] = vectoring_info;
+ vcpu->run->internal.data[1] = exit_reason;
+ return 0;
+ }
+
+ if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
+ !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
+ get_vmcs12(vcpu))))) {
+ if (vmx_interrupt_allowed(vcpu)) {
+ vmx->soft_vnmi_blocked = 0;
+ } else if (vmx->vnmi_blocked_time > 1000000000LL &&
+ vcpu->arch.nmi_pending) {
+ /*
+ * This CPU don't support us in finding the end of an
+ * NMI-blocked window if the guest runs with IRQs
+ * disabled. So we pull the trigger after 1 s of
+ * futile waiting, but inform the user about this.
+ */
+ printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
+ "state on VCPU %d after 1 s timeout\n",
+ __func__, vcpu->vcpu_id);
+ vmx->soft_vnmi_blocked = 0;
+ }
+ }
+
+ if (exit_reason < kvm_vmx_max_exit_handlers
+ && kvm_vmx_exit_handlers[exit_reason])
+ return kvm_vmx_exit_handlers[exit_reason](vcpu);
+ else {
+ WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+ }
+}
+
+static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
+{
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+ if (is_guest_mode(vcpu) &&
+ nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
+ return;
+
+ if (irr == -1 || tpr < irr) {
+ vmcs_write32(TPR_THRESHOLD, 0);
+ return;
+ }
+
+ vmcs_write32(TPR_THRESHOLD, irr);
+}
+
+static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
+{
+ u32 sec_exec_control;
+
+ /*
+ * There is not point to enable virtualize x2apic without enable
+ * apicv
+ */
+ if (!cpu_has_vmx_virtualize_x2apic_mode() ||
+ !vmx_vm_has_apicv(vcpu->kvm))
+ return;
+
+ if (!vm_need_tpr_shadow(vcpu->kvm))
+ return;
+
+ sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
+
+ if (set) {
+ sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+ sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
+ } else {
+ sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
+ sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+ }
+ vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
+
+ vmx_set_msr_bitmap(vcpu);
+}
+
+static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ /*
+ * Currently we do not handle the nested case where L2 has an
+ * APIC access page of its own; that page is still pinned.
+ * Hence, we skip the case where the VCPU is in guest mode _and_
+ * L1 prepared an APIC access page for L2.
+ *
+ * For the case where L1 and L2 share the same APIC access page
+ * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
+ * in the vmcs12), this function will only update either the vmcs01
+ * or the vmcs02. If the former, the vmcs02 will be updated by
+ * prepare_vmcs02. If the latter, the vmcs01 will be updated in
+ * the next L2->L1 exit.
+ */
+ if (!is_guest_mode(vcpu) ||
+ !nested_cpu_has2(vmx->nested.current_vmcs12,
+ SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
+ vmcs_write64(APIC_ACCESS_ADDR, hpa);
+}
+
+static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
+{
+ u16 status;
+ u8 old;
+
+ if (isr == -1)
+ isr = 0;
+
+ status = vmcs_read16(GUEST_INTR_STATUS);
+ old = status >> 8;
+ if (isr != old) {
+ status &= 0xff;
+ status |= isr << 8;
+ vmcs_write16(GUEST_INTR_STATUS, status);
+ }
+}
+
+static void vmx_set_rvi(int vector)
+{
+ u16 status;
+ u8 old;
+
+ if (vector == -1)
+ vector = 0;
+
+ status = vmcs_read16(GUEST_INTR_STATUS);
+ old = (u8)status & 0xff;
+ if ((u8)vector != old) {
+ status &= ~0xff;
+ status |= (u8)vector;
+ vmcs_write16(GUEST_INTR_STATUS, status);
+ }
+}
+
+static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
+{
+ if (!is_guest_mode(vcpu)) {
+ vmx_set_rvi(max_irr);
+ return;
+ }
+
+ if (max_irr == -1)
+ return;
+
+ /*
+ * In guest mode. If a vmexit is needed, vmx_check_nested_events
+ * handles it.
+ */
+ if (nested_exit_on_intr(vcpu))
+ return;
+
+ /*
+ * Else, fall back to pre-APICv interrupt injection since L2
+ * is run without virtual interrupt delivery.
+ */
+ if (!kvm_event_needs_reinjection(vcpu) &&
+ vmx_interrupt_allowed(vcpu)) {
+ kvm_queue_interrupt(vcpu, max_irr, false);
+ vmx_inject_irq(vcpu);
+ }
+}
+
+static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
+{
+ if (!vmx_vm_has_apicv(vcpu->kvm))
+ return;
+
+ vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
+ vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
+ vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
+ vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
+}
+
+static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
+{
+ u32 exit_intr_info;
+
+ if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
+ || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
+ return;
+
+ vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+ exit_intr_info = vmx->exit_intr_info;
+
+ /* Handle machine checks before interrupts are enabled */
+ if (is_machine_check(exit_intr_info))
+ kvm_machine_check();
+
+ /* We need to handle NMIs before interrupts are enabled */
+ if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
+ (exit_intr_info & INTR_INFO_VALID_MASK)) {
+ kvm_before_handle_nmi(&vmx->vcpu);
+ asm("int $2");
+ kvm_after_handle_nmi(&vmx->vcpu);
+ }
+}
+
+static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
+{
+ u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+
+ /*
+ * If external interrupt exists, IF bit is set in rflags/eflags on the
+ * interrupt stack frame, and interrupt will be enabled on a return
+ * from interrupt handler.
+ */
+ if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
+ == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
+ unsigned int vector;
+ unsigned long entry;
+ gate_desc *desc;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+#ifdef CONFIG_X86_64
+ unsigned long tmp;
+#endif
+
+ vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
+ desc = (gate_desc *)vmx->host_idt_base + vector;
+ entry = gate_offset(*desc);
+ asm volatile(
+#ifdef CONFIG_X86_64
+ "mov %%" _ASM_SP ", %[sp]\n\t"
+ "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
+ "push $%c[ss]\n\t"
+ "push %[sp]\n\t"
+#endif
+ "pushf\n\t"
+ "orl $0x200, (%%" _ASM_SP ")\n\t"
+ __ASM_SIZE(push) " $%c[cs]\n\t"
+ "call *%[entry]\n\t"
+ :
+#ifdef CONFIG_X86_64
+ [sp]"=&r"(tmp)
+#endif
+ :
+ [entry]"r"(entry),
+ [ss]"i"(__KERNEL_DS),
+ [cs]"i"(__KERNEL_CS)
+ );
+ } else
+ local_irq_enable();
+}
+
+static bool vmx_mpx_supported(void)
+{
+ return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
+ (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
+}
+
+static bool vmx_xsaves_supported(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_XSAVES;
+}
+
+static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
+{
+ u32 exit_intr_info;
+ bool unblock_nmi;
+ u8 vector;
+ bool idtv_info_valid;
+
+ idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
+
+ if (cpu_has_virtual_nmis()) {
+ if (vmx->nmi_known_unmasked)
+ return;
+ /*
+ * Can't use vmx->exit_intr_info since we're not sure what
+ * the exit reason is.
+ */
+ exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+ unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
+ vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
+ /*
+ * SDM 3: 27.7.1.2 (September 2008)
+ * Re-set bit "block by NMI" before VM entry if vmexit caused by
+ * a guest IRET fault.
+ * SDM 3: 23.2.2 (September 2008)
+ * Bit 12 is undefined in any of the following cases:
+ * If the VM exit sets the valid bit in the IDT-vectoring
+ * information field.
+ * If the VM exit is due to a double fault.
+ */
+ if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
+ vector != DF_VECTOR && !idtv_info_valid)
+ vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
+ GUEST_INTR_STATE_NMI);
+ else
+ vmx->nmi_known_unmasked =
+ !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
+ & GUEST_INTR_STATE_NMI);
+ } else if (unlikely(vmx->soft_vnmi_blocked))
+ vmx->vnmi_blocked_time +=
+ ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
+}
+
+static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
+ u32 idt_vectoring_info,
+ int instr_len_field,
+ int error_code_field)
+{
+ u8 vector;
+ int type;
+ bool idtv_info_valid;
+
+ idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
+
+ vcpu->arch.nmi_injected = false;
+ kvm_clear_exception_queue(vcpu);
+ kvm_clear_interrupt_queue(vcpu);
+
+ if (!idtv_info_valid)
+ return;
+
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+ vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
+ type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
+
+ switch (type) {
+ case INTR_TYPE_NMI_INTR:
+ vcpu->arch.nmi_injected = true;
+ /*
+ * SDM 3: 27.7.1.2 (September 2008)
+ * Clear bit "block by NMI" before VM entry if a NMI
+ * delivery faulted.
+ */
+ vmx_set_nmi_mask(vcpu, false);
+ break;
+ case INTR_TYPE_SOFT_EXCEPTION:
+ vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
+ /* fall through */
+ case INTR_TYPE_HARD_EXCEPTION:
+ if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
+ u32 err = vmcs_read32(error_code_field);
+ kvm_requeue_exception_e(vcpu, vector, err);
+ } else
+ kvm_requeue_exception(vcpu, vector);
+ break;
+ case INTR_TYPE_SOFT_INTR:
+ vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
+ /* fall through */
+ case INTR_TYPE_EXT_INTR:
+ kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
+ break;
+ default:
+ break;
+ }
+}
+
+static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
+{
+ __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
+ VM_EXIT_INSTRUCTION_LEN,
+ IDT_VECTORING_ERROR_CODE);
+}
+
+static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
+{
+ __vmx_complete_interrupts(vcpu,
+ vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
+ VM_ENTRY_INSTRUCTION_LEN,
+ VM_ENTRY_EXCEPTION_ERROR_CODE);
+
+ vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
+}
+
+static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
+{
+ int i, nr_msrs;
+ struct perf_guest_switch_msr *msrs;
+
+ msrs = perf_guest_get_msrs(&nr_msrs);
+
+ if (!msrs)
+ return;
+
+ for (i = 0; i < nr_msrs; i++)
+ if (msrs[i].host == msrs[i].guest)
+ clear_atomic_switch_msr(vmx, msrs[i].msr);
+ else
+ add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
+ msrs[i].host);
+}
+
+static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ unsigned long debugctlmsr, cr4;
+
+ /* Record the guest's net vcpu time for enforced NMI injections. */
+ if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
+ vmx->entry_time = ktime_get();
+
+ /* Don't enter VMX if guest state is invalid, let the exit handler
+ start emulation until we arrive back to a valid state */
+ if (vmx->emulation_required)
+ return;
+
+ if (vmx->ple_window_dirty) {
+ vmx->ple_window_dirty = false;
+ vmcs_write32(PLE_WINDOW, vmx->ple_window);
+ }
+
+ if (vmx->nested.sync_shadow_vmcs) {
+ copy_vmcs12_to_shadow(vmx);
+ vmx->nested.sync_shadow_vmcs = false;
+ }
+
+ if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
+ vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
+ if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
+ vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
+
+ cr4 = cr4_read_shadow();
+ if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
+ vmcs_writel(HOST_CR4, cr4);
+ vmx->host_state.vmcs_host_cr4 = cr4;
+ }
+
+ /* When single-stepping over STI and MOV SS, we must clear the
+ * corresponding interruptibility bits in the guest state. Otherwise
+ * vmentry fails as it then expects bit 14 (BS) in pending debug
+ * exceptions being set, but that's not correct for the guest debugging
+ * case. */
+ if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
+ vmx_set_interrupt_shadow(vcpu, 0);
+
+ atomic_switch_perf_msrs(vmx);
+ debugctlmsr = get_debugctlmsr();
+
+ vmx->__launched = vmx->loaded_vmcs->launched;
+ asm(
+ /* Store host registers */
+ "push %%" _ASM_DX "; push %%" _ASM_BP ";"
+ "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
+ "push %%" _ASM_CX " \n\t"
+ "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
+ "je 1f \n\t"
+ "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
+ __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
+ "1: \n\t"
+ /* Reload cr2 if changed */
+ "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
+ "mov %%cr2, %%" _ASM_DX " \n\t"
+ "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
+ "je 2f \n\t"
+ "mov %%" _ASM_AX", %%cr2 \n\t"
+ "2: \n\t"
+ /* Check if vmlaunch of vmresume is needed */
+ "cmpl $0, %c[launched](%0) \n\t"
+ /* Load guest registers. Don't clobber flags. */
+ "mov %c[rax](%0), %%" _ASM_AX " \n\t"
+ "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
+ "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
+ "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
+ "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
+ "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
+#ifdef CONFIG_X86_64
+ "mov %c[r8](%0), %%r8 \n\t"
+ "mov %c[r9](%0), %%r9 \n\t"
+ "mov %c[r10](%0), %%r10 \n\t"
+ "mov %c[r11](%0), %%r11 \n\t"
+ "mov %c[r12](%0), %%r12 \n\t"
+ "mov %c[r13](%0), %%r13 \n\t"
+ "mov %c[r14](%0), %%r14 \n\t"
+ "mov %c[r15](%0), %%r15 \n\t"
+#endif
+ "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
+
+ /* Enter guest mode */
+ "jne 1f \n\t"
+ __ex(ASM_VMX_VMLAUNCH) "\n\t"
+ "jmp 2f \n\t"
+ "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
+ "2: "
+ /* Save guest registers, load host registers, keep flags */
+ "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
+ "pop %0 \n\t"
+ "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
+ "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
+ __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
+ "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
+ "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
+ "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
+ "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
+#ifdef CONFIG_X86_64
+ "mov %%r8, %c[r8](%0) \n\t"
+ "mov %%r9, %c[r9](%0) \n\t"
+ "mov %%r10, %c[r10](%0) \n\t"
+ "mov %%r11, %c[r11](%0) \n\t"
+ "mov %%r12, %c[r12](%0) \n\t"
+ "mov %%r13, %c[r13](%0) \n\t"
+ "mov %%r14, %c[r14](%0) \n\t"
+ "mov %%r15, %c[r15](%0) \n\t"
+#endif
+ "mov %%cr2, %%" _ASM_AX " \n\t"
+ "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
+
+ "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
+ "setbe %c[fail](%0) \n\t"
+ ".pushsection .rodata \n\t"
+ ".global vmx_return \n\t"
+ "vmx_return: " _ASM_PTR " 2b \n\t"
+ ".popsection"
+ : : "c"(vmx), "d"((unsigned long)HOST_RSP),
+ [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
+ [fail]"i"(offsetof(struct vcpu_vmx, fail)),
+ [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
+ [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
+ [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
+ [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
+ [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
+ [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
+ [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
+ [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
+#ifdef CONFIG_X86_64
+ [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
+ [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
+ [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
+ [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
+ [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
+ [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
+ [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
+ [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
+#endif
+ [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
+ [wordsize]"i"(sizeof(ulong))
+ : "cc", "memory"
+#ifdef CONFIG_X86_64
+ , "rax", "rbx", "rdi", "rsi"
+ , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
+#else
+ , "eax", "ebx", "edi", "esi"
+#endif
+ );
+
+ /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
+ if (debugctlmsr)
+ update_debugctlmsr(debugctlmsr);
+
+#ifndef CONFIG_X86_64
+ /*
+ * The sysexit path does not restore ds/es, so we must set them to
+ * a reasonable value ourselves.
+ *
+ * We can't defer this to vmx_load_host_state() since that function
+ * may be executed in interrupt context, which saves and restore segments
+ * around it, nullifying its effect.
+ */
+ loadsegment(ds, __USER_DS);
+ loadsegment(es, __USER_DS);
+#endif
+
+ vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
+ | (1 << VCPU_EXREG_RFLAGS)
+ | (1 << VCPU_EXREG_PDPTR)
+ | (1 << VCPU_EXREG_SEGMENTS)
+ | (1 << VCPU_EXREG_CR3));
+ vcpu->arch.regs_dirty = 0;
+
+ vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
+
+ vmx->loaded_vmcs->launched = 1;
+
+ vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
+ trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
+
+ /*
+ * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
+ * we did not inject a still-pending event to L1 now because of
+ * nested_run_pending, we need to re-enable this bit.
+ */
+ if (vmx->nested.nested_run_pending)
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+ vmx->nested.nested_run_pending = 0;
+
+ vmx_complete_atomic_exit(vmx);
+ vmx_recover_nmi_blocking(vmx);
+ vmx_complete_interrupts(vmx);
+}
+
+static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ int cpu;
+
+ if (vmx->loaded_vmcs == &vmx->vmcs01)
+ return;
+
+ cpu = get_cpu();
+ vmx->loaded_vmcs = &vmx->vmcs01;
+ vmx_vcpu_put(vcpu);
+ vmx_vcpu_load(vcpu, cpu);
+ vcpu->cpu = cpu;
+ put_cpu();
+}
+
+static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (enable_pml)
+ vmx_disable_pml(vmx);
+ free_vpid(vmx);
+ leave_guest_mode(vcpu);
+ vmx_load_vmcs01(vcpu);
+ free_nested(vmx);
+ free_loaded_vmcs(vmx->loaded_vmcs);
+ kfree(vmx->guest_msrs);
+ kvm_vcpu_uninit(vcpu);
+ kmem_cache_free(kvm_vcpu_cache, vmx);
+}
+
+static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
+{
+ int err;
+ struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
+ int cpu;
+
+ if (!vmx)
+ return ERR_PTR(-ENOMEM);
+
+ allocate_vpid(vmx);
+
+ err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
+ if (err)
+ goto free_vcpu;
+
+ vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
+ BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
+ > PAGE_SIZE);
+
+ err = -ENOMEM;
+ if (!vmx->guest_msrs) {
+ goto uninit_vcpu;
+ }
+
+ vmx->loaded_vmcs = &vmx->vmcs01;
+ vmx->loaded_vmcs->vmcs = alloc_vmcs();
+ if (!vmx->loaded_vmcs->vmcs)
+ goto free_msrs;
+ if (!vmm_exclusive)
+ kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
+ loaded_vmcs_init(vmx->loaded_vmcs);
+ if (!vmm_exclusive)
+ kvm_cpu_vmxoff();
+
+ cpu = get_cpu();
+ vmx_vcpu_load(&vmx->vcpu, cpu);
+ vmx->vcpu.cpu = cpu;
+ err = vmx_vcpu_setup(vmx);
+ vmx_vcpu_put(&vmx->vcpu);
+ put_cpu();
+ if (err)
+ goto free_vmcs;
+ if (vm_need_virtualize_apic_accesses(kvm)) {
+ err = alloc_apic_access_page(kvm);
+ if (err)
+ goto free_vmcs;
+ }
+
+ if (enable_ept) {
+ if (!kvm->arch.ept_identity_map_addr)
+ kvm->arch.ept_identity_map_addr =
+ VMX_EPT_IDENTITY_PAGETABLE_ADDR;
+ err = init_rmode_identity_map(kvm);
+ if (err)
+ goto free_vmcs;
+ }
+
+ if (nested)
+ nested_vmx_setup_ctls_msrs(vmx);
+
+ vmx->nested.posted_intr_nv = -1;
+ vmx->nested.current_vmptr = -1ull;
+ vmx->nested.current_vmcs12 = NULL;
+
+ /*
+ * If PML is turned on, failure on enabling PML just results in failure
+ * of creating the vcpu, therefore we can simplify PML logic (by
+ * avoiding dealing with cases, such as enabling PML partially on vcpus
+ * for the guest, etc.
+ */
+ if (enable_pml) {
+ err = vmx_enable_pml(vmx);
+ if (err)
+ goto free_vmcs;
+ }
+
+ return &vmx->vcpu;
+
+free_vmcs:
+ free_loaded_vmcs(vmx->loaded_vmcs);
+free_msrs:
+ kfree(vmx->guest_msrs);
+uninit_vcpu:
+ kvm_vcpu_uninit(&vmx->vcpu);
+free_vcpu:
+ free_vpid(vmx);
+ kmem_cache_free(kvm_vcpu_cache, vmx);
+ return ERR_PTR(err);
+}
+
+static void __init vmx_check_processor_compat(void *rtn)
+{
+ struct vmcs_config vmcs_conf;
+
+ *(int *)rtn = 0;
+ if (setup_vmcs_config(&vmcs_conf) < 0)
+ *(int *)rtn = -EIO;
+ if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
+ printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
+ smp_processor_id());
+ *(int *)rtn = -EIO;
+ }
+}
+
+static int get_ept_level(void)
+{
+ return VMX_EPT_DEFAULT_GAW + 1;
+}
+
+static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
+{
+ u64 ret;
+
+ /* For VT-d and EPT combination
+ * 1. MMIO: always map as UC
+ * 2. EPT with VT-d:
+ * a. VT-d without snooping control feature: can't guarantee the
+ * result, try to trust guest.
+ * b. VT-d with snooping control feature: snooping control feature of
+ * VT-d engine can guarantee the cache correctness. Just set it
+ * to WB to keep consistent with host. So the same as item 3.
+ * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
+ * consistent with host MTRR
+ */
+ if (is_mmio)
+ ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
+ else if (kvm_arch_has_noncoherent_dma(vcpu->kvm))
+ ret = kvm_get_guest_memory_type(vcpu, gfn) <<
+ VMX_EPT_MT_EPTE_SHIFT;
+ else
+ ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
+ | VMX_EPT_IPAT_BIT;
+
+ return ret;
+}
+
+static int vmx_get_lpage_level(void)
+{
+ if (enable_ept && !cpu_has_vmx_ept_1g_page())
+ return PT_DIRECTORY_LEVEL;
+ else
+ /* For shadow and EPT supported 1GB page */
+ return PT_PDPE_LEVEL;
+}
+
+static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpuid_entry2 *best;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ u32 exec_control;
+
+ vmx->rdtscp_enabled = false;
+ if (vmx_rdtscp_supported()) {
+ exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
+ if (exec_control & SECONDARY_EXEC_RDTSCP) {
+ best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
+ if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
+ vmx->rdtscp_enabled = true;
+ else {
+ exec_control &= ~SECONDARY_EXEC_RDTSCP;
+ vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
+ exec_control);
+ }
+ }
+ if (nested && !vmx->rdtscp_enabled)
+ vmx->nested.nested_vmx_secondary_ctls_high &=
+ ~SECONDARY_EXEC_RDTSCP;
+ }
+
+ /* Exposing INVPCID only when PCID is exposed */
+ best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
+ if (vmx_invpcid_supported() &&
+ best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
+ guest_cpuid_has_pcid(vcpu)) {
+ exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
+ exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
+ vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
+ exec_control);
+ } else {
+ if (cpu_has_secondary_exec_ctrls()) {
+ exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
+ exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
+ vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
+ exec_control);
+ }
+ if (best)
+ best->ebx &= ~bit(X86_FEATURE_INVPCID);
+ }
+}
+
+static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
+{
+ if (func == 1 && nested)
+ entry->ecx |= bit(X86_FEATURE_VMX);
+}
+
+static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
+ struct x86_exception *fault)
+{
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ u32 exit_reason;
+
+ if (fault->error_code & PFERR_RSVD_MASK)
+ exit_reason = EXIT_REASON_EPT_MISCONFIG;
+ else
+ exit_reason = EXIT_REASON_EPT_VIOLATION;
+ nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
+ vmcs12->guest_physical_address = fault->address;
+}
+
+/* Callbacks for nested_ept_init_mmu_context: */
+
+static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
+{
+ /* return the page table to be shadowed - in our case, EPT12 */
+ return get_vmcs12(vcpu)->ept_pointer;
+}
+
+static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
+{
+ WARN_ON(mmu_is_nested(vcpu));
+ kvm_init_shadow_ept_mmu(vcpu,
+ to_vmx(vcpu)->nested.nested_vmx_ept_caps &
+ VMX_EPT_EXECUTE_ONLY_BIT);
+ vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
+ vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
+ vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
+
+ vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
+}
+
+static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
+{
+ vcpu->arch.walk_mmu = &vcpu->arch.mmu;
+}
+
+static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
+ u16 error_code)
+{
+ bool inequality, bit;
+
+ bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
+ inequality =
+ (error_code & vmcs12->page_fault_error_code_mask) !=
+ vmcs12->page_fault_error_code_match;
+ return inequality ^ bit;
+}
+
+static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
+ struct x86_exception *fault)
+{
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+ WARN_ON(!is_guest_mode(vcpu));
+
+ if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
+ nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
+ vmcs_read32(VM_EXIT_INTR_INFO),
+ vmcs_readl(EXIT_QUALIFICATION));
+ else
+ kvm_inject_page_fault(vcpu, fault);
+}
+
+static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ int maxphyaddr = cpuid_maxphyaddr(vcpu);
+
+ if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
+ if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
+ vmcs12->apic_access_addr >> maxphyaddr)
+ return false;
+
+ /*
+ * Translate L1 physical address to host physical
+ * address for vmcs02. Keep the page pinned, so this
+ * physical address remains valid. We keep a reference
+ * to it so we can release it later.
+ */
+ if (vmx->nested.apic_access_page) /* shouldn't happen */
+ nested_release_page(vmx->nested.apic_access_page);
+ vmx->nested.apic_access_page =
+ nested_get_page(vcpu, vmcs12->apic_access_addr);
+ }
+
+ if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
+ if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
+ vmcs12->virtual_apic_page_addr >> maxphyaddr)
+ return false;
+
+ if (vmx->nested.virtual_apic_page) /* shouldn't happen */
+ nested_release_page(vmx->nested.virtual_apic_page);
+ vmx->nested.virtual_apic_page =
+ nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
+
+ /*
+ * Failing the vm entry is _not_ what the processor does
+ * but it's basically the only possibility we have.
+ * We could still enter the guest if CR8 load exits are
+ * enabled, CR8 store exits are enabled, and virtualize APIC
+ * access is disabled; in this case the processor would never
+ * use the TPR shadow and we could simply clear the bit from
+ * the execution control. But such a configuration is useless,
+ * so let's keep the code simple.
+ */
+ if (!vmx->nested.virtual_apic_page)
+ return false;
+ }
+
+ if (nested_cpu_has_posted_intr(vmcs12)) {
+ if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
+ vmcs12->posted_intr_desc_addr >> maxphyaddr)
+ return false;
+
+ if (vmx->nested.pi_desc_page) { /* shouldn't happen */
+ kunmap(vmx->nested.pi_desc_page);
+ nested_release_page(vmx->nested.pi_desc_page);
+ }
+ vmx->nested.pi_desc_page =
+ nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
+ if (!vmx->nested.pi_desc_page)
+ return false;
+
+ vmx->nested.pi_desc =
+ (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
+ if (!vmx->nested.pi_desc) {
+ nested_release_page_clean(vmx->nested.pi_desc_page);
+ return false;
+ }
+ vmx->nested.pi_desc =
+ (struct pi_desc *)((void *)vmx->nested.pi_desc +
+ (unsigned long)(vmcs12->posted_intr_desc_addr &
+ (PAGE_SIZE - 1)));
+ }
+
+ return true;
+}
+
+static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
+{
+ u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (vcpu->arch.virtual_tsc_khz == 0)
+ return;
+
+ /* Make sure short timeouts reliably trigger an immediate vmexit.
+ * hrtimer_start does not guarantee this. */
+ if (preemption_timeout <= 1) {
+ vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
+ return;
+ }
+
+ preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
+ preemption_timeout *= 1000000;
+ do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
+ hrtimer_start(&vmx->nested.preemption_timer,
+ ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
+}
+
+static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ int maxphyaddr;
+ u64 addr;
+
+ if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
+ return 0;
+
+ if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
+ WARN_ON(1);
+ return -EINVAL;
+ }
+ maxphyaddr = cpuid_maxphyaddr(vcpu);
+
+ if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
+ ((addr + PAGE_SIZE) >> maxphyaddr))
+ return -EINVAL;
+
+ return 0;
+}
+
+/*
+ * Merge L0's and L1's MSR bitmap, return false to indicate that
+ * we do not use the hardware.
+ */
+static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ int msr;
+ struct page *page;
+ unsigned long *msr_bitmap;
+
+ if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
+ return false;
+
+ page = nested_get_page(vcpu, vmcs12->msr_bitmap);
+ if (!page) {
+ WARN_ON(1);
+ return false;
+ }
+ msr_bitmap = (unsigned long *)kmap(page);
+ if (!msr_bitmap) {
+ nested_release_page_clean(page);
+ WARN_ON(1);
+ return false;
+ }
+
+ if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
+ if (nested_cpu_has_apic_reg_virt(vmcs12))
+ for (msr = 0x800; msr <= 0x8ff; msr++)
+ nested_vmx_disable_intercept_for_msr(
+ msr_bitmap,
+ vmx_msr_bitmap_nested,
+ msr, MSR_TYPE_R);
+ /* TPR is allowed */
+ nested_vmx_disable_intercept_for_msr(msr_bitmap,
+ vmx_msr_bitmap_nested,
+ APIC_BASE_MSR + (APIC_TASKPRI >> 4),
+ MSR_TYPE_R | MSR_TYPE_W);
+ if (nested_cpu_has_vid(vmcs12)) {
+ /* EOI and self-IPI are allowed */
+ nested_vmx_disable_intercept_for_msr(
+ msr_bitmap,
+ vmx_msr_bitmap_nested,
+ APIC_BASE_MSR + (APIC_EOI >> 4),
+ MSR_TYPE_W);
+ nested_vmx_disable_intercept_for_msr(
+ msr_bitmap,
+ vmx_msr_bitmap_nested,
+ APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
+ MSR_TYPE_W);
+ }
+ } else {
+ /*
+ * Enable reading intercept of all the x2apic
+ * MSRs. We should not rely on vmcs12 to do any
+ * optimizations here, it may have been modified
+ * by L1.
+ */
+ for (msr = 0x800; msr <= 0x8ff; msr++)
+ __vmx_enable_intercept_for_msr(
+ vmx_msr_bitmap_nested,
+ msr,
+ MSR_TYPE_R);
+
+ __vmx_enable_intercept_for_msr(
+ vmx_msr_bitmap_nested,
+ APIC_BASE_MSR + (APIC_TASKPRI >> 4),
+ MSR_TYPE_W);
+ __vmx_enable_intercept_for_msr(
+ vmx_msr_bitmap_nested,
+ APIC_BASE_MSR + (APIC_EOI >> 4),
+ MSR_TYPE_W);
+ __vmx_enable_intercept_for_msr(
+ vmx_msr_bitmap_nested,
+ APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
+ MSR_TYPE_W);
+ }
+ kunmap(page);
+ nested_release_page_clean(page);
+
+ return true;
+}
+
+static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
+ !nested_cpu_has_apic_reg_virt(vmcs12) &&
+ !nested_cpu_has_vid(vmcs12) &&
+ !nested_cpu_has_posted_intr(vmcs12))
+ return 0;
+
+ /*
+ * If virtualize x2apic mode is enabled,
+ * virtualize apic access must be disabled.
+ */
+ if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
+ nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
+ return -EINVAL;
+
+ /*
+ * If virtual interrupt delivery is enabled,
+ * we must exit on external interrupts.
+ */
+ if (nested_cpu_has_vid(vmcs12) &&
+ !nested_exit_on_intr(vcpu))
+ return -EINVAL;
+
+ /*
+ * bits 15:8 should be zero in posted_intr_nv,
+ * the descriptor address has been already checked
+ * in nested_get_vmcs12_pages.
+ */
+ if (nested_cpu_has_posted_intr(vmcs12) &&
+ (!nested_cpu_has_vid(vmcs12) ||
+ !nested_exit_intr_ack_set(vcpu) ||
+ vmcs12->posted_intr_nv & 0xff00))
+ return -EINVAL;
+
+ /* tpr shadow is needed by all apicv features. */
+ if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
+ return -EINVAL;
+
+ return 0;
+}
+
+static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
+ unsigned long count_field,
+ unsigned long addr_field)
+{
+ int maxphyaddr;
+ u64 count, addr;
+
+ if (vmcs12_read_any(vcpu, count_field, &count) ||
+ vmcs12_read_any(vcpu, addr_field, &addr)) {
+ WARN_ON(1);
+ return -EINVAL;
+ }
+ if (count == 0)
+ return 0;
+ maxphyaddr = cpuid_maxphyaddr(vcpu);
+ if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
+ (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
+ pr_warn_ratelimited(
+ "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
+ addr_field, maxphyaddr, count, addr);
+ return -EINVAL;
+ }
+ return 0;
+}
+
+static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ if (vmcs12->vm_exit_msr_load_count == 0 &&
+ vmcs12->vm_exit_msr_store_count == 0 &&
+ vmcs12->vm_entry_msr_load_count == 0)
+ return 0; /* Fast path */
+ if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
+ VM_EXIT_MSR_LOAD_ADDR) ||
+ nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
+ VM_EXIT_MSR_STORE_ADDR) ||
+ nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
+ VM_ENTRY_MSR_LOAD_ADDR))
+ return -EINVAL;
+ return 0;
+}
+
+static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
+ struct vmx_msr_entry *e)
+{
+ /* x2APIC MSR accesses are not allowed */
+ if (apic_x2apic_mode(vcpu->arch.apic) && e->index >> 8 == 0x8)
+ return -EINVAL;
+ if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
+ e->index == MSR_IA32_UCODE_REV)
+ return -EINVAL;
+ if (e->reserved != 0)
+ return -EINVAL;
+ return 0;
+}
+
+static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
+ struct vmx_msr_entry *e)
+{
+ if (e->index == MSR_FS_BASE ||
+ e->index == MSR_GS_BASE ||
+ e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
+ nested_vmx_msr_check_common(vcpu, e))
+ return -EINVAL;
+ return 0;
+}
+
+static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
+ struct vmx_msr_entry *e)
+{
+ if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
+ nested_vmx_msr_check_common(vcpu, e))
+ return -EINVAL;
+ return 0;
+}
+
+/*
+ * Load guest's/host's msr at nested entry/exit.
+ * return 0 for success, entry index for failure.
+ */
+static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
+{
+ u32 i;
+ struct vmx_msr_entry e;
+ struct msr_data msr;
+
+ msr.host_initiated = false;
+ for (i = 0; i < count; i++) {
+ if (kvm_read_guest(vcpu->kvm, gpa + i * sizeof(e),
+ &e, sizeof(e))) {
+ pr_warn_ratelimited(
+ "%s cannot read MSR entry (%u, 0x%08llx)\n",
+ __func__, i, gpa + i * sizeof(e));
+ goto fail;
+ }
+ if (nested_vmx_load_msr_check(vcpu, &e)) {
+ pr_warn_ratelimited(
+ "%s check failed (%u, 0x%x, 0x%x)\n",
+ __func__, i, e.index, e.reserved);
+ goto fail;
+ }
+ msr.index = e.index;
+ msr.data = e.value;
+ if (kvm_set_msr(vcpu, &msr)) {
+ pr_warn_ratelimited(
+ "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
+ __func__, i, e.index, e.value);
+ goto fail;
+ }
+ }
+ return 0;
+fail:
+ return i + 1;
+}
+
+static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
+{
+ u32 i;
+ struct vmx_msr_entry e;
+
+ for (i = 0; i < count; i++) {
+ if (kvm_read_guest(vcpu->kvm,
+ gpa + i * sizeof(e),
+ &e, 2 * sizeof(u32))) {
+ pr_warn_ratelimited(
+ "%s cannot read MSR entry (%u, 0x%08llx)\n",
+ __func__, i, gpa + i * sizeof(e));
+ return -EINVAL;
+ }
+ if (nested_vmx_store_msr_check(vcpu, &e)) {
+ pr_warn_ratelimited(
+ "%s check failed (%u, 0x%x, 0x%x)\n",
+ __func__, i, e.index, e.reserved);
+ return -EINVAL;
+ }
+ if (kvm_get_msr(vcpu, e.index, &e.value)) {
+ pr_warn_ratelimited(
+ "%s cannot read MSR (%u, 0x%x)\n",
+ __func__, i, e.index);
+ return -EINVAL;
+ }
+ if (kvm_write_guest(vcpu->kvm,
+ gpa + i * sizeof(e) +
+ offsetof(struct vmx_msr_entry, value),
+ &e.value, sizeof(e.value))) {
+ pr_warn_ratelimited(
+ "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
+ __func__, i, e.index, e.value);
+ return -EINVAL;
+ }
+ }
+ return 0;
+}
+
+/*
+ * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
+ * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
+ * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
+ * guest in a way that will both be appropriate to L1's requests, and our
+ * needs. In addition to modifying the active vmcs (which is vmcs02), this
+ * function also has additional necessary side-effects, like setting various
+ * vcpu->arch fields.
+ */
+static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ u32 exec_control;
+
+ vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
+ vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
+ vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
+ vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
+ vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
+ vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
+ vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
+ vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
+ vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
+ vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
+ vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
+ vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
+ vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
+ vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
+ vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
+ vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
+ vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
+ vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
+ vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
+ vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
+ vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
+ vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
+ vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
+ vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
+ vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
+ vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
+ vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
+ vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
+ vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
+ vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
+ vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
+ vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
+ vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
+ vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
+ vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
+ vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
+
+ if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
+ kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
+ vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
+ } else {
+ kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
+ vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
+ }
+ vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
+ vmcs12->vm_entry_intr_info_field);
+ vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
+ vmcs12->vm_entry_exception_error_code);
+ vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
+ vmcs12->vm_entry_instruction_len);
+ vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
+ vmcs12->guest_interruptibility_info);
+ vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
+ vmx_set_rflags(vcpu, vmcs12->guest_rflags);
+ vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
+ vmcs12->guest_pending_dbg_exceptions);
+ vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
+ vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
+
+ if (nested_cpu_has_xsaves(vmcs12))
+ vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
+ vmcs_write64(VMCS_LINK_POINTER, -1ull);
+
+ exec_control = vmcs12->pin_based_vm_exec_control;
+ exec_control |= vmcs_config.pin_based_exec_ctrl;
+ exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
+
+ if (nested_cpu_has_posted_intr(vmcs12)) {
+ /*
+ * Note that we use L0's vector here and in
+ * vmx_deliver_nested_posted_interrupt.
+ */
+ vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
+ vmx->nested.pi_pending = false;
+ vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
+ vmcs_write64(POSTED_INTR_DESC_ADDR,
+ page_to_phys(vmx->nested.pi_desc_page) +
+ (unsigned long)(vmcs12->posted_intr_desc_addr &
+ (PAGE_SIZE - 1)));
+ } else
+ exec_control &= ~PIN_BASED_POSTED_INTR;
+
+ vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
+
+ vmx->nested.preemption_timer_expired = false;
+ if (nested_cpu_has_preemption_timer(vmcs12))
+ vmx_start_preemption_timer(vcpu);
+
+ /*
+ * Whether page-faults are trapped is determined by a combination of
+ * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
+ * If enable_ept, L0 doesn't care about page faults and we should
+ * set all of these to L1's desires. However, if !enable_ept, L0 does
+ * care about (at least some) page faults, and because it is not easy
+ * (if at all possible?) to merge L0 and L1's desires, we simply ask
+ * to exit on each and every L2 page fault. This is done by setting
+ * MASK=MATCH=0 and (see below) EB.PF=1.
+ * Note that below we don't need special code to set EB.PF beyond the
+ * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
+ * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
+ * !enable_ept, EB.PF is 1, so the "or" will always be 1.
+ *
+ * A problem with this approach (when !enable_ept) is that L1 may be
+ * injected with more page faults than it asked for. This could have
+ * caused problems, but in practice existing hypervisors don't care.
+ * To fix this, we will need to emulate the PFEC checking (on the L1
+ * page tables), using walk_addr(), when injecting PFs to L1.
+ */
+ vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
+ enable_ept ? vmcs12->page_fault_error_code_mask : 0);
+ vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
+ enable_ept ? vmcs12->page_fault_error_code_match : 0);
+
+ if (cpu_has_secondary_exec_ctrls()) {
+ exec_control = vmx_secondary_exec_control(vmx);
+ if (!vmx->rdtscp_enabled)
+ exec_control &= ~SECONDARY_EXEC_RDTSCP;
+ /* Take the following fields only from vmcs12 */
+ exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
+ SECONDARY_EXEC_RDTSCP |
+ SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
+ SECONDARY_EXEC_APIC_REGISTER_VIRT);
+ if (nested_cpu_has(vmcs12,
+ CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
+ exec_control |= vmcs12->secondary_vm_exec_control;
+
+ if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
+ /*
+ * If translation failed, no matter: This feature asks
+ * to exit when accessing the given address, and if it
+ * can never be accessed, this feature won't do
+ * anything anyway.
+ */
+ if (!vmx->nested.apic_access_page)
+ exec_control &=
+ ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+ else
+ vmcs_write64(APIC_ACCESS_ADDR,
+ page_to_phys(vmx->nested.apic_access_page));
+ } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
+ (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))) {
+ exec_control |=
+ SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+ kvm_vcpu_reload_apic_access_page(vcpu);
+ }
+
+ if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
+ vmcs_write64(EOI_EXIT_BITMAP0,
+ vmcs12->eoi_exit_bitmap0);
+ vmcs_write64(EOI_EXIT_BITMAP1,
+ vmcs12->eoi_exit_bitmap1);
+ vmcs_write64(EOI_EXIT_BITMAP2,
+ vmcs12->eoi_exit_bitmap2);
+ vmcs_write64(EOI_EXIT_BITMAP3,
+ vmcs12->eoi_exit_bitmap3);
+ vmcs_write16(GUEST_INTR_STATUS,
+ vmcs12->guest_intr_status);
+ }
+
+ vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
+ }
+
+
+ /*
+ * Set host-state according to L0's settings (vmcs12 is irrelevant here)
+ * Some constant fields are set here by vmx_set_constant_host_state().
+ * Other fields are different per CPU, and will be set later when
+ * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
+ */
+ vmx_set_constant_host_state(vmx);
+
+ /*
+ * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
+ * entry, but only if the current (host) sp changed from the value
+ * we wrote last (vmx->host_rsp). This cache is no longer relevant
+ * if we switch vmcs, and rather than hold a separate cache per vmcs,
+ * here we just force the write to happen on entry.
+ */
+ vmx->host_rsp = 0;
+
+ exec_control = vmx_exec_control(vmx); /* L0's desires */
+ exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
+ exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
+ exec_control &= ~CPU_BASED_TPR_SHADOW;
+ exec_control |= vmcs12->cpu_based_vm_exec_control;
+
+ if (exec_control & CPU_BASED_TPR_SHADOW) {
+ vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
+ page_to_phys(vmx->nested.virtual_apic_page));
+ vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
+ }
+
+ if (cpu_has_vmx_msr_bitmap() &&
+ exec_control & CPU_BASED_USE_MSR_BITMAPS) {
+ nested_vmx_merge_msr_bitmap(vcpu, vmcs12);
+ /* MSR_BITMAP will be set by following vmx_set_efer. */
+ } else
+ exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
+
+ /*
+ * Merging of IO bitmap not currently supported.
+ * Rather, exit every time.
+ */
+ exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
+ exec_control |= CPU_BASED_UNCOND_IO_EXITING;
+
+ vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
+
+ /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
+ * bitwise-or of what L1 wants to trap for L2, and what we want to
+ * trap. Note that CR0.TS also needs updating - we do this later.
+ */
+ update_exception_bitmap(vcpu);
+ vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
+ vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
+
+ /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
+ * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
+ * bits are further modified by vmx_set_efer() below.
+ */
+ vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
+
+ /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
+ * emulated by vmx_set_efer(), below.
+ */
+ vm_entry_controls_init(vmx,
+ (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
+ ~VM_ENTRY_IA32E_MODE) |
+ (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
+
+ if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
+ vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
+ vcpu->arch.pat = vmcs12->guest_ia32_pat;
+ } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
+ vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
+
+
+ set_cr4_guest_host_mask(vmx);
+
+ if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
+ vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
+
+ if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
+ vmcs_write64(TSC_OFFSET,
+ vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
+ else
+ vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
+
+ if (enable_vpid) {
+ /*
+ * Trivially support vpid by letting L2s share their parent
+ * L1's vpid. TODO: move to a more elaborate solution, giving
+ * each L2 its own vpid and exposing the vpid feature to L1.
+ */
+ vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
+ vmx_flush_tlb(vcpu);
+ }
+
+ if (nested_cpu_has_ept(vmcs12)) {
+ kvm_mmu_unload(vcpu);
+ nested_ept_init_mmu_context(vcpu);
+ }
+
+ if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
+ vcpu->arch.efer = vmcs12->guest_ia32_efer;
+ else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
+ vcpu->arch.efer |= (EFER_LMA | EFER_LME);
+ else
+ vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
+ /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
+ vmx_set_efer(vcpu, vcpu->arch.efer);
+
+ /*
+ * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
+ * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
+ * The CR0_READ_SHADOW is what L2 should have expected to read given
+ * the specifications by L1; It's not enough to take
+ * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
+ * have more bits than L1 expected.
+ */
+ vmx_set_cr0(vcpu, vmcs12->guest_cr0);
+ vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
+
+ vmx_set_cr4(vcpu, vmcs12->guest_cr4);
+ vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
+
+ /* shadow page tables on either EPT or shadow page tables */
+ kvm_set_cr3(vcpu, vmcs12->guest_cr3);
+ kvm_mmu_reset_context(vcpu);
+
+ if (!enable_ept)
+ vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
+
+ /*
+ * L1 may access the L2's PDPTR, so save them to construct vmcs12
+ */
+ if (enable_ept) {
+ vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
+ vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
+ vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
+ vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
+ }
+
+ kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
+ kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
+}
+
+/*
+ * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
+ * for running an L2 nested guest.
+ */
+static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
+{
+ struct vmcs12 *vmcs12;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ int cpu;
+ struct loaded_vmcs *vmcs02;
+ bool ia32e;
+ u32 msr_entry_idx;
+
+ if (!nested_vmx_check_permission(vcpu) ||
+ !nested_vmx_check_vmcs12(vcpu))
+ return 1;
+
+ skip_emulated_instruction(vcpu);
+ vmcs12 = get_vmcs12(vcpu);
+
+ if (enable_shadow_vmcs)
+ copy_shadow_to_vmcs12(vmx);
+
+ /*
+ * The nested entry process starts with enforcing various prerequisites
+ * on vmcs12 as required by the Intel SDM, and act appropriately when
+ * they fail: As the SDM explains, some conditions should cause the
+ * instruction to fail, while others will cause the instruction to seem
+ * to succeed, but return an EXIT_REASON_INVALID_STATE.
+ * To speed up the normal (success) code path, we should avoid checking
+ * for misconfigurations which will anyway be caught by the processor
+ * when using the merged vmcs02.
+ */
+ if (vmcs12->launch_state == launch) {
+ nested_vmx_failValid(vcpu,
+ launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
+ : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
+ return 1;
+ }
+
+ if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
+ vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
+ nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+ return 1;
+ }
+
+ if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
+ nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+ return 1;
+ }
+
+ if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
+ nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+ return 1;
+ }
+
+ if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
+ nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+ return 1;
+ }
+
+ if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
+ nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+ return 1;
+ }
+
+ if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
+ vmx->nested.nested_vmx_true_procbased_ctls_low,
+ vmx->nested.nested_vmx_procbased_ctls_high) ||
+ !vmx_control_verify(vmcs12->secondary_vm_exec_control,
+ vmx->nested.nested_vmx_secondary_ctls_low,
+ vmx->nested.nested_vmx_secondary_ctls_high) ||
+ !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
+ vmx->nested.nested_vmx_pinbased_ctls_low,
+ vmx->nested.nested_vmx_pinbased_ctls_high) ||
+ !vmx_control_verify(vmcs12->vm_exit_controls,
+ vmx->nested.nested_vmx_true_exit_ctls_low,
+ vmx->nested.nested_vmx_exit_ctls_high) ||
+ !vmx_control_verify(vmcs12->vm_entry_controls,
+ vmx->nested.nested_vmx_true_entry_ctls_low,
+ vmx->nested.nested_vmx_entry_ctls_high))
+ {
+ nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+ return 1;
+ }
+
+ if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
+ ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
+ nested_vmx_failValid(vcpu,
+ VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
+ return 1;
+ }
+
+ if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
+ ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
+ nested_vmx_entry_failure(vcpu, vmcs12,
+ EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
+ return 1;
+ }
+ if (vmcs12->vmcs_link_pointer != -1ull) {
+ nested_vmx_entry_failure(vcpu, vmcs12,
+ EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
+ return 1;
+ }
+
+ /*
+ * If the load IA32_EFER VM-entry control is 1, the following checks
+ * are performed on the field for the IA32_EFER MSR:
+ * - Bits reserved in the IA32_EFER MSR must be 0.
+ * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
+ * the IA-32e mode guest VM-exit control. It must also be identical
+ * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
+ * CR0.PG) is 1.
+ */
+ if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
+ ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
+ if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
+ ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
+ ((vmcs12->guest_cr0 & X86_CR0_PG) &&
+ ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
+ nested_vmx_entry_failure(vcpu, vmcs12,
+ EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
+ return 1;
+ }
+ }
+
+ /*
+ * If the load IA32_EFER VM-exit control is 1, bits reserved in the
+ * IA32_EFER MSR must be 0 in the field for that register. In addition,
+ * the values of the LMA and LME bits in the field must each be that of
+ * the host address-space size VM-exit control.
+ */
+ if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
+ ia32e = (vmcs12->vm_exit_controls &
+ VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
+ if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
+ ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
+ ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
+ nested_vmx_entry_failure(vcpu, vmcs12,
+ EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
+ return 1;
+ }
+ }
+
+ /*
+ * We're finally done with prerequisite checking, and can start with
+ * the nested entry.
+ */
+
+ vmcs02 = nested_get_current_vmcs02(vmx);
+ if (!vmcs02)
+ return -ENOMEM;
+
+ enter_guest_mode(vcpu);
+
+ vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
+
+ if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
+ vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
+
+ cpu = get_cpu();
+ vmx->loaded_vmcs = vmcs02;
+ vmx_vcpu_put(vcpu);
+ vmx_vcpu_load(vcpu, cpu);
+ vcpu->cpu = cpu;
+ put_cpu();
+
+ vmx_segment_cache_clear(vmx);
+
+ prepare_vmcs02(vcpu, vmcs12);
+
+ msr_entry_idx = nested_vmx_load_msr(vcpu,
+ vmcs12->vm_entry_msr_load_addr,
+ vmcs12->vm_entry_msr_load_count);
+ if (msr_entry_idx) {
+ leave_guest_mode(vcpu);
+ vmx_load_vmcs01(vcpu);
+ nested_vmx_entry_failure(vcpu, vmcs12,
+ EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
+ return 1;
+ }
+
+ vmcs12->launch_state = 1;
+
+ if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
+ return kvm_vcpu_halt(vcpu);
+
+ vmx->nested.nested_run_pending = 1;
+
+ /*
+ * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
+ * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
+ * returned as far as L1 is concerned. It will only return (and set
+ * the success flag) when L2 exits (see nested_vmx_vmexit()).
+ */
+ return 1;
+}
+
+/*
+ * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
+ * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
+ * This function returns the new value we should put in vmcs12.guest_cr0.
+ * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
+ * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
+ * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
+ * didn't trap the bit, because if L1 did, so would L0).
+ * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
+ * been modified by L2, and L1 knows it. So just leave the old value of
+ * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
+ * isn't relevant, because if L0 traps this bit it can set it to anything.
+ * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
+ * changed these bits, and therefore they need to be updated, but L0
+ * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
+ * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
+ */
+static inline unsigned long
+vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
+{
+ return
+ /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
+ /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
+ /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
+ vcpu->arch.cr0_guest_owned_bits));
+}
+
+static inline unsigned long
+vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
+{
+ return
+ /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
+ /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
+ /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
+ vcpu->arch.cr4_guest_owned_bits));
+}
+
+static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ u32 idt_vectoring;
+ unsigned int nr;
+
+ if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
+ nr = vcpu->arch.exception.nr;
+ idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
+
+ if (kvm_exception_is_soft(nr)) {
+ vmcs12->vm_exit_instruction_len =
+ vcpu->arch.event_exit_inst_len;
+ idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
+ } else
+ idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
+
+ if (vcpu->arch.exception.has_error_code) {
+ idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
+ vmcs12->idt_vectoring_error_code =
+ vcpu->arch.exception.error_code;
+ }
+
+ vmcs12->idt_vectoring_info_field = idt_vectoring;
+ } else if (vcpu->arch.nmi_injected) {
+ vmcs12->idt_vectoring_info_field =
+ INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
+ } else if (vcpu->arch.interrupt.pending) {
+ nr = vcpu->arch.interrupt.nr;
+ idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
+
+ if (vcpu->arch.interrupt.soft) {
+ idt_vectoring |= INTR_TYPE_SOFT_INTR;
+ vmcs12->vm_entry_instruction_len =
+ vcpu->arch.event_exit_inst_len;
+ } else
+ idt_vectoring |= INTR_TYPE_EXT_INTR;
+
+ vmcs12->idt_vectoring_info_field = idt_vectoring;
+ }
+}
+
+static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
+ vmx->nested.preemption_timer_expired) {
+ if (vmx->nested.nested_run_pending)
+ return -EBUSY;
+ nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
+ return 0;
+ }
+
+ if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
+ if (vmx->nested.nested_run_pending ||
+ vcpu->arch.interrupt.pending)
+ return -EBUSY;
+ nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
+ NMI_VECTOR | INTR_TYPE_NMI_INTR |
+ INTR_INFO_VALID_MASK, 0);
+ /*
+ * The NMI-triggered VM exit counts as injection:
+ * clear this one and block further NMIs.
+ */
+ vcpu->arch.nmi_pending = 0;
+ vmx_set_nmi_mask(vcpu, true);
+ return 0;
+ }
+
+ if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
+ nested_exit_on_intr(vcpu)) {
+ if (vmx->nested.nested_run_pending)
+ return -EBUSY;
+ nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
+ return 0;
+ }
+
+ return vmx_complete_nested_posted_interrupt(vcpu);
+}
+
+static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
+{
+ ktime_t remaining =
+ hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
+ u64 value;
+
+ if (ktime_to_ns(remaining) <= 0)
+ return 0;
+
+ value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
+ do_div(value, 1000000);
+ return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
+}
+
+/*
+ * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
+ * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
+ * and this function updates it to reflect the changes to the guest state while
+ * L2 was running (and perhaps made some exits which were handled directly by L0
+ * without going back to L1), and to reflect the exit reason.
+ * Note that we do not have to copy here all VMCS fields, just those that
+ * could have changed by the L2 guest or the exit - i.e., the guest-state and
+ * exit-information fields only. Other fields are modified by L1 with VMWRITE,
+ * which already writes to vmcs12 directly.
+ */
+static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
+ u32 exit_reason, u32 exit_intr_info,
+ unsigned long exit_qualification)
+{
+ /* update guest state fields: */
+ vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
+ vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
+
+ vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
+ vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
+ vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
+
+ vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
+ vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
+ vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
+ vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
+ vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
+ vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
+ vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
+ vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
+ vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
+ vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
+ vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
+ vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
+ vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
+ vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
+ vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
+ vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
+ vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
+ vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
+ vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
+ vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
+ vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
+ vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
+ vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
+ vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
+ vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
+ vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
+ vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
+ vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
+ vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
+ vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
+ vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
+ vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
+ vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
+ vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
+ vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
+ vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
+
+ vmcs12->guest_interruptibility_info =
+ vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
+ vmcs12->guest_pending_dbg_exceptions =
+ vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
+ if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
+ vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
+ else
+ vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
+
+ if (nested_cpu_has_preemption_timer(vmcs12)) {
+ if (vmcs12->vm_exit_controls &
+ VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
+ vmcs12->vmx_preemption_timer_value =
+ vmx_get_preemption_timer_value(vcpu);
+ hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
+ }
+
+ /*
+ * In some cases (usually, nested EPT), L2 is allowed to change its
+ * own CR3 without exiting. If it has changed it, we must keep it.
+ * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
+ * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
+ *
+ * Additionally, restore L2's PDPTR to vmcs12.
+ */
+ if (enable_ept) {
+ vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
+ vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
+ vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
+ vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
+ vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
+ }
+
+ if (nested_cpu_has_vid(vmcs12))
+ vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
+
+ vmcs12->vm_entry_controls =
+ (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
+ (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
+
+ if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
+ kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
+ vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
+ }
+
+ /* TODO: These cannot have changed unless we have MSR bitmaps and
+ * the relevant bit asks not to trap the change */
+ if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
+ vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
+ if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
+ vmcs12->guest_ia32_efer = vcpu->arch.efer;
+ vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
+ vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
+ vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
+ if (vmx_mpx_supported())
+ vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
+ if (nested_cpu_has_xsaves(vmcs12))
+ vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
+
+ /* update exit information fields: */
+
+ vmcs12->vm_exit_reason = exit_reason;
+ vmcs12->exit_qualification = exit_qualification;
+
+ vmcs12->vm_exit_intr_info = exit_intr_info;
+ if ((vmcs12->vm_exit_intr_info &
+ (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
+ (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
+ vmcs12->vm_exit_intr_error_code =
+ vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
+ vmcs12->idt_vectoring_info_field = 0;
+ vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+ vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+
+ if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
+ /* vm_entry_intr_info_field is cleared on exit. Emulate this
+ * instead of reading the real value. */
+ vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
+
+ /*
+ * Transfer the event that L0 or L1 may wanted to inject into
+ * L2 to IDT_VECTORING_INFO_FIELD.
+ */
+ vmcs12_save_pending_event(vcpu, vmcs12);
+ }
+
+ /*
+ * Drop what we picked up for L2 via vmx_complete_interrupts. It is
+ * preserved above and would only end up incorrectly in L1.
+ */
+ vcpu->arch.nmi_injected = false;
+ kvm_clear_exception_queue(vcpu);
+ kvm_clear_interrupt_queue(vcpu);
+}
+
+/*
+ * A part of what we need to when the nested L2 guest exits and we want to
+ * run its L1 parent, is to reset L1's guest state to the host state specified
+ * in vmcs12.
+ * This function is to be called not only on normal nested exit, but also on
+ * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
+ * Failures During or After Loading Guest State").
+ * This function should be called when the active VMCS is L1's (vmcs01).
+ */
+static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ struct kvm_segment seg;
+
+ if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
+ vcpu->arch.efer = vmcs12->host_ia32_efer;
+ else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
+ vcpu->arch.efer |= (EFER_LMA | EFER_LME);
+ else
+ vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
+ vmx_set_efer(vcpu, vcpu->arch.efer);
+
+ kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
+ kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
+ vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
+ /*
+ * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
+ * actually changed, because it depends on the current state of
+ * fpu_active (which may have changed).
+ * Note that vmx_set_cr0 refers to efer set above.
+ */
+ vmx_set_cr0(vcpu, vmcs12->host_cr0);
+ /*
+ * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
+ * to apply the same changes to L1's vmcs. We just set cr0 correctly,
+ * but we also need to update cr0_guest_host_mask and exception_bitmap.
+ */
+ update_exception_bitmap(vcpu);
+ vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
+ vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
+
+ /*
+ * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
+ * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
+ */
+ vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
+ kvm_set_cr4(vcpu, vmcs12->host_cr4);
+
+ nested_ept_uninit_mmu_context(vcpu);
+
+ kvm_set_cr3(vcpu, vmcs12->host_cr3);
+ kvm_mmu_reset_context(vcpu);
+
+ if (!enable_ept)
+ vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
+
+ if (enable_vpid) {
+ /*
+ * Trivially support vpid by letting L2s share their parent
+ * L1's vpid. TODO: move to a more elaborate solution, giving
+ * each L2 its own vpid and exposing the vpid feature to L1.
+ */
+ vmx_flush_tlb(vcpu);
+ }
+
+
+ vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
+ vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
+ vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
+ vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
+ vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
+
+ /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
+ if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
+ vmcs_write64(GUEST_BNDCFGS, 0);
+
+ if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
+ vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
+ vcpu->arch.pat = vmcs12->host_ia32_pat;
+ }
+ if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
+ vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
+ vmcs12->host_ia32_perf_global_ctrl);
+
+ /* Set L1 segment info according to Intel SDM
+ 27.5.2 Loading Host Segment and Descriptor-Table Registers */
+ seg = (struct kvm_segment) {
+ .base = 0,
+ .limit = 0xFFFFFFFF,
+ .selector = vmcs12->host_cs_selector,
+ .type = 11,
+ .present = 1,
+ .s = 1,
+ .g = 1
+ };
+ if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
+ seg.l = 1;
+ else
+ seg.db = 1;
+ vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
+ seg = (struct kvm_segment) {
+ .base = 0,
+ .limit = 0xFFFFFFFF,
+ .type = 3,
+ .present = 1,
+ .s = 1,
+ .db = 1,
+ .g = 1
+ };
+ seg.selector = vmcs12->host_ds_selector;
+ vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
+ seg.selector = vmcs12->host_es_selector;
+ vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
+ seg.selector = vmcs12->host_ss_selector;
+ vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
+ seg.selector = vmcs12->host_fs_selector;
+ seg.base = vmcs12->host_fs_base;
+ vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
+ seg.selector = vmcs12->host_gs_selector;
+ seg.base = vmcs12->host_gs_base;
+ vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
+ seg = (struct kvm_segment) {
+ .base = vmcs12->host_tr_base,
+ .limit = 0x67,
+ .selector = vmcs12->host_tr_selector,
+ .type = 11,
+ .present = 1
+ };
+ vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
+
+ kvm_set_dr(vcpu, 7, 0x400);
+ vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
+
+ if (cpu_has_vmx_msr_bitmap())
+ vmx_set_msr_bitmap(vcpu);
+
+ if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
+ vmcs12->vm_exit_msr_load_count))
+ nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
+}
+
+/*
+ * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
+ * and modify vmcs12 to make it see what it would expect to see there if
+ * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
+ */
+static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
+ u32 exit_intr_info,
+ unsigned long exit_qualification)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+ /* trying to cancel vmlaunch/vmresume is a bug */
+ WARN_ON_ONCE(vmx->nested.nested_run_pending);
+
+ leave_guest_mode(vcpu);
+ prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
+ exit_qualification);
+
+ if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
+ vmcs12->vm_exit_msr_store_count))
+ nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
+
+ vmx_load_vmcs01(vcpu);
+
+ if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
+ && nested_exit_intr_ack_set(vcpu)) {
+ int irq = kvm_cpu_get_interrupt(vcpu);
+ WARN_ON(irq < 0);
+ vmcs12->vm_exit_intr_info = irq |
+ INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
+ }
+
+ trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
+ vmcs12->exit_qualification,
+ vmcs12->idt_vectoring_info_field,
+ vmcs12->vm_exit_intr_info,
+ vmcs12->vm_exit_intr_error_code,
+ KVM_ISA_VMX);
+
+ vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
+ vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
+ vmx_segment_cache_clear(vmx);
+
+ /* if no vmcs02 cache requested, remove the one we used */
+ if (VMCS02_POOL_SIZE == 0)
+ nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
+
+ load_vmcs12_host_state(vcpu, vmcs12);
+
+ /* Update TSC_OFFSET if TSC was changed while L2 ran */
+ vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
+
+ /* This is needed for same reason as it was needed in prepare_vmcs02 */
+ vmx->host_rsp = 0;
+
+ /* Unpin physical memory we referred to in vmcs02 */
+ if (vmx->nested.apic_access_page) {
+ nested_release_page(vmx->nested.apic_access_page);
+ vmx->nested.apic_access_page = NULL;
+ }
+ if (vmx->nested.virtual_apic_page) {
+ nested_release_page(vmx->nested.virtual_apic_page);
+ vmx->nested.virtual_apic_page = NULL;
+ }
+ if (vmx->nested.pi_desc_page) {
+ kunmap(vmx->nested.pi_desc_page);
+ nested_release_page(vmx->nested.pi_desc_page);
+ vmx->nested.pi_desc_page = NULL;
+ vmx->nested.pi_desc = NULL;
+ }
+
+ /*
+ * We are now running in L2, mmu_notifier will force to reload the
+ * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
+ */
+ kvm_vcpu_reload_apic_access_page(vcpu);
+
+ /*
+ * Exiting from L2 to L1, we're now back to L1 which thinks it just
+ * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
+ * success or failure flag accordingly.
+ */
+ if (unlikely(vmx->fail)) {
+ vmx->fail = 0;
+ nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
+ } else
+ nested_vmx_succeed(vcpu);
+ if (enable_shadow_vmcs)
+ vmx->nested.sync_shadow_vmcs = true;
+
+ /* in case we halted in L2 */
+ vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
+}
+
+/*
+ * Forcibly leave nested mode in order to be able to reset the VCPU later on.
+ */
+static void vmx_leave_nested(struct kvm_vcpu *vcpu)
+{
+ if (is_guest_mode(vcpu))
+ nested_vmx_vmexit(vcpu, -1, 0, 0);
+ free_nested(to_vmx(vcpu));
+}
+
+/*
+ * L1's failure to enter L2 is a subset of a normal exit, as explained in
+ * 23.7 "VM-entry failures during or after loading guest state" (this also
+ * lists the acceptable exit-reason and exit-qualification parameters).
+ * It should only be called before L2 actually succeeded to run, and when
+ * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
+ */
+static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12,
+ u32 reason, unsigned long qualification)
+{
+ load_vmcs12_host_state(vcpu, vmcs12);
+ vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
+ vmcs12->exit_qualification = qualification;
+ nested_vmx_succeed(vcpu);
+ if (enable_shadow_vmcs)
+ to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
+}
+
+static int vmx_check_intercept(struct kvm_vcpu *vcpu,
+ struct x86_instruction_info *info,
+ enum x86_intercept_stage stage)
+{
+ return X86EMUL_CONTINUE;
+}
+
+static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
+{
+ if (ple_gap)
+ shrink_ple_window(vcpu);
+}
+
+static void vmx_slot_enable_log_dirty(struct kvm *kvm,
+ struct kvm_memory_slot *slot)
+{
+ kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
+ kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
+}
+
+static void vmx_slot_disable_log_dirty(struct kvm *kvm,
+ struct kvm_memory_slot *slot)
+{
+ kvm_mmu_slot_set_dirty(kvm, slot);
+}
+
+static void vmx_flush_log_dirty(struct kvm *kvm)
+{
+ kvm_flush_pml_buffers(kvm);
+}
+
+static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
+ struct kvm_memory_slot *memslot,
+ gfn_t offset, unsigned long mask)
+{
+ kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
+}
+
+static struct kvm_x86_ops vmx_x86_ops = {
+ .cpu_has_kvm_support = cpu_has_kvm_support,
+ .disabled_by_bios = vmx_disabled_by_bios,
+ .hardware_setup = hardware_setup,
+ .hardware_unsetup = hardware_unsetup,
+ .check_processor_compatibility = vmx_check_processor_compat,
+ .hardware_enable = hardware_enable,
+ .hardware_disable = hardware_disable,
+ .cpu_has_accelerated_tpr = report_flexpriority,
+
+ .vcpu_create = vmx_create_vcpu,
+ .vcpu_free = vmx_free_vcpu,
+ .vcpu_reset = vmx_vcpu_reset,
+
+ .prepare_guest_switch = vmx_save_host_state,
+ .vcpu_load = vmx_vcpu_load,
+ .vcpu_put = vmx_vcpu_put,
+
+ .update_db_bp_intercept = update_exception_bitmap,
+ .get_msr = vmx_get_msr,
+ .set_msr = vmx_set_msr,
+ .get_segment_base = vmx_get_segment_base,
+ .get_segment = vmx_get_segment,
+ .set_segment = vmx_set_segment,
+ .get_cpl = vmx_get_cpl,
+ .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
+ .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
+ .decache_cr3 = vmx_decache_cr3,
+ .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
+ .set_cr0 = vmx_set_cr0,
+ .set_cr3 = vmx_set_cr3,
+ .set_cr4 = vmx_set_cr4,
+ .set_efer = vmx_set_efer,
+ .get_idt = vmx_get_idt,
+ .set_idt = vmx_set_idt,
+ .get_gdt = vmx_get_gdt,
+ .set_gdt = vmx_set_gdt,
+ .get_dr6 = vmx_get_dr6,
+ .set_dr6 = vmx_set_dr6,
+ .set_dr7 = vmx_set_dr7,
+ .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
+ .cache_reg = vmx_cache_reg,
+ .get_rflags = vmx_get_rflags,
+ .set_rflags = vmx_set_rflags,
+ .fpu_activate = vmx_fpu_activate,
+ .fpu_deactivate = vmx_fpu_deactivate,
+
+ .tlb_flush = vmx_flush_tlb,
+
+ .run = vmx_vcpu_run,
+ .handle_exit = vmx_handle_exit,
+ .skip_emulated_instruction = skip_emulated_instruction,
+ .set_interrupt_shadow = vmx_set_interrupt_shadow,
+ .get_interrupt_shadow = vmx_get_interrupt_shadow,
+ .patch_hypercall = vmx_patch_hypercall,
+ .set_irq = vmx_inject_irq,
+ .set_nmi = vmx_inject_nmi,
+ .queue_exception = vmx_queue_exception,
+ .cancel_injection = vmx_cancel_injection,
+ .interrupt_allowed = vmx_interrupt_allowed,
+ .nmi_allowed = vmx_nmi_allowed,
+ .get_nmi_mask = vmx_get_nmi_mask,
+ .set_nmi_mask = vmx_set_nmi_mask,
+ .enable_nmi_window = enable_nmi_window,
+ .enable_irq_window = enable_irq_window,
+ .update_cr8_intercept = update_cr8_intercept,
+ .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
+ .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
+ .vm_has_apicv = vmx_vm_has_apicv,
+ .load_eoi_exitmap = vmx_load_eoi_exitmap,
+ .hwapic_irr_update = vmx_hwapic_irr_update,
+ .hwapic_isr_update = vmx_hwapic_isr_update,
+ .sync_pir_to_irr = vmx_sync_pir_to_irr,
+ .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
+
+ .set_tss_addr = vmx_set_tss_addr,
+ .get_tdp_level = get_ept_level,
+ .get_mt_mask = vmx_get_mt_mask,
+
+ .get_exit_info = vmx_get_exit_info,
+
+ .get_lpage_level = vmx_get_lpage_level,
+
+ .cpuid_update = vmx_cpuid_update,
+
+ .rdtscp_supported = vmx_rdtscp_supported,
+ .invpcid_supported = vmx_invpcid_supported,
+
+ .set_supported_cpuid = vmx_set_supported_cpuid,
+
+ .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
+
+ .set_tsc_khz = vmx_set_tsc_khz,
+ .read_tsc_offset = vmx_read_tsc_offset,
+ .write_tsc_offset = vmx_write_tsc_offset,
+ .adjust_tsc_offset = vmx_adjust_tsc_offset,
+ .compute_tsc_offset = vmx_compute_tsc_offset,
+ .read_l1_tsc = vmx_read_l1_tsc,
+
+ .set_tdp_cr3 = vmx_set_cr3,
+
+ .check_intercept = vmx_check_intercept,
+ .handle_external_intr = vmx_handle_external_intr,
+ .mpx_supported = vmx_mpx_supported,
+ .xsaves_supported = vmx_xsaves_supported,
+
+ .check_nested_events = vmx_check_nested_events,
+
+ .sched_in = vmx_sched_in,
+
+ .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
+ .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
+ .flush_log_dirty = vmx_flush_log_dirty,
+ .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
+};
+
+static int __init vmx_init(void)
+{
+ int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
+ __alignof__(struct vcpu_vmx), THIS_MODULE);
+ if (r)
+ return r;
+
+#ifdef CONFIG_KEXEC
+ rcu_assign_pointer(crash_vmclear_loaded_vmcss,
+ crash_vmclear_local_loaded_vmcss);
+#endif
+
+ return 0;
+}
+
+static void __exit vmx_exit(void)
+{
+#ifdef CONFIG_KEXEC
+ RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
+ synchronize_rcu();
+#endif
+
+ kvm_exit();
+}
+
+module_init(vmx_init)
+module_exit(vmx_exit)
diff --git a/kernel/arch/x86/kvm/x86.c b/kernel/arch/x86/kvm/x86.c
new file mode 100644
index 000000000..6cceb2cb2
--- /dev/null
+++ b/kernel/arch/x86/kvm/x86.c
@@ -0,0 +1,7994 @@
+/*
+ * Kernel-based Virtual Machine driver for Linux
+ *
+ * derived from drivers/kvm/kvm_main.c
+ *
+ * Copyright (C) 2006 Qumranet, Inc.
+ * Copyright (C) 2008 Qumranet, Inc.
+ * Copyright IBM Corporation, 2008
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
+ *
+ * Authors:
+ * Avi Kivity <avi@qumranet.com>
+ * Yaniv Kamay <yaniv@qumranet.com>
+ * Amit Shah <amit.shah@qumranet.com>
+ * Ben-Ami Yassour <benami@il.ibm.com>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2. See
+ * the COPYING file in the top-level directory.
+ *
+ */
+
+#include <linux/kvm_host.h>
+#include "irq.h"
+#include "mmu.h"
+#include "i8254.h"
+#include "tss.h"
+#include "kvm_cache_regs.h"
+#include "x86.h"
+#include "cpuid.h"
+#include "assigned-dev.h"
+
+#include <linux/clocksource.h>
+#include <linux/interrupt.h>
+#include <linux/kvm.h>
+#include <linux/fs.h>
+#include <linux/vmalloc.h>
+#include <linux/module.h>
+#include <linux/mman.h>
+#include <linux/highmem.h>
+#include <linux/iommu.h>
+#include <linux/intel-iommu.h>
+#include <linux/cpufreq.h>
+#include <linux/user-return-notifier.h>
+#include <linux/srcu.h>
+#include <linux/slab.h>
+#include <linux/perf_event.h>
+#include <linux/uaccess.h>
+#include <linux/hash.h>
+#include <linux/pci.h>
+#include <linux/timekeeper_internal.h>
+#include <linux/pvclock_gtod.h>
+#include <trace/events/kvm.h>
+
+#define CREATE_TRACE_POINTS
+#include "trace.h"
+
+#include <asm/debugreg.h>
+#include <asm/msr.h>
+#include <asm/desc.h>
+#include <asm/mtrr.h>
+#include <asm/mce.h>
+#include <asm/i387.h>
+#include <asm/fpu-internal.h> /* Ugh! */
+#include <asm/xcr.h>
+#include <asm/pvclock.h>
+#include <asm/div64.h>
+
+#define MAX_IO_MSRS 256
+#define KVM_MAX_MCE_BANKS 32
+#define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
+
+#define emul_to_vcpu(ctxt) \
+ container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
+
+/* EFER defaults:
+ * - enable syscall per default because its emulated by KVM
+ * - enable LME and LMA per default on 64 bit KVM
+ */
+#ifdef CONFIG_X86_64
+static
+u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
+#else
+static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
+#endif
+
+#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
+#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
+
+static void update_cr8_intercept(struct kvm_vcpu *vcpu);
+static void process_nmi(struct kvm_vcpu *vcpu);
+static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
+
+struct kvm_x86_ops *kvm_x86_ops;
+EXPORT_SYMBOL_GPL(kvm_x86_ops);
+
+static bool ignore_msrs = 0;
+module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
+
+unsigned int min_timer_period_us = 500;
+module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
+
+bool kvm_has_tsc_control;
+EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
+u32 kvm_max_guest_tsc_khz;
+EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
+
+/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
+static u32 tsc_tolerance_ppm = 250;
+module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
+
+/* lapic timer advance (tscdeadline mode only) in nanoseconds */
+unsigned int lapic_timer_advance_ns = 0;
+module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
+
+static bool backwards_tsc_observed = false;
+
+#define KVM_NR_SHARED_MSRS 16
+
+struct kvm_shared_msrs_global {
+ int nr;
+ u32 msrs[KVM_NR_SHARED_MSRS];
+};
+
+struct kvm_shared_msrs {
+ struct user_return_notifier urn;
+ bool registered;
+ struct kvm_shared_msr_values {
+ u64 host;
+ u64 curr;
+ } values[KVM_NR_SHARED_MSRS];
+};
+
+static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
+static struct kvm_shared_msrs __percpu *shared_msrs;
+
+struct kvm_stats_debugfs_item debugfs_entries[] = {
+ { "pf_fixed", VCPU_STAT(pf_fixed) },
+ { "pf_guest", VCPU_STAT(pf_guest) },
+ { "tlb_flush", VCPU_STAT(tlb_flush) },
+ { "invlpg", VCPU_STAT(invlpg) },
+ { "exits", VCPU_STAT(exits) },
+ { "io_exits", VCPU_STAT(io_exits) },
+ { "mmio_exits", VCPU_STAT(mmio_exits) },
+ { "signal_exits", VCPU_STAT(signal_exits) },
+ { "irq_window", VCPU_STAT(irq_window_exits) },
+ { "nmi_window", VCPU_STAT(nmi_window_exits) },
+ { "halt_exits", VCPU_STAT(halt_exits) },
+ { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
+ { "halt_wakeup", VCPU_STAT(halt_wakeup) },
+ { "hypercalls", VCPU_STAT(hypercalls) },
+ { "request_irq", VCPU_STAT(request_irq_exits) },
+ { "irq_exits", VCPU_STAT(irq_exits) },
+ { "host_state_reload", VCPU_STAT(host_state_reload) },
+ { "efer_reload", VCPU_STAT(efer_reload) },
+ { "fpu_reload", VCPU_STAT(fpu_reload) },
+ { "insn_emulation", VCPU_STAT(insn_emulation) },
+ { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
+ { "irq_injections", VCPU_STAT(irq_injections) },
+ { "nmi_injections", VCPU_STAT(nmi_injections) },
+ { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
+ { "mmu_pte_write", VM_STAT(mmu_pte_write) },
+ { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
+ { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
+ { "mmu_flooded", VM_STAT(mmu_flooded) },
+ { "mmu_recycled", VM_STAT(mmu_recycled) },
+ { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
+ { "mmu_unsync", VM_STAT(mmu_unsync) },
+ { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
+ { "largepages", VM_STAT(lpages) },
+ { NULL }
+};
+
+u64 __read_mostly host_xcr0;
+
+static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
+
+static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
+{
+ int i;
+ for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
+ vcpu->arch.apf.gfns[i] = ~0;
+}
+
+static void kvm_on_user_return(struct user_return_notifier *urn)
+{
+ unsigned slot;
+ struct kvm_shared_msrs *locals
+ = container_of(urn, struct kvm_shared_msrs, urn);
+ struct kvm_shared_msr_values *values;
+
+ for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
+ values = &locals->values[slot];
+ if (values->host != values->curr) {
+ wrmsrl(shared_msrs_global.msrs[slot], values->host);
+ values->curr = values->host;
+ }
+ }
+ locals->registered = false;
+ user_return_notifier_unregister(urn);
+}
+
+static void shared_msr_update(unsigned slot, u32 msr)
+{
+ u64 value;
+ unsigned int cpu = smp_processor_id();
+ struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
+
+ /* only read, and nobody should modify it at this time,
+ * so don't need lock */
+ if (slot >= shared_msrs_global.nr) {
+ printk(KERN_ERR "kvm: invalid MSR slot!");
+ return;
+ }
+ rdmsrl_safe(msr, &value);
+ smsr->values[slot].host = value;
+ smsr->values[slot].curr = value;
+}
+
+void kvm_define_shared_msr(unsigned slot, u32 msr)
+{
+ BUG_ON(slot >= KVM_NR_SHARED_MSRS);
+ if (slot >= shared_msrs_global.nr)
+ shared_msrs_global.nr = slot + 1;
+ shared_msrs_global.msrs[slot] = msr;
+ /* we need ensured the shared_msr_global have been updated */
+ smp_wmb();
+}
+EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
+
+static void kvm_shared_msr_cpu_online(void)
+{
+ unsigned i;
+
+ for (i = 0; i < shared_msrs_global.nr; ++i)
+ shared_msr_update(i, shared_msrs_global.msrs[i]);
+}
+
+int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
+{
+ unsigned int cpu = smp_processor_id();
+ struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
+ int err;
+
+ if (((value ^ smsr->values[slot].curr) & mask) == 0)
+ return 0;
+ smsr->values[slot].curr = value;
+ err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
+ if (err)
+ return 1;
+
+ if (!smsr->registered) {
+ smsr->urn.on_user_return = kvm_on_user_return;
+ user_return_notifier_register(&smsr->urn);
+ smsr->registered = true;
+ }
+ return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
+
+static void drop_user_return_notifiers(void)
+{
+ unsigned int cpu = smp_processor_id();
+ struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
+
+ if (smsr->registered)
+ kvm_on_user_return(&smsr->urn);
+}
+
+u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
+{
+ return vcpu->arch.apic_base;
+}
+EXPORT_SYMBOL_GPL(kvm_get_apic_base);
+
+int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
+{
+ u64 old_state = vcpu->arch.apic_base &
+ (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
+ u64 new_state = msr_info->data &
+ (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
+ u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
+ 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
+
+ if (!msr_info->host_initiated &&
+ ((msr_info->data & reserved_bits) != 0 ||
+ new_state == X2APIC_ENABLE ||
+ (new_state == MSR_IA32_APICBASE_ENABLE &&
+ old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
+ (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
+ old_state == 0)))
+ return 1;
+
+ kvm_lapic_set_base(vcpu, msr_info->data);
+ return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_set_apic_base);
+
+asmlinkage __visible void kvm_spurious_fault(void)
+{
+ /* Fault while not rebooting. We want the trace. */
+ BUG();
+}
+EXPORT_SYMBOL_GPL(kvm_spurious_fault);
+
+#define EXCPT_BENIGN 0
+#define EXCPT_CONTRIBUTORY 1
+#define EXCPT_PF 2
+
+static int exception_class(int vector)
+{
+ switch (vector) {
+ case PF_VECTOR:
+ return EXCPT_PF;
+ case DE_VECTOR:
+ case TS_VECTOR:
+ case NP_VECTOR:
+ case SS_VECTOR:
+ case GP_VECTOR:
+ return EXCPT_CONTRIBUTORY;
+ default:
+ break;
+ }
+ return EXCPT_BENIGN;
+}
+
+#define EXCPT_FAULT 0
+#define EXCPT_TRAP 1
+#define EXCPT_ABORT 2
+#define EXCPT_INTERRUPT 3
+
+static int exception_type(int vector)
+{
+ unsigned int mask;
+
+ if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
+ return EXCPT_INTERRUPT;
+
+ mask = 1 << vector;
+
+ /* #DB is trap, as instruction watchpoints are handled elsewhere */
+ if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
+ return EXCPT_TRAP;
+
+ if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
+ return EXCPT_ABORT;
+
+ /* Reserved exceptions will result in fault */
+ return EXCPT_FAULT;
+}
+
+static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
+ unsigned nr, bool has_error, u32 error_code,
+ bool reinject)
+{
+ u32 prev_nr;
+ int class1, class2;
+
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+ if (!vcpu->arch.exception.pending) {
+ queue:
+ if (has_error && !is_protmode(vcpu))
+ has_error = false;
+ vcpu->arch.exception.pending = true;
+ vcpu->arch.exception.has_error_code = has_error;
+ vcpu->arch.exception.nr = nr;
+ vcpu->arch.exception.error_code = error_code;
+ vcpu->arch.exception.reinject = reinject;
+ return;
+ }
+
+ /* to check exception */
+ prev_nr = vcpu->arch.exception.nr;
+ if (prev_nr == DF_VECTOR) {
+ /* triple fault -> shutdown */
+ kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+ return;
+ }
+ class1 = exception_class(prev_nr);
+ class2 = exception_class(nr);
+ if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
+ || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
+ /* generate double fault per SDM Table 5-5 */
+ vcpu->arch.exception.pending = true;
+ vcpu->arch.exception.has_error_code = true;
+ vcpu->arch.exception.nr = DF_VECTOR;
+ vcpu->arch.exception.error_code = 0;
+ } else
+ /* replace previous exception with a new one in a hope
+ that instruction re-execution will regenerate lost
+ exception */
+ goto queue;
+}
+
+void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
+{
+ kvm_multiple_exception(vcpu, nr, false, 0, false);
+}
+EXPORT_SYMBOL_GPL(kvm_queue_exception);
+
+void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
+{
+ kvm_multiple_exception(vcpu, nr, false, 0, true);
+}
+EXPORT_SYMBOL_GPL(kvm_requeue_exception);
+
+void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
+{
+ if (err)
+ kvm_inject_gp(vcpu, 0);
+ else
+ kvm_x86_ops->skip_emulated_instruction(vcpu);
+}
+EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
+
+void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
+{
+ ++vcpu->stat.pf_guest;
+ vcpu->arch.cr2 = fault->address;
+ kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
+}
+EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
+
+static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
+{
+ if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
+ vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
+ else
+ vcpu->arch.mmu.inject_page_fault(vcpu, fault);
+
+ return fault->nested_page_fault;
+}
+
+void kvm_inject_nmi(struct kvm_vcpu *vcpu)
+{
+ atomic_inc(&vcpu->arch.nmi_queued);
+ kvm_make_request(KVM_REQ_NMI, vcpu);
+}
+EXPORT_SYMBOL_GPL(kvm_inject_nmi);
+
+void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
+{
+ kvm_multiple_exception(vcpu, nr, true, error_code, false);
+}
+EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
+
+void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
+{
+ kvm_multiple_exception(vcpu, nr, true, error_code, true);
+}
+EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
+
+/*
+ * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
+ * a #GP and return false.
+ */
+bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
+{
+ if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
+ return true;
+ kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
+ return false;
+}
+EXPORT_SYMBOL_GPL(kvm_require_cpl);
+
+bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
+{
+ if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
+ return true;
+
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return false;
+}
+EXPORT_SYMBOL_GPL(kvm_require_dr);
+
+/*
+ * This function will be used to read from the physical memory of the currently
+ * running guest. The difference to kvm_read_guest_page is that this function
+ * can read from guest physical or from the guest's guest physical memory.
+ */
+int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
+ gfn_t ngfn, void *data, int offset, int len,
+ u32 access)
+{
+ struct x86_exception exception;
+ gfn_t real_gfn;
+ gpa_t ngpa;
+
+ ngpa = gfn_to_gpa(ngfn);
+ real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
+ if (real_gfn == UNMAPPED_GVA)
+ return -EFAULT;
+
+ real_gfn = gpa_to_gfn(real_gfn);
+
+ return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
+}
+EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
+
+static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
+ void *data, int offset, int len, u32 access)
+{
+ return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
+ data, offset, len, access);
+}
+
+/*
+ * Load the pae pdptrs. Return true is they are all valid.
+ */
+int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
+{
+ gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
+ unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
+ int i;
+ int ret;
+ u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
+
+ ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
+ offset * sizeof(u64), sizeof(pdpte),
+ PFERR_USER_MASK|PFERR_WRITE_MASK);
+ if (ret < 0) {
+ ret = 0;
+ goto out;
+ }
+ for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
+ if (is_present_gpte(pdpte[i]) &&
+ (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
+ ret = 0;
+ goto out;
+ }
+ }
+ ret = 1;
+
+ memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
+ __set_bit(VCPU_EXREG_PDPTR,
+ (unsigned long *)&vcpu->arch.regs_avail);
+ __set_bit(VCPU_EXREG_PDPTR,
+ (unsigned long *)&vcpu->arch.regs_dirty);
+out:
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(load_pdptrs);
+
+static bool pdptrs_changed(struct kvm_vcpu *vcpu)
+{
+ u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
+ bool changed = true;
+ int offset;
+ gfn_t gfn;
+ int r;
+
+ if (is_long_mode(vcpu) || !is_pae(vcpu))
+ return false;
+
+ if (!test_bit(VCPU_EXREG_PDPTR,
+ (unsigned long *)&vcpu->arch.regs_avail))
+ return true;
+
+ gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
+ offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
+ r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
+ PFERR_USER_MASK | PFERR_WRITE_MASK);
+ if (r < 0)
+ goto out;
+ changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
+out:
+
+ return changed;
+}
+
+int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
+{
+ unsigned long old_cr0 = kvm_read_cr0(vcpu);
+ unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
+ X86_CR0_CD | X86_CR0_NW;
+
+ cr0 |= X86_CR0_ET;
+
+#ifdef CONFIG_X86_64
+ if (cr0 & 0xffffffff00000000UL)
+ return 1;
+#endif
+
+ cr0 &= ~CR0_RESERVED_BITS;
+
+ if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
+ return 1;
+
+ if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
+ return 1;
+
+ if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
+#ifdef CONFIG_X86_64
+ if ((vcpu->arch.efer & EFER_LME)) {
+ int cs_db, cs_l;
+
+ if (!is_pae(vcpu))
+ return 1;
+ kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
+ if (cs_l)
+ return 1;
+ } else
+#endif
+ if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
+ kvm_read_cr3(vcpu)))
+ return 1;
+ }
+
+ if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
+ return 1;
+
+ kvm_x86_ops->set_cr0(vcpu, cr0);
+
+ if ((cr0 ^ old_cr0) & X86_CR0_PG) {
+ kvm_clear_async_pf_completion_queue(vcpu);
+ kvm_async_pf_hash_reset(vcpu);
+ }
+
+ if ((cr0 ^ old_cr0) & update_bits)
+ kvm_mmu_reset_context(vcpu);
+ return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_set_cr0);
+
+void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
+{
+ (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
+}
+EXPORT_SYMBOL_GPL(kvm_lmsw);
+
+static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
+{
+ if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
+ !vcpu->guest_xcr0_loaded) {
+ /* kvm_set_xcr() also depends on this */
+ xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
+ vcpu->guest_xcr0_loaded = 1;
+ }
+}
+
+static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
+{
+ if (vcpu->guest_xcr0_loaded) {
+ if (vcpu->arch.xcr0 != host_xcr0)
+ xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
+ vcpu->guest_xcr0_loaded = 0;
+ }
+}
+
+static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
+{
+ u64 xcr0 = xcr;
+ u64 old_xcr0 = vcpu->arch.xcr0;
+ u64 valid_bits;
+
+ /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
+ if (index != XCR_XFEATURE_ENABLED_MASK)
+ return 1;
+ if (!(xcr0 & XSTATE_FP))
+ return 1;
+ if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
+ return 1;
+
+ /*
+ * Do not allow the guest to set bits that we do not support
+ * saving. However, xcr0 bit 0 is always set, even if the
+ * emulated CPU does not support XSAVE (see fx_init).
+ */
+ valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
+ if (xcr0 & ~valid_bits)
+ return 1;
+
+ if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
+ return 1;
+
+ if (xcr0 & XSTATE_AVX512) {
+ if (!(xcr0 & XSTATE_YMM))
+ return 1;
+ if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
+ return 1;
+ }
+ kvm_put_guest_xcr0(vcpu);
+ vcpu->arch.xcr0 = xcr0;
+
+ if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
+ kvm_update_cpuid(vcpu);
+ return 0;
+}
+
+int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
+{
+ if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
+ __kvm_set_xcr(vcpu, index, xcr)) {
+ kvm_inject_gp(vcpu, 0);
+ return 1;
+ }
+ return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_set_xcr);
+
+int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
+{
+ unsigned long old_cr4 = kvm_read_cr4(vcpu);
+ unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
+ X86_CR4_SMEP | X86_CR4_SMAP;
+
+ if (cr4 & CR4_RESERVED_BITS)
+ return 1;
+
+ if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
+ return 1;
+
+ if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
+ return 1;
+
+ if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
+ return 1;
+
+ if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
+ return 1;
+
+ if (is_long_mode(vcpu)) {
+ if (!(cr4 & X86_CR4_PAE))
+ return 1;
+ } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
+ && ((cr4 ^ old_cr4) & pdptr_bits)
+ && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
+ kvm_read_cr3(vcpu)))
+ return 1;
+
+ if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
+ if (!guest_cpuid_has_pcid(vcpu))
+ return 1;
+
+ /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
+ if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
+ return 1;
+ }
+
+ if (kvm_x86_ops->set_cr4(vcpu, cr4))
+ return 1;
+
+ if (((cr4 ^ old_cr4) & pdptr_bits) ||
+ (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
+ kvm_mmu_reset_context(vcpu);
+
+ if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
+ kvm_update_cpuid(vcpu);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_set_cr4);
+
+int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
+{
+#ifdef CONFIG_X86_64
+ cr3 &= ~CR3_PCID_INVD;
+#endif
+
+ if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
+ kvm_mmu_sync_roots(vcpu);
+ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+ return 0;
+ }
+
+ if (is_long_mode(vcpu)) {
+ if (cr3 & CR3_L_MODE_RESERVED_BITS)
+ return 1;
+ } else if (is_pae(vcpu) && is_paging(vcpu) &&
+ !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
+ return 1;
+
+ vcpu->arch.cr3 = cr3;
+ __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
+ kvm_mmu_new_cr3(vcpu);
+ return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_set_cr3);
+
+int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
+{
+ if (cr8 & CR8_RESERVED_BITS)
+ return 1;
+ if (irqchip_in_kernel(vcpu->kvm))
+ kvm_lapic_set_tpr(vcpu, cr8);
+ else
+ vcpu->arch.cr8 = cr8;
+ return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_set_cr8);
+
+unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
+{
+ if (irqchip_in_kernel(vcpu->kvm))
+ return kvm_lapic_get_cr8(vcpu);
+ else
+ return vcpu->arch.cr8;
+}
+EXPORT_SYMBOL_GPL(kvm_get_cr8);
+
+static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
+{
+ int i;
+
+ if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
+ for (i = 0; i < KVM_NR_DB_REGS; i++)
+ vcpu->arch.eff_db[i] = vcpu->arch.db[i];
+ vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
+ }
+}
+
+static void kvm_update_dr6(struct kvm_vcpu *vcpu)
+{
+ if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
+ kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
+}
+
+static void kvm_update_dr7(struct kvm_vcpu *vcpu)
+{
+ unsigned long dr7;
+
+ if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
+ dr7 = vcpu->arch.guest_debug_dr7;
+ else
+ dr7 = vcpu->arch.dr7;
+ kvm_x86_ops->set_dr7(vcpu, dr7);
+ vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
+ if (dr7 & DR7_BP_EN_MASK)
+ vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
+}
+
+static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
+{
+ u64 fixed = DR6_FIXED_1;
+
+ if (!guest_cpuid_has_rtm(vcpu))
+ fixed |= DR6_RTM;
+ return fixed;
+}
+
+static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
+{
+ switch (dr) {
+ case 0 ... 3:
+ vcpu->arch.db[dr] = val;
+ if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
+ vcpu->arch.eff_db[dr] = val;
+ break;
+ case 4:
+ /* fall through */
+ case 6:
+ if (val & 0xffffffff00000000ULL)
+ return -1; /* #GP */
+ vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
+ kvm_update_dr6(vcpu);
+ break;
+ case 5:
+ /* fall through */
+ default: /* 7 */
+ if (val & 0xffffffff00000000ULL)
+ return -1; /* #GP */
+ vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
+ kvm_update_dr7(vcpu);
+ break;
+ }
+
+ return 0;
+}
+
+int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
+{
+ if (__kvm_set_dr(vcpu, dr, val)) {
+ kvm_inject_gp(vcpu, 0);
+ return 1;
+ }
+ return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_set_dr);
+
+int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
+{
+ switch (dr) {
+ case 0 ... 3:
+ *val = vcpu->arch.db[dr];
+ break;
+ case 4:
+ /* fall through */
+ case 6:
+ if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
+ *val = vcpu->arch.dr6;
+ else
+ *val = kvm_x86_ops->get_dr6(vcpu);
+ break;
+ case 5:
+ /* fall through */
+ default: /* 7 */
+ *val = vcpu->arch.dr7;
+ break;
+ }
+ return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_get_dr);
+
+bool kvm_rdpmc(struct kvm_vcpu *vcpu)
+{
+ u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
+ u64 data;
+ int err;
+
+ err = kvm_pmu_read_pmc(vcpu, ecx, &data);
+ if (err)
+ return err;
+ kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
+ kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
+ return err;
+}
+EXPORT_SYMBOL_GPL(kvm_rdpmc);
+
+/*
+ * List of msr numbers which we expose to userspace through KVM_GET_MSRS
+ * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
+ *
+ * This list is modified at module load time to reflect the
+ * capabilities of the host cpu. This capabilities test skips MSRs that are
+ * kvm-specific. Those are put in the beginning of the list.
+ */
+
+#define KVM_SAVE_MSRS_BEGIN 12
+static u32 msrs_to_save[] = {
+ MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
+ MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
+ HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
+ HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
+ HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
+ MSR_KVM_PV_EOI_EN,
+ MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
+ MSR_STAR,
+#ifdef CONFIG_X86_64
+ MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
+#endif
+ MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
+ MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
+};
+
+static unsigned num_msrs_to_save;
+
+static const u32 emulated_msrs[] = {
+ MSR_IA32_TSC_ADJUST,
+ MSR_IA32_TSCDEADLINE,
+ MSR_IA32_MISC_ENABLE,
+ MSR_IA32_MCG_STATUS,
+ MSR_IA32_MCG_CTL,
+};
+
+bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
+{
+ if (efer & efer_reserved_bits)
+ return false;
+
+ if (efer & EFER_FFXSR) {
+ struct kvm_cpuid_entry2 *feat;
+
+ feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
+ if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
+ return false;
+ }
+
+ if (efer & EFER_SVME) {
+ struct kvm_cpuid_entry2 *feat;
+
+ feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
+ if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
+ return false;
+ }
+
+ return true;
+}
+EXPORT_SYMBOL_GPL(kvm_valid_efer);
+
+static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
+{
+ u64 old_efer = vcpu->arch.efer;
+
+ if (!kvm_valid_efer(vcpu, efer))
+ return 1;
+
+ if (is_paging(vcpu)
+ && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
+ return 1;
+
+ efer &= ~EFER_LMA;
+ efer |= vcpu->arch.efer & EFER_LMA;
+
+ kvm_x86_ops->set_efer(vcpu, efer);
+
+ /* Update reserved bits */
+ if ((efer ^ old_efer) & EFER_NX)
+ kvm_mmu_reset_context(vcpu);
+
+ return 0;
+}
+
+void kvm_enable_efer_bits(u64 mask)
+{
+ efer_reserved_bits &= ~mask;
+}
+EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
+
+/*
+ * Writes msr value into into the appropriate "register".
+ * Returns 0 on success, non-0 otherwise.
+ * Assumes vcpu_load() was already called.
+ */
+int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
+{
+ switch (msr->index) {
+ case MSR_FS_BASE:
+ case MSR_GS_BASE:
+ case MSR_KERNEL_GS_BASE:
+ case MSR_CSTAR:
+ case MSR_LSTAR:
+ if (is_noncanonical_address(msr->data))
+ return 1;
+ break;
+ case MSR_IA32_SYSENTER_EIP:
+ case MSR_IA32_SYSENTER_ESP:
+ /*
+ * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
+ * non-canonical address is written on Intel but not on
+ * AMD (which ignores the top 32-bits, because it does
+ * not implement 64-bit SYSENTER).
+ *
+ * 64-bit code should hence be able to write a non-canonical
+ * value on AMD. Making the address canonical ensures that
+ * vmentry does not fail on Intel after writing a non-canonical
+ * value, and that something deterministic happens if the guest
+ * invokes 64-bit SYSENTER.
+ */
+ msr->data = get_canonical(msr->data);
+ }
+ return kvm_x86_ops->set_msr(vcpu, msr);
+}
+EXPORT_SYMBOL_GPL(kvm_set_msr);
+
+/*
+ * Adapt set_msr() to msr_io()'s calling convention
+ */
+static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
+{
+ struct msr_data msr;
+
+ msr.data = *data;
+ msr.index = index;
+ msr.host_initiated = true;
+ return kvm_set_msr(vcpu, &msr);
+}
+
+#ifdef CONFIG_X86_64
+struct pvclock_gtod_data {
+ seqcount_t seq;
+
+ struct { /* extract of a clocksource struct */
+ int vclock_mode;
+ cycle_t cycle_last;
+ cycle_t mask;
+ u32 mult;
+ u32 shift;
+ } clock;
+
+ u64 boot_ns;
+ u64 nsec_base;
+};
+
+static struct pvclock_gtod_data pvclock_gtod_data;
+
+static void update_pvclock_gtod(struct timekeeper *tk)
+{
+ struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
+ u64 boot_ns;
+
+ boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
+
+ write_seqcount_begin(&vdata->seq);
+
+ /* copy pvclock gtod data */
+ vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
+ vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
+ vdata->clock.mask = tk->tkr_mono.mask;
+ vdata->clock.mult = tk->tkr_mono.mult;
+ vdata->clock.shift = tk->tkr_mono.shift;
+
+ vdata->boot_ns = boot_ns;
+ vdata->nsec_base = tk->tkr_mono.xtime_nsec;
+
+ write_seqcount_end(&vdata->seq);
+}
+#endif
+
+void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
+{
+ /*
+ * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
+ * vcpu_enter_guest. This function is only called from
+ * the physical CPU that is running vcpu.
+ */
+ kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
+}
+
+static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
+{
+ int version;
+ int r;
+ struct pvclock_wall_clock wc;
+ struct timespec boot;
+
+ if (!wall_clock)
+ return;
+
+ r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
+ if (r)
+ return;
+
+ if (version & 1)
+ ++version; /* first time write, random junk */
+
+ ++version;
+
+ kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
+
+ /*
+ * The guest calculates current wall clock time by adding
+ * system time (updated by kvm_guest_time_update below) to the
+ * wall clock specified here. guest system time equals host
+ * system time for us, thus we must fill in host boot time here.
+ */
+ getboottime(&boot);
+
+ if (kvm->arch.kvmclock_offset) {
+ struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
+ boot = timespec_sub(boot, ts);
+ }
+ wc.sec = boot.tv_sec;
+ wc.nsec = boot.tv_nsec;
+ wc.version = version;
+
+ kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
+
+ version++;
+ kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
+}
+
+static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
+{
+ uint32_t quotient, remainder;
+
+ /* Don't try to replace with do_div(), this one calculates
+ * "(dividend << 32) / divisor" */
+ __asm__ ( "divl %4"
+ : "=a" (quotient), "=d" (remainder)
+ : "0" (0), "1" (dividend), "r" (divisor) );
+ return quotient;
+}
+
+static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
+ s8 *pshift, u32 *pmultiplier)
+{
+ uint64_t scaled64;
+ int32_t shift = 0;
+ uint64_t tps64;
+ uint32_t tps32;
+
+ tps64 = base_khz * 1000LL;
+ scaled64 = scaled_khz * 1000LL;
+ while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
+ tps64 >>= 1;
+ shift--;
+ }
+
+ tps32 = (uint32_t)tps64;
+ while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
+ if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
+ scaled64 >>= 1;
+ else
+ tps32 <<= 1;
+ shift++;
+ }
+
+ *pshift = shift;
+ *pmultiplier = div_frac(scaled64, tps32);
+
+ pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
+ __func__, base_khz, scaled_khz, shift, *pmultiplier);
+}
+
+static inline u64 get_kernel_ns(void)
+{
+ return ktime_get_boot_ns();
+}
+
+#ifdef CONFIG_X86_64
+static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
+#endif
+
+static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
+static unsigned long max_tsc_khz;
+
+static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
+{
+ return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
+ vcpu->arch.virtual_tsc_shift);
+}
+
+static u32 adjust_tsc_khz(u32 khz, s32 ppm)
+{
+ u64 v = (u64)khz * (1000000 + ppm);
+ do_div(v, 1000000);
+ return v;
+}
+
+static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
+{
+ u32 thresh_lo, thresh_hi;
+ int use_scaling = 0;
+
+ /* tsc_khz can be zero if TSC calibration fails */
+ if (this_tsc_khz == 0)
+ return;
+
+ /* Compute a scale to convert nanoseconds in TSC cycles */
+ kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
+ &vcpu->arch.virtual_tsc_shift,
+ &vcpu->arch.virtual_tsc_mult);
+ vcpu->arch.virtual_tsc_khz = this_tsc_khz;
+
+ /*
+ * Compute the variation in TSC rate which is acceptable
+ * within the range of tolerance and decide if the
+ * rate being applied is within that bounds of the hardware
+ * rate. If so, no scaling or compensation need be done.
+ */
+ thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
+ thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
+ if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
+ pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
+ use_scaling = 1;
+ }
+ kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
+}
+
+static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
+{
+ u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
+ vcpu->arch.virtual_tsc_mult,
+ vcpu->arch.virtual_tsc_shift);
+ tsc += vcpu->arch.this_tsc_write;
+ return tsc;
+}
+
+static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
+{
+#ifdef CONFIG_X86_64
+ bool vcpus_matched;
+ struct kvm_arch *ka = &vcpu->kvm->arch;
+ struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
+
+ vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
+ atomic_read(&vcpu->kvm->online_vcpus));
+
+ /*
+ * Once the masterclock is enabled, always perform request in
+ * order to update it.
+ *
+ * In order to enable masterclock, the host clocksource must be TSC
+ * and the vcpus need to have matched TSCs. When that happens,
+ * perform request to enable masterclock.
+ */
+ if (ka->use_master_clock ||
+ (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
+ kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
+
+ trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
+ atomic_read(&vcpu->kvm->online_vcpus),
+ ka->use_master_clock, gtod->clock.vclock_mode);
+#endif
+}
+
+static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
+{
+ u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
+ vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
+}
+
+void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
+{
+ struct kvm *kvm = vcpu->kvm;
+ u64 offset, ns, elapsed;
+ unsigned long flags;
+ s64 usdiff;
+ bool matched;
+ bool already_matched;
+ u64 data = msr->data;
+
+ raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
+ offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
+ ns = get_kernel_ns();
+ elapsed = ns - kvm->arch.last_tsc_nsec;
+
+ if (vcpu->arch.virtual_tsc_khz) {
+ int faulted = 0;
+
+ /* n.b - signed multiplication and division required */
+ usdiff = data - kvm->arch.last_tsc_write;
+#ifdef CONFIG_X86_64
+ usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
+#else
+ /* do_div() only does unsigned */
+ asm("1: idivl %[divisor]\n"
+ "2: xor %%edx, %%edx\n"
+ " movl $0, %[faulted]\n"
+ "3:\n"
+ ".section .fixup,\"ax\"\n"
+ "4: movl $1, %[faulted]\n"
+ " jmp 3b\n"
+ ".previous\n"
+
+ _ASM_EXTABLE(1b, 4b)
+
+ : "=A"(usdiff), [faulted] "=r" (faulted)
+ : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
+
+#endif
+ do_div(elapsed, 1000);
+ usdiff -= elapsed;
+ if (usdiff < 0)
+ usdiff = -usdiff;
+
+ /* idivl overflow => difference is larger than USEC_PER_SEC */
+ if (faulted)
+ usdiff = USEC_PER_SEC;
+ } else
+ usdiff = USEC_PER_SEC; /* disable TSC match window below */
+
+ /*
+ * Special case: TSC write with a small delta (1 second) of virtual
+ * cycle time against real time is interpreted as an attempt to
+ * synchronize the CPU.
+ *
+ * For a reliable TSC, we can match TSC offsets, and for an unstable
+ * TSC, we add elapsed time in this computation. We could let the
+ * compensation code attempt to catch up if we fall behind, but
+ * it's better to try to match offsets from the beginning.
+ */
+ if (usdiff < USEC_PER_SEC &&
+ vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
+ if (!check_tsc_unstable()) {
+ offset = kvm->arch.cur_tsc_offset;
+ pr_debug("kvm: matched tsc offset for %llu\n", data);
+ } else {
+ u64 delta = nsec_to_cycles(vcpu, elapsed);
+ data += delta;
+ offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
+ pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
+ }
+ matched = true;
+ already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
+ } else {
+ /*
+ * We split periods of matched TSC writes into generations.
+ * For each generation, we track the original measured
+ * nanosecond time, offset, and write, so if TSCs are in
+ * sync, we can match exact offset, and if not, we can match
+ * exact software computation in compute_guest_tsc()
+ *
+ * These values are tracked in kvm->arch.cur_xxx variables.
+ */
+ kvm->arch.cur_tsc_generation++;
+ kvm->arch.cur_tsc_nsec = ns;
+ kvm->arch.cur_tsc_write = data;
+ kvm->arch.cur_tsc_offset = offset;
+ matched = false;
+ pr_debug("kvm: new tsc generation %llu, clock %llu\n",
+ kvm->arch.cur_tsc_generation, data);
+ }
+
+ /*
+ * We also track th most recent recorded KHZ, write and time to
+ * allow the matching interval to be extended at each write.
+ */
+ kvm->arch.last_tsc_nsec = ns;
+ kvm->arch.last_tsc_write = data;
+ kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
+
+ vcpu->arch.last_guest_tsc = data;
+
+ /* Keep track of which generation this VCPU has synchronized to */
+ vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
+ vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
+ vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
+
+ if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
+ update_ia32_tsc_adjust_msr(vcpu, offset);
+ kvm_x86_ops->write_tsc_offset(vcpu, offset);
+ raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
+
+ spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
+ if (!matched) {
+ kvm->arch.nr_vcpus_matched_tsc = 0;
+ } else if (!already_matched) {
+ kvm->arch.nr_vcpus_matched_tsc++;
+ }
+
+ kvm_track_tsc_matching(vcpu);
+ spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
+}
+
+EXPORT_SYMBOL_GPL(kvm_write_tsc);
+
+#ifdef CONFIG_X86_64
+
+static cycle_t read_tsc(void)
+{
+ cycle_t ret;
+ u64 last;
+
+ /*
+ * Empirically, a fence (of type that depends on the CPU)
+ * before rdtsc is enough to ensure that rdtsc is ordered
+ * with respect to loads. The various CPU manuals are unclear
+ * as to whether rdtsc can be reordered with later loads,
+ * but no one has ever seen it happen.
+ */
+ rdtsc_barrier();
+ ret = (cycle_t)vget_cycles();
+
+ last = pvclock_gtod_data.clock.cycle_last;
+
+ if (likely(ret >= last))
+ return ret;
+
+ /*
+ * GCC likes to generate cmov here, but this branch is extremely
+ * predictable (it's just a funciton of time and the likely is
+ * very likely) and there's a data dependence, so force GCC
+ * to generate a branch instead. I don't barrier() because
+ * we don't actually need a barrier, and if this function
+ * ever gets inlined it will generate worse code.
+ */
+ asm volatile ("");
+ return last;
+}
+
+static inline u64 vgettsc(cycle_t *cycle_now)
+{
+ long v;
+ struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
+
+ *cycle_now = read_tsc();
+
+ v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
+ return v * gtod->clock.mult;
+}
+
+static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
+{
+ struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
+ unsigned long seq;
+ int mode;
+ u64 ns;
+
+ do {
+ seq = read_seqcount_begin(&gtod->seq);
+ mode = gtod->clock.vclock_mode;
+ ns = gtod->nsec_base;
+ ns += vgettsc(cycle_now);
+ ns >>= gtod->clock.shift;
+ ns += gtod->boot_ns;
+ } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
+ *t = ns;
+
+ return mode;
+}
+
+/* returns true if host is using tsc clocksource */
+static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
+{
+ /* checked again under seqlock below */
+ if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
+ return false;
+
+ return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
+}
+#endif
+
+/*
+ *
+ * Assuming a stable TSC across physical CPUS, and a stable TSC
+ * across virtual CPUs, the following condition is possible.
+ * Each numbered line represents an event visible to both
+ * CPUs at the next numbered event.
+ *
+ * "timespecX" represents host monotonic time. "tscX" represents
+ * RDTSC value.
+ *
+ * VCPU0 on CPU0 | VCPU1 on CPU1
+ *
+ * 1. read timespec0,tsc0
+ * 2. | timespec1 = timespec0 + N
+ * | tsc1 = tsc0 + M
+ * 3. transition to guest | transition to guest
+ * 4. ret0 = timespec0 + (rdtsc - tsc0) |
+ * 5. | ret1 = timespec1 + (rdtsc - tsc1)
+ * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
+ *
+ * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
+ *
+ * - ret0 < ret1
+ * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
+ * ...
+ * - 0 < N - M => M < N
+ *
+ * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
+ * always the case (the difference between two distinct xtime instances
+ * might be smaller then the difference between corresponding TSC reads,
+ * when updating guest vcpus pvclock areas).
+ *
+ * To avoid that problem, do not allow visibility of distinct
+ * system_timestamp/tsc_timestamp values simultaneously: use a master
+ * copy of host monotonic time values. Update that master copy
+ * in lockstep.
+ *
+ * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
+ *
+ */
+
+static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
+{
+#ifdef CONFIG_X86_64
+ struct kvm_arch *ka = &kvm->arch;
+ int vclock_mode;
+ bool host_tsc_clocksource, vcpus_matched;
+
+ vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
+ atomic_read(&kvm->online_vcpus));
+
+ /*
+ * If the host uses TSC clock, then passthrough TSC as stable
+ * to the guest.
+ */
+ host_tsc_clocksource = kvm_get_time_and_clockread(
+ &ka->master_kernel_ns,
+ &ka->master_cycle_now);
+
+ ka->use_master_clock = host_tsc_clocksource && vcpus_matched
+ && !backwards_tsc_observed
+ && !ka->boot_vcpu_runs_old_kvmclock;
+
+ if (ka->use_master_clock)
+ atomic_set(&kvm_guest_has_master_clock, 1);
+
+ vclock_mode = pvclock_gtod_data.clock.vclock_mode;
+ trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
+ vcpus_matched);
+#endif
+}
+
+static void kvm_gen_update_masterclock(struct kvm *kvm)
+{
+#ifdef CONFIG_X86_64
+ int i;
+ struct kvm_vcpu *vcpu;
+ struct kvm_arch *ka = &kvm->arch;
+
+ spin_lock(&ka->pvclock_gtod_sync_lock);
+ kvm_make_mclock_inprogress_request(kvm);
+ /* no guest entries from this point */
+ pvclock_update_vm_gtod_copy(kvm);
+
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
+
+ /* guest entries allowed */
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
+
+ spin_unlock(&ka->pvclock_gtod_sync_lock);
+#endif
+}
+
+static int kvm_guest_time_update(struct kvm_vcpu *v)
+{
+ unsigned long flags, this_tsc_khz;
+ struct kvm_vcpu_arch *vcpu = &v->arch;
+ struct kvm_arch *ka = &v->kvm->arch;
+ s64 kernel_ns;
+ u64 tsc_timestamp, host_tsc;
+ struct pvclock_vcpu_time_info guest_hv_clock;
+ u8 pvclock_flags;
+ bool use_master_clock;
+
+ kernel_ns = 0;
+ host_tsc = 0;
+
+ /*
+ * If the host uses TSC clock, then passthrough TSC as stable
+ * to the guest.
+ */
+ spin_lock(&ka->pvclock_gtod_sync_lock);
+ use_master_clock = ka->use_master_clock;
+ if (use_master_clock) {
+ host_tsc = ka->master_cycle_now;
+ kernel_ns = ka->master_kernel_ns;
+ }
+ spin_unlock(&ka->pvclock_gtod_sync_lock);
+
+ /* Keep irq disabled to prevent changes to the clock */
+ local_irq_save(flags);
+ this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
+ if (unlikely(this_tsc_khz == 0)) {
+ local_irq_restore(flags);
+ kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
+ return 1;
+ }
+ if (!use_master_clock) {
+ host_tsc = native_read_tsc();
+ kernel_ns = get_kernel_ns();
+ }
+
+ tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
+
+ /*
+ * We may have to catch up the TSC to match elapsed wall clock
+ * time for two reasons, even if kvmclock is used.
+ * 1) CPU could have been running below the maximum TSC rate
+ * 2) Broken TSC compensation resets the base at each VCPU
+ * entry to avoid unknown leaps of TSC even when running
+ * again on the same CPU. This may cause apparent elapsed
+ * time to disappear, and the guest to stand still or run
+ * very slowly.
+ */
+ if (vcpu->tsc_catchup) {
+ u64 tsc = compute_guest_tsc(v, kernel_ns);
+ if (tsc > tsc_timestamp) {
+ adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
+ tsc_timestamp = tsc;
+ }
+ }
+
+ local_irq_restore(flags);
+
+ if (!vcpu->pv_time_enabled)
+ return 0;
+
+ if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
+ kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
+ &vcpu->hv_clock.tsc_shift,
+ &vcpu->hv_clock.tsc_to_system_mul);
+ vcpu->hw_tsc_khz = this_tsc_khz;
+ }
+
+ /* With all the info we got, fill in the values */
+ vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
+ vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
+ vcpu->last_guest_tsc = tsc_timestamp;
+
+ if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
+ &guest_hv_clock, sizeof(guest_hv_clock))))
+ return 0;
+
+ /* This VCPU is paused, but it's legal for a guest to read another
+ * VCPU's kvmclock, so we really have to follow the specification where
+ * it says that version is odd if data is being modified, and even after
+ * it is consistent.
+ *
+ * Version field updates must be kept separate. This is because
+ * kvm_write_guest_cached might use a "rep movs" instruction, and
+ * writes within a string instruction are weakly ordered. So there
+ * are three writes overall.
+ *
+ * As a small optimization, only write the version field in the first
+ * and third write. The vcpu->pv_time cache is still valid, because the
+ * version field is the first in the struct.
+ */
+ BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
+
+ vcpu->hv_clock.version = guest_hv_clock.version + 1;
+ kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
+ &vcpu->hv_clock,
+ sizeof(vcpu->hv_clock.version));
+
+ smp_wmb();
+
+ /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
+ pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
+
+ if (vcpu->pvclock_set_guest_stopped_request) {
+ pvclock_flags |= PVCLOCK_GUEST_STOPPED;
+ vcpu->pvclock_set_guest_stopped_request = false;
+ }
+
+ /* If the host uses TSC clocksource, then it is stable */
+ if (use_master_clock)
+ pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
+
+ vcpu->hv_clock.flags = pvclock_flags;
+
+ trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
+
+ kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
+ &vcpu->hv_clock,
+ sizeof(vcpu->hv_clock));
+
+ smp_wmb();
+
+ vcpu->hv_clock.version++;
+ kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
+ &vcpu->hv_clock,
+ sizeof(vcpu->hv_clock.version));
+ return 0;
+}
+
+/*
+ * kvmclock updates which are isolated to a given vcpu, such as
+ * vcpu->cpu migration, should not allow system_timestamp from
+ * the rest of the vcpus to remain static. Otherwise ntp frequency
+ * correction applies to one vcpu's system_timestamp but not
+ * the others.
+ *
+ * So in those cases, request a kvmclock update for all vcpus.
+ * We need to rate-limit these requests though, as they can
+ * considerably slow guests that have a large number of vcpus.
+ * The time for a remote vcpu to update its kvmclock is bound
+ * by the delay we use to rate-limit the updates.
+ */
+
+#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
+
+static void kvmclock_update_fn(struct work_struct *work)
+{
+ int i;
+ struct delayed_work *dwork = to_delayed_work(work);
+ struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
+ kvmclock_update_work);
+ struct kvm *kvm = container_of(ka, struct kvm, arch);
+ struct kvm_vcpu *vcpu;
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
+ kvm_vcpu_kick(vcpu);
+ }
+}
+
+static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
+{
+ struct kvm *kvm = v->kvm;
+
+ kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
+ schedule_delayed_work(&kvm->arch.kvmclock_update_work,
+ KVMCLOCK_UPDATE_DELAY);
+}
+
+#define KVMCLOCK_SYNC_PERIOD (300 * HZ)
+
+static void kvmclock_sync_fn(struct work_struct *work)
+{
+ struct delayed_work *dwork = to_delayed_work(work);
+ struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
+ kvmclock_sync_work);
+ struct kvm *kvm = container_of(ka, struct kvm, arch);
+
+ schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
+ schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
+ KVMCLOCK_SYNC_PERIOD);
+}
+
+static bool msr_mtrr_valid(unsigned msr)
+{
+ switch (msr) {
+ case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
+ case MSR_MTRRfix64K_00000:
+ case MSR_MTRRfix16K_80000:
+ case MSR_MTRRfix16K_A0000:
+ case MSR_MTRRfix4K_C0000:
+ case MSR_MTRRfix4K_C8000:
+ case MSR_MTRRfix4K_D0000:
+ case MSR_MTRRfix4K_D8000:
+ case MSR_MTRRfix4K_E0000:
+ case MSR_MTRRfix4K_E8000:
+ case MSR_MTRRfix4K_F0000:
+ case MSR_MTRRfix4K_F8000:
+ case MSR_MTRRdefType:
+ case MSR_IA32_CR_PAT:
+ return true;
+ case 0x2f8:
+ return true;
+ }
+ return false;
+}
+
+static bool valid_pat_type(unsigned t)
+{
+ return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
+}
+
+static bool valid_mtrr_type(unsigned t)
+{
+ return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
+}
+
+bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
+{
+ int i;
+ u64 mask;
+
+ if (!msr_mtrr_valid(msr))
+ return false;
+
+ if (msr == MSR_IA32_CR_PAT) {
+ for (i = 0; i < 8; i++)
+ if (!valid_pat_type((data >> (i * 8)) & 0xff))
+ return false;
+ return true;
+ } else if (msr == MSR_MTRRdefType) {
+ if (data & ~0xcff)
+ return false;
+ return valid_mtrr_type(data & 0xff);
+ } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
+ for (i = 0; i < 8 ; i++)
+ if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
+ return false;
+ return true;
+ }
+
+ /* variable MTRRs */
+ WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
+
+ mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
+ if ((msr & 1) == 0) {
+ /* MTRR base */
+ if (!valid_mtrr_type(data & 0xff))
+ return false;
+ mask |= 0xf00;
+ } else
+ /* MTRR mask */
+ mask |= 0x7ff;
+ if (data & mask) {
+ kvm_inject_gp(vcpu, 0);
+ return false;
+ }
+
+ return true;
+}
+EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
+
+static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
+{
+ u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
+
+ if (!kvm_mtrr_valid(vcpu, msr, data))
+ return 1;
+
+ if (msr == MSR_MTRRdefType) {
+ vcpu->arch.mtrr_state.def_type = data;
+ vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
+ } else if (msr == MSR_MTRRfix64K_00000)
+ p[0] = data;
+ else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
+ p[1 + msr - MSR_MTRRfix16K_80000] = data;
+ else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
+ p[3 + msr - MSR_MTRRfix4K_C0000] = data;
+ else if (msr == MSR_IA32_CR_PAT)
+ vcpu->arch.pat = data;
+ else { /* Variable MTRRs */
+ int idx, is_mtrr_mask;
+ u64 *pt;
+
+ idx = (msr - 0x200) / 2;
+ is_mtrr_mask = msr - 0x200 - 2 * idx;
+ if (!is_mtrr_mask)
+ pt =
+ (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
+ else
+ pt =
+ (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
+ *pt = data;
+ }
+
+ kvm_mmu_reset_context(vcpu);
+ return 0;
+}
+
+static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
+{
+ u64 mcg_cap = vcpu->arch.mcg_cap;
+ unsigned bank_num = mcg_cap & 0xff;
+
+ switch (msr) {
+ case MSR_IA32_MCG_STATUS:
+ vcpu->arch.mcg_status = data;
+ break;
+ case MSR_IA32_MCG_CTL:
+ if (!(mcg_cap & MCG_CTL_P))
+ return 1;
+ if (data != 0 && data != ~(u64)0)
+ return -1;
+ vcpu->arch.mcg_ctl = data;
+ break;
+ default:
+ if (msr >= MSR_IA32_MC0_CTL &&
+ msr < MSR_IA32_MCx_CTL(bank_num)) {
+ u32 offset = msr - MSR_IA32_MC0_CTL;
+ /* only 0 or all 1s can be written to IA32_MCi_CTL
+ * some Linux kernels though clear bit 10 in bank 4 to
+ * workaround a BIOS/GART TBL issue on AMD K8s, ignore
+ * this to avoid an uncatched #GP in the guest
+ */
+ if ((offset & 0x3) == 0 &&
+ data != 0 && (data | (1 << 10)) != ~(u64)0)
+ return -1;
+ vcpu->arch.mce_banks[offset] = data;
+ break;
+ }
+ return 1;
+ }
+ return 0;
+}
+
+static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
+{
+ struct kvm *kvm = vcpu->kvm;
+ int lm = is_long_mode(vcpu);
+ u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
+ : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
+ u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
+ : kvm->arch.xen_hvm_config.blob_size_32;
+ u32 page_num = data & ~PAGE_MASK;
+ u64 page_addr = data & PAGE_MASK;
+ u8 *page;
+ int r;
+
+ r = -E2BIG;
+ if (page_num >= blob_size)
+ goto out;
+ r = -ENOMEM;
+ page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
+ if (IS_ERR(page)) {
+ r = PTR_ERR(page);
+ goto out;
+ }
+ if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
+ goto out_free;
+ r = 0;
+out_free:
+ kfree(page);
+out:
+ return r;
+}
+
+static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
+{
+ return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
+}
+
+static bool kvm_hv_msr_partition_wide(u32 msr)
+{
+ bool r = false;
+ switch (msr) {
+ case HV_X64_MSR_GUEST_OS_ID:
+ case HV_X64_MSR_HYPERCALL:
+ case HV_X64_MSR_REFERENCE_TSC:
+ case HV_X64_MSR_TIME_REF_COUNT:
+ r = true;
+ break;
+ }
+
+ return r;
+}
+
+static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
+{
+ struct kvm *kvm = vcpu->kvm;
+
+ switch (msr) {
+ case HV_X64_MSR_GUEST_OS_ID:
+ kvm->arch.hv_guest_os_id = data;
+ /* setting guest os id to zero disables hypercall page */
+ if (!kvm->arch.hv_guest_os_id)
+ kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
+ break;
+ case HV_X64_MSR_HYPERCALL: {
+ u64 gfn;
+ unsigned long addr;
+ u8 instructions[4];
+
+ /* if guest os id is not set hypercall should remain disabled */
+ if (!kvm->arch.hv_guest_os_id)
+ break;
+ if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
+ kvm->arch.hv_hypercall = data;
+ break;
+ }
+ gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
+ addr = gfn_to_hva(kvm, gfn);
+ if (kvm_is_error_hva(addr))
+ return 1;
+ kvm_x86_ops->patch_hypercall(vcpu, instructions);
+ ((unsigned char *)instructions)[3] = 0xc3; /* ret */
+ if (__copy_to_user((void __user *)addr, instructions, 4))
+ return 1;
+ kvm->arch.hv_hypercall = data;
+ mark_page_dirty(kvm, gfn);
+ break;
+ }
+ case HV_X64_MSR_REFERENCE_TSC: {
+ u64 gfn;
+ HV_REFERENCE_TSC_PAGE tsc_ref;
+ memset(&tsc_ref, 0, sizeof(tsc_ref));
+ kvm->arch.hv_tsc_page = data;
+ if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
+ break;
+ gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
+ if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
+ &tsc_ref, sizeof(tsc_ref)))
+ return 1;
+ mark_page_dirty(kvm, gfn);
+ break;
+ }
+ default:
+ vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
+ "data 0x%llx\n", msr, data);
+ return 1;
+ }
+ return 0;
+}
+
+static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
+{
+ switch (msr) {
+ case HV_X64_MSR_APIC_ASSIST_PAGE: {
+ u64 gfn;
+ unsigned long addr;
+
+ if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
+ vcpu->arch.hv_vapic = data;
+ if (kvm_lapic_enable_pv_eoi(vcpu, 0))
+ return 1;
+ break;
+ }
+ gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
+ addr = gfn_to_hva(vcpu->kvm, gfn);
+ if (kvm_is_error_hva(addr))
+ return 1;
+ if (__clear_user((void __user *)addr, PAGE_SIZE))
+ return 1;
+ vcpu->arch.hv_vapic = data;
+ mark_page_dirty(vcpu->kvm, gfn);
+ if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
+ return 1;
+ break;
+ }
+ case HV_X64_MSR_EOI:
+ return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
+ case HV_X64_MSR_ICR:
+ return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
+ case HV_X64_MSR_TPR:
+ return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
+ default:
+ vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
+ "data 0x%llx\n", msr, data);
+ return 1;
+ }
+
+ return 0;
+}
+
+static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
+{
+ gpa_t gpa = data & ~0x3f;
+
+ /* Bits 2:5 are reserved, Should be zero */
+ if (data & 0x3c)
+ return 1;
+
+ vcpu->arch.apf.msr_val = data;
+
+ if (!(data & KVM_ASYNC_PF_ENABLED)) {
+ kvm_clear_async_pf_completion_queue(vcpu);
+ kvm_async_pf_hash_reset(vcpu);
+ return 0;
+ }
+
+ if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
+ sizeof(u32)))
+ return 1;
+
+ vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
+ kvm_async_pf_wakeup_all(vcpu);
+ return 0;
+}
+
+static void kvmclock_reset(struct kvm_vcpu *vcpu)
+{
+ vcpu->arch.pv_time_enabled = false;
+}
+
+static void accumulate_steal_time(struct kvm_vcpu *vcpu)
+{
+ u64 delta;
+
+ if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
+ return;
+
+ delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
+ vcpu->arch.st.last_steal = current->sched_info.run_delay;
+ vcpu->arch.st.accum_steal = delta;
+}
+
+static void record_steal_time(struct kvm_vcpu *vcpu)
+{
+ if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
+ return;
+
+ if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
+ &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
+ return;
+
+ vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
+ vcpu->arch.st.steal.version += 2;
+ vcpu->arch.st.accum_steal = 0;
+
+ kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
+ &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
+}
+
+int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
+{
+ bool pr = false;
+ u32 msr = msr_info->index;
+ u64 data = msr_info->data;
+
+ switch (msr) {
+ case MSR_AMD64_NB_CFG:
+ case MSR_IA32_UCODE_REV:
+ case MSR_IA32_UCODE_WRITE:
+ case MSR_VM_HSAVE_PA:
+ case MSR_AMD64_PATCH_LOADER:
+ case MSR_AMD64_BU_CFG2:
+ break;
+
+ case MSR_EFER:
+ return set_efer(vcpu, data);
+ case MSR_K7_HWCR:
+ data &= ~(u64)0x40; /* ignore flush filter disable */
+ data &= ~(u64)0x100; /* ignore ignne emulation enable */
+ data &= ~(u64)0x8; /* ignore TLB cache disable */
+ data &= ~(u64)0x40000; /* ignore Mc status write enable */
+ if (data != 0) {
+ vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
+ data);
+ return 1;
+ }
+ break;
+ case MSR_FAM10H_MMIO_CONF_BASE:
+ if (data != 0) {
+ vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
+ "0x%llx\n", data);
+ return 1;
+ }
+ break;
+ case MSR_IA32_DEBUGCTLMSR:
+ if (!data) {
+ /* We support the non-activated case already */
+ break;
+ } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
+ /* Values other than LBR and BTF are vendor-specific,
+ thus reserved and should throw a #GP */
+ return 1;
+ }
+ vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
+ __func__, data);
+ break;
+ case 0x200 ... 0x2ff:
+ return set_msr_mtrr(vcpu, msr, data);
+ case MSR_IA32_APICBASE:
+ return kvm_set_apic_base(vcpu, msr_info);
+ case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
+ return kvm_x2apic_msr_write(vcpu, msr, data);
+ case MSR_IA32_TSCDEADLINE:
+ kvm_set_lapic_tscdeadline_msr(vcpu, data);
+ break;
+ case MSR_IA32_TSC_ADJUST:
+ if (guest_cpuid_has_tsc_adjust(vcpu)) {
+ if (!msr_info->host_initiated) {
+ s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
+ kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
+ }
+ vcpu->arch.ia32_tsc_adjust_msr = data;
+ }
+ break;
+ case MSR_IA32_MISC_ENABLE:
+ vcpu->arch.ia32_misc_enable_msr = data;
+ break;
+ case MSR_KVM_WALL_CLOCK_NEW:
+ case MSR_KVM_WALL_CLOCK:
+ vcpu->kvm->arch.wall_clock = data;
+ kvm_write_wall_clock(vcpu->kvm, data);
+ break;
+ case MSR_KVM_SYSTEM_TIME_NEW:
+ case MSR_KVM_SYSTEM_TIME: {
+ u64 gpa_offset;
+ struct kvm_arch *ka = &vcpu->kvm->arch;
+
+ kvmclock_reset(vcpu);
+
+ if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
+ bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
+
+ if (ka->boot_vcpu_runs_old_kvmclock != tmp)
+ set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
+ &vcpu->requests);
+
+ ka->boot_vcpu_runs_old_kvmclock = tmp;
+ }
+
+ vcpu->arch.time = data;
+ kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
+
+ /* we verify if the enable bit is set... */
+ if (!(data & 1))
+ break;
+
+ gpa_offset = data & ~(PAGE_MASK | 1);
+
+ if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
+ &vcpu->arch.pv_time, data & ~1ULL,
+ sizeof(struct pvclock_vcpu_time_info)))
+ vcpu->arch.pv_time_enabled = false;
+ else
+ vcpu->arch.pv_time_enabled = true;
+
+ break;
+ }
+ case MSR_KVM_ASYNC_PF_EN:
+ if (kvm_pv_enable_async_pf(vcpu, data))
+ return 1;
+ break;
+ case MSR_KVM_STEAL_TIME:
+
+ if (unlikely(!sched_info_on()))
+ return 1;
+
+ if (data & KVM_STEAL_RESERVED_MASK)
+ return 1;
+
+ if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
+ data & KVM_STEAL_VALID_BITS,
+ sizeof(struct kvm_steal_time)))
+ return 1;
+
+ vcpu->arch.st.msr_val = data;
+
+ if (!(data & KVM_MSR_ENABLED))
+ break;
+
+ vcpu->arch.st.last_steal = current->sched_info.run_delay;
+
+ preempt_disable();
+ accumulate_steal_time(vcpu);
+ preempt_enable();
+
+ kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
+
+ break;
+ case MSR_KVM_PV_EOI_EN:
+ if (kvm_lapic_enable_pv_eoi(vcpu, data))
+ return 1;
+ break;
+
+ case MSR_IA32_MCG_CTL:
+ case MSR_IA32_MCG_STATUS:
+ case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
+ return set_msr_mce(vcpu, msr, data);
+
+ /* Performance counters are not protected by a CPUID bit,
+ * so we should check all of them in the generic path for the sake of
+ * cross vendor migration.
+ * Writing a zero into the event select MSRs disables them,
+ * which we perfectly emulate ;-). Any other value should be at least
+ * reported, some guests depend on them.
+ */
+ case MSR_K7_EVNTSEL0:
+ case MSR_K7_EVNTSEL1:
+ case MSR_K7_EVNTSEL2:
+ case MSR_K7_EVNTSEL3:
+ if (data != 0)
+ vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
+ "0x%x data 0x%llx\n", msr, data);
+ break;
+ /* at least RHEL 4 unconditionally writes to the perfctr registers,
+ * so we ignore writes to make it happy.
+ */
+ case MSR_K7_PERFCTR0:
+ case MSR_K7_PERFCTR1:
+ case MSR_K7_PERFCTR2:
+ case MSR_K7_PERFCTR3:
+ vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
+ "0x%x data 0x%llx\n", msr, data);
+ break;
+ case MSR_P6_PERFCTR0:
+ case MSR_P6_PERFCTR1:
+ pr = true;
+ case MSR_P6_EVNTSEL0:
+ case MSR_P6_EVNTSEL1:
+ if (kvm_pmu_msr(vcpu, msr))
+ return kvm_pmu_set_msr(vcpu, msr_info);
+
+ if (pr || data != 0)
+ vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
+ "0x%x data 0x%llx\n", msr, data);
+ break;
+ case MSR_K7_CLK_CTL:
+ /*
+ * Ignore all writes to this no longer documented MSR.
+ * Writes are only relevant for old K7 processors,
+ * all pre-dating SVM, but a recommended workaround from
+ * AMD for these chips. It is possible to specify the
+ * affected processor models on the command line, hence
+ * the need to ignore the workaround.
+ */
+ break;
+ case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
+ if (kvm_hv_msr_partition_wide(msr)) {
+ int r;
+ mutex_lock(&vcpu->kvm->lock);
+ r = set_msr_hyperv_pw(vcpu, msr, data);
+ mutex_unlock(&vcpu->kvm->lock);
+ return r;
+ } else
+ return set_msr_hyperv(vcpu, msr, data);
+ break;
+ case MSR_IA32_BBL_CR_CTL3:
+ /* Drop writes to this legacy MSR -- see rdmsr
+ * counterpart for further detail.
+ */
+ vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
+ break;
+ case MSR_AMD64_OSVW_ID_LENGTH:
+ if (!guest_cpuid_has_osvw(vcpu))
+ return 1;
+ vcpu->arch.osvw.length = data;
+ break;
+ case MSR_AMD64_OSVW_STATUS:
+ if (!guest_cpuid_has_osvw(vcpu))
+ return 1;
+ vcpu->arch.osvw.status = data;
+ break;
+ default:
+ if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
+ return xen_hvm_config(vcpu, data);
+ if (kvm_pmu_msr(vcpu, msr))
+ return kvm_pmu_set_msr(vcpu, msr_info);
+ if (!ignore_msrs) {
+ vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
+ msr, data);
+ return 1;
+ } else {
+ vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
+ msr, data);
+ break;
+ }
+ }
+ return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_set_msr_common);
+
+
+/*
+ * Reads an msr value (of 'msr_index') into 'pdata'.
+ * Returns 0 on success, non-0 otherwise.
+ * Assumes vcpu_load() was already called.
+ */
+int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
+{
+ return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
+}
+EXPORT_SYMBOL_GPL(kvm_get_msr);
+
+static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
+{
+ u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
+
+ if (!msr_mtrr_valid(msr))
+ return 1;
+
+ if (msr == MSR_MTRRdefType)
+ *pdata = vcpu->arch.mtrr_state.def_type +
+ (vcpu->arch.mtrr_state.enabled << 10);
+ else if (msr == MSR_MTRRfix64K_00000)
+ *pdata = p[0];
+ else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
+ *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
+ else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
+ *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
+ else if (msr == MSR_IA32_CR_PAT)
+ *pdata = vcpu->arch.pat;
+ else { /* Variable MTRRs */
+ int idx, is_mtrr_mask;
+ u64 *pt;
+
+ idx = (msr - 0x200) / 2;
+ is_mtrr_mask = msr - 0x200 - 2 * idx;
+ if (!is_mtrr_mask)
+ pt =
+ (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
+ else
+ pt =
+ (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
+ *pdata = *pt;
+ }
+
+ return 0;
+}
+
+static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
+{
+ u64 data;
+ u64 mcg_cap = vcpu->arch.mcg_cap;
+ unsigned bank_num = mcg_cap & 0xff;
+
+ switch (msr) {
+ case MSR_IA32_P5_MC_ADDR:
+ case MSR_IA32_P5_MC_TYPE:
+ data = 0;
+ break;
+ case MSR_IA32_MCG_CAP:
+ data = vcpu->arch.mcg_cap;
+ break;
+ case MSR_IA32_MCG_CTL:
+ if (!(mcg_cap & MCG_CTL_P))
+ return 1;
+ data = vcpu->arch.mcg_ctl;
+ break;
+ case MSR_IA32_MCG_STATUS:
+ data = vcpu->arch.mcg_status;
+ break;
+ default:
+ if (msr >= MSR_IA32_MC0_CTL &&
+ msr < MSR_IA32_MCx_CTL(bank_num)) {
+ u32 offset = msr - MSR_IA32_MC0_CTL;
+ data = vcpu->arch.mce_banks[offset];
+ break;
+ }
+ return 1;
+ }
+ *pdata = data;
+ return 0;
+}
+
+static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
+{
+ u64 data = 0;
+ struct kvm *kvm = vcpu->kvm;
+
+ switch (msr) {
+ case HV_X64_MSR_GUEST_OS_ID:
+ data = kvm->arch.hv_guest_os_id;
+ break;
+ case HV_X64_MSR_HYPERCALL:
+ data = kvm->arch.hv_hypercall;
+ break;
+ case HV_X64_MSR_TIME_REF_COUNT: {
+ data =
+ div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
+ break;
+ }
+ case HV_X64_MSR_REFERENCE_TSC:
+ data = kvm->arch.hv_tsc_page;
+ break;
+ default:
+ vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
+ return 1;
+ }
+
+ *pdata = data;
+ return 0;
+}
+
+static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
+{
+ u64 data = 0;
+
+ switch (msr) {
+ case HV_X64_MSR_VP_INDEX: {
+ int r;
+ struct kvm_vcpu *v;
+ kvm_for_each_vcpu(r, v, vcpu->kvm) {
+ if (v == vcpu) {
+ data = r;
+ break;
+ }
+ }
+ break;
+ }
+ case HV_X64_MSR_EOI:
+ return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
+ case HV_X64_MSR_ICR:
+ return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
+ case HV_X64_MSR_TPR:
+ return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
+ case HV_X64_MSR_APIC_ASSIST_PAGE:
+ data = vcpu->arch.hv_vapic;
+ break;
+ default:
+ vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
+ return 1;
+ }
+ *pdata = data;
+ return 0;
+}
+
+int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
+{
+ u64 data;
+
+ switch (msr) {
+ case MSR_IA32_PLATFORM_ID:
+ case MSR_IA32_EBL_CR_POWERON:
+ case MSR_IA32_DEBUGCTLMSR:
+ case MSR_IA32_LASTBRANCHFROMIP:
+ case MSR_IA32_LASTBRANCHTOIP:
+ case MSR_IA32_LASTINTFROMIP:
+ case MSR_IA32_LASTINTTOIP:
+ case MSR_K8_SYSCFG:
+ case MSR_K7_HWCR:
+ case MSR_VM_HSAVE_PA:
+ case MSR_K7_EVNTSEL0:
+ case MSR_K7_EVNTSEL1:
+ case MSR_K7_EVNTSEL2:
+ case MSR_K7_EVNTSEL3:
+ case MSR_K7_PERFCTR0:
+ case MSR_K7_PERFCTR1:
+ case MSR_K7_PERFCTR2:
+ case MSR_K7_PERFCTR3:
+ case MSR_K8_INT_PENDING_MSG:
+ case MSR_AMD64_NB_CFG:
+ case MSR_FAM10H_MMIO_CONF_BASE:
+ case MSR_AMD64_BU_CFG2:
+ data = 0;
+ break;
+ case MSR_P6_PERFCTR0:
+ case MSR_P6_PERFCTR1:
+ case MSR_P6_EVNTSEL0:
+ case MSR_P6_EVNTSEL1:
+ if (kvm_pmu_msr(vcpu, msr))
+ return kvm_pmu_get_msr(vcpu, msr, pdata);
+ data = 0;
+ break;
+ case MSR_IA32_UCODE_REV:
+ data = 0x100000000ULL;
+ break;
+ case MSR_MTRRcap:
+ data = 0x500 | KVM_NR_VAR_MTRR;
+ break;
+ case 0x200 ... 0x2ff:
+ return get_msr_mtrr(vcpu, msr, pdata);
+ case 0xcd: /* fsb frequency */
+ data = 3;
+ break;
+ /*
+ * MSR_EBC_FREQUENCY_ID
+ * Conservative value valid for even the basic CPU models.
+ * Models 0,1: 000 in bits 23:21 indicating a bus speed of
+ * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
+ * and 266MHz for model 3, or 4. Set Core Clock
+ * Frequency to System Bus Frequency Ratio to 1 (bits
+ * 31:24) even though these are only valid for CPU
+ * models > 2, however guests may end up dividing or
+ * multiplying by zero otherwise.
+ */
+ case MSR_EBC_FREQUENCY_ID:
+ data = 1 << 24;
+ break;
+ case MSR_IA32_APICBASE:
+ data = kvm_get_apic_base(vcpu);
+ break;
+ case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
+ return kvm_x2apic_msr_read(vcpu, msr, pdata);
+ break;
+ case MSR_IA32_TSCDEADLINE:
+ data = kvm_get_lapic_tscdeadline_msr(vcpu);
+ break;
+ case MSR_IA32_TSC_ADJUST:
+ data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
+ break;
+ case MSR_IA32_MISC_ENABLE:
+ data = vcpu->arch.ia32_misc_enable_msr;
+ break;
+ case MSR_IA32_PERF_STATUS:
+ /* TSC increment by tick */
+ data = 1000ULL;
+ /* CPU multiplier */
+ data |= (((uint64_t)4ULL) << 40);
+ break;
+ case MSR_EFER:
+ data = vcpu->arch.efer;
+ break;
+ case MSR_KVM_WALL_CLOCK:
+ case MSR_KVM_WALL_CLOCK_NEW:
+ data = vcpu->kvm->arch.wall_clock;
+ break;
+ case MSR_KVM_SYSTEM_TIME:
+ case MSR_KVM_SYSTEM_TIME_NEW:
+ data = vcpu->arch.time;
+ break;
+ case MSR_KVM_ASYNC_PF_EN:
+ data = vcpu->arch.apf.msr_val;
+ break;
+ case MSR_KVM_STEAL_TIME:
+ data = vcpu->arch.st.msr_val;
+ break;
+ case MSR_KVM_PV_EOI_EN:
+ data = vcpu->arch.pv_eoi.msr_val;
+ break;
+ case MSR_IA32_P5_MC_ADDR:
+ case MSR_IA32_P5_MC_TYPE:
+ case MSR_IA32_MCG_CAP:
+ case MSR_IA32_MCG_CTL:
+ case MSR_IA32_MCG_STATUS:
+ case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
+ return get_msr_mce(vcpu, msr, pdata);
+ case MSR_K7_CLK_CTL:
+ /*
+ * Provide expected ramp-up count for K7. All other
+ * are set to zero, indicating minimum divisors for
+ * every field.
+ *
+ * This prevents guest kernels on AMD host with CPU
+ * type 6, model 8 and higher from exploding due to
+ * the rdmsr failing.
+ */
+ data = 0x20000000;
+ break;
+ case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
+ if (kvm_hv_msr_partition_wide(msr)) {
+ int r;
+ mutex_lock(&vcpu->kvm->lock);
+ r = get_msr_hyperv_pw(vcpu, msr, pdata);
+ mutex_unlock(&vcpu->kvm->lock);
+ return r;
+ } else
+ return get_msr_hyperv(vcpu, msr, pdata);
+ break;
+ case MSR_IA32_BBL_CR_CTL3:
+ /* This legacy MSR exists but isn't fully documented in current
+ * silicon. It is however accessed by winxp in very narrow
+ * scenarios where it sets bit #19, itself documented as
+ * a "reserved" bit. Best effort attempt to source coherent
+ * read data here should the balance of the register be
+ * interpreted by the guest:
+ *
+ * L2 cache control register 3: 64GB range, 256KB size,
+ * enabled, latency 0x1, configured
+ */
+ data = 0xbe702111;
+ break;
+ case MSR_AMD64_OSVW_ID_LENGTH:
+ if (!guest_cpuid_has_osvw(vcpu))
+ return 1;
+ data = vcpu->arch.osvw.length;
+ break;
+ case MSR_AMD64_OSVW_STATUS:
+ if (!guest_cpuid_has_osvw(vcpu))
+ return 1;
+ data = vcpu->arch.osvw.status;
+ break;
+ default:
+ if (kvm_pmu_msr(vcpu, msr))
+ return kvm_pmu_get_msr(vcpu, msr, pdata);
+ if (!ignore_msrs) {
+ vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
+ return 1;
+ } else {
+ vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
+ data = 0;
+ }
+ break;
+ }
+ *pdata = data;
+ return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_get_msr_common);
+
+/*
+ * Read or write a bunch of msrs. All parameters are kernel addresses.
+ *
+ * @return number of msrs set successfully.
+ */
+static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
+ struct kvm_msr_entry *entries,
+ int (*do_msr)(struct kvm_vcpu *vcpu,
+ unsigned index, u64 *data))
+{
+ int i, idx;
+
+ idx = srcu_read_lock(&vcpu->kvm->srcu);
+ for (i = 0; i < msrs->nmsrs; ++i)
+ if (do_msr(vcpu, entries[i].index, &entries[i].data))
+ break;
+ srcu_read_unlock(&vcpu->kvm->srcu, idx);
+
+ return i;
+}
+
+/*
+ * Read or write a bunch of msrs. Parameters are user addresses.
+ *
+ * @return number of msrs set successfully.
+ */
+static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
+ int (*do_msr)(struct kvm_vcpu *vcpu,
+ unsigned index, u64 *data),
+ int writeback)
+{
+ struct kvm_msrs msrs;
+ struct kvm_msr_entry *entries;
+ int r, n;
+ unsigned size;
+
+ r = -EFAULT;
+ if (copy_from_user(&msrs, user_msrs, sizeof msrs))
+ goto out;
+
+ r = -E2BIG;
+ if (msrs.nmsrs >= MAX_IO_MSRS)
+ goto out;
+
+ size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
+ entries = memdup_user(user_msrs->entries, size);
+ if (IS_ERR(entries)) {
+ r = PTR_ERR(entries);
+ goto out;
+ }
+
+ r = n = __msr_io(vcpu, &msrs, entries, do_msr);
+ if (r < 0)
+ goto out_free;
+
+ r = -EFAULT;
+ if (writeback && copy_to_user(user_msrs->entries, entries, size))
+ goto out_free;
+
+ r = n;
+
+out_free:
+ kfree(entries);
+out:
+ return r;
+}
+
+int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
+{
+ int r;
+
+ switch (ext) {
+ case KVM_CAP_IRQCHIP:
+ case KVM_CAP_HLT:
+ case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
+ case KVM_CAP_SET_TSS_ADDR:
+ case KVM_CAP_EXT_CPUID:
+ case KVM_CAP_EXT_EMUL_CPUID:
+ case KVM_CAP_CLOCKSOURCE:
+ case KVM_CAP_PIT:
+ case KVM_CAP_NOP_IO_DELAY:
+ case KVM_CAP_MP_STATE:
+ case KVM_CAP_SYNC_MMU:
+ case KVM_CAP_USER_NMI:
+ case KVM_CAP_REINJECT_CONTROL:
+ case KVM_CAP_IRQ_INJECT_STATUS:
+ case KVM_CAP_IOEVENTFD:
+ case KVM_CAP_IOEVENTFD_NO_LENGTH:
+ case KVM_CAP_PIT2:
+ case KVM_CAP_PIT_STATE2:
+ case KVM_CAP_SET_IDENTITY_MAP_ADDR:
+ case KVM_CAP_XEN_HVM:
+ case KVM_CAP_ADJUST_CLOCK:
+ case KVM_CAP_VCPU_EVENTS:
+ case KVM_CAP_HYPERV:
+ case KVM_CAP_HYPERV_VAPIC:
+ case KVM_CAP_HYPERV_SPIN:
+ case KVM_CAP_PCI_SEGMENT:
+ case KVM_CAP_DEBUGREGS:
+ case KVM_CAP_X86_ROBUST_SINGLESTEP:
+ case KVM_CAP_XSAVE:
+ case KVM_CAP_ASYNC_PF:
+ case KVM_CAP_GET_TSC_KHZ:
+ case KVM_CAP_KVMCLOCK_CTRL:
+ case KVM_CAP_READONLY_MEM:
+ case KVM_CAP_HYPERV_TIME:
+ case KVM_CAP_IOAPIC_POLARITY_IGNORED:
+ case KVM_CAP_TSC_DEADLINE_TIMER:
+#ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
+ case KVM_CAP_ASSIGN_DEV_IRQ:
+ case KVM_CAP_PCI_2_3:
+#endif
+ r = 1;
+ break;
+ case KVM_CAP_COALESCED_MMIO:
+ r = KVM_COALESCED_MMIO_PAGE_OFFSET;
+ break;
+ case KVM_CAP_VAPIC:
+ r = !kvm_x86_ops->cpu_has_accelerated_tpr();
+ break;
+ case KVM_CAP_NR_VCPUS:
+ r = KVM_SOFT_MAX_VCPUS;
+ break;
+ case KVM_CAP_MAX_VCPUS:
+ r = KVM_MAX_VCPUS;
+ break;
+ case KVM_CAP_NR_MEMSLOTS:
+ r = KVM_USER_MEM_SLOTS;
+ break;
+ case KVM_CAP_PV_MMU: /* obsolete */
+ r = 0;
+ break;
+#ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
+ case KVM_CAP_IOMMU:
+ r = iommu_present(&pci_bus_type);
+ break;
+#endif
+ case KVM_CAP_MCE:
+ r = KVM_MAX_MCE_BANKS;
+ break;
+ case KVM_CAP_XCRS:
+ r = cpu_has_xsave;
+ break;
+ case KVM_CAP_TSC_CONTROL:
+ r = kvm_has_tsc_control;
+ break;
+ default:
+ r = 0;
+ break;
+ }
+ return r;
+
+}
+
+long kvm_arch_dev_ioctl(struct file *filp,
+ unsigned int ioctl, unsigned long arg)
+{
+ void __user *argp = (void __user *)arg;
+ long r;
+
+ switch (ioctl) {
+ case KVM_GET_MSR_INDEX_LIST: {
+ struct kvm_msr_list __user *user_msr_list = argp;
+ struct kvm_msr_list msr_list;
+ unsigned n;
+
+ r = -EFAULT;
+ if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
+ goto out;
+ n = msr_list.nmsrs;
+ msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
+ if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
+ goto out;
+ r = -E2BIG;
+ if (n < msr_list.nmsrs)
+ goto out;
+ r = -EFAULT;
+ if (copy_to_user(user_msr_list->indices, &msrs_to_save,
+ num_msrs_to_save * sizeof(u32)))
+ goto out;
+ if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
+ &emulated_msrs,
+ ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
+ goto out;
+ r = 0;
+ break;
+ }
+ case KVM_GET_SUPPORTED_CPUID:
+ case KVM_GET_EMULATED_CPUID: {
+ struct kvm_cpuid2 __user *cpuid_arg = argp;
+ struct kvm_cpuid2 cpuid;
+
+ r = -EFAULT;
+ if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
+ goto out;
+
+ r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
+ ioctl);
+ if (r)
+ goto out;
+
+ r = -EFAULT;
+ if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
+ goto out;
+ r = 0;
+ break;
+ }
+ case KVM_X86_GET_MCE_CAP_SUPPORTED: {
+ u64 mce_cap;
+
+ mce_cap = KVM_MCE_CAP_SUPPORTED;
+ r = -EFAULT;
+ if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
+ goto out;
+ r = 0;
+ break;
+ }
+ default:
+ r = -EINVAL;
+ }
+out:
+ return r;
+}
+
+static void wbinvd_ipi(void *garbage)
+{
+ wbinvd();
+}
+
+static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
+{
+ return kvm_arch_has_noncoherent_dma(vcpu->kvm);
+}
+
+void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
+{
+ /* Address WBINVD may be executed by guest */
+ if (need_emulate_wbinvd(vcpu)) {
+ if (kvm_x86_ops->has_wbinvd_exit())
+ cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
+ else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
+ smp_call_function_single(vcpu->cpu,
+ wbinvd_ipi, NULL, 1);
+ }
+
+ kvm_x86_ops->vcpu_load(vcpu, cpu);
+
+ /* Apply any externally detected TSC adjustments (due to suspend) */
+ if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
+ adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
+ vcpu->arch.tsc_offset_adjustment = 0;
+ kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
+ }
+
+ if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
+ s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
+ native_read_tsc() - vcpu->arch.last_host_tsc;
+ if (tsc_delta < 0)
+ mark_tsc_unstable("KVM discovered backwards TSC");
+ if (check_tsc_unstable()) {
+ u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
+ vcpu->arch.last_guest_tsc);
+ kvm_x86_ops->write_tsc_offset(vcpu, offset);
+ vcpu->arch.tsc_catchup = 1;
+ }
+ /*
+ * On a host with synchronized TSC, there is no need to update
+ * kvmclock on vcpu->cpu migration
+ */
+ if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
+ kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
+ if (vcpu->cpu != cpu)
+ kvm_migrate_timers(vcpu);
+ vcpu->cpu = cpu;
+ }
+
+ accumulate_steal_time(vcpu);
+ kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
+}
+
+void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
+{
+ kvm_x86_ops->vcpu_put(vcpu);
+ kvm_put_guest_fpu(vcpu);
+ vcpu->arch.last_host_tsc = native_read_tsc();
+}
+
+static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
+ struct kvm_lapic_state *s)
+{
+ kvm_x86_ops->sync_pir_to_irr(vcpu);
+ memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
+
+ return 0;
+}
+
+static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
+ struct kvm_lapic_state *s)
+{
+ kvm_apic_post_state_restore(vcpu, s);
+ update_cr8_intercept(vcpu);
+
+ return 0;
+}
+
+static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
+ struct kvm_interrupt *irq)
+{
+ if (irq->irq >= KVM_NR_INTERRUPTS)
+ return -EINVAL;
+ if (irqchip_in_kernel(vcpu->kvm))
+ return -ENXIO;
+
+ kvm_queue_interrupt(vcpu, irq->irq, false);
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+ return 0;
+}
+
+static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
+{
+ kvm_inject_nmi(vcpu);
+
+ return 0;
+}
+
+static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
+ struct kvm_tpr_access_ctl *tac)
+{
+ if (tac->flags)
+ return -EINVAL;
+ vcpu->arch.tpr_access_reporting = !!tac->enabled;
+ return 0;
+}
+
+static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
+ u64 mcg_cap)
+{
+ int r;
+ unsigned bank_num = mcg_cap & 0xff, bank;
+
+ r = -EINVAL;
+ if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
+ goto out;
+ if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
+ goto out;
+ r = 0;
+ vcpu->arch.mcg_cap = mcg_cap;
+ /* Init IA32_MCG_CTL to all 1s */
+ if (mcg_cap & MCG_CTL_P)
+ vcpu->arch.mcg_ctl = ~(u64)0;
+ /* Init IA32_MCi_CTL to all 1s */
+ for (bank = 0; bank < bank_num; bank++)
+ vcpu->arch.mce_banks[bank*4] = ~(u64)0;
+out:
+ return r;
+}
+
+static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
+ struct kvm_x86_mce *mce)
+{
+ u64 mcg_cap = vcpu->arch.mcg_cap;
+ unsigned bank_num = mcg_cap & 0xff;
+ u64 *banks = vcpu->arch.mce_banks;
+
+ if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
+ return -EINVAL;
+ /*
+ * if IA32_MCG_CTL is not all 1s, the uncorrected error
+ * reporting is disabled
+ */
+ if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
+ vcpu->arch.mcg_ctl != ~(u64)0)
+ return 0;
+ banks += 4 * mce->bank;
+ /*
+ * if IA32_MCi_CTL is not all 1s, the uncorrected error
+ * reporting is disabled for the bank
+ */
+ if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
+ return 0;
+ if (mce->status & MCI_STATUS_UC) {
+ if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
+ !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
+ kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+ return 0;
+ }
+ if (banks[1] & MCI_STATUS_VAL)
+ mce->status |= MCI_STATUS_OVER;
+ banks[2] = mce->addr;
+ banks[3] = mce->misc;
+ vcpu->arch.mcg_status = mce->mcg_status;
+ banks[1] = mce->status;
+ kvm_queue_exception(vcpu, MC_VECTOR);
+ } else if (!(banks[1] & MCI_STATUS_VAL)
+ || !(banks[1] & MCI_STATUS_UC)) {
+ if (banks[1] & MCI_STATUS_VAL)
+ mce->status |= MCI_STATUS_OVER;
+ banks[2] = mce->addr;
+ banks[3] = mce->misc;
+ banks[1] = mce->status;
+ } else
+ banks[1] |= MCI_STATUS_OVER;
+ return 0;
+}
+
+static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
+ struct kvm_vcpu_events *events)
+{
+ process_nmi(vcpu);
+ events->exception.injected =
+ vcpu->arch.exception.pending &&
+ !kvm_exception_is_soft(vcpu->arch.exception.nr);
+ events->exception.nr = vcpu->arch.exception.nr;
+ events->exception.has_error_code = vcpu->arch.exception.has_error_code;
+ events->exception.pad = 0;
+ events->exception.error_code = vcpu->arch.exception.error_code;
+
+ events->interrupt.injected =
+ vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
+ events->interrupt.nr = vcpu->arch.interrupt.nr;
+ events->interrupt.soft = 0;
+ events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
+
+ events->nmi.injected = vcpu->arch.nmi_injected;
+ events->nmi.pending = vcpu->arch.nmi_pending != 0;
+ events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
+ events->nmi.pad = 0;
+
+ events->sipi_vector = 0; /* never valid when reporting to user space */
+
+ events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
+ | KVM_VCPUEVENT_VALID_SHADOW);
+ memset(&events->reserved, 0, sizeof(events->reserved));
+}
+
+static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
+ struct kvm_vcpu_events *events)
+{
+ if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
+ | KVM_VCPUEVENT_VALID_SIPI_VECTOR
+ | KVM_VCPUEVENT_VALID_SHADOW))
+ return -EINVAL;
+
+ process_nmi(vcpu);
+ vcpu->arch.exception.pending = events->exception.injected;
+ vcpu->arch.exception.nr = events->exception.nr;
+ vcpu->arch.exception.has_error_code = events->exception.has_error_code;
+ vcpu->arch.exception.error_code = events->exception.error_code;
+
+ vcpu->arch.interrupt.pending = events->interrupt.injected;
+ vcpu->arch.interrupt.nr = events->interrupt.nr;
+ vcpu->arch.interrupt.soft = events->interrupt.soft;
+ if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
+ kvm_x86_ops->set_interrupt_shadow(vcpu,
+ events->interrupt.shadow);
+
+ vcpu->arch.nmi_injected = events->nmi.injected;
+ if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
+ vcpu->arch.nmi_pending = events->nmi.pending;
+ kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
+
+ if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
+ kvm_vcpu_has_lapic(vcpu))
+ vcpu->arch.apic->sipi_vector = events->sipi_vector;
+
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+ return 0;
+}
+
+static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
+ struct kvm_debugregs *dbgregs)
+{
+ unsigned long val;
+
+ memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
+ kvm_get_dr(vcpu, 6, &val);
+ dbgregs->dr6 = val;
+ dbgregs->dr7 = vcpu->arch.dr7;
+ dbgregs->flags = 0;
+ memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
+}
+
+static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
+ struct kvm_debugregs *dbgregs)
+{
+ if (dbgregs->flags)
+ return -EINVAL;
+
+ memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
+ kvm_update_dr0123(vcpu);
+ vcpu->arch.dr6 = dbgregs->dr6;
+ kvm_update_dr6(vcpu);
+ vcpu->arch.dr7 = dbgregs->dr7;
+ kvm_update_dr7(vcpu);
+
+ return 0;
+}
+
+#define XSTATE_COMPACTION_ENABLED (1ULL << 63)
+
+static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
+{
+ struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
+ u64 xstate_bv = xsave->xsave_hdr.xstate_bv;
+ u64 valid;
+
+ /*
+ * Copy legacy XSAVE area, to avoid complications with CPUID
+ * leaves 0 and 1 in the loop below.
+ */
+ memcpy(dest, xsave, XSAVE_HDR_OFFSET);
+
+ /* Set XSTATE_BV */
+ *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
+
+ /*
+ * Copy each region from the possibly compacted offset to the
+ * non-compacted offset.
+ */
+ valid = xstate_bv & ~XSTATE_FPSSE;
+ while (valid) {
+ u64 feature = valid & -valid;
+ int index = fls64(feature) - 1;
+ void *src = get_xsave_addr(xsave, feature);
+
+ if (src) {
+ u32 size, offset, ecx, edx;
+ cpuid_count(XSTATE_CPUID, index,
+ &size, &offset, &ecx, &edx);
+ memcpy(dest + offset, src, size);
+ }
+
+ valid -= feature;
+ }
+}
+
+static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
+{
+ struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
+ u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
+ u64 valid;
+
+ /*
+ * Copy legacy XSAVE area, to avoid complications with CPUID
+ * leaves 0 and 1 in the loop below.
+ */
+ memcpy(xsave, src, XSAVE_HDR_OFFSET);
+
+ /* Set XSTATE_BV and possibly XCOMP_BV. */
+ xsave->xsave_hdr.xstate_bv = xstate_bv;
+ if (cpu_has_xsaves)
+ xsave->xsave_hdr.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
+
+ /*
+ * Copy each region from the non-compacted offset to the
+ * possibly compacted offset.
+ */
+ valid = xstate_bv & ~XSTATE_FPSSE;
+ while (valid) {
+ u64 feature = valid & -valid;
+ int index = fls64(feature) - 1;
+ void *dest = get_xsave_addr(xsave, feature);
+
+ if (dest) {
+ u32 size, offset, ecx, edx;
+ cpuid_count(XSTATE_CPUID, index,
+ &size, &offset, &ecx, &edx);
+ memcpy(dest, src + offset, size);
+ } else
+ WARN_ON_ONCE(1);
+
+ valid -= feature;
+ }
+}
+
+static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
+ struct kvm_xsave *guest_xsave)
+{
+ if (cpu_has_xsave) {
+ memset(guest_xsave, 0, sizeof(struct kvm_xsave));
+ fill_xsave((u8 *) guest_xsave->region, vcpu);
+ } else {
+ memcpy(guest_xsave->region,
+ &vcpu->arch.guest_fpu.state->fxsave,
+ sizeof(struct i387_fxsave_struct));
+ *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
+ XSTATE_FPSSE;
+ }
+}
+
+static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
+ struct kvm_xsave *guest_xsave)
+{
+ u64 xstate_bv =
+ *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
+
+ if (cpu_has_xsave) {
+ /*
+ * Here we allow setting states that are not present in
+ * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
+ * with old userspace.
+ */
+ if (xstate_bv & ~kvm_supported_xcr0())
+ return -EINVAL;
+ load_xsave(vcpu, (u8 *)guest_xsave->region);
+ } else {
+ if (xstate_bv & ~XSTATE_FPSSE)
+ return -EINVAL;
+ memcpy(&vcpu->arch.guest_fpu.state->fxsave,
+ guest_xsave->region, sizeof(struct i387_fxsave_struct));
+ }
+ return 0;
+}
+
+static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
+ struct kvm_xcrs *guest_xcrs)
+{
+ if (!cpu_has_xsave) {
+ guest_xcrs->nr_xcrs = 0;
+ return;
+ }
+
+ guest_xcrs->nr_xcrs = 1;
+ guest_xcrs->flags = 0;
+ guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
+ guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
+}
+
+static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
+ struct kvm_xcrs *guest_xcrs)
+{
+ int i, r = 0;
+
+ if (!cpu_has_xsave)
+ return -EINVAL;
+
+ if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
+ return -EINVAL;
+
+ for (i = 0; i < guest_xcrs->nr_xcrs; i++)
+ /* Only support XCR0 currently */
+ if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
+ r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
+ guest_xcrs->xcrs[i].value);
+ break;
+ }
+ if (r)
+ r = -EINVAL;
+ return r;
+}
+
+/*
+ * kvm_set_guest_paused() indicates to the guest kernel that it has been
+ * stopped by the hypervisor. This function will be called from the host only.
+ * EINVAL is returned when the host attempts to set the flag for a guest that
+ * does not support pv clocks.
+ */
+static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
+{
+ if (!vcpu->arch.pv_time_enabled)
+ return -EINVAL;
+ vcpu->arch.pvclock_set_guest_stopped_request = true;
+ kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
+ return 0;
+}
+
+long kvm_arch_vcpu_ioctl(struct file *filp,
+ unsigned int ioctl, unsigned long arg)
+{
+ struct kvm_vcpu *vcpu = filp->private_data;
+ void __user *argp = (void __user *)arg;
+ int r;
+ union {
+ struct kvm_lapic_state *lapic;
+ struct kvm_xsave *xsave;
+ struct kvm_xcrs *xcrs;
+ void *buffer;
+ } u;
+
+ u.buffer = NULL;
+ switch (ioctl) {
+ case KVM_GET_LAPIC: {
+ r = -EINVAL;
+ if (!vcpu->arch.apic)
+ goto out;
+ u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
+
+ r = -ENOMEM;
+ if (!u.lapic)
+ goto out;
+ r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
+ if (r)
+ goto out;
+ r = -EFAULT;
+ if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
+ goto out;
+ r = 0;
+ break;
+ }
+ case KVM_SET_LAPIC: {
+ r = -EINVAL;
+ if (!vcpu->arch.apic)
+ goto out;
+ u.lapic = memdup_user(argp, sizeof(*u.lapic));
+ if (IS_ERR(u.lapic))
+ return PTR_ERR(u.lapic);
+
+ r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
+ break;
+ }
+ case KVM_INTERRUPT: {
+ struct kvm_interrupt irq;
+
+ r = -EFAULT;
+ if (copy_from_user(&irq, argp, sizeof irq))
+ goto out;
+ r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
+ break;
+ }
+ case KVM_NMI: {
+ r = kvm_vcpu_ioctl_nmi(vcpu);
+ break;
+ }
+ case KVM_SET_CPUID: {
+ struct kvm_cpuid __user *cpuid_arg = argp;
+ struct kvm_cpuid cpuid;
+
+ r = -EFAULT;
+ if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
+ goto out;
+ r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
+ break;
+ }
+ case KVM_SET_CPUID2: {
+ struct kvm_cpuid2 __user *cpuid_arg = argp;
+ struct kvm_cpuid2 cpuid;
+
+ r = -EFAULT;
+ if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
+ goto out;
+ r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
+ cpuid_arg->entries);
+ break;
+ }
+ case KVM_GET_CPUID2: {
+ struct kvm_cpuid2 __user *cpuid_arg = argp;
+ struct kvm_cpuid2 cpuid;
+
+ r = -EFAULT;
+ if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
+ goto out;
+ r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
+ cpuid_arg->entries);
+ if (r)
+ goto out;
+ r = -EFAULT;
+ if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
+ goto out;
+ r = 0;
+ break;
+ }
+ case KVM_GET_MSRS:
+ r = msr_io(vcpu, argp, kvm_get_msr, 1);
+ break;
+ case KVM_SET_MSRS:
+ r = msr_io(vcpu, argp, do_set_msr, 0);
+ break;
+ case KVM_TPR_ACCESS_REPORTING: {
+ struct kvm_tpr_access_ctl tac;
+
+ r = -EFAULT;
+ if (copy_from_user(&tac, argp, sizeof tac))
+ goto out;
+ r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
+ if (r)
+ goto out;
+ r = -EFAULT;
+ if (copy_to_user(argp, &tac, sizeof tac))
+ goto out;
+ r = 0;
+ break;
+ };
+ case KVM_SET_VAPIC_ADDR: {
+ struct kvm_vapic_addr va;
+
+ r = -EINVAL;
+ if (!irqchip_in_kernel(vcpu->kvm))
+ goto out;
+ r = -EFAULT;
+ if (copy_from_user(&va, argp, sizeof va))
+ goto out;
+ r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
+ break;
+ }
+ case KVM_X86_SETUP_MCE: {
+ u64 mcg_cap;
+
+ r = -EFAULT;
+ if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
+ goto out;
+ r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
+ break;
+ }
+ case KVM_X86_SET_MCE: {
+ struct kvm_x86_mce mce;
+
+ r = -EFAULT;
+ if (copy_from_user(&mce, argp, sizeof mce))
+ goto out;
+ r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
+ break;
+ }
+ case KVM_GET_VCPU_EVENTS: {
+ struct kvm_vcpu_events events;
+
+ kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
+
+ r = -EFAULT;
+ if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
+ break;
+ r = 0;
+ break;
+ }
+ case KVM_SET_VCPU_EVENTS: {
+ struct kvm_vcpu_events events;
+
+ r = -EFAULT;
+ if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
+ break;
+
+ r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
+ break;
+ }
+ case KVM_GET_DEBUGREGS: {
+ struct kvm_debugregs dbgregs;
+
+ kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
+
+ r = -EFAULT;
+ if (copy_to_user(argp, &dbgregs,
+ sizeof(struct kvm_debugregs)))
+ break;
+ r = 0;
+ break;
+ }
+ case KVM_SET_DEBUGREGS: {
+ struct kvm_debugregs dbgregs;
+
+ r = -EFAULT;
+ if (copy_from_user(&dbgregs, argp,
+ sizeof(struct kvm_debugregs)))
+ break;
+
+ r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
+ break;
+ }
+ case KVM_GET_XSAVE: {
+ u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
+ r = -ENOMEM;
+ if (!u.xsave)
+ break;
+
+ kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
+
+ r = -EFAULT;
+ if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
+ break;
+ r = 0;
+ break;
+ }
+ case KVM_SET_XSAVE: {
+ u.xsave = memdup_user(argp, sizeof(*u.xsave));
+ if (IS_ERR(u.xsave))
+ return PTR_ERR(u.xsave);
+
+ r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
+ break;
+ }
+ case KVM_GET_XCRS: {
+ u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
+ r = -ENOMEM;
+ if (!u.xcrs)
+ break;
+
+ kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
+
+ r = -EFAULT;
+ if (copy_to_user(argp, u.xcrs,
+ sizeof(struct kvm_xcrs)))
+ break;
+ r = 0;
+ break;
+ }
+ case KVM_SET_XCRS: {
+ u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
+ if (IS_ERR(u.xcrs))
+ return PTR_ERR(u.xcrs);
+
+ r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
+ break;
+ }
+ case KVM_SET_TSC_KHZ: {
+ u32 user_tsc_khz;
+
+ r = -EINVAL;
+ user_tsc_khz = (u32)arg;
+
+ if (user_tsc_khz >= kvm_max_guest_tsc_khz)
+ goto out;
+
+ if (user_tsc_khz == 0)
+ user_tsc_khz = tsc_khz;
+
+ kvm_set_tsc_khz(vcpu, user_tsc_khz);
+
+ r = 0;
+ goto out;
+ }
+ case KVM_GET_TSC_KHZ: {
+ r = vcpu->arch.virtual_tsc_khz;
+ goto out;
+ }
+ case KVM_KVMCLOCK_CTRL: {
+ r = kvm_set_guest_paused(vcpu);
+ goto out;
+ }
+ default:
+ r = -EINVAL;
+ }
+out:
+ kfree(u.buffer);
+ return r;
+}
+
+int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
+{
+ return VM_FAULT_SIGBUS;
+}
+
+static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
+{
+ int ret;
+
+ if (addr > (unsigned int)(-3 * PAGE_SIZE))
+ return -EINVAL;
+ ret = kvm_x86_ops->set_tss_addr(kvm, addr);
+ return ret;
+}
+
+static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
+ u64 ident_addr)
+{
+ kvm->arch.ept_identity_map_addr = ident_addr;
+ return 0;
+}
+
+static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
+ u32 kvm_nr_mmu_pages)
+{
+ if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
+ return -EINVAL;
+
+ mutex_lock(&kvm->slots_lock);
+
+ kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
+ kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
+
+ mutex_unlock(&kvm->slots_lock);
+ return 0;
+}
+
+static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
+{
+ return kvm->arch.n_max_mmu_pages;
+}
+
+static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
+{
+ int r;
+
+ r = 0;
+ switch (chip->chip_id) {
+ case KVM_IRQCHIP_PIC_MASTER:
+ memcpy(&chip->chip.pic,
+ &pic_irqchip(kvm)->pics[0],
+ sizeof(struct kvm_pic_state));
+ break;
+ case KVM_IRQCHIP_PIC_SLAVE:
+ memcpy(&chip->chip.pic,
+ &pic_irqchip(kvm)->pics[1],
+ sizeof(struct kvm_pic_state));
+ break;
+ case KVM_IRQCHIP_IOAPIC:
+ r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
+ break;
+ default:
+ r = -EINVAL;
+ break;
+ }
+ return r;
+}
+
+static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
+{
+ int r;
+
+ r = 0;
+ switch (chip->chip_id) {
+ case KVM_IRQCHIP_PIC_MASTER:
+ spin_lock(&pic_irqchip(kvm)->lock);
+ memcpy(&pic_irqchip(kvm)->pics[0],
+ &chip->chip.pic,
+ sizeof(struct kvm_pic_state));
+ spin_unlock(&pic_irqchip(kvm)->lock);
+ break;
+ case KVM_IRQCHIP_PIC_SLAVE:
+ spin_lock(&pic_irqchip(kvm)->lock);
+ memcpy(&pic_irqchip(kvm)->pics[1],
+ &chip->chip.pic,
+ sizeof(struct kvm_pic_state));
+ spin_unlock(&pic_irqchip(kvm)->lock);
+ break;
+ case KVM_IRQCHIP_IOAPIC:
+ r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
+ break;
+ default:
+ r = -EINVAL;
+ break;
+ }
+ kvm_pic_update_irq(pic_irqchip(kvm));
+ return r;
+}
+
+static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
+{
+ int r = 0;
+
+ mutex_lock(&kvm->arch.vpit->pit_state.lock);
+ memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
+ mutex_unlock(&kvm->arch.vpit->pit_state.lock);
+ return r;
+}
+
+static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
+{
+ int r = 0;
+
+ mutex_lock(&kvm->arch.vpit->pit_state.lock);
+ memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
+ kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
+ mutex_unlock(&kvm->arch.vpit->pit_state.lock);
+ return r;
+}
+
+static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
+{
+ int r = 0;
+
+ mutex_lock(&kvm->arch.vpit->pit_state.lock);
+ memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
+ sizeof(ps->channels));
+ ps->flags = kvm->arch.vpit->pit_state.flags;
+ mutex_unlock(&kvm->arch.vpit->pit_state.lock);
+ memset(&ps->reserved, 0, sizeof(ps->reserved));
+ return r;
+}
+
+static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
+{
+ int r = 0, start = 0;
+ u32 prev_legacy, cur_legacy;
+ mutex_lock(&kvm->arch.vpit->pit_state.lock);
+ prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
+ cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
+ if (!prev_legacy && cur_legacy)
+ start = 1;
+ memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
+ sizeof(kvm->arch.vpit->pit_state.channels));
+ kvm->arch.vpit->pit_state.flags = ps->flags;
+ kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
+ mutex_unlock(&kvm->arch.vpit->pit_state.lock);
+ return r;
+}
+
+static int kvm_vm_ioctl_reinject(struct kvm *kvm,
+ struct kvm_reinject_control *control)
+{
+ if (!kvm->arch.vpit)
+ return -ENXIO;
+ mutex_lock(&kvm->arch.vpit->pit_state.lock);
+ kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
+ mutex_unlock(&kvm->arch.vpit->pit_state.lock);
+ return 0;
+}
+
+/**
+ * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
+ * @kvm: kvm instance
+ * @log: slot id and address to which we copy the log
+ *
+ * Steps 1-4 below provide general overview of dirty page logging. See
+ * kvm_get_dirty_log_protect() function description for additional details.
+ *
+ * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
+ * always flush the TLB (step 4) even if previous step failed and the dirty
+ * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
+ * does not preclude user space subsequent dirty log read. Flushing TLB ensures
+ * writes will be marked dirty for next log read.
+ *
+ * 1. Take a snapshot of the bit and clear it if needed.
+ * 2. Write protect the corresponding page.
+ * 3. Copy the snapshot to the userspace.
+ * 4. Flush TLB's if needed.
+ */
+int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
+{
+ bool is_dirty = false;
+ int r;
+
+ mutex_lock(&kvm->slots_lock);
+
+ /*
+ * Flush potentially hardware-cached dirty pages to dirty_bitmap.
+ */
+ if (kvm_x86_ops->flush_log_dirty)
+ kvm_x86_ops->flush_log_dirty(kvm);
+
+ r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
+
+ /*
+ * All the TLBs can be flushed out of mmu lock, see the comments in
+ * kvm_mmu_slot_remove_write_access().
+ */
+ lockdep_assert_held(&kvm->slots_lock);
+ if (is_dirty)
+ kvm_flush_remote_tlbs(kvm);
+
+ mutex_unlock(&kvm->slots_lock);
+ return r;
+}
+
+int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
+ bool line_status)
+{
+ if (!irqchip_in_kernel(kvm))
+ return -ENXIO;
+
+ irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
+ irq_event->irq, irq_event->level,
+ line_status);
+ return 0;
+}
+
+long kvm_arch_vm_ioctl(struct file *filp,
+ unsigned int ioctl, unsigned long arg)
+{
+ struct kvm *kvm = filp->private_data;
+ void __user *argp = (void __user *)arg;
+ int r = -ENOTTY;
+ /*
+ * This union makes it completely explicit to gcc-3.x
+ * that these two variables' stack usage should be
+ * combined, not added together.
+ */
+ union {
+ struct kvm_pit_state ps;
+ struct kvm_pit_state2 ps2;
+ struct kvm_pit_config pit_config;
+ } u;
+
+ switch (ioctl) {
+ case KVM_SET_TSS_ADDR:
+ r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
+ break;
+ case KVM_SET_IDENTITY_MAP_ADDR: {
+ u64 ident_addr;
+
+ r = -EFAULT;
+ if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
+ goto out;
+ r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
+ break;
+ }
+ case KVM_SET_NR_MMU_PAGES:
+ r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
+ break;
+ case KVM_GET_NR_MMU_PAGES:
+ r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
+ break;
+ case KVM_CREATE_IRQCHIP: {
+ struct kvm_pic *vpic;
+
+ mutex_lock(&kvm->lock);
+ r = -EEXIST;
+ if (kvm->arch.vpic)
+ goto create_irqchip_unlock;
+ r = -EINVAL;
+ if (atomic_read(&kvm->online_vcpus))
+ goto create_irqchip_unlock;
+ r = -ENOMEM;
+ vpic = kvm_create_pic(kvm);
+ if (vpic) {
+ r = kvm_ioapic_init(kvm);
+ if (r) {
+ mutex_lock(&kvm->slots_lock);
+ kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
+ &vpic->dev_master);
+ kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
+ &vpic->dev_slave);
+ kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
+ &vpic->dev_eclr);
+ mutex_unlock(&kvm->slots_lock);
+ kfree(vpic);
+ goto create_irqchip_unlock;
+ }
+ } else
+ goto create_irqchip_unlock;
+ smp_wmb();
+ kvm->arch.vpic = vpic;
+ smp_wmb();
+ r = kvm_setup_default_irq_routing(kvm);
+ if (r) {
+ mutex_lock(&kvm->slots_lock);
+ mutex_lock(&kvm->irq_lock);
+ kvm_ioapic_destroy(kvm);
+ kvm_destroy_pic(kvm);
+ mutex_unlock(&kvm->irq_lock);
+ mutex_unlock(&kvm->slots_lock);
+ }
+ create_irqchip_unlock:
+ mutex_unlock(&kvm->lock);
+ break;
+ }
+ case KVM_CREATE_PIT:
+ u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
+ goto create_pit;
+ case KVM_CREATE_PIT2:
+ r = -EFAULT;
+ if (copy_from_user(&u.pit_config, argp,
+ sizeof(struct kvm_pit_config)))
+ goto out;
+ create_pit:
+ mutex_lock(&kvm->slots_lock);
+ r = -EEXIST;
+ if (kvm->arch.vpit)
+ goto create_pit_unlock;
+ r = -ENOMEM;
+ kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
+ if (kvm->arch.vpit)
+ r = 0;
+ create_pit_unlock:
+ mutex_unlock(&kvm->slots_lock);
+ break;
+ case KVM_GET_IRQCHIP: {
+ /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
+ struct kvm_irqchip *chip;
+
+ chip = memdup_user(argp, sizeof(*chip));
+ if (IS_ERR(chip)) {
+ r = PTR_ERR(chip);
+ goto out;
+ }
+
+ r = -ENXIO;
+ if (!irqchip_in_kernel(kvm))
+ goto get_irqchip_out;
+ r = kvm_vm_ioctl_get_irqchip(kvm, chip);
+ if (r)
+ goto get_irqchip_out;
+ r = -EFAULT;
+ if (copy_to_user(argp, chip, sizeof *chip))
+ goto get_irqchip_out;
+ r = 0;
+ get_irqchip_out:
+ kfree(chip);
+ break;
+ }
+ case KVM_SET_IRQCHIP: {
+ /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
+ struct kvm_irqchip *chip;
+
+ chip = memdup_user(argp, sizeof(*chip));
+ if (IS_ERR(chip)) {
+ r = PTR_ERR(chip);
+ goto out;
+ }
+
+ r = -ENXIO;
+ if (!irqchip_in_kernel(kvm))
+ goto set_irqchip_out;
+ r = kvm_vm_ioctl_set_irqchip(kvm, chip);
+ if (r)
+ goto set_irqchip_out;
+ r = 0;
+ set_irqchip_out:
+ kfree(chip);
+ break;
+ }
+ case KVM_GET_PIT: {
+ r = -EFAULT;
+ if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
+ goto out;
+ r = -ENXIO;
+ if (!kvm->arch.vpit)
+ goto out;
+ r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
+ if (r)
+ goto out;
+ r = -EFAULT;
+ if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
+ goto out;
+ r = 0;
+ break;
+ }
+ case KVM_SET_PIT: {
+ r = -EFAULT;
+ if (copy_from_user(&u.ps, argp, sizeof u.ps))
+ goto out;
+ r = -ENXIO;
+ if (!kvm->arch.vpit)
+ goto out;
+ r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
+ break;
+ }
+ case KVM_GET_PIT2: {
+ r = -ENXIO;
+ if (!kvm->arch.vpit)
+ goto out;
+ r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
+ if (r)
+ goto out;
+ r = -EFAULT;
+ if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
+ goto out;
+ r = 0;
+ break;
+ }
+ case KVM_SET_PIT2: {
+ r = -EFAULT;
+ if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
+ goto out;
+ r = -ENXIO;
+ if (!kvm->arch.vpit)
+ goto out;
+ r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
+ break;
+ }
+ case KVM_REINJECT_CONTROL: {
+ struct kvm_reinject_control control;
+ r = -EFAULT;
+ if (copy_from_user(&control, argp, sizeof(control)))
+ goto out;
+ r = kvm_vm_ioctl_reinject(kvm, &control);
+ break;
+ }
+ case KVM_XEN_HVM_CONFIG: {
+ r = -EFAULT;
+ if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
+ sizeof(struct kvm_xen_hvm_config)))
+ goto out;
+ r = -EINVAL;
+ if (kvm->arch.xen_hvm_config.flags)
+ goto out;
+ r = 0;
+ break;
+ }
+ case KVM_SET_CLOCK: {
+ struct kvm_clock_data user_ns;
+ u64 now_ns;
+ s64 delta;
+
+ r = -EFAULT;
+ if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
+ goto out;
+
+ r = -EINVAL;
+ if (user_ns.flags)
+ goto out;
+
+ r = 0;
+ local_irq_disable();
+ now_ns = get_kernel_ns();
+ delta = user_ns.clock - now_ns;
+ local_irq_enable();
+ kvm->arch.kvmclock_offset = delta;
+ kvm_gen_update_masterclock(kvm);
+ break;
+ }
+ case KVM_GET_CLOCK: {
+ struct kvm_clock_data user_ns;
+ u64 now_ns;
+
+ local_irq_disable();
+ now_ns = get_kernel_ns();
+ user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
+ local_irq_enable();
+ user_ns.flags = 0;
+ memset(&user_ns.pad, 0, sizeof(user_ns.pad));
+
+ r = -EFAULT;
+ if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
+ goto out;
+ r = 0;
+ break;
+ }
+
+ default:
+ r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
+ }
+out:
+ return r;
+}
+
+static void kvm_init_msr_list(void)
+{
+ u32 dummy[2];
+ unsigned i, j;
+
+ /* skip the first msrs in the list. KVM-specific */
+ for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
+ if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
+ continue;
+
+ /*
+ * Even MSRs that are valid in the host may not be exposed
+ * to the guests in some cases. We could work around this
+ * in VMX with the generic MSR save/load machinery, but it
+ * is not really worthwhile since it will really only
+ * happen with nested virtualization.
+ */
+ switch (msrs_to_save[i]) {
+ case MSR_IA32_BNDCFGS:
+ if (!kvm_x86_ops->mpx_supported())
+ continue;
+ break;
+ default:
+ break;
+ }
+
+ if (j < i)
+ msrs_to_save[j] = msrs_to_save[i];
+ j++;
+ }
+ num_msrs_to_save = j;
+}
+
+static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
+ const void *v)
+{
+ int handled = 0;
+ int n;
+
+ do {
+ n = min(len, 8);
+ if (!(vcpu->arch.apic &&
+ !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
+ && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
+ break;
+ handled += n;
+ addr += n;
+ len -= n;
+ v += n;
+ } while (len);
+
+ return handled;
+}
+
+static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
+{
+ int handled = 0;
+ int n;
+
+ do {
+ n = min(len, 8);
+ if (!(vcpu->arch.apic &&
+ !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
+ addr, n, v))
+ && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
+ break;
+ trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
+ handled += n;
+ addr += n;
+ len -= n;
+ v += n;
+ } while (len);
+
+ return handled;
+}
+
+static void kvm_set_segment(struct kvm_vcpu *vcpu,
+ struct kvm_segment *var, int seg)
+{
+ kvm_x86_ops->set_segment(vcpu, var, seg);
+}
+
+void kvm_get_segment(struct kvm_vcpu *vcpu,
+ struct kvm_segment *var, int seg)
+{
+ kvm_x86_ops->get_segment(vcpu, var, seg);
+}
+
+gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
+ struct x86_exception *exception)
+{
+ gpa_t t_gpa;
+
+ BUG_ON(!mmu_is_nested(vcpu));
+
+ /* NPT walks are always user-walks */
+ access |= PFERR_USER_MASK;
+ t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
+
+ return t_gpa;
+}
+
+gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
+ struct x86_exception *exception)
+{
+ u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
+ return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
+}
+
+ gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
+ struct x86_exception *exception)
+{
+ u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
+ access |= PFERR_FETCH_MASK;
+ return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
+}
+
+gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
+ struct x86_exception *exception)
+{
+ u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
+ access |= PFERR_WRITE_MASK;
+ return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
+}
+
+/* uses this to access any guest's mapped memory without checking CPL */
+gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
+ struct x86_exception *exception)
+{
+ return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
+}
+
+static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
+ struct kvm_vcpu *vcpu, u32 access,
+ struct x86_exception *exception)
+{
+ void *data = val;
+ int r = X86EMUL_CONTINUE;
+
+ while (bytes) {
+ gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
+ exception);
+ unsigned offset = addr & (PAGE_SIZE-1);
+ unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
+ int ret;
+
+ if (gpa == UNMAPPED_GVA)
+ return X86EMUL_PROPAGATE_FAULT;
+ ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, data,
+ offset, toread);
+ if (ret < 0) {
+ r = X86EMUL_IO_NEEDED;
+ goto out;
+ }
+
+ bytes -= toread;
+ data += toread;
+ addr += toread;
+ }
+out:
+ return r;
+}
+
+/* used for instruction fetching */
+static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
+ gva_t addr, void *val, unsigned int bytes,
+ struct x86_exception *exception)
+{
+ struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+ u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
+ unsigned offset;
+ int ret;
+
+ /* Inline kvm_read_guest_virt_helper for speed. */
+ gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
+ exception);
+ if (unlikely(gpa == UNMAPPED_GVA))
+ return X86EMUL_PROPAGATE_FAULT;
+
+ offset = addr & (PAGE_SIZE-1);
+ if (WARN_ON(offset + bytes > PAGE_SIZE))
+ bytes = (unsigned)PAGE_SIZE - offset;
+ ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, val,
+ offset, bytes);
+ if (unlikely(ret < 0))
+ return X86EMUL_IO_NEEDED;
+
+ return X86EMUL_CONTINUE;
+}
+
+int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
+ gva_t addr, void *val, unsigned int bytes,
+ struct x86_exception *exception)
+{
+ struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+ u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
+
+ return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
+ exception);
+}
+EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
+
+static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
+ gva_t addr, void *val, unsigned int bytes,
+ struct x86_exception *exception)
+{
+ struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+ return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
+}
+
+int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
+ gva_t addr, void *val,
+ unsigned int bytes,
+ struct x86_exception *exception)
+{
+ struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+ void *data = val;
+ int r = X86EMUL_CONTINUE;
+
+ while (bytes) {
+ gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
+ PFERR_WRITE_MASK,
+ exception);
+ unsigned offset = addr & (PAGE_SIZE-1);
+ unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
+ int ret;
+
+ if (gpa == UNMAPPED_GVA)
+ return X86EMUL_PROPAGATE_FAULT;
+ ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
+ if (ret < 0) {
+ r = X86EMUL_IO_NEEDED;
+ goto out;
+ }
+
+ bytes -= towrite;
+ data += towrite;
+ addr += towrite;
+ }
+out:
+ return r;
+}
+EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
+
+static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
+ gpa_t *gpa, struct x86_exception *exception,
+ bool write)
+{
+ u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
+ | (write ? PFERR_WRITE_MASK : 0);
+
+ if (vcpu_match_mmio_gva(vcpu, gva)
+ && !permission_fault(vcpu, vcpu->arch.walk_mmu,
+ vcpu->arch.access, access)) {
+ *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
+ (gva & (PAGE_SIZE - 1));
+ trace_vcpu_match_mmio(gva, *gpa, write, false);
+ return 1;
+ }
+
+ *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
+
+ if (*gpa == UNMAPPED_GVA)
+ return -1;
+
+ /* For APIC access vmexit */
+ if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
+ return 1;
+
+ if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
+ trace_vcpu_match_mmio(gva, *gpa, write, true);
+ return 1;
+ }
+
+ return 0;
+}
+
+int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
+ const void *val, int bytes)
+{
+ int ret;
+
+ ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
+ if (ret < 0)
+ return 0;
+ kvm_mmu_pte_write(vcpu, gpa, val, bytes);
+ return 1;
+}
+
+struct read_write_emulator_ops {
+ int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
+ int bytes);
+ int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
+ void *val, int bytes);
+ int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
+ int bytes, void *val);
+ int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
+ void *val, int bytes);
+ bool write;
+};
+
+static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
+{
+ if (vcpu->mmio_read_completed) {
+ trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
+ vcpu->mmio_fragments[0].gpa, *(u64 *)val);
+ vcpu->mmio_read_completed = 0;
+ return 1;
+ }
+
+ return 0;
+}
+
+static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
+ void *val, int bytes)
+{
+ return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
+}
+
+static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
+ void *val, int bytes)
+{
+ return emulator_write_phys(vcpu, gpa, val, bytes);
+}
+
+static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
+{
+ trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
+ return vcpu_mmio_write(vcpu, gpa, bytes, val);
+}
+
+static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
+ void *val, int bytes)
+{
+ trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
+ return X86EMUL_IO_NEEDED;
+}
+
+static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
+ void *val, int bytes)
+{
+ struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
+
+ memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
+ return X86EMUL_CONTINUE;
+}
+
+static const struct read_write_emulator_ops read_emultor = {
+ .read_write_prepare = read_prepare,
+ .read_write_emulate = read_emulate,
+ .read_write_mmio = vcpu_mmio_read,
+ .read_write_exit_mmio = read_exit_mmio,
+};
+
+static const struct read_write_emulator_ops write_emultor = {
+ .read_write_emulate = write_emulate,
+ .read_write_mmio = write_mmio,
+ .read_write_exit_mmio = write_exit_mmio,
+ .write = true,
+};
+
+static int emulator_read_write_onepage(unsigned long addr, void *val,
+ unsigned int bytes,
+ struct x86_exception *exception,
+ struct kvm_vcpu *vcpu,
+ const struct read_write_emulator_ops *ops)
+{
+ gpa_t gpa;
+ int handled, ret;
+ bool write = ops->write;
+ struct kvm_mmio_fragment *frag;
+
+ ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
+
+ if (ret < 0)
+ return X86EMUL_PROPAGATE_FAULT;
+
+ /* For APIC access vmexit */
+ if (ret)
+ goto mmio;
+
+ if (ops->read_write_emulate(vcpu, gpa, val, bytes))
+ return X86EMUL_CONTINUE;
+
+mmio:
+ /*
+ * Is this MMIO handled locally?
+ */
+ handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
+ if (handled == bytes)
+ return X86EMUL_CONTINUE;
+
+ gpa += handled;
+ bytes -= handled;
+ val += handled;
+
+ WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
+ frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
+ frag->gpa = gpa;
+ frag->data = val;
+ frag->len = bytes;
+ return X86EMUL_CONTINUE;
+}
+
+static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
+ unsigned long addr,
+ void *val, unsigned int bytes,
+ struct x86_exception *exception,
+ const struct read_write_emulator_ops *ops)
+{
+ struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+ gpa_t gpa;
+ int rc;
+
+ if (ops->read_write_prepare &&
+ ops->read_write_prepare(vcpu, val, bytes))
+ return X86EMUL_CONTINUE;
+
+ vcpu->mmio_nr_fragments = 0;
+
+ /* Crossing a page boundary? */
+ if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
+ int now;
+
+ now = -addr & ~PAGE_MASK;
+ rc = emulator_read_write_onepage(addr, val, now, exception,
+ vcpu, ops);
+
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+ addr += now;
+ if (ctxt->mode != X86EMUL_MODE_PROT64)
+ addr = (u32)addr;
+ val += now;
+ bytes -= now;
+ }
+
+ rc = emulator_read_write_onepage(addr, val, bytes, exception,
+ vcpu, ops);
+ if (rc != X86EMUL_CONTINUE)
+ return rc;
+
+ if (!vcpu->mmio_nr_fragments)
+ return rc;
+
+ gpa = vcpu->mmio_fragments[0].gpa;
+
+ vcpu->mmio_needed = 1;
+ vcpu->mmio_cur_fragment = 0;
+
+ vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
+ vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
+ vcpu->run->exit_reason = KVM_EXIT_MMIO;
+ vcpu->run->mmio.phys_addr = gpa;
+
+ return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
+}
+
+static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
+ unsigned long addr,
+ void *val,
+ unsigned int bytes,
+ struct x86_exception *exception)
+{
+ return emulator_read_write(ctxt, addr, val, bytes,
+ exception, &read_emultor);
+}
+
+static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
+ unsigned long addr,
+ const void *val,
+ unsigned int bytes,
+ struct x86_exception *exception)
+{
+ return emulator_read_write(ctxt, addr, (void *)val, bytes,
+ exception, &write_emultor);
+}
+
+#define CMPXCHG_TYPE(t, ptr, old, new) \
+ (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
+
+#ifdef CONFIG_X86_64
+# define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
+#else
+# define CMPXCHG64(ptr, old, new) \
+ (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
+#endif
+
+static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
+ unsigned long addr,
+ const void *old,
+ const void *new,
+ unsigned int bytes,
+ struct x86_exception *exception)
+{
+ struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+ gpa_t gpa;
+ struct page *page;
+ char *kaddr;
+ bool exchanged;
+
+ /* guests cmpxchg8b have to be emulated atomically */
+ if (bytes > 8 || (bytes & (bytes - 1)))
+ goto emul_write;
+
+ gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
+
+ if (gpa == UNMAPPED_GVA ||
+ (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
+ goto emul_write;
+
+ if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
+ goto emul_write;
+
+ page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
+ if (is_error_page(page))
+ goto emul_write;
+
+ kaddr = kmap_atomic(page);
+ kaddr += offset_in_page(gpa);
+ switch (bytes) {
+ case 1:
+ exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
+ break;
+ case 2:
+ exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
+ break;
+ case 4:
+ exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
+ break;
+ case 8:
+ exchanged = CMPXCHG64(kaddr, old, new);
+ break;
+ default:
+ BUG();
+ }
+ kunmap_atomic(kaddr);
+ kvm_release_page_dirty(page);
+
+ if (!exchanged)
+ return X86EMUL_CMPXCHG_FAILED;
+
+ mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
+ kvm_mmu_pte_write(vcpu, gpa, new, bytes);
+
+ return X86EMUL_CONTINUE;
+
+emul_write:
+ printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
+
+ return emulator_write_emulated(ctxt, addr, new, bytes, exception);
+}
+
+static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
+{
+ /* TODO: String I/O for in kernel device */
+ int r;
+
+ if (vcpu->arch.pio.in)
+ r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
+ vcpu->arch.pio.size, pd);
+ else
+ r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
+ vcpu->arch.pio.port, vcpu->arch.pio.size,
+ pd);
+ return r;
+}
+
+static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
+ unsigned short port, void *val,
+ unsigned int count, bool in)
+{
+ vcpu->arch.pio.port = port;
+ vcpu->arch.pio.in = in;
+ vcpu->arch.pio.count = count;
+ vcpu->arch.pio.size = size;
+
+ if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
+ vcpu->arch.pio.count = 0;
+ return 1;
+ }
+
+ vcpu->run->exit_reason = KVM_EXIT_IO;
+ vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
+ vcpu->run->io.size = size;
+ vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
+ vcpu->run->io.count = count;
+ vcpu->run->io.port = port;
+
+ return 0;
+}
+
+static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
+ int size, unsigned short port, void *val,
+ unsigned int count)
+{
+ struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+ int ret;
+
+ if (vcpu->arch.pio.count)
+ goto data_avail;
+
+ ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
+ if (ret) {
+data_avail:
+ memcpy(val, vcpu->arch.pio_data, size * count);
+ trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
+ vcpu->arch.pio.count = 0;
+ return 1;
+ }
+
+ return 0;
+}
+
+static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
+ int size, unsigned short port,
+ const void *val, unsigned int count)
+{
+ struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+
+ memcpy(vcpu->arch.pio_data, val, size * count);
+ trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
+ return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
+}
+
+static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
+{
+ return kvm_x86_ops->get_segment_base(vcpu, seg);
+}
+
+static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
+{
+ kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
+}
+
+int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
+{
+ if (!need_emulate_wbinvd(vcpu))
+ return X86EMUL_CONTINUE;
+
+ if (kvm_x86_ops->has_wbinvd_exit()) {
+ int cpu = get_cpu();
+
+ cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
+ smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
+ wbinvd_ipi, NULL, 1);
+ put_cpu();
+ cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
+ } else
+ wbinvd();
+ return X86EMUL_CONTINUE;
+}
+
+int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
+{
+ kvm_x86_ops->skip_emulated_instruction(vcpu);
+ return kvm_emulate_wbinvd_noskip(vcpu);
+}
+EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
+
+
+
+static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
+{
+ kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
+}
+
+static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
+ unsigned long *dest)
+{
+ return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
+}
+
+static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
+ unsigned long value)
+{
+
+ return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
+}
+
+static u64 mk_cr_64(u64 curr_cr, u32 new_val)
+{
+ return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
+}
+
+static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
+{
+ struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+ unsigned long value;
+
+ switch (cr) {
+ case 0:
+ value = kvm_read_cr0(vcpu);
+ break;
+ case 2:
+ value = vcpu->arch.cr2;
+ break;
+ case 3:
+ value = kvm_read_cr3(vcpu);
+ break;
+ case 4:
+ value = kvm_read_cr4(vcpu);
+ break;
+ case 8:
+ value = kvm_get_cr8(vcpu);
+ break;
+ default:
+ kvm_err("%s: unexpected cr %u\n", __func__, cr);
+ return 0;
+ }
+
+ return value;
+}
+
+static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
+{
+ struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+ int res = 0;
+
+ switch (cr) {
+ case 0:
+ res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
+ break;
+ case 2:
+ vcpu->arch.cr2 = val;
+ break;
+ case 3:
+ res = kvm_set_cr3(vcpu, val);
+ break;
+ case 4:
+ res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
+ break;
+ case 8:
+ res = kvm_set_cr8(vcpu, val);
+ break;
+ default:
+ kvm_err("%s: unexpected cr %u\n", __func__, cr);
+ res = -1;
+ }
+
+ return res;
+}
+
+static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
+{
+ return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
+}
+
+static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
+{
+ kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
+}
+
+static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
+{
+ kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
+}
+
+static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
+{
+ kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
+}
+
+static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
+{
+ kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
+}
+
+static unsigned long emulator_get_cached_segment_base(
+ struct x86_emulate_ctxt *ctxt, int seg)
+{
+ return get_segment_base(emul_to_vcpu(ctxt), seg);
+}
+
+static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
+ struct desc_struct *desc, u32 *base3,
+ int seg)
+{
+ struct kvm_segment var;
+
+ kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
+ *selector = var.selector;
+
+ if (var.unusable) {
+ memset(desc, 0, sizeof(*desc));
+ return false;
+ }
+
+ if (var.g)
+ var.limit >>= 12;
+ set_desc_limit(desc, var.limit);
+ set_desc_base(desc, (unsigned long)var.base);
+#ifdef CONFIG_X86_64
+ if (base3)
+ *base3 = var.base >> 32;
+#endif
+ desc->type = var.type;
+ desc->s = var.s;
+ desc->dpl = var.dpl;
+ desc->p = var.present;
+ desc->avl = var.avl;
+ desc->l = var.l;
+ desc->d = var.db;
+ desc->g = var.g;
+
+ return true;
+}
+
+static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
+ struct desc_struct *desc, u32 base3,
+ int seg)
+{
+ struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+ struct kvm_segment var;
+
+ var.selector = selector;
+ var.base = get_desc_base(desc);
+#ifdef CONFIG_X86_64
+ var.base |= ((u64)base3) << 32;
+#endif
+ var.limit = get_desc_limit(desc);
+ if (desc->g)
+ var.limit = (var.limit << 12) | 0xfff;
+ var.type = desc->type;
+ var.dpl = desc->dpl;
+ var.db = desc->d;
+ var.s = desc->s;
+ var.l = desc->l;
+ var.g = desc->g;
+ var.avl = desc->avl;
+ var.present = desc->p;
+ var.unusable = !var.present;
+ var.padding = 0;
+
+ kvm_set_segment(vcpu, &var, seg);
+ return;
+}
+
+static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
+ u32 msr_index, u64 *pdata)
+{
+ return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
+}
+
+static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
+ u32 msr_index, u64 data)
+{
+ struct msr_data msr;
+
+ msr.data = data;
+ msr.index = msr_index;
+ msr.host_initiated = false;
+ return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
+}
+
+static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
+ u32 pmc)
+{
+ return kvm_pmu_check_pmc(emul_to_vcpu(ctxt), pmc);
+}
+
+static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
+ u32 pmc, u64 *pdata)
+{
+ return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
+}
+
+static void emulator_halt(struct x86_emulate_ctxt *ctxt)
+{
+ emul_to_vcpu(ctxt)->arch.halt_request = 1;
+}
+
+static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
+{
+ preempt_disable();
+ kvm_load_guest_fpu(emul_to_vcpu(ctxt));
+ /*
+ * CR0.TS may reference the host fpu state, not the guest fpu state,
+ * so it may be clear at this point.
+ */
+ clts();
+}
+
+static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
+{
+ preempt_enable();
+}
+
+static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
+ struct x86_instruction_info *info,
+ enum x86_intercept_stage stage)
+{
+ return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
+}
+
+static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
+ u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
+{
+ kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
+}
+
+static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
+{
+ return kvm_register_read(emul_to_vcpu(ctxt), reg);
+}
+
+static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
+{
+ kvm_register_write(emul_to_vcpu(ctxt), reg, val);
+}
+
+static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
+{
+ kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
+}
+
+static const struct x86_emulate_ops emulate_ops = {
+ .read_gpr = emulator_read_gpr,
+ .write_gpr = emulator_write_gpr,
+ .read_std = kvm_read_guest_virt_system,
+ .write_std = kvm_write_guest_virt_system,
+ .fetch = kvm_fetch_guest_virt,
+ .read_emulated = emulator_read_emulated,
+ .write_emulated = emulator_write_emulated,
+ .cmpxchg_emulated = emulator_cmpxchg_emulated,
+ .invlpg = emulator_invlpg,
+ .pio_in_emulated = emulator_pio_in_emulated,
+ .pio_out_emulated = emulator_pio_out_emulated,
+ .get_segment = emulator_get_segment,
+ .set_segment = emulator_set_segment,
+ .get_cached_segment_base = emulator_get_cached_segment_base,
+ .get_gdt = emulator_get_gdt,
+ .get_idt = emulator_get_idt,
+ .set_gdt = emulator_set_gdt,
+ .set_idt = emulator_set_idt,
+ .get_cr = emulator_get_cr,
+ .set_cr = emulator_set_cr,
+ .cpl = emulator_get_cpl,
+ .get_dr = emulator_get_dr,
+ .set_dr = emulator_set_dr,
+ .set_msr = emulator_set_msr,
+ .get_msr = emulator_get_msr,
+ .check_pmc = emulator_check_pmc,
+ .read_pmc = emulator_read_pmc,
+ .halt = emulator_halt,
+ .wbinvd = emulator_wbinvd,
+ .fix_hypercall = emulator_fix_hypercall,
+ .get_fpu = emulator_get_fpu,
+ .put_fpu = emulator_put_fpu,
+ .intercept = emulator_intercept,
+ .get_cpuid = emulator_get_cpuid,
+ .set_nmi_mask = emulator_set_nmi_mask,
+};
+
+static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
+{
+ u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
+ /*
+ * an sti; sti; sequence only disable interrupts for the first
+ * instruction. So, if the last instruction, be it emulated or
+ * not, left the system with the INT_STI flag enabled, it
+ * means that the last instruction is an sti. We should not
+ * leave the flag on in this case. The same goes for mov ss
+ */
+ if (int_shadow & mask)
+ mask = 0;
+ if (unlikely(int_shadow || mask)) {
+ kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
+ if (!mask)
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+ }
+}
+
+static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
+{
+ struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
+ if (ctxt->exception.vector == PF_VECTOR)
+ return kvm_propagate_fault(vcpu, &ctxt->exception);
+
+ if (ctxt->exception.error_code_valid)
+ kvm_queue_exception_e(vcpu, ctxt->exception.vector,
+ ctxt->exception.error_code);
+ else
+ kvm_queue_exception(vcpu, ctxt->exception.vector);
+ return false;
+}
+
+static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
+{
+ struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
+ int cs_db, cs_l;
+
+ kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
+
+ ctxt->eflags = kvm_get_rflags(vcpu);
+ ctxt->eip = kvm_rip_read(vcpu);
+ ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
+ (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
+ (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
+ cs_db ? X86EMUL_MODE_PROT32 :
+ X86EMUL_MODE_PROT16;
+ ctxt->guest_mode = is_guest_mode(vcpu);
+
+ init_decode_cache(ctxt);
+ vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
+}
+
+int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
+{
+ struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
+ int ret;
+
+ init_emulate_ctxt(vcpu);
+
+ ctxt->op_bytes = 2;
+ ctxt->ad_bytes = 2;
+ ctxt->_eip = ctxt->eip + inc_eip;
+ ret = emulate_int_real(ctxt, irq);
+
+ if (ret != X86EMUL_CONTINUE)
+ return EMULATE_FAIL;
+
+ ctxt->eip = ctxt->_eip;
+ kvm_rip_write(vcpu, ctxt->eip);
+ kvm_set_rflags(vcpu, ctxt->eflags);
+
+ if (irq == NMI_VECTOR)
+ vcpu->arch.nmi_pending = 0;
+ else
+ vcpu->arch.interrupt.pending = false;
+
+ return EMULATE_DONE;
+}
+EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
+
+static int handle_emulation_failure(struct kvm_vcpu *vcpu)
+{
+ int r = EMULATE_DONE;
+
+ ++vcpu->stat.insn_emulation_fail;
+ trace_kvm_emulate_insn_failed(vcpu);
+ if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
+ vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
+ vcpu->run->internal.ndata = 0;
+ r = EMULATE_FAIL;
+ }
+ kvm_queue_exception(vcpu, UD_VECTOR);
+
+ return r;
+}
+
+static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
+ bool write_fault_to_shadow_pgtable,
+ int emulation_type)
+{
+ gpa_t gpa = cr2;
+ pfn_t pfn;
+
+ if (emulation_type & EMULTYPE_NO_REEXECUTE)
+ return false;
+
+ if (!vcpu->arch.mmu.direct_map) {
+ /*
+ * Write permission should be allowed since only
+ * write access need to be emulated.
+ */
+ gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
+
+ /*
+ * If the mapping is invalid in guest, let cpu retry
+ * it to generate fault.
+ */
+ if (gpa == UNMAPPED_GVA)
+ return true;
+ }
+
+ /*
+ * Do not retry the unhandleable instruction if it faults on the
+ * readonly host memory, otherwise it will goto a infinite loop:
+ * retry instruction -> write #PF -> emulation fail -> retry
+ * instruction -> ...
+ */
+ pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
+
+ /*
+ * If the instruction failed on the error pfn, it can not be fixed,
+ * report the error to userspace.
+ */
+ if (is_error_noslot_pfn(pfn))
+ return false;
+
+ kvm_release_pfn_clean(pfn);
+
+ /* The instructions are well-emulated on direct mmu. */
+ if (vcpu->arch.mmu.direct_map) {
+ unsigned int indirect_shadow_pages;
+
+ spin_lock(&vcpu->kvm->mmu_lock);
+ indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
+ spin_unlock(&vcpu->kvm->mmu_lock);
+
+ if (indirect_shadow_pages)
+ kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
+
+ return true;
+ }
+
+ /*
+ * if emulation was due to access to shadowed page table
+ * and it failed try to unshadow page and re-enter the
+ * guest to let CPU execute the instruction.
+ */
+ kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
+
+ /*
+ * If the access faults on its page table, it can not
+ * be fixed by unprotecting shadow page and it should
+ * be reported to userspace.
+ */
+ return !write_fault_to_shadow_pgtable;
+}
+
+static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
+ unsigned long cr2, int emulation_type)
+{
+ struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+ unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
+
+ last_retry_eip = vcpu->arch.last_retry_eip;
+ last_retry_addr = vcpu->arch.last_retry_addr;
+
+ /*
+ * If the emulation is caused by #PF and it is non-page_table
+ * writing instruction, it means the VM-EXIT is caused by shadow
+ * page protected, we can zap the shadow page and retry this
+ * instruction directly.
+ *
+ * Note: if the guest uses a non-page-table modifying instruction
+ * on the PDE that points to the instruction, then we will unmap
+ * the instruction and go to an infinite loop. So, we cache the
+ * last retried eip and the last fault address, if we meet the eip
+ * and the address again, we can break out of the potential infinite
+ * loop.
+ */
+ vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
+
+ if (!(emulation_type & EMULTYPE_RETRY))
+ return false;
+
+ if (x86_page_table_writing_insn(ctxt))
+ return false;
+
+ if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
+ return false;
+
+ vcpu->arch.last_retry_eip = ctxt->eip;
+ vcpu->arch.last_retry_addr = cr2;
+
+ if (!vcpu->arch.mmu.direct_map)
+ gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
+
+ kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
+
+ return true;
+}
+
+static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
+static int complete_emulated_pio(struct kvm_vcpu *vcpu);
+
+static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
+ unsigned long *db)
+{
+ u32 dr6 = 0;
+ int i;
+ u32 enable, rwlen;
+
+ enable = dr7;
+ rwlen = dr7 >> 16;
+ for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
+ if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
+ dr6 |= (1 << i);
+ return dr6;
+}
+
+static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
+{
+ struct kvm_run *kvm_run = vcpu->run;
+
+ /*
+ * rflags is the old, "raw" value of the flags. The new value has
+ * not been saved yet.
+ *
+ * This is correct even for TF set by the guest, because "the
+ * processor will not generate this exception after the instruction
+ * that sets the TF flag".
+ */
+ if (unlikely(rflags & X86_EFLAGS_TF)) {
+ if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
+ kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
+ DR6_RTM;
+ kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
+ kvm_run->debug.arch.exception = DB_VECTOR;
+ kvm_run->exit_reason = KVM_EXIT_DEBUG;
+ *r = EMULATE_USER_EXIT;
+ } else {
+ vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
+ /*
+ * "Certain debug exceptions may clear bit 0-3. The
+ * remaining contents of the DR6 register are never
+ * cleared by the processor".
+ */
+ vcpu->arch.dr6 &= ~15;
+ vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
+ kvm_queue_exception(vcpu, DB_VECTOR);
+ }
+ }
+}
+
+static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
+{
+ if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
+ (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
+ struct kvm_run *kvm_run = vcpu->run;
+ unsigned long eip = kvm_get_linear_rip(vcpu);
+ u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
+ vcpu->arch.guest_debug_dr7,
+ vcpu->arch.eff_db);
+
+ if (dr6 != 0) {
+ kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
+ kvm_run->debug.arch.pc = eip;
+ kvm_run->debug.arch.exception = DB_VECTOR;
+ kvm_run->exit_reason = KVM_EXIT_DEBUG;
+ *r = EMULATE_USER_EXIT;
+ return true;
+ }
+ }
+
+ if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
+ !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
+ unsigned long eip = kvm_get_linear_rip(vcpu);
+ u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
+ vcpu->arch.dr7,
+ vcpu->arch.db);
+
+ if (dr6 != 0) {
+ vcpu->arch.dr6 &= ~15;
+ vcpu->arch.dr6 |= dr6 | DR6_RTM;
+ kvm_queue_exception(vcpu, DB_VECTOR);
+ *r = EMULATE_DONE;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+int x86_emulate_instruction(struct kvm_vcpu *vcpu,
+ unsigned long cr2,
+ int emulation_type,
+ void *insn,
+ int insn_len)
+{
+ int r;
+ struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
+ bool writeback = true;
+ bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
+
+ /*
+ * Clear write_fault_to_shadow_pgtable here to ensure it is
+ * never reused.
+ */
+ vcpu->arch.write_fault_to_shadow_pgtable = false;
+ kvm_clear_exception_queue(vcpu);
+
+ if (!(emulation_type & EMULTYPE_NO_DECODE)) {
+ init_emulate_ctxt(vcpu);
+
+ /*
+ * We will reenter on the same instruction since
+ * we do not set complete_userspace_io. This does not
+ * handle watchpoints yet, those would be handled in
+ * the emulate_ops.
+ */
+ if (kvm_vcpu_check_breakpoint(vcpu, &r))
+ return r;
+
+ ctxt->interruptibility = 0;
+ ctxt->have_exception = false;
+ ctxt->exception.vector = -1;
+ ctxt->perm_ok = false;
+
+ ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
+
+ r = x86_decode_insn(ctxt, insn, insn_len);
+
+ trace_kvm_emulate_insn_start(vcpu);
+ ++vcpu->stat.insn_emulation;
+ if (r != EMULATION_OK) {
+ if (emulation_type & EMULTYPE_TRAP_UD)
+ return EMULATE_FAIL;
+ if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
+ emulation_type))
+ return EMULATE_DONE;
+ if (emulation_type & EMULTYPE_SKIP)
+ return EMULATE_FAIL;
+ return handle_emulation_failure(vcpu);
+ }
+ }
+
+ if (emulation_type & EMULTYPE_SKIP) {
+ kvm_rip_write(vcpu, ctxt->_eip);
+ if (ctxt->eflags & X86_EFLAGS_RF)
+ kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
+ return EMULATE_DONE;
+ }
+
+ if (retry_instruction(ctxt, cr2, emulation_type))
+ return EMULATE_DONE;
+
+ /* this is needed for vmware backdoor interface to work since it
+ changes registers values during IO operation */
+ if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
+ vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
+ emulator_invalidate_register_cache(ctxt);
+ }
+
+restart:
+ r = x86_emulate_insn(ctxt);
+
+ if (r == EMULATION_INTERCEPTED)
+ return EMULATE_DONE;
+
+ if (r == EMULATION_FAILED) {
+ if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
+ emulation_type))
+ return EMULATE_DONE;
+
+ return handle_emulation_failure(vcpu);
+ }
+
+ if (ctxt->have_exception) {
+ r = EMULATE_DONE;
+ if (inject_emulated_exception(vcpu))
+ return r;
+ } else if (vcpu->arch.pio.count) {
+ if (!vcpu->arch.pio.in) {
+ /* FIXME: return into emulator if single-stepping. */
+ vcpu->arch.pio.count = 0;
+ } else {
+ writeback = false;
+ vcpu->arch.complete_userspace_io = complete_emulated_pio;
+ }
+ r = EMULATE_USER_EXIT;
+ } else if (vcpu->mmio_needed) {
+ if (!vcpu->mmio_is_write)
+ writeback = false;
+ r = EMULATE_USER_EXIT;
+ vcpu->arch.complete_userspace_io = complete_emulated_mmio;
+ } else if (r == EMULATION_RESTART)
+ goto restart;
+ else
+ r = EMULATE_DONE;
+
+ if (writeback) {
+ unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
+ toggle_interruptibility(vcpu, ctxt->interruptibility);
+ vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
+ kvm_rip_write(vcpu, ctxt->eip);
+ if (r == EMULATE_DONE)
+ kvm_vcpu_check_singlestep(vcpu, rflags, &r);
+ if (!ctxt->have_exception ||
+ exception_type(ctxt->exception.vector) == EXCPT_TRAP)
+ __kvm_set_rflags(vcpu, ctxt->eflags);
+
+ /*
+ * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
+ * do nothing, and it will be requested again as soon as
+ * the shadow expires. But we still need to check here,
+ * because POPF has no interrupt shadow.
+ */
+ if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+ } else
+ vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
+
+ return r;
+}
+EXPORT_SYMBOL_GPL(x86_emulate_instruction);
+
+int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
+{
+ unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
+ int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
+ size, port, &val, 1);
+ /* do not return to emulator after return from userspace */
+ vcpu->arch.pio.count = 0;
+ return ret;
+}
+EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
+
+static void tsc_bad(void *info)
+{
+ __this_cpu_write(cpu_tsc_khz, 0);
+}
+
+static void tsc_khz_changed(void *data)
+{
+ struct cpufreq_freqs *freq = data;
+ unsigned long khz = 0;
+
+ if (data)
+ khz = freq->new;
+ else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
+ khz = cpufreq_quick_get(raw_smp_processor_id());
+ if (!khz)
+ khz = tsc_khz;
+ __this_cpu_write(cpu_tsc_khz, khz);
+}
+
+static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
+ void *data)
+{
+ struct cpufreq_freqs *freq = data;
+ struct kvm *kvm;
+ struct kvm_vcpu *vcpu;
+ int i, send_ipi = 0;
+
+ /*
+ * We allow guests to temporarily run on slowing clocks,
+ * provided we notify them after, or to run on accelerating
+ * clocks, provided we notify them before. Thus time never
+ * goes backwards.
+ *
+ * However, we have a problem. We can't atomically update
+ * the frequency of a given CPU from this function; it is
+ * merely a notifier, which can be called from any CPU.
+ * Changing the TSC frequency at arbitrary points in time
+ * requires a recomputation of local variables related to
+ * the TSC for each VCPU. We must flag these local variables
+ * to be updated and be sure the update takes place with the
+ * new frequency before any guests proceed.
+ *
+ * Unfortunately, the combination of hotplug CPU and frequency
+ * change creates an intractable locking scenario; the order
+ * of when these callouts happen is undefined with respect to
+ * CPU hotplug, and they can race with each other. As such,
+ * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
+ * undefined; you can actually have a CPU frequency change take
+ * place in between the computation of X and the setting of the
+ * variable. To protect against this problem, all updates of
+ * the per_cpu tsc_khz variable are done in an interrupt
+ * protected IPI, and all callers wishing to update the value
+ * must wait for a synchronous IPI to complete (which is trivial
+ * if the caller is on the CPU already). This establishes the
+ * necessary total order on variable updates.
+ *
+ * Note that because a guest time update may take place
+ * anytime after the setting of the VCPU's request bit, the
+ * correct TSC value must be set before the request. However,
+ * to ensure the update actually makes it to any guest which
+ * starts running in hardware virtualization between the set
+ * and the acquisition of the spinlock, we must also ping the
+ * CPU after setting the request bit.
+ *
+ */
+
+ if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
+ return 0;
+ if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
+ return 0;
+
+ smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
+
+ spin_lock(&kvm_lock);
+ list_for_each_entry(kvm, &vm_list, vm_list) {
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ if (vcpu->cpu != freq->cpu)
+ continue;
+ kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
+ if (vcpu->cpu != smp_processor_id())
+ send_ipi = 1;
+ }
+ }
+ spin_unlock(&kvm_lock);
+
+ if (freq->old < freq->new && send_ipi) {
+ /*
+ * We upscale the frequency. Must make the guest
+ * doesn't see old kvmclock values while running with
+ * the new frequency, otherwise we risk the guest sees
+ * time go backwards.
+ *
+ * In case we update the frequency for another cpu
+ * (which might be in guest context) send an interrupt
+ * to kick the cpu out of guest context. Next time
+ * guest context is entered kvmclock will be updated,
+ * so the guest will not see stale values.
+ */
+ smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
+ }
+ return 0;
+}
+
+static struct notifier_block kvmclock_cpufreq_notifier_block = {
+ .notifier_call = kvmclock_cpufreq_notifier
+};
+
+static int kvmclock_cpu_notifier(struct notifier_block *nfb,
+ unsigned long action, void *hcpu)
+{
+ unsigned int cpu = (unsigned long)hcpu;
+
+ switch (action) {
+ case CPU_ONLINE:
+ case CPU_DOWN_FAILED:
+ smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
+ break;
+ case CPU_DOWN_PREPARE:
+ smp_call_function_single(cpu, tsc_bad, NULL, 1);
+ break;
+ }
+ return NOTIFY_OK;
+}
+
+static struct notifier_block kvmclock_cpu_notifier_block = {
+ .notifier_call = kvmclock_cpu_notifier,
+ .priority = -INT_MAX
+};
+
+static void kvm_timer_init(void)
+{
+ int cpu;
+
+ max_tsc_khz = tsc_khz;
+
+ cpu_notifier_register_begin();
+ if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
+#ifdef CONFIG_CPU_FREQ
+ struct cpufreq_policy policy;
+ memset(&policy, 0, sizeof(policy));
+ cpu = get_cpu();
+ cpufreq_get_policy(&policy, cpu);
+ if (policy.cpuinfo.max_freq)
+ max_tsc_khz = policy.cpuinfo.max_freq;
+ put_cpu();
+#endif
+ cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
+ CPUFREQ_TRANSITION_NOTIFIER);
+ }
+ pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
+ for_each_online_cpu(cpu)
+ smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
+
+ __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
+ cpu_notifier_register_done();
+
+}
+
+static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
+
+int kvm_is_in_guest(void)
+{
+ return __this_cpu_read(current_vcpu) != NULL;
+}
+
+static int kvm_is_user_mode(void)
+{
+ int user_mode = 3;
+
+ if (__this_cpu_read(current_vcpu))
+ user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
+
+ return user_mode != 0;
+}
+
+static unsigned long kvm_get_guest_ip(void)
+{
+ unsigned long ip = 0;
+
+ if (__this_cpu_read(current_vcpu))
+ ip = kvm_rip_read(__this_cpu_read(current_vcpu));
+
+ return ip;
+}
+
+static struct perf_guest_info_callbacks kvm_guest_cbs = {
+ .is_in_guest = kvm_is_in_guest,
+ .is_user_mode = kvm_is_user_mode,
+ .get_guest_ip = kvm_get_guest_ip,
+};
+
+void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
+{
+ __this_cpu_write(current_vcpu, vcpu);
+}
+EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
+
+void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
+{
+ __this_cpu_write(current_vcpu, NULL);
+}
+EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
+
+static void kvm_set_mmio_spte_mask(void)
+{
+ u64 mask;
+ int maxphyaddr = boot_cpu_data.x86_phys_bits;
+
+ /*
+ * Set the reserved bits and the present bit of an paging-structure
+ * entry to generate page fault with PFER.RSV = 1.
+ */
+ /* Mask the reserved physical address bits. */
+ mask = rsvd_bits(maxphyaddr, 51);
+
+ /* Bit 62 is always reserved for 32bit host. */
+ mask |= 0x3ull << 62;
+
+ /* Set the present bit. */
+ mask |= 1ull;
+
+#ifdef CONFIG_X86_64
+ /*
+ * If reserved bit is not supported, clear the present bit to disable
+ * mmio page fault.
+ */
+ if (maxphyaddr == 52)
+ mask &= ~1ull;
+#endif
+
+ kvm_mmu_set_mmio_spte_mask(mask);
+}
+
+#ifdef CONFIG_X86_64
+static void pvclock_gtod_update_fn(struct work_struct *work)
+{
+ struct kvm *kvm;
+
+ struct kvm_vcpu *vcpu;
+ int i;
+
+ spin_lock(&kvm_lock);
+ list_for_each_entry(kvm, &vm_list, vm_list)
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
+ atomic_set(&kvm_guest_has_master_clock, 0);
+ spin_unlock(&kvm_lock);
+}
+
+static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
+
+/*
+ * Notification about pvclock gtod data update.
+ */
+static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
+ void *priv)
+{
+ struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
+ struct timekeeper *tk = priv;
+
+ update_pvclock_gtod(tk);
+
+ /* disable master clock if host does not trust, or does not
+ * use, TSC clocksource
+ */
+ if (gtod->clock.vclock_mode != VCLOCK_TSC &&
+ atomic_read(&kvm_guest_has_master_clock) != 0)
+ queue_work(system_long_wq, &pvclock_gtod_work);
+
+ return 0;
+}
+
+static struct notifier_block pvclock_gtod_notifier = {
+ .notifier_call = pvclock_gtod_notify,
+};
+#endif
+
+int kvm_arch_init(void *opaque)
+{
+ int r;
+ struct kvm_x86_ops *ops = opaque;
+
+ if (kvm_x86_ops) {
+ printk(KERN_ERR "kvm: already loaded the other module\n");
+ r = -EEXIST;
+ goto out;
+ }
+
+ if (!ops->cpu_has_kvm_support()) {
+ printk(KERN_ERR "kvm: no hardware support\n");
+ r = -EOPNOTSUPP;
+ goto out;
+ }
+ if (ops->disabled_by_bios()) {
+ printk(KERN_ERR "kvm: disabled by bios\n");
+ r = -EOPNOTSUPP;
+ goto out;
+ }
+
+ r = -ENOMEM;
+ shared_msrs = alloc_percpu(struct kvm_shared_msrs);
+ if (!shared_msrs) {
+ printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
+ goto out;
+ }
+
+#ifdef CONFIG_PREEMPT_RT_FULL
+ if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
+ printk(KERN_ERR "RT requires X86_FEATURE_CONSTANT_TSC\n");
+ return -EOPNOTSUPP;
+ }
+#endif
+
+ r = kvm_mmu_module_init();
+ if (r)
+ goto out_free_percpu;
+
+ kvm_set_mmio_spte_mask();
+
+ kvm_x86_ops = ops;
+
+ kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
+ PT_DIRTY_MASK, PT64_NX_MASK, 0);
+
+ kvm_timer_init();
+
+ perf_register_guest_info_callbacks(&kvm_guest_cbs);
+
+ if (cpu_has_xsave)
+ host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
+
+ kvm_lapic_init();
+#ifdef CONFIG_X86_64
+ pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
+#endif
+
+ return 0;
+
+out_free_percpu:
+ free_percpu(shared_msrs);
+out:
+ return r;
+}
+
+void kvm_arch_exit(void)
+{
+ perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
+
+ if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
+ cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
+ CPUFREQ_TRANSITION_NOTIFIER);
+ unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
+#ifdef CONFIG_X86_64
+ pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
+#endif
+ kvm_x86_ops = NULL;
+ kvm_mmu_module_exit();
+ free_percpu(shared_msrs);
+}
+
+int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
+{
+ ++vcpu->stat.halt_exits;
+ if (irqchip_in_kernel(vcpu->kvm)) {
+ vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
+ return 1;
+ } else {
+ vcpu->run->exit_reason = KVM_EXIT_HLT;
+ return 0;
+ }
+}
+EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
+
+int kvm_emulate_halt(struct kvm_vcpu *vcpu)
+{
+ kvm_x86_ops->skip_emulated_instruction(vcpu);
+ return kvm_vcpu_halt(vcpu);
+}
+EXPORT_SYMBOL_GPL(kvm_emulate_halt);
+
+int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
+{
+ u64 param, ingpa, outgpa, ret;
+ uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
+ bool fast, longmode;
+
+ /*
+ * hypercall generates UD from non zero cpl and real mode
+ * per HYPER-V spec
+ */
+ if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 0;
+ }
+
+ longmode = is_64_bit_mode(vcpu);
+
+ if (!longmode) {
+ param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
+ (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
+ ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
+ (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
+ outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
+ (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
+ }
+#ifdef CONFIG_X86_64
+ else {
+ param = kvm_register_read(vcpu, VCPU_REGS_RCX);
+ ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
+ outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
+ }
+#endif
+
+ code = param & 0xffff;
+ fast = (param >> 16) & 0x1;
+ rep_cnt = (param >> 32) & 0xfff;
+ rep_idx = (param >> 48) & 0xfff;
+
+ trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
+
+ switch (code) {
+ case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
+ kvm_vcpu_on_spin(vcpu);
+ break;
+ default:
+ res = HV_STATUS_INVALID_HYPERCALL_CODE;
+ break;
+ }
+
+ ret = res | (((u64)rep_done & 0xfff) << 32);
+ if (longmode) {
+ kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
+ } else {
+ kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
+ kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
+ }
+
+ return 1;
+}
+
+/*
+ * kvm_pv_kick_cpu_op: Kick a vcpu.
+ *
+ * @apicid - apicid of vcpu to be kicked.
+ */
+static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
+{
+ struct kvm_lapic_irq lapic_irq;
+
+ lapic_irq.shorthand = 0;
+ lapic_irq.dest_mode = 0;
+ lapic_irq.dest_id = apicid;
+
+ lapic_irq.delivery_mode = APIC_DM_REMRD;
+ kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
+}
+
+int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
+{
+ unsigned long nr, a0, a1, a2, a3, ret;
+ int op_64_bit, r = 1;
+
+ kvm_x86_ops->skip_emulated_instruction(vcpu);
+
+ if (kvm_hv_hypercall_enabled(vcpu->kvm))
+ return kvm_hv_hypercall(vcpu);
+
+ nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
+ a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
+ a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
+ a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
+ a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
+
+ trace_kvm_hypercall(nr, a0, a1, a2, a3);
+
+ op_64_bit = is_64_bit_mode(vcpu);
+ if (!op_64_bit) {
+ nr &= 0xFFFFFFFF;
+ a0 &= 0xFFFFFFFF;
+ a1 &= 0xFFFFFFFF;
+ a2 &= 0xFFFFFFFF;
+ a3 &= 0xFFFFFFFF;
+ }
+
+ if (kvm_x86_ops->get_cpl(vcpu) != 0) {
+ ret = -KVM_EPERM;
+ goto out;
+ }
+
+ switch (nr) {
+ case KVM_HC_VAPIC_POLL_IRQ:
+ ret = 0;
+ break;
+ case KVM_HC_KICK_CPU:
+ kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
+ ret = 0;
+ break;
+ default:
+ ret = -KVM_ENOSYS;
+ break;
+ }
+out:
+ if (!op_64_bit)
+ ret = (u32)ret;
+ kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
+ ++vcpu->stat.hypercalls;
+ return r;
+}
+EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
+
+static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
+{
+ struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
+ char instruction[3];
+ unsigned long rip = kvm_rip_read(vcpu);
+
+ kvm_x86_ops->patch_hypercall(vcpu, instruction);
+
+ return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
+}
+
+/*
+ * Check if userspace requested an interrupt window, and that the
+ * interrupt window is open.
+ *
+ * No need to exit to userspace if we already have an interrupt queued.
+ */
+static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
+{
+ return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
+ vcpu->run->request_interrupt_window &&
+ kvm_arch_interrupt_allowed(vcpu));
+}
+
+static void post_kvm_run_save(struct kvm_vcpu *vcpu)
+{
+ struct kvm_run *kvm_run = vcpu->run;
+
+ kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
+ kvm_run->cr8 = kvm_get_cr8(vcpu);
+ kvm_run->apic_base = kvm_get_apic_base(vcpu);
+ if (irqchip_in_kernel(vcpu->kvm))
+ kvm_run->ready_for_interrupt_injection = 1;
+ else
+ kvm_run->ready_for_interrupt_injection =
+ kvm_arch_interrupt_allowed(vcpu) &&
+ !kvm_cpu_has_interrupt(vcpu) &&
+ !kvm_event_needs_reinjection(vcpu);
+}
+
+static void update_cr8_intercept(struct kvm_vcpu *vcpu)
+{
+ int max_irr, tpr;
+
+ if (!kvm_x86_ops->update_cr8_intercept)
+ return;
+
+ if (!vcpu->arch.apic)
+ return;
+
+ if (!vcpu->arch.apic->vapic_addr)
+ max_irr = kvm_lapic_find_highest_irr(vcpu);
+ else
+ max_irr = -1;
+
+ if (max_irr != -1)
+ max_irr >>= 4;
+
+ tpr = kvm_lapic_get_cr8(vcpu);
+
+ kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
+}
+
+static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
+{
+ int r;
+
+ /* try to reinject previous events if any */
+ if (vcpu->arch.exception.pending) {
+ trace_kvm_inj_exception(vcpu->arch.exception.nr,
+ vcpu->arch.exception.has_error_code,
+ vcpu->arch.exception.error_code);
+
+ if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
+ __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
+ X86_EFLAGS_RF);
+
+ if (vcpu->arch.exception.nr == DB_VECTOR &&
+ (vcpu->arch.dr7 & DR7_GD)) {
+ vcpu->arch.dr7 &= ~DR7_GD;
+ kvm_update_dr7(vcpu);
+ }
+
+ kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
+ vcpu->arch.exception.has_error_code,
+ vcpu->arch.exception.error_code,
+ vcpu->arch.exception.reinject);
+ return 0;
+ }
+
+ if (vcpu->arch.nmi_injected) {
+ kvm_x86_ops->set_nmi(vcpu);
+ return 0;
+ }
+
+ if (vcpu->arch.interrupt.pending) {
+ kvm_x86_ops->set_irq(vcpu);
+ return 0;
+ }
+
+ if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
+ r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
+ if (r != 0)
+ return r;
+ }
+
+ /* try to inject new event if pending */
+ if (vcpu->arch.nmi_pending) {
+ if (kvm_x86_ops->nmi_allowed(vcpu)) {
+ --vcpu->arch.nmi_pending;
+ vcpu->arch.nmi_injected = true;
+ kvm_x86_ops->set_nmi(vcpu);
+ }
+ } else if (kvm_cpu_has_injectable_intr(vcpu)) {
+ /*
+ * Because interrupts can be injected asynchronously, we are
+ * calling check_nested_events again here to avoid a race condition.
+ * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
+ * proposal and current concerns. Perhaps we should be setting
+ * KVM_REQ_EVENT only on certain events and not unconditionally?
+ */
+ if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
+ r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
+ if (r != 0)
+ return r;
+ }
+ if (kvm_x86_ops->interrupt_allowed(vcpu)) {
+ kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
+ false);
+ kvm_x86_ops->set_irq(vcpu);
+ }
+ }
+ return 0;
+}
+
+static void process_nmi(struct kvm_vcpu *vcpu)
+{
+ unsigned limit = 2;
+
+ /*
+ * x86 is limited to one NMI running, and one NMI pending after it.
+ * If an NMI is already in progress, limit further NMIs to just one.
+ * Otherwise, allow two (and we'll inject the first one immediately).
+ */
+ if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
+ limit = 1;
+
+ vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
+ vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+}
+
+static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
+{
+ u64 eoi_exit_bitmap[4];
+ u32 tmr[8];
+
+ if (!kvm_apic_hw_enabled(vcpu->arch.apic))
+ return;
+
+ memset(eoi_exit_bitmap, 0, 32);
+ memset(tmr, 0, 32);
+
+ kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
+ kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
+ kvm_apic_update_tmr(vcpu, tmr);
+}
+
+static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
+{
+ ++vcpu->stat.tlb_flush;
+ kvm_x86_ops->tlb_flush(vcpu);
+}
+
+void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
+{
+ struct page *page = NULL;
+
+ if (!irqchip_in_kernel(vcpu->kvm))
+ return;
+
+ if (!kvm_x86_ops->set_apic_access_page_addr)
+ return;
+
+ page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
+ if (is_error_page(page))
+ return;
+ kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
+
+ /*
+ * Do not pin apic access page in memory, the MMU notifier
+ * will call us again if it is migrated or swapped out.
+ */
+ put_page(page);
+}
+EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
+
+void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
+ unsigned long address)
+{
+ /*
+ * The physical address of apic access page is stored in the VMCS.
+ * Update it when it becomes invalid.
+ */
+ if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
+ kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
+}
+
+/*
+ * Returns 1 to let vcpu_run() continue the guest execution loop without
+ * exiting to the userspace. Otherwise, the value will be returned to the
+ * userspace.
+ */
+static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
+{
+ int r;
+ bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
+ vcpu->run->request_interrupt_window;
+ bool req_immediate_exit = false;
+
+ if (vcpu->requests) {
+ if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
+ kvm_mmu_unload(vcpu);
+ if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
+ __kvm_migrate_timers(vcpu);
+ if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
+ kvm_gen_update_masterclock(vcpu->kvm);
+ if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
+ kvm_gen_kvmclock_update(vcpu);
+ if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
+ r = kvm_guest_time_update(vcpu);
+ if (unlikely(r))
+ goto out;
+ }
+ if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
+ kvm_mmu_sync_roots(vcpu);
+ if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
+ kvm_vcpu_flush_tlb(vcpu);
+ if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
+ vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
+ r = 0;
+ goto out;
+ }
+ if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
+ vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
+ r = 0;
+ goto out;
+ }
+ if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
+ vcpu->fpu_active = 0;
+ kvm_x86_ops->fpu_deactivate(vcpu);
+ }
+ if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
+ /* Page is swapped out. Do synthetic halt */
+ vcpu->arch.apf.halted = true;
+ r = 1;
+ goto out;
+ }
+ if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
+ record_steal_time(vcpu);
+ if (kvm_check_request(KVM_REQ_NMI, vcpu))
+ process_nmi(vcpu);
+ if (kvm_check_request(KVM_REQ_PMU, vcpu))
+ kvm_handle_pmu_event(vcpu);
+ if (kvm_check_request(KVM_REQ_PMI, vcpu))
+ kvm_deliver_pmi(vcpu);
+ if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
+ vcpu_scan_ioapic(vcpu);
+ if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
+ kvm_vcpu_reload_apic_access_page(vcpu);
+ }
+
+ if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
+ kvm_apic_accept_events(vcpu);
+ if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
+ r = 1;
+ goto out;
+ }
+
+ if (inject_pending_event(vcpu, req_int_win) != 0)
+ req_immediate_exit = true;
+ /* enable NMI/IRQ window open exits if needed */
+ else if (vcpu->arch.nmi_pending)
+ kvm_x86_ops->enable_nmi_window(vcpu);
+ else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
+ kvm_x86_ops->enable_irq_window(vcpu);
+
+ if (kvm_lapic_enabled(vcpu)) {
+ /*
+ * Update architecture specific hints for APIC
+ * virtual interrupt delivery.
+ */
+ if (kvm_x86_ops->hwapic_irr_update)
+ kvm_x86_ops->hwapic_irr_update(vcpu,
+ kvm_lapic_find_highest_irr(vcpu));
+ update_cr8_intercept(vcpu);
+ kvm_lapic_sync_to_vapic(vcpu);
+ }
+ }
+
+ r = kvm_mmu_reload(vcpu);
+ if (unlikely(r)) {
+ goto cancel_injection;
+ }
+
+ preempt_disable();
+
+ kvm_x86_ops->prepare_guest_switch(vcpu);
+ if (vcpu->fpu_active)
+ kvm_load_guest_fpu(vcpu);
+ kvm_load_guest_xcr0(vcpu);
+
+ vcpu->mode = IN_GUEST_MODE;
+
+ srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
+
+ /* We should set ->mode before check ->requests,
+ * see the comment in make_all_cpus_request.
+ */
+ smp_mb__after_srcu_read_unlock();
+
+ local_irq_disable();
+
+ if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
+ || need_resched() || signal_pending(current)) {
+ vcpu->mode = OUTSIDE_GUEST_MODE;
+ smp_wmb();
+ local_irq_enable();
+ preempt_enable();
+ vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
+ r = 1;
+ goto cancel_injection;
+ }
+
+ if (req_immediate_exit)
+ smp_send_reschedule(vcpu->cpu);
+
+ kvm_guest_enter();
+
+ if (unlikely(vcpu->arch.switch_db_regs)) {
+ set_debugreg(0, 7);
+ set_debugreg(vcpu->arch.eff_db[0], 0);
+ set_debugreg(vcpu->arch.eff_db[1], 1);
+ set_debugreg(vcpu->arch.eff_db[2], 2);
+ set_debugreg(vcpu->arch.eff_db[3], 3);
+ set_debugreg(vcpu->arch.dr6, 6);
+ vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
+ }
+
+ trace_kvm_entry(vcpu->vcpu_id);
+ wait_lapic_expire(vcpu);
+ kvm_x86_ops->run(vcpu);
+
+ /*
+ * Do this here before restoring debug registers on the host. And
+ * since we do this before handling the vmexit, a DR access vmexit
+ * can (a) read the correct value of the debug registers, (b) set
+ * KVM_DEBUGREG_WONT_EXIT again.
+ */
+ if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
+ int i;
+
+ WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
+ kvm_x86_ops->sync_dirty_debug_regs(vcpu);
+ for (i = 0; i < KVM_NR_DB_REGS; i++)
+ vcpu->arch.eff_db[i] = vcpu->arch.db[i];
+ }
+
+ /*
+ * If the guest has used debug registers, at least dr7
+ * will be disabled while returning to the host.
+ * If we don't have active breakpoints in the host, we don't
+ * care about the messed up debug address registers. But if
+ * we have some of them active, restore the old state.
+ */
+ if (hw_breakpoint_active())
+ hw_breakpoint_restore();
+
+ vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
+ native_read_tsc());
+
+ vcpu->mode = OUTSIDE_GUEST_MODE;
+ smp_wmb();
+
+ /* Interrupt is enabled by handle_external_intr() */
+ kvm_x86_ops->handle_external_intr(vcpu);
+
+ ++vcpu->stat.exits;
+
+ /*
+ * We must have an instruction between local_irq_enable() and
+ * kvm_guest_exit(), so the timer interrupt isn't delayed by
+ * the interrupt shadow. The stat.exits increment will do nicely.
+ * But we need to prevent reordering, hence this barrier():
+ */
+ barrier();
+
+ kvm_guest_exit();
+
+ preempt_enable();
+
+ vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
+
+ /*
+ * Profile KVM exit RIPs:
+ */
+ if (unlikely(prof_on == KVM_PROFILING)) {
+ unsigned long rip = kvm_rip_read(vcpu);
+ profile_hit(KVM_PROFILING, (void *)rip);
+ }
+
+ if (unlikely(vcpu->arch.tsc_always_catchup))
+ kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
+
+ if (vcpu->arch.apic_attention)
+ kvm_lapic_sync_from_vapic(vcpu);
+
+ r = kvm_x86_ops->handle_exit(vcpu);
+ return r;
+
+cancel_injection:
+ kvm_x86_ops->cancel_injection(vcpu);
+ if (unlikely(vcpu->arch.apic_attention))
+ kvm_lapic_sync_from_vapic(vcpu);
+out:
+ return r;
+}
+
+static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
+{
+ if (!kvm_arch_vcpu_runnable(vcpu)) {
+ srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
+ kvm_vcpu_block(vcpu);
+ vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
+ if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
+ return 1;
+ }
+
+ kvm_apic_accept_events(vcpu);
+ switch(vcpu->arch.mp_state) {
+ case KVM_MP_STATE_HALTED:
+ vcpu->arch.pv.pv_unhalted = false;
+ vcpu->arch.mp_state =
+ KVM_MP_STATE_RUNNABLE;
+ case KVM_MP_STATE_RUNNABLE:
+ vcpu->arch.apf.halted = false;
+ break;
+ case KVM_MP_STATE_INIT_RECEIVED:
+ break;
+ default:
+ return -EINTR;
+ break;
+ }
+ return 1;
+}
+
+static int vcpu_run(struct kvm_vcpu *vcpu)
+{
+ int r;
+ struct kvm *kvm = vcpu->kvm;
+
+ vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
+
+ for (;;) {
+ if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
+ !vcpu->arch.apf.halted)
+ r = vcpu_enter_guest(vcpu);
+ else
+ r = vcpu_block(kvm, vcpu);
+ if (r <= 0)
+ break;
+
+ clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
+ if (kvm_cpu_has_pending_timer(vcpu))
+ kvm_inject_pending_timer_irqs(vcpu);
+
+ if (dm_request_for_irq_injection(vcpu)) {
+ r = -EINTR;
+ vcpu->run->exit_reason = KVM_EXIT_INTR;
+ ++vcpu->stat.request_irq_exits;
+ break;
+ }
+
+ kvm_check_async_pf_completion(vcpu);
+
+ if (signal_pending(current)) {
+ r = -EINTR;
+ vcpu->run->exit_reason = KVM_EXIT_INTR;
+ ++vcpu->stat.signal_exits;
+ break;
+ }
+ if (need_resched()) {
+ srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
+ cond_resched();
+ vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
+ }
+ }
+
+ srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
+
+ return r;
+}
+
+static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
+{
+ int r;
+ vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
+ r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
+ srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
+ if (r != EMULATE_DONE)
+ return 0;
+ return 1;
+}
+
+static int complete_emulated_pio(struct kvm_vcpu *vcpu)
+{
+ BUG_ON(!vcpu->arch.pio.count);
+
+ return complete_emulated_io(vcpu);
+}
+
+/*
+ * Implements the following, as a state machine:
+ *
+ * read:
+ * for each fragment
+ * for each mmio piece in the fragment
+ * write gpa, len
+ * exit
+ * copy data
+ * execute insn
+ *
+ * write:
+ * for each fragment
+ * for each mmio piece in the fragment
+ * write gpa, len
+ * copy data
+ * exit
+ */
+static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
+{
+ struct kvm_run *run = vcpu->run;
+ struct kvm_mmio_fragment *frag;
+ unsigned len;
+
+ BUG_ON(!vcpu->mmio_needed);
+
+ /* Complete previous fragment */
+ frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
+ len = min(8u, frag->len);
+ if (!vcpu->mmio_is_write)
+ memcpy(frag->data, run->mmio.data, len);
+
+ if (frag->len <= 8) {
+ /* Switch to the next fragment. */
+ frag++;
+ vcpu->mmio_cur_fragment++;
+ } else {
+ /* Go forward to the next mmio piece. */
+ frag->data += len;
+ frag->gpa += len;
+ frag->len -= len;
+ }
+
+ if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
+ vcpu->mmio_needed = 0;
+
+ /* FIXME: return into emulator if single-stepping. */
+ if (vcpu->mmio_is_write)
+ return 1;
+ vcpu->mmio_read_completed = 1;
+ return complete_emulated_io(vcpu);
+ }
+
+ run->exit_reason = KVM_EXIT_MMIO;
+ run->mmio.phys_addr = frag->gpa;
+ if (vcpu->mmio_is_write)
+ memcpy(run->mmio.data, frag->data, min(8u, frag->len));
+ run->mmio.len = min(8u, frag->len);
+ run->mmio.is_write = vcpu->mmio_is_write;
+ vcpu->arch.complete_userspace_io = complete_emulated_mmio;
+ return 0;
+}
+
+
+int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
+{
+ int r;
+ sigset_t sigsaved;
+
+ if (!tsk_used_math(current) && init_fpu(current))
+ return -ENOMEM;
+
+ if (vcpu->sigset_active)
+ sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
+
+ if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
+ kvm_vcpu_block(vcpu);
+ kvm_apic_accept_events(vcpu);
+ clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
+ r = -EAGAIN;
+ goto out;
+ }
+
+ /* re-sync apic's tpr */
+ if (!irqchip_in_kernel(vcpu->kvm)) {
+ if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
+ r = -EINVAL;
+ goto out;
+ }
+ }
+
+ if (unlikely(vcpu->arch.complete_userspace_io)) {
+ int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
+ vcpu->arch.complete_userspace_io = NULL;
+ r = cui(vcpu);
+ if (r <= 0)
+ goto out;
+ } else
+ WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
+
+ r = vcpu_run(vcpu);
+
+out:
+ post_kvm_run_save(vcpu);
+ if (vcpu->sigset_active)
+ sigprocmask(SIG_SETMASK, &sigsaved, NULL);
+
+ return r;
+}
+
+int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
+{
+ if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
+ /*
+ * We are here if userspace calls get_regs() in the middle of
+ * instruction emulation. Registers state needs to be copied
+ * back from emulation context to vcpu. Userspace shouldn't do
+ * that usually, but some bad designed PV devices (vmware
+ * backdoor interface) need this to work
+ */
+ emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
+ vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
+ }
+ regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
+ regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
+ regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
+ regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
+ regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
+ regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
+ regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
+ regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
+#ifdef CONFIG_X86_64
+ regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
+ regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
+ regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
+ regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
+ regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
+ regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
+ regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
+ regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
+#endif
+
+ regs->rip = kvm_rip_read(vcpu);
+ regs->rflags = kvm_get_rflags(vcpu);
+
+ return 0;
+}
+
+int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
+{
+ vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
+ vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
+
+ kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
+ kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
+ kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
+ kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
+ kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
+ kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
+ kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
+ kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
+#ifdef CONFIG_X86_64
+ kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
+ kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
+ kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
+ kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
+ kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
+ kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
+ kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
+ kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
+#endif
+
+ kvm_rip_write(vcpu, regs->rip);
+ kvm_set_rflags(vcpu, regs->rflags);
+
+ vcpu->arch.exception.pending = false;
+
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+ return 0;
+}
+
+void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
+{
+ struct kvm_segment cs;
+
+ kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
+ *db = cs.db;
+ *l = cs.l;
+}
+EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
+
+int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
+ struct kvm_sregs *sregs)
+{
+ struct desc_ptr dt;
+
+ kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
+ kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
+ kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
+ kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
+ kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
+ kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
+
+ kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
+ kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
+
+ kvm_x86_ops->get_idt(vcpu, &dt);
+ sregs->idt.limit = dt.size;
+ sregs->idt.base = dt.address;
+ kvm_x86_ops->get_gdt(vcpu, &dt);
+ sregs->gdt.limit = dt.size;
+ sregs->gdt.base = dt.address;
+
+ sregs->cr0 = kvm_read_cr0(vcpu);
+ sregs->cr2 = vcpu->arch.cr2;
+ sregs->cr3 = kvm_read_cr3(vcpu);
+ sregs->cr4 = kvm_read_cr4(vcpu);
+ sregs->cr8 = kvm_get_cr8(vcpu);
+ sregs->efer = vcpu->arch.efer;
+ sregs->apic_base = kvm_get_apic_base(vcpu);
+
+ memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
+
+ if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
+ set_bit(vcpu->arch.interrupt.nr,
+ (unsigned long *)sregs->interrupt_bitmap);
+
+ return 0;
+}
+
+int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
+ struct kvm_mp_state *mp_state)
+{
+ kvm_apic_accept_events(vcpu);
+ if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
+ vcpu->arch.pv.pv_unhalted)
+ mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
+ else
+ mp_state->mp_state = vcpu->arch.mp_state;
+
+ return 0;
+}
+
+int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
+ struct kvm_mp_state *mp_state)
+{
+ if (!kvm_vcpu_has_lapic(vcpu) &&
+ mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
+ return -EINVAL;
+
+ if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
+ vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
+ set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
+ } else
+ vcpu->arch.mp_state = mp_state->mp_state;
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+ return 0;
+}
+
+int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
+ int reason, bool has_error_code, u32 error_code)
+{
+ struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
+ int ret;
+
+ init_emulate_ctxt(vcpu);
+
+ ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
+ has_error_code, error_code);
+
+ if (ret)
+ return EMULATE_FAIL;
+
+ kvm_rip_write(vcpu, ctxt->eip);
+ kvm_set_rflags(vcpu, ctxt->eflags);
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+ return EMULATE_DONE;
+}
+EXPORT_SYMBOL_GPL(kvm_task_switch);
+
+int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
+ struct kvm_sregs *sregs)
+{
+ struct msr_data apic_base_msr;
+ int mmu_reset_needed = 0;
+ int pending_vec, max_bits, idx;
+ struct desc_ptr dt;
+
+ if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
+ return -EINVAL;
+
+ dt.size = sregs->idt.limit;
+ dt.address = sregs->idt.base;
+ kvm_x86_ops->set_idt(vcpu, &dt);
+ dt.size = sregs->gdt.limit;
+ dt.address = sregs->gdt.base;
+ kvm_x86_ops->set_gdt(vcpu, &dt);
+
+ vcpu->arch.cr2 = sregs->cr2;
+ mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
+ vcpu->arch.cr3 = sregs->cr3;
+ __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
+
+ kvm_set_cr8(vcpu, sregs->cr8);
+
+ mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
+ kvm_x86_ops->set_efer(vcpu, sregs->efer);
+ apic_base_msr.data = sregs->apic_base;
+ apic_base_msr.host_initiated = true;
+ kvm_set_apic_base(vcpu, &apic_base_msr);
+
+ mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
+ kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
+ vcpu->arch.cr0 = sregs->cr0;
+
+ mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
+ kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
+ if (sregs->cr4 & X86_CR4_OSXSAVE)
+ kvm_update_cpuid(vcpu);
+
+ idx = srcu_read_lock(&vcpu->kvm->srcu);
+ if (!is_long_mode(vcpu) && is_pae(vcpu)) {
+ load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
+ mmu_reset_needed = 1;
+ }
+ srcu_read_unlock(&vcpu->kvm->srcu, idx);
+
+ if (mmu_reset_needed)
+ kvm_mmu_reset_context(vcpu);
+
+ max_bits = KVM_NR_INTERRUPTS;
+ pending_vec = find_first_bit(
+ (const unsigned long *)sregs->interrupt_bitmap, max_bits);
+ if (pending_vec < max_bits) {
+ kvm_queue_interrupt(vcpu, pending_vec, false);
+ pr_debug("Set back pending irq %d\n", pending_vec);
+ }
+
+ kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
+ kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
+ kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
+ kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
+ kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
+ kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
+
+ kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
+ kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
+
+ update_cr8_intercept(vcpu);
+
+ /* Older userspace won't unhalt the vcpu on reset. */
+ if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
+ sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
+ !is_protmode(vcpu))
+ vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
+
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+ return 0;
+}
+
+int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
+ struct kvm_guest_debug *dbg)
+{
+ unsigned long rflags;
+ int i, r;
+
+ if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
+ r = -EBUSY;
+ if (vcpu->arch.exception.pending)
+ goto out;
+ if (dbg->control & KVM_GUESTDBG_INJECT_DB)
+ kvm_queue_exception(vcpu, DB_VECTOR);
+ else
+ kvm_queue_exception(vcpu, BP_VECTOR);
+ }
+
+ /*
+ * Read rflags as long as potentially injected trace flags are still
+ * filtered out.
+ */
+ rflags = kvm_get_rflags(vcpu);
+
+ vcpu->guest_debug = dbg->control;
+ if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
+ vcpu->guest_debug = 0;
+
+ if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
+ for (i = 0; i < KVM_NR_DB_REGS; ++i)
+ vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
+ vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
+ } else {
+ for (i = 0; i < KVM_NR_DB_REGS; i++)
+ vcpu->arch.eff_db[i] = vcpu->arch.db[i];
+ }
+ kvm_update_dr7(vcpu);
+
+ if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
+ vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
+ get_segment_base(vcpu, VCPU_SREG_CS);
+
+ /*
+ * Trigger an rflags update that will inject or remove the trace
+ * flags.
+ */
+ kvm_set_rflags(vcpu, rflags);
+
+ kvm_x86_ops->update_db_bp_intercept(vcpu);
+
+ r = 0;
+
+out:
+
+ return r;
+}
+
+/*
+ * Translate a guest virtual address to a guest physical address.
+ */
+int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
+ struct kvm_translation *tr)
+{
+ unsigned long vaddr = tr->linear_address;
+ gpa_t gpa;
+ int idx;
+
+ idx = srcu_read_lock(&vcpu->kvm->srcu);
+ gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
+ srcu_read_unlock(&vcpu->kvm->srcu, idx);
+ tr->physical_address = gpa;
+ tr->valid = gpa != UNMAPPED_GVA;
+ tr->writeable = 1;
+ tr->usermode = 0;
+
+ return 0;
+}
+
+int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
+{
+ struct i387_fxsave_struct *fxsave =
+ &vcpu->arch.guest_fpu.state->fxsave;
+
+ memcpy(fpu->fpr, fxsave->st_space, 128);
+ fpu->fcw = fxsave->cwd;
+ fpu->fsw = fxsave->swd;
+ fpu->ftwx = fxsave->twd;
+ fpu->last_opcode = fxsave->fop;
+ fpu->last_ip = fxsave->rip;
+ fpu->last_dp = fxsave->rdp;
+ memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
+
+ return 0;
+}
+
+int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
+{
+ struct i387_fxsave_struct *fxsave =
+ &vcpu->arch.guest_fpu.state->fxsave;
+
+ memcpy(fxsave->st_space, fpu->fpr, 128);
+ fxsave->cwd = fpu->fcw;
+ fxsave->swd = fpu->fsw;
+ fxsave->twd = fpu->ftwx;
+ fxsave->fop = fpu->last_opcode;
+ fxsave->rip = fpu->last_ip;
+ fxsave->rdp = fpu->last_dp;
+ memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
+
+ return 0;
+}
+
+int fx_init(struct kvm_vcpu *vcpu)
+{
+ int err;
+
+ err = fpu_alloc(&vcpu->arch.guest_fpu);
+ if (err)
+ return err;
+
+ fpu_finit(&vcpu->arch.guest_fpu);
+ if (cpu_has_xsaves)
+ vcpu->arch.guest_fpu.state->xsave.xsave_hdr.xcomp_bv =
+ host_xcr0 | XSTATE_COMPACTION_ENABLED;
+
+ /*
+ * Ensure guest xcr0 is valid for loading
+ */
+ vcpu->arch.xcr0 = XSTATE_FP;
+
+ vcpu->arch.cr0 |= X86_CR0_ET;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(fx_init);
+
+static void fx_free(struct kvm_vcpu *vcpu)
+{
+ fpu_free(&vcpu->arch.guest_fpu);
+}
+
+void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
+{
+ if (vcpu->guest_fpu_loaded)
+ return;
+
+ /*
+ * Restore all possible states in the guest,
+ * and assume host would use all available bits.
+ * Guest xcr0 would be loaded later.
+ */
+ kvm_put_guest_xcr0(vcpu);
+ vcpu->guest_fpu_loaded = 1;
+ __kernel_fpu_begin();
+ fpu_restore_checking(&vcpu->arch.guest_fpu);
+ trace_kvm_fpu(1);
+}
+
+void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
+{
+ kvm_put_guest_xcr0(vcpu);
+
+ if (!vcpu->guest_fpu_loaded)
+ return;
+
+ vcpu->guest_fpu_loaded = 0;
+ fpu_save_init(&vcpu->arch.guest_fpu);
+ __kernel_fpu_end();
+ ++vcpu->stat.fpu_reload;
+ if (!vcpu->arch.eager_fpu)
+ kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
+
+ trace_kvm_fpu(0);
+}
+
+void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
+{
+ kvmclock_reset(vcpu);
+
+ free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
+ fx_free(vcpu);
+ kvm_x86_ops->vcpu_free(vcpu);
+}
+
+struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
+ unsigned int id)
+{
+ struct kvm_vcpu *vcpu;
+
+ if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
+ printk_once(KERN_WARNING
+ "kvm: SMP vm created on host with unstable TSC; "
+ "guest TSC will not be reliable\n");
+
+ vcpu = kvm_x86_ops->vcpu_create(kvm, id);
+
+ /*
+ * Activate fpu unconditionally in case the guest needs eager FPU. It will be
+ * deactivated soon if it doesn't.
+ */
+ kvm_x86_ops->fpu_activate(vcpu);
+ return vcpu;
+}
+
+int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
+{
+ int r;
+
+ vcpu->arch.mtrr_state.have_fixed = 1;
+ r = vcpu_load(vcpu);
+ if (r)
+ return r;
+ kvm_vcpu_reset(vcpu);
+ kvm_mmu_setup(vcpu);
+ vcpu_put(vcpu);
+
+ return r;
+}
+
+void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
+{
+ struct msr_data msr;
+ struct kvm *kvm = vcpu->kvm;
+
+ if (vcpu_load(vcpu))
+ return;
+ msr.data = 0x0;
+ msr.index = MSR_IA32_TSC;
+ msr.host_initiated = true;
+ kvm_write_tsc(vcpu, &msr);
+ vcpu_put(vcpu);
+
+ schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
+ KVMCLOCK_SYNC_PERIOD);
+}
+
+void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
+{
+ int r;
+ vcpu->arch.apf.msr_val = 0;
+
+ r = vcpu_load(vcpu);
+ BUG_ON(r);
+ kvm_mmu_unload(vcpu);
+ vcpu_put(vcpu);
+
+ fx_free(vcpu);
+ kvm_x86_ops->vcpu_free(vcpu);
+}
+
+void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
+{
+ atomic_set(&vcpu->arch.nmi_queued, 0);
+ vcpu->arch.nmi_pending = 0;
+ vcpu->arch.nmi_injected = false;
+ kvm_clear_interrupt_queue(vcpu);
+ kvm_clear_exception_queue(vcpu);
+
+ memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
+ kvm_update_dr0123(vcpu);
+ vcpu->arch.dr6 = DR6_INIT;
+ kvm_update_dr6(vcpu);
+ vcpu->arch.dr7 = DR7_FIXED_1;
+ kvm_update_dr7(vcpu);
+
+ vcpu->arch.cr2 = 0;
+
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+ vcpu->arch.apf.msr_val = 0;
+ vcpu->arch.st.msr_val = 0;
+
+ kvmclock_reset(vcpu);
+
+ kvm_clear_async_pf_completion_queue(vcpu);
+ kvm_async_pf_hash_reset(vcpu);
+ vcpu->arch.apf.halted = false;
+
+ kvm_pmu_reset(vcpu);
+
+ memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
+ vcpu->arch.regs_avail = ~0;
+ vcpu->arch.regs_dirty = ~0;
+
+ kvm_x86_ops->vcpu_reset(vcpu);
+}
+
+void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
+{
+ struct kvm_segment cs;
+
+ kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
+ cs.selector = vector << 8;
+ cs.base = vector << 12;
+ kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
+ kvm_rip_write(vcpu, 0);
+}
+
+int kvm_arch_hardware_enable(void)
+{
+ struct kvm *kvm;
+ struct kvm_vcpu *vcpu;
+ int i;
+ int ret;
+ u64 local_tsc;
+ u64 max_tsc = 0;
+ bool stable, backwards_tsc = false;
+
+ kvm_shared_msr_cpu_online();
+ ret = kvm_x86_ops->hardware_enable();
+ if (ret != 0)
+ return ret;
+
+ local_tsc = native_read_tsc();
+ stable = !check_tsc_unstable();
+ list_for_each_entry(kvm, &vm_list, vm_list) {
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ if (!stable && vcpu->cpu == smp_processor_id())
+ kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
+ if (stable && vcpu->arch.last_host_tsc > local_tsc) {
+ backwards_tsc = true;
+ if (vcpu->arch.last_host_tsc > max_tsc)
+ max_tsc = vcpu->arch.last_host_tsc;
+ }
+ }
+ }
+
+ /*
+ * Sometimes, even reliable TSCs go backwards. This happens on
+ * platforms that reset TSC during suspend or hibernate actions, but
+ * maintain synchronization. We must compensate. Fortunately, we can
+ * detect that condition here, which happens early in CPU bringup,
+ * before any KVM threads can be running. Unfortunately, we can't
+ * bring the TSCs fully up to date with real time, as we aren't yet far
+ * enough into CPU bringup that we know how much real time has actually
+ * elapsed; our helper function, get_kernel_ns() will be using boot
+ * variables that haven't been updated yet.
+ *
+ * So we simply find the maximum observed TSC above, then record the
+ * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
+ * the adjustment will be applied. Note that we accumulate
+ * adjustments, in case multiple suspend cycles happen before some VCPU
+ * gets a chance to run again. In the event that no KVM threads get a
+ * chance to run, we will miss the entire elapsed period, as we'll have
+ * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
+ * loose cycle time. This isn't too big a deal, since the loss will be
+ * uniform across all VCPUs (not to mention the scenario is extremely
+ * unlikely). It is possible that a second hibernate recovery happens
+ * much faster than a first, causing the observed TSC here to be
+ * smaller; this would require additional padding adjustment, which is
+ * why we set last_host_tsc to the local tsc observed here.
+ *
+ * N.B. - this code below runs only on platforms with reliable TSC,
+ * as that is the only way backwards_tsc is set above. Also note
+ * that this runs for ALL vcpus, which is not a bug; all VCPUs should
+ * have the same delta_cyc adjustment applied if backwards_tsc
+ * is detected. Note further, this adjustment is only done once,
+ * as we reset last_host_tsc on all VCPUs to stop this from being
+ * called multiple times (one for each physical CPU bringup).
+ *
+ * Platforms with unreliable TSCs don't have to deal with this, they
+ * will be compensated by the logic in vcpu_load, which sets the TSC to
+ * catchup mode. This will catchup all VCPUs to real time, but cannot
+ * guarantee that they stay in perfect synchronization.
+ */
+ if (backwards_tsc) {
+ u64 delta_cyc = max_tsc - local_tsc;
+ backwards_tsc_observed = true;
+ list_for_each_entry(kvm, &vm_list, vm_list) {
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ vcpu->arch.tsc_offset_adjustment += delta_cyc;
+ vcpu->arch.last_host_tsc = local_tsc;
+ kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
+ }
+
+ /*
+ * We have to disable TSC offset matching.. if you were
+ * booting a VM while issuing an S4 host suspend....
+ * you may have some problem. Solving this issue is
+ * left as an exercise to the reader.
+ */
+ kvm->arch.last_tsc_nsec = 0;
+ kvm->arch.last_tsc_write = 0;
+ }
+
+ }
+ return 0;
+}
+
+void kvm_arch_hardware_disable(void)
+{
+ kvm_x86_ops->hardware_disable();
+ drop_user_return_notifiers();
+}
+
+int kvm_arch_hardware_setup(void)
+{
+ int r;
+
+ r = kvm_x86_ops->hardware_setup();
+ if (r != 0)
+ return r;
+
+ kvm_init_msr_list();
+ return 0;
+}
+
+void kvm_arch_hardware_unsetup(void)
+{
+ kvm_x86_ops->hardware_unsetup();
+}
+
+void kvm_arch_check_processor_compat(void *rtn)
+{
+ kvm_x86_ops->check_processor_compatibility(rtn);
+}
+
+bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
+{
+ return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
+}
+
+struct static_key kvm_no_apic_vcpu __read_mostly;
+
+int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
+{
+ struct page *page;
+ struct kvm *kvm;
+ int r;
+
+ BUG_ON(vcpu->kvm == NULL);
+ kvm = vcpu->kvm;
+
+ vcpu->arch.pv.pv_unhalted = false;
+ vcpu->arch.emulate_ctxt.ops = &emulate_ops;
+ if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
+ vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
+ else
+ vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
+
+ page = alloc_page(GFP_KERNEL | __GFP_ZERO);
+ if (!page) {
+ r = -ENOMEM;
+ goto fail;
+ }
+ vcpu->arch.pio_data = page_address(page);
+
+ kvm_set_tsc_khz(vcpu, max_tsc_khz);
+
+ r = kvm_mmu_create(vcpu);
+ if (r < 0)
+ goto fail_free_pio_data;
+
+ if (irqchip_in_kernel(kvm)) {
+ r = kvm_create_lapic(vcpu);
+ if (r < 0)
+ goto fail_mmu_destroy;
+ } else
+ static_key_slow_inc(&kvm_no_apic_vcpu);
+
+ vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
+ GFP_KERNEL);
+ if (!vcpu->arch.mce_banks) {
+ r = -ENOMEM;
+ goto fail_free_lapic;
+ }
+ vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
+
+ if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
+ r = -ENOMEM;
+ goto fail_free_mce_banks;
+ }
+
+ r = fx_init(vcpu);
+ if (r)
+ goto fail_free_wbinvd_dirty_mask;
+
+ vcpu->arch.ia32_tsc_adjust_msr = 0x0;
+ vcpu->arch.pv_time_enabled = false;
+
+ vcpu->arch.guest_supported_xcr0 = 0;
+ vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
+
+ vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
+
+ kvm_async_pf_hash_reset(vcpu);
+ kvm_pmu_init(vcpu);
+
+ return 0;
+fail_free_wbinvd_dirty_mask:
+ free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
+fail_free_mce_banks:
+ kfree(vcpu->arch.mce_banks);
+fail_free_lapic:
+ kvm_free_lapic(vcpu);
+fail_mmu_destroy:
+ kvm_mmu_destroy(vcpu);
+fail_free_pio_data:
+ free_page((unsigned long)vcpu->arch.pio_data);
+fail:
+ return r;
+}
+
+void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
+{
+ int idx;
+
+ kvm_pmu_destroy(vcpu);
+ kfree(vcpu->arch.mce_banks);
+ kvm_free_lapic(vcpu);
+ idx = srcu_read_lock(&vcpu->kvm->srcu);
+ kvm_mmu_destroy(vcpu);
+ srcu_read_unlock(&vcpu->kvm->srcu, idx);
+ free_page((unsigned long)vcpu->arch.pio_data);
+ if (!irqchip_in_kernel(vcpu->kvm))
+ static_key_slow_dec(&kvm_no_apic_vcpu);
+}
+
+void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
+{
+ kvm_x86_ops->sched_in(vcpu, cpu);
+}
+
+int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
+{
+ if (type)
+ return -EINVAL;
+
+ INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
+ INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
+ INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
+ atomic_set(&kvm->arch.noncoherent_dma_count, 0);
+
+ /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
+ set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
+ /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
+ set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
+ &kvm->arch.irq_sources_bitmap);
+
+ raw_spin_lock_init(&kvm->arch.tsc_write_lock);
+ mutex_init(&kvm->arch.apic_map_lock);
+ spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
+
+ pvclock_update_vm_gtod_copy(kvm);
+
+ INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
+ INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
+
+ return 0;
+}
+
+static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
+{
+ int r;
+ r = vcpu_load(vcpu);
+ BUG_ON(r);
+ kvm_mmu_unload(vcpu);
+ vcpu_put(vcpu);
+}
+
+static void kvm_free_vcpus(struct kvm *kvm)
+{
+ unsigned int i;
+ struct kvm_vcpu *vcpu;
+
+ /*
+ * Unpin any mmu pages first.
+ */
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ kvm_clear_async_pf_completion_queue(vcpu);
+ kvm_unload_vcpu_mmu(vcpu);
+ }
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ kvm_arch_vcpu_free(vcpu);
+
+ mutex_lock(&kvm->lock);
+ for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
+ kvm->vcpus[i] = NULL;
+
+ atomic_set(&kvm->online_vcpus, 0);
+ mutex_unlock(&kvm->lock);
+}
+
+void kvm_arch_sync_events(struct kvm *kvm)
+{
+ cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
+ cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
+ kvm_free_all_assigned_devices(kvm);
+ kvm_free_pit(kvm);
+}
+
+void kvm_arch_destroy_vm(struct kvm *kvm)
+{
+ if (current->mm == kvm->mm) {
+ /*
+ * Free memory regions allocated on behalf of userspace,
+ * unless the the memory map has changed due to process exit
+ * or fd copying.
+ */
+ struct kvm_userspace_memory_region mem;
+ memset(&mem, 0, sizeof(mem));
+ mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
+ kvm_set_memory_region(kvm, &mem);
+
+ mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
+ kvm_set_memory_region(kvm, &mem);
+
+ mem.slot = TSS_PRIVATE_MEMSLOT;
+ kvm_set_memory_region(kvm, &mem);
+ }
+ kvm_iommu_unmap_guest(kvm);
+ kfree(kvm->arch.vpic);
+ kfree(kvm->arch.vioapic);
+ kvm_free_vcpus(kvm);
+ kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
+}
+
+void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
+ struct kvm_memory_slot *dont)
+{
+ int i;
+
+ for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
+ if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
+ kvfree(free->arch.rmap[i]);
+ free->arch.rmap[i] = NULL;
+ }
+ if (i == 0)
+ continue;
+
+ if (!dont || free->arch.lpage_info[i - 1] !=
+ dont->arch.lpage_info[i - 1]) {
+ kvfree(free->arch.lpage_info[i - 1]);
+ free->arch.lpage_info[i - 1] = NULL;
+ }
+ }
+}
+
+int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
+ unsigned long npages)
+{
+ int i;
+
+ for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
+ unsigned long ugfn;
+ int lpages;
+ int level = i + 1;
+
+ lpages = gfn_to_index(slot->base_gfn + npages - 1,
+ slot->base_gfn, level) + 1;
+
+ slot->arch.rmap[i] =
+ kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
+ if (!slot->arch.rmap[i])
+ goto out_free;
+ if (i == 0)
+ continue;
+
+ slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
+ sizeof(*slot->arch.lpage_info[i - 1]));
+ if (!slot->arch.lpage_info[i - 1])
+ goto out_free;
+
+ if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
+ slot->arch.lpage_info[i - 1][0].write_count = 1;
+ if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
+ slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
+ ugfn = slot->userspace_addr >> PAGE_SHIFT;
+ /*
+ * If the gfn and userspace address are not aligned wrt each
+ * other, or if explicitly asked to, disable large page
+ * support for this slot
+ */
+ if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
+ !kvm_largepages_enabled()) {
+ unsigned long j;
+
+ for (j = 0; j < lpages; ++j)
+ slot->arch.lpage_info[i - 1][j].write_count = 1;
+ }
+ }
+
+ return 0;
+
+out_free:
+ for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
+ kvfree(slot->arch.rmap[i]);
+ slot->arch.rmap[i] = NULL;
+ if (i == 0)
+ continue;
+
+ kvfree(slot->arch.lpage_info[i - 1]);
+ slot->arch.lpage_info[i - 1] = NULL;
+ }
+ return -ENOMEM;
+}
+
+void kvm_arch_memslots_updated(struct kvm *kvm)
+{
+ /*
+ * memslots->generation has been incremented.
+ * mmio generation may have reached its maximum value.
+ */
+ kvm_mmu_invalidate_mmio_sptes(kvm);
+}
+
+int kvm_arch_prepare_memory_region(struct kvm *kvm,
+ struct kvm_memory_slot *memslot,
+ struct kvm_userspace_memory_region *mem,
+ enum kvm_mr_change change)
+{
+ /*
+ * Only private memory slots need to be mapped here since
+ * KVM_SET_MEMORY_REGION ioctl is no longer supported.
+ */
+ if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
+ unsigned long userspace_addr;
+
+ /*
+ * MAP_SHARED to prevent internal slot pages from being moved
+ * by fork()/COW.
+ */
+ userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
+ PROT_READ | PROT_WRITE,
+ MAP_SHARED | MAP_ANONYMOUS, 0);
+
+ if (IS_ERR((void *)userspace_addr))
+ return PTR_ERR((void *)userspace_addr);
+
+ memslot->userspace_addr = userspace_addr;
+ }
+
+ return 0;
+}
+
+static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
+ struct kvm_memory_slot *new)
+{
+ /* Still write protect RO slot */
+ if (new->flags & KVM_MEM_READONLY) {
+ kvm_mmu_slot_remove_write_access(kvm, new);
+ return;
+ }
+
+ /*
+ * Call kvm_x86_ops dirty logging hooks when they are valid.
+ *
+ * kvm_x86_ops->slot_disable_log_dirty is called when:
+ *
+ * - KVM_MR_CREATE with dirty logging is disabled
+ * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
+ *
+ * The reason is, in case of PML, we need to set D-bit for any slots
+ * with dirty logging disabled in order to eliminate unnecessary GPA
+ * logging in PML buffer (and potential PML buffer full VMEXT). This
+ * guarantees leaving PML enabled during guest's lifetime won't have
+ * any additonal overhead from PML when guest is running with dirty
+ * logging disabled for memory slots.
+ *
+ * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
+ * to dirty logging mode.
+ *
+ * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
+ *
+ * In case of write protect:
+ *
+ * Write protect all pages for dirty logging.
+ *
+ * All the sptes including the large sptes which point to this
+ * slot are set to readonly. We can not create any new large
+ * spte on this slot until the end of the logging.
+ *
+ * See the comments in fast_page_fault().
+ */
+ if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
+ if (kvm_x86_ops->slot_enable_log_dirty)
+ kvm_x86_ops->slot_enable_log_dirty(kvm, new);
+ else
+ kvm_mmu_slot_remove_write_access(kvm, new);
+ } else {
+ if (kvm_x86_ops->slot_disable_log_dirty)
+ kvm_x86_ops->slot_disable_log_dirty(kvm, new);
+ }
+}
+
+void kvm_arch_commit_memory_region(struct kvm *kvm,
+ struct kvm_userspace_memory_region *mem,
+ const struct kvm_memory_slot *old,
+ enum kvm_mr_change change)
+{
+ struct kvm_memory_slot *new;
+ int nr_mmu_pages = 0;
+
+ if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
+ int ret;
+
+ ret = vm_munmap(old->userspace_addr,
+ old->npages * PAGE_SIZE);
+ if (ret < 0)
+ printk(KERN_WARNING
+ "kvm_vm_ioctl_set_memory_region: "
+ "failed to munmap memory\n");
+ }
+
+ if (!kvm->arch.n_requested_mmu_pages)
+ nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
+
+ if (nr_mmu_pages)
+ kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
+
+ /* It's OK to get 'new' slot here as it has already been installed */
+ new = id_to_memslot(kvm->memslots, mem->slot);
+
+ /*
+ * Dirty logging tracks sptes in 4k granularity, meaning that large
+ * sptes have to be split. If live migration is successful, the guest
+ * in the source machine will be destroyed and large sptes will be
+ * created in the destination. However, if the guest continues to run
+ * in the source machine (for example if live migration fails), small
+ * sptes will remain around and cause bad performance.
+ *
+ * Scan sptes if dirty logging has been stopped, dropping those
+ * which can be collapsed into a single large-page spte. Later
+ * page faults will create the large-page sptes.
+ */
+ if ((change != KVM_MR_DELETE) &&
+ (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
+ !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
+ kvm_mmu_zap_collapsible_sptes(kvm, new);
+
+ /*
+ * Set up write protection and/or dirty logging for the new slot.
+ *
+ * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
+ * been zapped so no dirty logging staff is needed for old slot. For
+ * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
+ * new and it's also covered when dealing with the new slot.
+ */
+ if (change != KVM_MR_DELETE)
+ kvm_mmu_slot_apply_flags(kvm, new);
+}
+
+void kvm_arch_flush_shadow_all(struct kvm *kvm)
+{
+ kvm_mmu_invalidate_zap_all_pages(kvm);
+}
+
+void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
+ struct kvm_memory_slot *slot)
+{
+ kvm_mmu_invalidate_zap_all_pages(kvm);
+}
+
+int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
+{
+ if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
+ kvm_x86_ops->check_nested_events(vcpu, false);
+
+ return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
+ !vcpu->arch.apf.halted)
+ || !list_empty_careful(&vcpu->async_pf.done)
+ || kvm_apic_has_events(vcpu)
+ || vcpu->arch.pv.pv_unhalted
+ || atomic_read(&vcpu->arch.nmi_queued) ||
+ (kvm_arch_interrupt_allowed(vcpu) &&
+ kvm_cpu_has_interrupt(vcpu));
+}
+
+int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
+{
+ return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
+}
+
+int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
+{
+ return kvm_x86_ops->interrupt_allowed(vcpu);
+}
+
+unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
+{
+ if (is_64_bit_mode(vcpu))
+ return kvm_rip_read(vcpu);
+ return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
+ kvm_rip_read(vcpu));
+}
+EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
+
+bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
+{
+ return kvm_get_linear_rip(vcpu) == linear_rip;
+}
+EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
+
+unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
+{
+ unsigned long rflags;
+
+ rflags = kvm_x86_ops->get_rflags(vcpu);
+ if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
+ rflags &= ~X86_EFLAGS_TF;
+ return rflags;
+}
+EXPORT_SYMBOL_GPL(kvm_get_rflags);
+
+static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
+{
+ if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
+ kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
+ rflags |= X86_EFLAGS_TF;
+ kvm_x86_ops->set_rflags(vcpu, rflags);
+}
+
+void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
+{
+ __kvm_set_rflags(vcpu, rflags);
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+}
+EXPORT_SYMBOL_GPL(kvm_set_rflags);
+
+void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
+{
+ int r;
+
+ if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
+ work->wakeup_all)
+ return;
+
+ r = kvm_mmu_reload(vcpu);
+ if (unlikely(r))
+ return;
+
+ if (!vcpu->arch.mmu.direct_map &&
+ work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
+ return;
+
+ vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
+}
+
+static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
+{
+ return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
+}
+
+static inline u32 kvm_async_pf_next_probe(u32 key)
+{
+ return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
+}
+
+static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
+{
+ u32 key = kvm_async_pf_hash_fn(gfn);
+
+ while (vcpu->arch.apf.gfns[key] != ~0)
+ key = kvm_async_pf_next_probe(key);
+
+ vcpu->arch.apf.gfns[key] = gfn;
+}
+
+static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
+{
+ int i;
+ u32 key = kvm_async_pf_hash_fn(gfn);
+
+ for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
+ (vcpu->arch.apf.gfns[key] != gfn &&
+ vcpu->arch.apf.gfns[key] != ~0); i++)
+ key = kvm_async_pf_next_probe(key);
+
+ return key;
+}
+
+bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
+{
+ return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
+}
+
+static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
+{
+ u32 i, j, k;
+
+ i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
+ while (true) {
+ vcpu->arch.apf.gfns[i] = ~0;
+ do {
+ j = kvm_async_pf_next_probe(j);
+ if (vcpu->arch.apf.gfns[j] == ~0)
+ return;
+ k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
+ /*
+ * k lies cyclically in ]i,j]
+ * | i.k.j |
+ * |....j i.k.| or |.k..j i...|
+ */
+ } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
+ vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
+ i = j;
+ }
+}
+
+static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
+{
+
+ return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
+ sizeof(val));
+}
+
+void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
+ struct kvm_async_pf *work)
+{
+ struct x86_exception fault;
+
+ trace_kvm_async_pf_not_present(work->arch.token, work->gva);
+ kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
+
+ if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
+ (vcpu->arch.apf.send_user_only &&
+ kvm_x86_ops->get_cpl(vcpu) == 0))
+ kvm_make_request(KVM_REQ_APF_HALT, vcpu);
+ else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
+ fault.vector = PF_VECTOR;
+ fault.error_code_valid = true;
+ fault.error_code = 0;
+ fault.nested_page_fault = false;
+ fault.address = work->arch.token;
+ kvm_inject_page_fault(vcpu, &fault);
+ }
+}
+
+void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
+ struct kvm_async_pf *work)
+{
+ struct x86_exception fault;
+
+ trace_kvm_async_pf_ready(work->arch.token, work->gva);
+ if (work->wakeup_all)
+ work->arch.token = ~0; /* broadcast wakeup */
+ else
+ kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
+
+ if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
+ !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
+ fault.vector = PF_VECTOR;
+ fault.error_code_valid = true;
+ fault.error_code = 0;
+ fault.nested_page_fault = false;
+ fault.address = work->arch.token;
+ kvm_inject_page_fault(vcpu, &fault);
+ }
+ vcpu->arch.apf.halted = false;
+ vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
+}
+
+bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
+{
+ if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
+ return true;
+ else
+ return !kvm_event_needs_reinjection(vcpu) &&
+ kvm_x86_ops->interrupt_allowed(vcpu);
+}
+
+void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
+{
+ atomic_inc(&kvm->arch.noncoherent_dma_count);
+}
+EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
+
+void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
+{
+ atomic_dec(&kvm->arch.noncoherent_dma_count);
+}
+EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
+
+bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
+{
+ return atomic_read(&kvm->arch.noncoherent_dma_count);
+}
+EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
+
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
diff --git a/kernel/arch/x86/kvm/x86.h b/kernel/arch/x86/kvm/x86.h
new file mode 100644
index 000000000..f5fef1868
--- /dev/null
+++ b/kernel/arch/x86/kvm/x86.h
@@ -0,0 +1,177 @@
+#ifndef ARCH_X86_KVM_X86_H
+#define ARCH_X86_KVM_X86_H
+
+#include <linux/kvm_host.h>
+#include "kvm_cache_regs.h"
+
+static inline void kvm_clear_exception_queue(struct kvm_vcpu *vcpu)
+{
+ vcpu->arch.exception.pending = false;
+}
+
+static inline void kvm_queue_interrupt(struct kvm_vcpu *vcpu, u8 vector,
+ bool soft)
+{
+ vcpu->arch.interrupt.pending = true;
+ vcpu->arch.interrupt.soft = soft;
+ vcpu->arch.interrupt.nr = vector;
+}
+
+static inline void kvm_clear_interrupt_queue(struct kvm_vcpu *vcpu)
+{
+ vcpu->arch.interrupt.pending = false;
+}
+
+static inline bool kvm_event_needs_reinjection(struct kvm_vcpu *vcpu)
+{
+ return vcpu->arch.exception.pending || vcpu->arch.interrupt.pending ||
+ vcpu->arch.nmi_injected;
+}
+
+static inline bool kvm_exception_is_soft(unsigned int nr)
+{
+ return (nr == BP_VECTOR) || (nr == OF_VECTOR);
+}
+
+static inline bool is_protmode(struct kvm_vcpu *vcpu)
+{
+ return kvm_read_cr0_bits(vcpu, X86_CR0_PE);
+}
+
+static inline int is_long_mode(struct kvm_vcpu *vcpu)
+{
+#ifdef CONFIG_X86_64
+ return vcpu->arch.efer & EFER_LMA;
+#else
+ return 0;
+#endif
+}
+
+static inline bool is_64_bit_mode(struct kvm_vcpu *vcpu)
+{
+ int cs_db, cs_l;
+
+ if (!is_long_mode(vcpu))
+ return false;
+ kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
+ return cs_l;
+}
+
+static inline bool mmu_is_nested(struct kvm_vcpu *vcpu)
+{
+ return vcpu->arch.walk_mmu == &vcpu->arch.nested_mmu;
+}
+
+static inline int is_pae(struct kvm_vcpu *vcpu)
+{
+ return kvm_read_cr4_bits(vcpu, X86_CR4_PAE);
+}
+
+static inline int is_pse(struct kvm_vcpu *vcpu)
+{
+ return kvm_read_cr4_bits(vcpu, X86_CR4_PSE);
+}
+
+static inline int is_paging(struct kvm_vcpu *vcpu)
+{
+ return likely(kvm_read_cr0_bits(vcpu, X86_CR0_PG));
+}
+
+static inline u32 bit(int bitno)
+{
+ return 1 << (bitno & 31);
+}
+
+static inline void vcpu_cache_mmio_info(struct kvm_vcpu *vcpu,
+ gva_t gva, gfn_t gfn, unsigned access)
+{
+ vcpu->arch.mmio_gva = gva & PAGE_MASK;
+ vcpu->arch.access = access;
+ vcpu->arch.mmio_gfn = gfn;
+ vcpu->arch.mmio_gen = kvm_memslots(vcpu->kvm)->generation;
+}
+
+static inline bool vcpu_match_mmio_gen(struct kvm_vcpu *vcpu)
+{
+ return vcpu->arch.mmio_gen == kvm_memslots(vcpu->kvm)->generation;
+}
+
+/*
+ * Clear the mmio cache info for the given gva. If gva is MMIO_GVA_ANY, we
+ * clear all mmio cache info.
+ */
+#define MMIO_GVA_ANY (~(gva_t)0)
+
+static inline void vcpu_clear_mmio_info(struct kvm_vcpu *vcpu, gva_t gva)
+{
+ if (gva != MMIO_GVA_ANY && vcpu->arch.mmio_gva != (gva & PAGE_MASK))
+ return;
+
+ vcpu->arch.mmio_gva = 0;
+}
+
+static inline bool vcpu_match_mmio_gva(struct kvm_vcpu *vcpu, unsigned long gva)
+{
+ if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gva &&
+ vcpu->arch.mmio_gva == (gva & PAGE_MASK))
+ return true;
+
+ return false;
+}
+
+static inline bool vcpu_match_mmio_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
+{
+ if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gfn &&
+ vcpu->arch.mmio_gfn == gpa >> PAGE_SHIFT)
+ return true;
+
+ return false;
+}
+
+static inline unsigned long kvm_register_readl(struct kvm_vcpu *vcpu,
+ enum kvm_reg reg)
+{
+ unsigned long val = kvm_register_read(vcpu, reg);
+
+ return is_64_bit_mode(vcpu) ? val : (u32)val;
+}
+
+static inline void kvm_register_writel(struct kvm_vcpu *vcpu,
+ enum kvm_reg reg,
+ unsigned long val)
+{
+ if (!is_64_bit_mode(vcpu))
+ val = (u32)val;
+ return kvm_register_write(vcpu, reg, val);
+}
+
+void kvm_before_handle_nmi(struct kvm_vcpu *vcpu);
+void kvm_after_handle_nmi(struct kvm_vcpu *vcpu);
+void kvm_set_pending_timer(struct kvm_vcpu *vcpu);
+int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip);
+
+void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr);
+
+int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
+ gva_t addr, void *val, unsigned int bytes,
+ struct x86_exception *exception);
+
+int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
+ gva_t addr, void *val, unsigned int bytes,
+ struct x86_exception *exception);
+
+bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data);
+
+#define KVM_SUPPORTED_XCR0 (XSTATE_FP | XSTATE_SSE | XSTATE_YMM \
+ | XSTATE_BNDREGS | XSTATE_BNDCSR \
+ | XSTATE_AVX512)
+extern u64 host_xcr0;
+
+extern u64 kvm_supported_xcr0(void);
+
+extern unsigned int min_timer_period_us;
+
+extern unsigned int lapic_timer_advance_ns;
+
+extern struct static_key kvm_no_apic_vcpu;
+#endif