diff options
author | José Pekkarinen <jose.pekkarinen@nokia.com> | 2016-04-11 10:41:07 +0300 |
---|---|---|
committer | José Pekkarinen <jose.pekkarinen@nokia.com> | 2016-04-13 08:17:18 +0300 |
commit | e09b41010ba33a20a87472ee821fa407a5b8da36 (patch) | |
tree | d10dc367189862e7ca5c592f033dc3726e1df4e3 /kernel/arch/arm64/mm | |
parent | f93b97fd65072de626c074dbe099a1fff05ce060 (diff) |
These changes are the raw update to linux-4.4.6-rt14. Kernel sources
are taken from kernel.org, and rt patch from the rt wiki download page.
During the rebasing, the following patch collided:
Force tick interrupt and get rid of softirq magic(I70131fb85).
Collisions have been removed because its logic was found on the
source already.
Change-Id: I7f57a4081d9deaa0d9ccfc41a6c8daccdee3b769
Signed-off-by: José Pekkarinen <jose.pekkarinen@nokia.com>
Diffstat (limited to 'kernel/arch/arm64/mm')
-rw-r--r-- | kernel/arch/arm64/mm/Makefile | 3 | ||||
-rw-r--r-- | kernel/arch/arm64/mm/cache.S | 92 | ||||
-rw-r--r-- | kernel/arch/arm64/mm/context.c | 262 | ||||
-rw-r--r-- | kernel/arch/arm64/mm/dma-mapping.c | 605 | ||||
-rw-r--r-- | kernel/arch/arm64/mm/dump.c | 18 | ||||
-rw-r--r-- | kernel/arch/arm64/mm/fault.c | 69 | ||||
-rw-r--r-- | kernel/arch/arm64/mm/flush.c | 5 | ||||
-rw-r--r-- | kernel/arch/arm64/mm/hugetlbpage.c | 11 | ||||
-rw-r--r-- | kernel/arch/arm64/mm/init.c | 27 | ||||
-rw-r--r-- | kernel/arch/arm64/mm/kasan_init.c | 165 | ||||
-rw-r--r-- | kernel/arch/arm64/mm/mmu.c | 150 | ||||
-rw-r--r-- | kernel/arch/arm64/mm/pageattr.c | 5 | ||||
-rw-r--r-- | kernel/arch/arm64/mm/pgd.c | 2 | ||||
-rw-r--r-- | kernel/arch/arm64/mm/proc-macros.S | 12 | ||||
-rw-r--r-- | kernel/arch/arm64/mm/proc.S | 83 |
15 files changed, 1145 insertions, 364 deletions
diff --git a/kernel/arch/arm64/mm/Makefile b/kernel/arch/arm64/mm/Makefile index 773d37a14..57f57fde5 100644 --- a/kernel/arch/arm64/mm/Makefile +++ b/kernel/arch/arm64/mm/Makefile @@ -4,3 +4,6 @@ obj-y := dma-mapping.o extable.o fault.o init.o \ context.o proc.o pageattr.o obj-$(CONFIG_HUGETLB_PAGE) += hugetlbpage.o obj-$(CONFIG_ARM64_PTDUMP) += dump.o + +obj-$(CONFIG_KASAN) += kasan_init.o +KASAN_SANITIZE_kasan_init.o := n diff --git a/kernel/arch/arm64/mm/cache.S b/kernel/arch/arm64/mm/cache.S index 2560e1e15..cfa44a6ad 100644 --- a/kernel/arch/arm64/mm/cache.S +++ b/kernel/arch/arm64/mm/cache.S @@ -22,84 +22,11 @@ #include <linux/init.h> #include <asm/assembler.h> #include <asm/cpufeature.h> -#include <asm/alternative-asm.h> +#include <asm/alternative.h> #include "proc-macros.S" /* - * __flush_dcache_all() - * - * Flush the whole D-cache. - * - * Corrupted registers: x0-x7, x9-x11 - */ -__flush_dcache_all: - dmb sy // ensure ordering with previous memory accesses - mrs x0, clidr_el1 // read clidr - and x3, x0, #0x7000000 // extract loc from clidr - lsr x3, x3, #23 // left align loc bit field - cbz x3, finished // if loc is 0, then no need to clean - mov x10, #0 // start clean at cache level 0 -loop1: - add x2, x10, x10, lsr #1 // work out 3x current cache level - lsr x1, x0, x2 // extract cache type bits from clidr - and x1, x1, #7 // mask of the bits for current cache only - cmp x1, #2 // see what cache we have at this level - b.lt skip // skip if no cache, or just i-cache - save_and_disable_irqs x9 // make CSSELR and CCSIDR access atomic - msr csselr_el1, x10 // select current cache level in csselr - isb // isb to sych the new cssr&csidr - mrs x1, ccsidr_el1 // read the new ccsidr - restore_irqs x9 - and x2, x1, #7 // extract the length of the cache lines - add x2, x2, #4 // add 4 (line length offset) - mov x4, #0x3ff - and x4, x4, x1, lsr #3 // find maximum number on the way size - clz w5, w4 // find bit position of way size increment - mov x7, #0x7fff - and x7, x7, x1, lsr #13 // extract max number of the index size -loop2: - mov x9, x4 // create working copy of max way size -loop3: - lsl x6, x9, x5 - orr x11, x10, x6 // factor way and cache number into x11 - lsl x6, x7, x2 - orr x11, x11, x6 // factor index number into x11 - dc cisw, x11 // clean & invalidate by set/way - subs x9, x9, #1 // decrement the way - b.ge loop3 - subs x7, x7, #1 // decrement the index - b.ge loop2 -skip: - add x10, x10, #2 // increment cache number - cmp x3, x10 - b.gt loop1 -finished: - mov x10, #0 // swith back to cache level 0 - msr csselr_el1, x10 // select current cache level in csselr - dsb sy - isb - ret -ENDPROC(__flush_dcache_all) - -/* - * flush_cache_all() - * - * Flush the entire cache system. The data cache flush is now achieved - * using atomic clean / invalidates working outwards from L1 cache. This - * is done using Set/Way based cache maintainance instructions. The - * instruction cache can still be invalidated back to the point of - * unification in a single instruction. - */ -ENTRY(flush_cache_all) - mov x12, lr - bl __flush_dcache_all - mov x0, #0 - ic ialluis // I+BTB cache invalidate - ret x12 -ENDPROC(flush_cache_all) - -/* * flush_icache_range(start,end) * * Ensure that the I and D caches are coherent within specified region. @@ -171,7 +98,7 @@ ENTRY(__flush_dcache_area) b.lo 1b dsb sy ret -ENDPROC(__flush_dcache_area) +ENDPIPROC(__flush_dcache_area) /* * __inval_cache_range(start, end) @@ -204,7 +131,7 @@ __dma_inv_range: b.lo 2b dsb sy ret -ENDPROC(__inval_cache_range) +ENDPIPROC(__inval_cache_range) ENDPROC(__dma_inv_range) /* @@ -216,7 +143,12 @@ __dma_clean_range: dcache_line_size x2, x3 sub x3, x2, #1 bic x0, x0, x3 -1: alternative_insn "dc cvac, x0", "dc civac, x0", ARM64_WORKAROUND_CLEAN_CACHE +1: +alternative_if_not ARM64_WORKAROUND_CLEAN_CACHE + dc cvac, x0 +alternative_else + dc civac, x0 +alternative_endif add x0, x0, x2 cmp x0, x1 b.lo 1b @@ -239,7 +171,7 @@ ENTRY(__dma_flush_range) b.lo 1b dsb sy ret -ENDPROC(__dma_flush_range) +ENDPIPROC(__dma_flush_range) /* * __dma_map_area(start, size, dir) @@ -252,7 +184,7 @@ ENTRY(__dma_map_area) cmp w2, #DMA_FROM_DEVICE b.eq __dma_inv_range b __dma_clean_range -ENDPROC(__dma_map_area) +ENDPIPROC(__dma_map_area) /* * __dma_unmap_area(start, size, dir) @@ -265,4 +197,4 @@ ENTRY(__dma_unmap_area) cmp w2, #DMA_TO_DEVICE b.ne __dma_inv_range ret -ENDPROC(__dma_unmap_area) +ENDPIPROC(__dma_unmap_area) diff --git a/kernel/arch/arm64/mm/context.c b/kernel/arch/arm64/mm/context.c index 76c1e6cd3..e87f53ff5 100644 --- a/kernel/arch/arm64/mm/context.c +++ b/kernel/arch/arm64/mm/context.c @@ -17,151 +17,199 @@ * along with this program. If not, see <http://www.gnu.org/licenses/>. */ -#include <linux/init.h> +#include <linux/bitops.h> #include <linux/sched.h> +#include <linux/slab.h> #include <linux/mm.h> -#include <linux/smp.h> -#include <linux/percpu.h> +#include <asm/cpufeature.h> #include <asm/mmu_context.h> #include <asm/tlbflush.h> -#include <asm/cachetype.h> - -#define asid_bits(reg) \ - (((read_cpuid(ID_AA64MMFR0_EL1) & 0xf0) >> 2) + 8) - -#define ASID_FIRST_VERSION (1 << MAX_ASID_BITS) +static u32 asid_bits; static DEFINE_RAW_SPINLOCK(cpu_asid_lock); -unsigned int cpu_last_asid = ASID_FIRST_VERSION; -/* - * We fork()ed a process, and we need a new context for the child to run in. - */ -void __init_new_context(struct task_struct *tsk, struct mm_struct *mm) -{ - mm->context.id = 0; - raw_spin_lock_init(&mm->context.id_lock); -} +static atomic64_t asid_generation; +static unsigned long *asid_map; -static void flush_context(void) -{ - /* set the reserved TTBR0 before flushing the TLB */ - cpu_set_reserved_ttbr0(); - flush_tlb_all(); - if (icache_is_aivivt()) - __flush_icache_all(); -} +static DEFINE_PER_CPU(atomic64_t, active_asids); +static DEFINE_PER_CPU(u64, reserved_asids); +static cpumask_t tlb_flush_pending; -#ifdef CONFIG_SMP +#define ASID_MASK (~GENMASK(asid_bits - 1, 0)) +#define ASID_FIRST_VERSION (1UL << asid_bits) +#define NUM_USER_ASIDS ASID_FIRST_VERSION -static void set_mm_context(struct mm_struct *mm, unsigned int asid) +static void flush_context(unsigned int cpu) { - unsigned long flags; + int i; + u64 asid; + + /* Update the list of reserved ASIDs and the ASID bitmap. */ + bitmap_clear(asid_map, 0, NUM_USER_ASIDS); /* - * Locking needed for multi-threaded applications where the same - * mm->context.id could be set from different CPUs during the - * broadcast. This function is also called via IPI so the - * mm->context.id_lock has to be IRQ-safe. + * Ensure the generation bump is observed before we xchg the + * active_asids. */ - raw_spin_lock_irqsave(&mm->context.id_lock, flags); - if (likely((mm->context.id ^ cpu_last_asid) >> MAX_ASID_BITS)) { + smp_wmb(); + + for_each_possible_cpu(i) { + asid = atomic64_xchg_relaxed(&per_cpu(active_asids, i), 0); /* - * Old version of ASID found. Set the new one and reset - * mm_cpumask(mm). + * If this CPU has already been through a + * rollover, but hasn't run another task in + * the meantime, we must preserve its reserved + * ASID, as this is the only trace we have of + * the process it is still running. */ - mm->context.id = asid; - cpumask_clear(mm_cpumask(mm)); + if (asid == 0) + asid = per_cpu(reserved_asids, i); + __set_bit(asid & ~ASID_MASK, asid_map); + per_cpu(reserved_asids, i) = asid; } - raw_spin_unlock_irqrestore(&mm->context.id_lock, flags); - /* - * Set the mm_cpumask(mm) bit for the current CPU. - */ - cpumask_set_cpu(smp_processor_id(), mm_cpumask(mm)); + /* Queue a TLB invalidate and flush the I-cache if necessary. */ + cpumask_setall(&tlb_flush_pending); + + if (icache_is_aivivt()) + __flush_icache_all(); } -/* - * Reset the ASID on the current CPU. This function call is broadcast from the - * CPU handling the ASID rollover and holding cpu_asid_lock. - */ -static void reset_context(void *info) +static bool check_update_reserved_asid(u64 asid, u64 newasid) { - unsigned int asid; - unsigned int cpu = smp_processor_id(); - struct mm_struct *mm = current->active_mm; + int cpu; + bool hit = false; /* - * current->active_mm could be init_mm for the idle thread immediately - * after secondary CPU boot or hotplug. TTBR0_EL1 is already set to - * the reserved value, so no need to reset any context. + * Iterate over the set of reserved ASIDs looking for a match. + * If we find one, then we can update our mm to use newasid + * (i.e. the same ASID in the current generation) but we can't + * exit the loop early, since we need to ensure that all copies + * of the old ASID are updated to reflect the mm. Failure to do + * so could result in us missing the reserved ASID in a future + * generation. */ - if (mm == &init_mm) - return; - - smp_rmb(); - asid = cpu_last_asid + cpu; - - flush_context(); - set_mm_context(mm, asid); + for_each_possible_cpu(cpu) { + if (per_cpu(reserved_asids, cpu) == asid) { + hit = true; + per_cpu(reserved_asids, cpu) = newasid; + } + } - /* set the new ASID */ - cpu_switch_mm(mm->pgd, mm); + return hit; } -#else - -static inline void set_mm_context(struct mm_struct *mm, unsigned int asid) +static u64 new_context(struct mm_struct *mm, unsigned int cpu) { - mm->context.id = asid; - cpumask_copy(mm_cpumask(mm), cpumask_of(smp_processor_id())); -} + static u32 cur_idx = 1; + u64 asid = atomic64_read(&mm->context.id); + u64 generation = atomic64_read(&asid_generation); -#endif + if (asid != 0) { + u64 newasid = generation | (asid & ~ASID_MASK); -void __new_context(struct mm_struct *mm) -{ - unsigned int asid; - unsigned int bits = asid_bits(); + /* + * If our current ASID was active during a rollover, we + * can continue to use it and this was just a false alarm. + */ + if (check_update_reserved_asid(asid, newasid)) + return newasid; - raw_spin_lock(&cpu_asid_lock); -#ifdef CONFIG_SMP - /* - * Check the ASID again, in case the change was broadcast from another - * CPU before we acquired the lock. - */ - if (!unlikely((mm->context.id ^ cpu_last_asid) >> MAX_ASID_BITS)) { - cpumask_set_cpu(smp_processor_id(), mm_cpumask(mm)); - raw_spin_unlock(&cpu_asid_lock); - return; + /* + * We had a valid ASID in a previous life, so try to re-use + * it if possible. + */ + asid &= ~ASID_MASK; + if (!__test_and_set_bit(asid, asid_map)) + return newasid; } -#endif + /* - * At this point, it is guaranteed that the current mm (with an old - * ASID) isn't active on any other CPU since the ASIDs are changed - * simultaneously via IPI. + * Allocate a free ASID. If we can't find one, take a note of the + * currently active ASIDs and mark the TLBs as requiring flushes. + * We always count from ASID #1, as we use ASID #0 when setting a + * reserved TTBR0 for the init_mm. */ - asid = ++cpu_last_asid; + asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, cur_idx); + if (asid != NUM_USER_ASIDS) + goto set_asid; + + /* We're out of ASIDs, so increment the global generation count */ + generation = atomic64_add_return_relaxed(ASID_FIRST_VERSION, + &asid_generation); + flush_context(cpu); + + /* We have at least 1 ASID per CPU, so this will always succeed */ + asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, 1); + +set_asid: + __set_bit(asid, asid_map); + cur_idx = asid; + return asid | generation; +} + +void check_and_switch_context(struct mm_struct *mm, unsigned int cpu) +{ + unsigned long flags; + u64 asid; + + asid = atomic64_read(&mm->context.id); /* - * If we've used up all our ASIDs, we need to start a new version and - * flush the TLB. + * The memory ordering here is subtle. We rely on the control + * dependency between the generation read and the update of + * active_asids to ensure that we are synchronised with a + * parallel rollover (i.e. this pairs with the smp_wmb() in + * flush_context). */ - if (unlikely((asid & ((1 << bits) - 1)) == 0)) { - /* increment the ASID version */ - cpu_last_asid += (1 << MAX_ASID_BITS) - (1 << bits); - if (cpu_last_asid == 0) - cpu_last_asid = ASID_FIRST_VERSION; - asid = cpu_last_asid + smp_processor_id(); - flush_context(); -#ifdef CONFIG_SMP - smp_wmb(); - smp_call_function(reset_context, NULL, 1); -#endif - cpu_last_asid += NR_CPUS - 1; + if (!((asid ^ atomic64_read(&asid_generation)) >> asid_bits) + && atomic64_xchg_relaxed(&per_cpu(active_asids, cpu), asid)) + goto switch_mm_fastpath; + + raw_spin_lock_irqsave(&cpu_asid_lock, flags); + /* Check that our ASID belongs to the current generation. */ + asid = atomic64_read(&mm->context.id); + if ((asid ^ atomic64_read(&asid_generation)) >> asid_bits) { + asid = new_context(mm, cpu); + atomic64_set(&mm->context.id, asid); + } + + if (cpumask_test_and_clear_cpu(cpu, &tlb_flush_pending)) + local_flush_tlb_all(); + + atomic64_set(&per_cpu(active_asids, cpu), asid); + raw_spin_unlock_irqrestore(&cpu_asid_lock, flags); + +switch_mm_fastpath: + cpu_switch_mm(mm->pgd, mm); +} + +static int asids_init(void) +{ + int fld = cpuid_feature_extract_field(read_cpuid(ID_AA64MMFR0_EL1), 4); + + switch (fld) { + default: + pr_warn("Unknown ASID size (%d); assuming 8-bit\n", fld); + /* Fallthrough */ + case 0: + asid_bits = 8; + break; + case 2: + asid_bits = 16; } - set_mm_context(mm, asid); - raw_spin_unlock(&cpu_asid_lock); + /* If we end up with more CPUs than ASIDs, expect things to crash */ + WARN_ON(NUM_USER_ASIDS < num_possible_cpus()); + atomic64_set(&asid_generation, ASID_FIRST_VERSION); + asid_map = kzalloc(BITS_TO_LONGS(NUM_USER_ASIDS) * sizeof(*asid_map), + GFP_KERNEL); + if (!asid_map) + panic("Failed to allocate bitmap for %lu ASIDs\n", + NUM_USER_ASIDS); + + pr_info("ASID allocator initialised with %lu entries\n", NUM_USER_ASIDS); + return 0; } +early_initcall(asids_init); diff --git a/kernel/arch/arm64/mm/dma-mapping.c b/kernel/arch/arm64/mm/dma-mapping.c index b0bd4e5fd..354144e33 100644 --- a/kernel/arch/arm64/mm/dma-mapping.c +++ b/kernel/arch/arm64/mm/dma-mapping.c @@ -18,6 +18,7 @@ */ #include <linux/gfp.h> +#include <linux/acpi.h> #include <linux/export.h> #include <linux/slab.h> #include <linux/genalloc.h> @@ -28,9 +29,6 @@ #include <asm/cacheflush.h> -struct dma_map_ops *dma_ops; -EXPORT_SYMBOL(dma_ops); - static pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot, bool coherent) { @@ -100,7 +98,7 @@ static void *__dma_alloc_coherent(struct device *dev, size_t size, if (IS_ENABLED(CONFIG_ZONE_DMA) && dev->coherent_dma_mask <= DMA_BIT_MASK(32)) flags |= GFP_DMA; - if (IS_ENABLED(CONFIG_DMA_CMA) && (flags & __GFP_WAIT)) { + if (dev_get_cma_area(dev) && gfpflags_allow_blocking(flags)) { struct page *page; void *addr; @@ -144,10 +142,11 @@ static void *__dma_alloc(struct device *dev, size_t size, struct page *page; void *ptr, *coherent_ptr; bool coherent = is_device_dma_coherent(dev); + pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false); size = PAGE_ALIGN(size); - if (!coherent && !(flags & __GFP_WAIT)) { + if (!coherent && !gfpflags_allow_blocking(flags)) { struct page *page = NULL; void *addr = __alloc_from_pool(size, &page, flags); @@ -171,9 +170,7 @@ static void *__dma_alloc(struct device *dev, size_t size, /* create a coherent mapping */ page = virt_to_page(ptr); coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP, - __get_dma_pgprot(attrs, - __pgprot(PROT_NORMAL_NC), false), - NULL); + prot, NULL); if (!coherent_ptr) goto no_map; @@ -303,9 +300,10 @@ static void __swiotlb_sync_sg_for_device(struct device *dev, sg->length, dir); } -/* vma->vm_page_prot must be set appropriately before calling this function */ -static int __dma_common_mmap(struct device *dev, struct vm_area_struct *vma, - void *cpu_addr, dma_addr_t dma_addr, size_t size) +static int __swiotlb_mmap(struct device *dev, + struct vm_area_struct *vma, + void *cpu_addr, dma_addr_t dma_addr, size_t size, + struct dma_attrs *attrs) { int ret = -ENXIO; unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> @@ -314,6 +312,9 @@ static int __dma_common_mmap(struct device *dev, struct vm_area_struct *vma, unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT; unsigned long off = vma->vm_pgoff; + vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot, + is_device_dma_coherent(dev)); + if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) return ret; @@ -327,20 +328,24 @@ static int __dma_common_mmap(struct device *dev, struct vm_area_struct *vma, return ret; } -static int __swiotlb_mmap(struct device *dev, - struct vm_area_struct *vma, - void *cpu_addr, dma_addr_t dma_addr, size_t size, - struct dma_attrs *attrs) +static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt, + void *cpu_addr, dma_addr_t handle, size_t size, + struct dma_attrs *attrs) { - vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot, - is_device_dma_coherent(dev)); - return __dma_common_mmap(dev, vma, cpu_addr, dma_addr, size); + int ret = sg_alloc_table(sgt, 1, GFP_KERNEL); + + if (!ret) + sg_set_page(sgt->sgl, phys_to_page(dma_to_phys(dev, handle)), + PAGE_ALIGN(size), 0); + + return ret; } static struct dma_map_ops swiotlb_dma_ops = { .alloc = __dma_alloc, .free = __dma_free, .mmap = __swiotlb_mmap, + .get_sgtable = __swiotlb_get_sgtable, .map_page = __swiotlb_map_page, .unmap_page = __swiotlb_unmap_page, .map_sg = __swiotlb_map_sg_attrs, @@ -414,15 +419,101 @@ out: return -ENOMEM; } -static int __init arm64_dma_init(void) +/******************************************** + * The following APIs are for dummy DMA ops * + ********************************************/ + +static void *__dummy_alloc(struct device *dev, size_t size, + dma_addr_t *dma_handle, gfp_t flags, + struct dma_attrs *attrs) { - int ret; + return NULL; +} - dma_ops = &swiotlb_dma_ops; +static void __dummy_free(struct device *dev, size_t size, + void *vaddr, dma_addr_t dma_handle, + struct dma_attrs *attrs) +{ +} - ret = atomic_pool_init(); +static int __dummy_mmap(struct device *dev, + struct vm_area_struct *vma, + void *cpu_addr, dma_addr_t dma_addr, size_t size, + struct dma_attrs *attrs) +{ + return -ENXIO; +} - return ret; +static dma_addr_t __dummy_map_page(struct device *dev, struct page *page, + unsigned long offset, size_t size, + enum dma_data_direction dir, + struct dma_attrs *attrs) +{ + return DMA_ERROR_CODE; +} + +static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr, + size_t size, enum dma_data_direction dir, + struct dma_attrs *attrs) +{ +} + +static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl, + int nelems, enum dma_data_direction dir, + struct dma_attrs *attrs) +{ + return 0; +} + +static void __dummy_unmap_sg(struct device *dev, + struct scatterlist *sgl, int nelems, + enum dma_data_direction dir, + struct dma_attrs *attrs) +{ +} + +static void __dummy_sync_single(struct device *dev, + dma_addr_t dev_addr, size_t size, + enum dma_data_direction dir) +{ +} + +static void __dummy_sync_sg(struct device *dev, + struct scatterlist *sgl, int nelems, + enum dma_data_direction dir) +{ +} + +static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr) +{ + return 1; +} + +static int __dummy_dma_supported(struct device *hwdev, u64 mask) +{ + return 0; +} + +struct dma_map_ops dummy_dma_ops = { + .alloc = __dummy_alloc, + .free = __dummy_free, + .mmap = __dummy_mmap, + .map_page = __dummy_map_page, + .unmap_page = __dummy_unmap_page, + .map_sg = __dummy_map_sg, + .unmap_sg = __dummy_unmap_sg, + .sync_single_for_cpu = __dummy_sync_single, + .sync_single_for_device = __dummy_sync_single, + .sync_sg_for_cpu = __dummy_sync_sg, + .sync_sg_for_device = __dummy_sync_sg, + .mapping_error = __dummy_mapping_error, + .dma_supported = __dummy_dma_supported, +}; +EXPORT_SYMBOL(dummy_dma_ops); + +static int __init arm64_dma_init(void) +{ + return atomic_pool_init(); } arch_initcall(arm64_dma_init); @@ -434,3 +525,471 @@ static int __init dma_debug_do_init(void) return 0; } fs_initcall(dma_debug_do_init); + + +#ifdef CONFIG_IOMMU_DMA +#include <linux/dma-iommu.h> +#include <linux/platform_device.h> +#include <linux/amba/bus.h> + +/* Thankfully, all cache ops are by VA so we can ignore phys here */ +static void flush_page(struct device *dev, const void *virt, phys_addr_t phys) +{ + __dma_flush_range(virt, virt + PAGE_SIZE); +} + +static void *__iommu_alloc_attrs(struct device *dev, size_t size, + dma_addr_t *handle, gfp_t gfp, + struct dma_attrs *attrs) +{ + bool coherent = is_device_dma_coherent(dev); + int ioprot = dma_direction_to_prot(DMA_BIDIRECTIONAL, coherent); + size_t iosize = size; + void *addr; + + if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n")) + return NULL; + + size = PAGE_ALIGN(size); + + /* + * Some drivers rely on this, and we probably don't want the + * possibility of stale kernel data being read by devices anyway. + */ + gfp |= __GFP_ZERO; + + if (gfpflags_allow_blocking(gfp)) { + struct page **pages; + pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent); + + pages = iommu_dma_alloc(dev, iosize, gfp, ioprot, handle, + flush_page); + if (!pages) + return NULL; + + addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot, + __builtin_return_address(0)); + if (!addr) + iommu_dma_free(dev, pages, iosize, handle); + } else { + struct page *page; + /* + * In atomic context we can't remap anything, so we'll only + * get the virtually contiguous buffer we need by way of a + * physically contiguous allocation. + */ + if (coherent) { + page = alloc_pages(gfp, get_order(size)); + addr = page ? page_address(page) : NULL; + } else { + addr = __alloc_from_pool(size, &page, gfp); + } + if (!addr) + return NULL; + + *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot); + if (iommu_dma_mapping_error(dev, *handle)) { + if (coherent) + __free_pages(page, get_order(size)); + else + __free_from_pool(addr, size); + addr = NULL; + } + } + return addr; +} + +static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, + dma_addr_t handle, struct dma_attrs *attrs) +{ + size_t iosize = size; + + size = PAGE_ALIGN(size); + /* + * @cpu_addr will be one of 3 things depending on how it was allocated: + * - A remapped array of pages from iommu_dma_alloc(), for all + * non-atomic allocations. + * - A non-cacheable alias from the atomic pool, for atomic + * allocations by non-coherent devices. + * - A normal lowmem address, for atomic allocations by + * coherent devices. + * Hence how dodgy the below logic looks... + */ + if (__in_atomic_pool(cpu_addr, size)) { + iommu_dma_unmap_page(dev, handle, iosize, 0, NULL); + __free_from_pool(cpu_addr, size); + } else if (is_vmalloc_addr(cpu_addr)){ + struct vm_struct *area = find_vm_area(cpu_addr); + + if (WARN_ON(!area || !area->pages)) + return; + iommu_dma_free(dev, area->pages, iosize, &handle); + dma_common_free_remap(cpu_addr, size, VM_USERMAP); + } else { + iommu_dma_unmap_page(dev, handle, iosize, 0, NULL); + __free_pages(virt_to_page(cpu_addr), get_order(size)); + } +} + +static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, + void *cpu_addr, dma_addr_t dma_addr, size_t size, + struct dma_attrs *attrs) +{ + struct vm_struct *area; + int ret; + + vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot, + is_device_dma_coherent(dev)); + + if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) + return ret; + + area = find_vm_area(cpu_addr); + if (WARN_ON(!area || !area->pages)) + return -ENXIO; + + return iommu_dma_mmap(area->pages, size, vma); +} + +static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt, + void *cpu_addr, dma_addr_t dma_addr, + size_t size, struct dma_attrs *attrs) +{ + unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; + struct vm_struct *area = find_vm_area(cpu_addr); + + if (WARN_ON(!area || !area->pages)) + return -ENXIO; + + return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size, + GFP_KERNEL); +} + +static void __iommu_sync_single_for_cpu(struct device *dev, + dma_addr_t dev_addr, size_t size, + enum dma_data_direction dir) +{ + phys_addr_t phys; + + if (is_device_dma_coherent(dev)) + return; + + phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr); + __dma_unmap_area(phys_to_virt(phys), size, dir); +} + +static void __iommu_sync_single_for_device(struct device *dev, + dma_addr_t dev_addr, size_t size, + enum dma_data_direction dir) +{ + phys_addr_t phys; + + if (is_device_dma_coherent(dev)) + return; + + phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr); + __dma_map_area(phys_to_virt(phys), size, dir); +} + +static dma_addr_t __iommu_map_page(struct device *dev, struct page *page, + unsigned long offset, size_t size, + enum dma_data_direction dir, + struct dma_attrs *attrs) +{ + bool coherent = is_device_dma_coherent(dev); + int prot = dma_direction_to_prot(dir, coherent); + dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot); + + if (!iommu_dma_mapping_error(dev, dev_addr) && + !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) + __iommu_sync_single_for_device(dev, dev_addr, size, dir); + + return dev_addr; +} + +static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr, + size_t size, enum dma_data_direction dir, + struct dma_attrs *attrs) +{ + if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) + __iommu_sync_single_for_cpu(dev, dev_addr, size, dir); + + iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs); +} + +static void __iommu_sync_sg_for_cpu(struct device *dev, + struct scatterlist *sgl, int nelems, + enum dma_data_direction dir) +{ + struct scatterlist *sg; + int i; + + if (is_device_dma_coherent(dev)) + return; + + for_each_sg(sgl, sg, nelems, i) + __dma_unmap_area(sg_virt(sg), sg->length, dir); +} + +static void __iommu_sync_sg_for_device(struct device *dev, + struct scatterlist *sgl, int nelems, + enum dma_data_direction dir) +{ + struct scatterlist *sg; + int i; + + if (is_device_dma_coherent(dev)) + return; + + for_each_sg(sgl, sg, nelems, i) + __dma_map_area(sg_virt(sg), sg->length, dir); +} + +static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl, + int nelems, enum dma_data_direction dir, + struct dma_attrs *attrs) +{ + bool coherent = is_device_dma_coherent(dev); + + if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) + __iommu_sync_sg_for_device(dev, sgl, nelems, dir); + + return iommu_dma_map_sg(dev, sgl, nelems, + dma_direction_to_prot(dir, coherent)); +} + +static void __iommu_unmap_sg_attrs(struct device *dev, + struct scatterlist *sgl, int nelems, + enum dma_data_direction dir, + struct dma_attrs *attrs) +{ + if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) + __iommu_sync_sg_for_cpu(dev, sgl, nelems, dir); + + iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs); +} + +static struct dma_map_ops iommu_dma_ops = { + .alloc = __iommu_alloc_attrs, + .free = __iommu_free_attrs, + .mmap = __iommu_mmap_attrs, + .get_sgtable = __iommu_get_sgtable, + .map_page = __iommu_map_page, + .unmap_page = __iommu_unmap_page, + .map_sg = __iommu_map_sg_attrs, + .unmap_sg = __iommu_unmap_sg_attrs, + .sync_single_for_cpu = __iommu_sync_single_for_cpu, + .sync_single_for_device = __iommu_sync_single_for_device, + .sync_sg_for_cpu = __iommu_sync_sg_for_cpu, + .sync_sg_for_device = __iommu_sync_sg_for_device, + .dma_supported = iommu_dma_supported, + .mapping_error = iommu_dma_mapping_error, +}; + +/* + * TODO: Right now __iommu_setup_dma_ops() gets called too early to do + * everything it needs to - the device is only partially created and the + * IOMMU driver hasn't seen it yet, so it can't have a group. Thus we + * need this delayed attachment dance. Once IOMMU probe ordering is sorted + * to move the arch_setup_dma_ops() call later, all the notifier bits below + * become unnecessary, and will go away. + */ +struct iommu_dma_notifier_data { + struct list_head list; + struct device *dev; + const struct iommu_ops *ops; + u64 dma_base; + u64 size; +}; +static LIST_HEAD(iommu_dma_masters); +static DEFINE_MUTEX(iommu_dma_notifier_lock); + +/* + * Temporarily "borrow" a domain feature flag to to tell if we had to resort + * to creating our own domain here, in case we need to clean it up again. + */ +#define __IOMMU_DOMAIN_FAKE_DEFAULT (1U << 31) + +static bool do_iommu_attach(struct device *dev, const struct iommu_ops *ops, + u64 dma_base, u64 size) +{ + struct iommu_domain *domain = iommu_get_domain_for_dev(dev); + + /* + * Best case: The device is either part of a group which was + * already attached to a domain in a previous call, or it's + * been put in a default DMA domain by the IOMMU core. + */ + if (!domain) { + /* + * Urgh. The IOMMU core isn't going to do default domains + * for non-PCI devices anyway, until it has some means of + * abstracting the entirely implementation-specific + * sideband data/SoC topology/unicorn dust that may or + * may not differentiate upstream masters. + * So until then, HORRIBLE HACKS! + */ + domain = ops->domain_alloc(IOMMU_DOMAIN_DMA); + if (!domain) + goto out_no_domain; + + domain->ops = ops; + domain->type = IOMMU_DOMAIN_DMA | __IOMMU_DOMAIN_FAKE_DEFAULT; + + if (iommu_attach_device(domain, dev)) + goto out_put_domain; + } + + if (iommu_dma_init_domain(domain, dma_base, size)) + goto out_detach; + + dev->archdata.dma_ops = &iommu_dma_ops; + return true; + +out_detach: + iommu_detach_device(domain, dev); +out_put_domain: + if (domain->type & __IOMMU_DOMAIN_FAKE_DEFAULT) + iommu_domain_free(domain); +out_no_domain: + pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", + dev_name(dev)); + return false; +} + +static void queue_iommu_attach(struct device *dev, const struct iommu_ops *ops, + u64 dma_base, u64 size) +{ + struct iommu_dma_notifier_data *iommudata; + + iommudata = kzalloc(sizeof(*iommudata), GFP_KERNEL); + if (!iommudata) + return; + + iommudata->dev = dev; + iommudata->ops = ops; + iommudata->dma_base = dma_base; + iommudata->size = size; + + mutex_lock(&iommu_dma_notifier_lock); + list_add(&iommudata->list, &iommu_dma_masters); + mutex_unlock(&iommu_dma_notifier_lock); +} + +static int __iommu_attach_notifier(struct notifier_block *nb, + unsigned long action, void *data) +{ + struct iommu_dma_notifier_data *master, *tmp; + + if (action != BUS_NOTIFY_ADD_DEVICE) + return 0; + + mutex_lock(&iommu_dma_notifier_lock); + list_for_each_entry_safe(master, tmp, &iommu_dma_masters, list) { + if (do_iommu_attach(master->dev, master->ops, + master->dma_base, master->size)) { + list_del(&master->list); + kfree(master); + } + } + mutex_unlock(&iommu_dma_notifier_lock); + return 0; +} + +static int register_iommu_dma_ops_notifier(struct bus_type *bus) +{ + struct notifier_block *nb = kzalloc(sizeof(*nb), GFP_KERNEL); + int ret; + + if (!nb) + return -ENOMEM; + /* + * The device must be attached to a domain before the driver probe + * routine gets a chance to start allocating DMA buffers. However, + * the IOMMU driver also needs a chance to configure the iommu_group + * via its add_device callback first, so we need to make the attach + * happen between those two points. Since the IOMMU core uses a bus + * notifier with default priority for add_device, do the same but + * with a lower priority to ensure the appropriate ordering. + */ + nb->notifier_call = __iommu_attach_notifier; + nb->priority = -100; + + ret = bus_register_notifier(bus, nb); + if (ret) { + pr_warn("Failed to register DMA domain notifier; IOMMU DMA ops unavailable on bus '%s'\n", + bus->name); + kfree(nb); + } + return ret; +} + +static int __init __iommu_dma_init(void) +{ + int ret; + + ret = iommu_dma_init(); + if (!ret) + ret = register_iommu_dma_ops_notifier(&platform_bus_type); + if (!ret) + ret = register_iommu_dma_ops_notifier(&amba_bustype); + + /* handle devices queued before this arch_initcall */ + if (!ret) + __iommu_attach_notifier(NULL, BUS_NOTIFY_ADD_DEVICE, NULL); + return ret; +} +arch_initcall(__iommu_dma_init); + +static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, + const struct iommu_ops *ops) +{ + struct iommu_group *group; + + if (!ops) + return; + /* + * TODO: As a concession to the future, we're ready to handle being + * called both early and late (i.e. after bus_add_device). Once all + * the platform bus code is reworked to call us late and the notifier + * junk above goes away, move the body of do_iommu_attach here. + */ + group = iommu_group_get(dev); + if (group) { + do_iommu_attach(dev, ops, dma_base, size); + iommu_group_put(group); + } else { + queue_iommu_attach(dev, ops, dma_base, size); + } +} + +void arch_teardown_dma_ops(struct device *dev) +{ + struct iommu_domain *domain = iommu_get_domain_for_dev(dev); + + if (domain) { + iommu_detach_device(domain, dev); + if (domain->type & __IOMMU_DOMAIN_FAKE_DEFAULT) + iommu_domain_free(domain); + } + + dev->archdata.dma_ops = NULL; +} + +#else + +static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, + struct iommu_ops *iommu) +{ } + +#endif /* CONFIG_IOMMU_DMA */ + +void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, + struct iommu_ops *iommu, bool coherent) +{ + if (!dev->archdata.dma_ops) + dev->archdata.dma_ops = &swiotlb_dma_ops; + + dev->archdata.dma_coherent = coherent; + __iommu_setup_dma_ops(dev, dma_base, size, iommu); +} diff --git a/kernel/arch/arm64/mm/dump.c b/kernel/arch/arm64/mm/dump.c index f3d6221cd..5a22a119a 100644 --- a/kernel/arch/arm64/mm/dump.c +++ b/kernel/arch/arm64/mm/dump.c @@ -67,6 +67,12 @@ static struct addr_marker address_markers[] = { { -1, NULL }, }; +/* + * The page dumper groups page table entries of the same type into a single + * description. It uses pg_state to track the range information while + * iterating over the pte entries. When the continuity is broken it then + * dumps out a description of the range. + */ struct pg_state { struct seq_file *seq; const struct addr_marker *marker; @@ -114,6 +120,16 @@ static const struct prot_bits pte_bits[] = { .set = "NG", .clear = " ", }, { + .mask = PTE_CONT, + .val = PTE_CONT, + .set = "CON", + .clear = " ", + }, { + .mask = PTE_TABLE_BIT, + .val = PTE_TABLE_BIT, + .set = " ", + .clear = "BLK", + }, { .mask = PTE_UXN, .val = PTE_UXN, .set = "UXN", @@ -198,7 +214,7 @@ static void note_page(struct pg_state *st, unsigned long addr, unsigned level, unsigned long delta; if (st->current_prot) { - seq_printf(st->seq, "0x%16lx-0x%16lx ", + seq_printf(st->seq, "0x%016lx-0x%016lx ", st->start_address, addr); delta = (addr - st->start_address) >> 10; diff --git a/kernel/arch/arm64/mm/fault.c b/kernel/arch/arm64/mm/fault.c index 0948d327d..92ddac1e8 100644 --- a/kernel/arch/arm64/mm/fault.c +++ b/kernel/arch/arm64/mm/fault.c @@ -30,9 +30,11 @@ #include <linux/highmem.h> #include <linux/perf_event.h> +#include <asm/cpufeature.h> #include <asm/exception.h> #include <asm/debug-monitors.h> #include <asm/esr.h> +#include <asm/sysreg.h> #include <asm/system_misc.h> #include <asm/pgtable.h> #include <asm/tlbflush.h> @@ -115,8 +117,7 @@ static void __do_user_fault(struct task_struct *tsk, unsigned long addr, { struct siginfo si; - if (show_unhandled_signals && unhandled_signal(tsk, sig) && - printk_ratelimit()) { + if (unhandled_signal(tsk, sig) && show_unhandled_signals_ratelimited()) { pr_info("%s[%d]: unhandled %s (%d) at 0x%08lx, esr 0x%03x\n", tsk->comm, task_pid_nr(tsk), fault_name(esr), sig, addr, esr); @@ -225,6 +226,13 @@ static int __kprobes do_page_fault(unsigned long addr, unsigned int esr, } /* + * PAN bit set implies the fault happened in kernel space, but not + * in the arch's user access functions. + */ + if (IS_ENABLED(CONFIG_ARM64_PAN) && (regs->pstate & PSR_PAN_BIT)) + goto no_context; + + /* * As per x86, we may deadlock here. However, since the kernel only * validly references user space from well defined areas of the code, * we can bug out early if this is from code which shouldn't. @@ -279,6 +287,7 @@ retry: * starvation. */ mm_flags &= ~FAULT_FLAG_ALLOW_RETRY; + mm_flags |= FAULT_FLAG_TRIED; goto retry; } } @@ -384,16 +393,16 @@ static struct fault_info { { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" }, { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" }, { do_page_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" }, - { do_bad, SIGBUS, 0, "reserved access flag fault" }, + { do_bad, SIGBUS, 0, "unknown 8" }, { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" }, { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" }, { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" }, - { do_bad, SIGBUS, 0, "reserved permission fault" }, + { do_bad, SIGBUS, 0, "unknown 12" }, { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" }, { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" }, { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" }, { do_bad, SIGBUS, 0, "synchronous external abort" }, - { do_bad, SIGBUS, 0, "asynchronous external abort" }, + { do_bad, SIGBUS, 0, "unknown 17" }, { do_bad, SIGBUS, 0, "unknown 18" }, { do_bad, SIGBUS, 0, "unknown 19" }, { do_bad, SIGBUS, 0, "synchronous abort (translation table walk)" }, @@ -401,16 +410,16 @@ static struct fault_info { { do_bad, SIGBUS, 0, "synchronous abort (translation table walk)" }, { do_bad, SIGBUS, 0, "synchronous abort (translation table walk)" }, { do_bad, SIGBUS, 0, "synchronous parity error" }, - { do_bad, SIGBUS, 0, "asynchronous parity error" }, + { do_bad, SIGBUS, 0, "unknown 25" }, { do_bad, SIGBUS, 0, "unknown 26" }, { do_bad, SIGBUS, 0, "unknown 27" }, - { do_bad, SIGBUS, 0, "synchronous parity error (translation table walk" }, - { do_bad, SIGBUS, 0, "synchronous parity error (translation table walk" }, - { do_bad, SIGBUS, 0, "synchronous parity error (translation table walk" }, - { do_bad, SIGBUS, 0, "synchronous parity error (translation table walk" }, + { do_bad, SIGBUS, 0, "synchronous parity error (translation table walk)" }, + { do_bad, SIGBUS, 0, "synchronous parity error (translation table walk)" }, + { do_bad, SIGBUS, 0, "synchronous parity error (translation table walk)" }, + { do_bad, SIGBUS, 0, "synchronous parity error (translation table walk)" }, { do_bad, SIGBUS, 0, "unknown 32" }, { do_bad, SIGBUS, BUS_ADRALN, "alignment fault" }, - { do_bad, SIGBUS, 0, "debug event" }, + { do_bad, SIGBUS, 0, "unknown 34" }, { do_bad, SIGBUS, 0, "unknown 35" }, { do_bad, SIGBUS, 0, "unknown 36" }, { do_bad, SIGBUS, 0, "unknown 37" }, @@ -424,21 +433,21 @@ static struct fault_info { { do_bad, SIGBUS, 0, "unknown 45" }, { do_bad, SIGBUS, 0, "unknown 46" }, { do_bad, SIGBUS, 0, "unknown 47" }, - { do_bad, SIGBUS, 0, "unknown 48" }, + { do_bad, SIGBUS, 0, "TLB conflict abort" }, { do_bad, SIGBUS, 0, "unknown 49" }, { do_bad, SIGBUS, 0, "unknown 50" }, { do_bad, SIGBUS, 0, "unknown 51" }, { do_bad, SIGBUS, 0, "implementation fault (lockdown abort)" }, - { do_bad, SIGBUS, 0, "unknown 53" }, + { do_bad, SIGBUS, 0, "implementation fault (unsupported exclusive)" }, { do_bad, SIGBUS, 0, "unknown 54" }, { do_bad, SIGBUS, 0, "unknown 55" }, { do_bad, SIGBUS, 0, "unknown 56" }, { do_bad, SIGBUS, 0, "unknown 57" }, - { do_bad, SIGBUS, 0, "implementation fault (coprocessor abort)" }, + { do_bad, SIGBUS, 0, "unknown 58" }, { do_bad, SIGBUS, 0, "unknown 59" }, { do_bad, SIGBUS, 0, "unknown 60" }, - { do_bad, SIGBUS, 0, "unknown 61" }, - { do_bad, SIGBUS, 0, "unknown 62" }, + { do_bad, SIGBUS, 0, "section domain fault" }, + { do_bad, SIGBUS, 0, "page domain fault" }, { do_bad, SIGBUS, 0, "unknown 63" }, }; @@ -478,22 +487,37 @@ asmlinkage void __exception do_sp_pc_abort(unsigned long addr, struct pt_regs *regs) { struct siginfo info; + struct task_struct *tsk = current; + + if (show_unhandled_signals && unhandled_signal(tsk, SIGBUS)) + pr_info_ratelimited("%s[%d]: %s exception: pc=%p sp=%p\n", + tsk->comm, task_pid_nr(tsk), + esr_get_class_string(esr), (void *)regs->pc, + (void *)regs->sp); info.si_signo = SIGBUS; info.si_errno = 0; info.si_code = BUS_ADRALN; info.si_addr = (void __user *)addr; - arm64_notify_die("", regs, &info, esr); + arm64_notify_die("Oops - SP/PC alignment exception", regs, &info, esr); } -static struct fault_info debug_fault_info[] = { +int __init early_brk64(unsigned long addr, unsigned int esr, + struct pt_regs *regs); + +/* + * __refdata because early_brk64 is __init, but the reference to it is + * clobbered at arch_initcall time. + * See traps.c and debug-monitors.c:debug_traps_init(). + */ +static struct fault_info __refdata debug_fault_info[] = { { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" }, { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" }, { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" }, { do_bad, SIGBUS, 0, "unknown 3" }, { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" }, { do_bad, SIGTRAP, 0, "aarch32 vector catch" }, - { do_bad, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" }, + { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" }, { do_bad, SIGBUS, 0, "unknown 7" }, }; @@ -530,3 +554,10 @@ asmlinkage int __exception do_debug_exception(unsigned long addr, return 0; } + +#ifdef CONFIG_ARM64_PAN +void cpu_enable_pan(void *__unused) +{ + config_sctlr_el1(SCTLR_EL1_SPAN, 0); +} +#endif /* CONFIG_ARM64_PAN */ diff --git a/kernel/arch/arm64/mm/flush.c b/kernel/arch/arm64/mm/flush.c index b6f14e8d2..c26b80401 100644 --- a/kernel/arch/arm64/mm/flush.c +++ b/kernel/arch/arm64/mm/flush.c @@ -60,14 +60,10 @@ void copy_to_user_page(struct vm_area_struct *vma, struct page *page, unsigned long uaddr, void *dst, const void *src, unsigned long len) { -#ifdef CONFIG_SMP preempt_disable(); -#endif memcpy(dst, src, len); flush_ptrace_access(vma, page, uaddr, dst, len); -#ifdef CONFIG_SMP preempt_enable(); -#endif } void __sync_icache_dcache(pte_t pte, unsigned long addr) @@ -102,7 +98,6 @@ EXPORT_SYMBOL(flush_dcache_page); /* * Additional functions defined in assembly. */ -EXPORT_SYMBOL(flush_cache_all); EXPORT_SYMBOL(flush_icache_range); #ifdef CONFIG_TRANSPARENT_HUGEPAGE diff --git a/kernel/arch/arm64/mm/hugetlbpage.c b/kernel/arch/arm64/mm/hugetlbpage.c index 0eeb4f093..383b03ff3 100644 --- a/kernel/arch/arm64/mm/hugetlbpage.c +++ b/kernel/arch/arm64/mm/hugetlbpage.c @@ -13,10 +13,6 @@ * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/init.h> @@ -31,13 +27,6 @@ #include <asm/tlbflush.h> #include <asm/pgalloc.h> -#ifndef CONFIG_ARCH_WANT_HUGE_PMD_SHARE -int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) -{ - return 0; -} -#endif - int pmd_huge(pmd_t pmd) { return pmd_val(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT); diff --git a/kernel/arch/arm64/mm/init.c b/kernel/arch/arm64/mm/init.c index ad87ce826..4cb98aa8c 100644 --- a/kernel/arch/arm64/mm/init.c +++ b/kernel/arch/arm64/mm/init.c @@ -86,10 +86,10 @@ static void __init zone_sizes_init(unsigned long min, unsigned long max) memset(zone_size, 0, sizeof(zone_size)); /* 4GB maximum for 32-bit only capable devices */ - if (IS_ENABLED(CONFIG_ZONE_DMA)) { - max_dma = PFN_DOWN(arm64_dma_phys_limit); - zone_size[ZONE_DMA] = max_dma - min; - } +#ifdef CONFIG_ZONE_DMA + max_dma = PFN_DOWN(arm64_dma_phys_limit); + zone_size[ZONE_DMA] = max_dma - min; +#endif zone_size[ZONE_NORMAL] = max - max_dma; memcpy(zhole_size, zone_size, sizeof(zhole_size)); @@ -101,11 +101,12 @@ static void __init zone_sizes_init(unsigned long min, unsigned long max) if (start >= max) continue; - if (IS_ENABLED(CONFIG_ZONE_DMA) && start < max_dma) { +#ifdef CONFIG_ZONE_DMA + if (start < max_dma) { unsigned long dma_end = min(end, max_dma); zhole_size[ZONE_DMA] -= dma_end - start; } - +#endif if (end > max_dma) { unsigned long normal_end = min(end, max); unsigned long normal_start = max(start, max_dma); @@ -298,6 +299,9 @@ void __init mem_init(void) #define MLK_ROUNDUP(b, t) b, t, DIV_ROUND_UP(((t) - (b)), SZ_1K) pr_notice("Virtual kernel memory layout:\n" +#ifdef CONFIG_KASAN + " kasan : 0x%16lx - 0x%16lx (%6ld GB)\n" +#endif " vmalloc : 0x%16lx - 0x%16lx (%6ld GB)\n" #ifdef CONFIG_SPARSEMEM_VMEMMAP " vmemmap : 0x%16lx - 0x%16lx (%6ld GB maximum)\n" @@ -310,10 +314,13 @@ void __init mem_init(void) " .init : 0x%p" " - 0x%p" " (%6ld KB)\n" " .text : 0x%p" " - 0x%p" " (%6ld KB)\n" " .data : 0x%p" " - 0x%p" " (%6ld KB)\n", +#ifdef CONFIG_KASAN + MLG(KASAN_SHADOW_START, KASAN_SHADOW_END), +#endif MLG(VMALLOC_START, VMALLOC_END), #ifdef CONFIG_SPARSEMEM_VMEMMAP - MLG((unsigned long)vmemmap, - (unsigned long)vmemmap + VMEMMAP_SIZE), + MLG(VMEMMAP_START, + VMEMMAP_START + VMEMMAP_SIZE), MLM((unsigned long)virt_to_page(PAGE_OFFSET), (unsigned long)virt_to_page(high_memory)), #endif @@ -358,9 +365,9 @@ void free_initmem(void) #ifdef CONFIG_BLK_DEV_INITRD -static int keep_initrd; +static int keep_initrd __initdata; -void free_initrd_mem(unsigned long start, unsigned long end) +void __init free_initrd_mem(unsigned long start, unsigned long end) { if (!keep_initrd) free_reserved_area((void *)start, (void *)end, 0, "initrd"); diff --git a/kernel/arch/arm64/mm/kasan_init.c b/kernel/arch/arm64/mm/kasan_init.c new file mode 100644 index 000000000..cf038c7d9 --- /dev/null +++ b/kernel/arch/arm64/mm/kasan_init.c @@ -0,0 +1,165 @@ +/* + * This file contains kasan initialization code for ARM64. + * + * Copyright (c) 2015 Samsung Electronics Co., Ltd. + * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ + +#define pr_fmt(fmt) "kasan: " fmt +#include <linux/kasan.h> +#include <linux/kernel.h> +#include <linux/memblock.h> +#include <linux/start_kernel.h> + +#include <asm/page.h> +#include <asm/pgalloc.h> +#include <asm/pgtable.h> +#include <asm/tlbflush.h> + +static pgd_t tmp_pg_dir[PTRS_PER_PGD] __initdata __aligned(PGD_SIZE); + +static void __init kasan_early_pte_populate(pmd_t *pmd, unsigned long addr, + unsigned long end) +{ + pte_t *pte; + unsigned long next; + + if (pmd_none(*pmd)) + pmd_populate_kernel(&init_mm, pmd, kasan_zero_pte); + + pte = pte_offset_kernel(pmd, addr); + do { + next = addr + PAGE_SIZE; + set_pte(pte, pfn_pte(virt_to_pfn(kasan_zero_page), + PAGE_KERNEL)); + } while (pte++, addr = next, addr != end && pte_none(*pte)); +} + +static void __init kasan_early_pmd_populate(pud_t *pud, + unsigned long addr, + unsigned long end) +{ + pmd_t *pmd; + unsigned long next; + + if (pud_none(*pud)) + pud_populate(&init_mm, pud, kasan_zero_pmd); + + pmd = pmd_offset(pud, addr); + do { + next = pmd_addr_end(addr, end); + kasan_early_pte_populate(pmd, addr, next); + } while (pmd++, addr = next, addr != end && pmd_none(*pmd)); +} + +static void __init kasan_early_pud_populate(pgd_t *pgd, + unsigned long addr, + unsigned long end) +{ + pud_t *pud; + unsigned long next; + + if (pgd_none(*pgd)) + pgd_populate(&init_mm, pgd, kasan_zero_pud); + + pud = pud_offset(pgd, addr); + do { + next = pud_addr_end(addr, end); + kasan_early_pmd_populate(pud, addr, next); + } while (pud++, addr = next, addr != end && pud_none(*pud)); +} + +static void __init kasan_map_early_shadow(void) +{ + unsigned long addr = KASAN_SHADOW_START; + unsigned long end = KASAN_SHADOW_END; + unsigned long next; + pgd_t *pgd; + + pgd = pgd_offset_k(addr); + do { + next = pgd_addr_end(addr, end); + kasan_early_pud_populate(pgd, addr, next); + } while (pgd++, addr = next, addr != end); +} + +asmlinkage void __init kasan_early_init(void) +{ + BUILD_BUG_ON(KASAN_SHADOW_OFFSET != KASAN_SHADOW_END - (1UL << 61)); + BUILD_BUG_ON(!IS_ALIGNED(KASAN_SHADOW_START, PGDIR_SIZE)); + BUILD_BUG_ON(!IS_ALIGNED(KASAN_SHADOW_END, PGDIR_SIZE)); + kasan_map_early_shadow(); +} + +static void __init clear_pgds(unsigned long start, + unsigned long end) +{ + /* + * Remove references to kasan page tables from + * swapper_pg_dir. pgd_clear() can't be used + * here because it's nop on 2,3-level pagetable setups + */ + for (; start < end; start += PGDIR_SIZE) + set_pgd(pgd_offset_k(start), __pgd(0)); +} + +static void __init cpu_set_ttbr1(unsigned long ttbr1) +{ + asm( + " msr ttbr1_el1, %0\n" + " isb" + : + : "r" (ttbr1)); +} + +void __init kasan_init(void) +{ + struct memblock_region *reg; + + /* + * We are going to perform proper setup of shadow memory. + * At first we should unmap early shadow (clear_pgds() call bellow). + * However, instrumented code couldn't execute without shadow memory. + * tmp_pg_dir used to keep early shadow mapped until full shadow + * setup will be finished. + */ + memcpy(tmp_pg_dir, swapper_pg_dir, sizeof(tmp_pg_dir)); + cpu_set_ttbr1(__pa(tmp_pg_dir)); + flush_tlb_all(); + + clear_pgds(KASAN_SHADOW_START, KASAN_SHADOW_END); + + kasan_populate_zero_shadow((void *)KASAN_SHADOW_START, + kasan_mem_to_shadow((void *)MODULES_VADDR)); + + for_each_memblock(memory, reg) { + void *start = (void *)__phys_to_virt(reg->base); + void *end = (void *)__phys_to_virt(reg->base + reg->size); + + if (start >= end) + break; + + /* + * end + 1 here is intentional. We check several shadow bytes in + * advance to slightly speed up fastpath. In some rare cases + * we could cross boundary of mapped shadow, so we just map + * some more here. + */ + vmemmap_populate((unsigned long)kasan_mem_to_shadow(start), + (unsigned long)kasan_mem_to_shadow(end) + 1, + pfn_to_nid(virt_to_pfn(start))); + } + + memset(kasan_zero_page, 0, PAGE_SIZE); + cpu_set_ttbr1(__pa(swapper_pg_dir)); + flush_tlb_all(); + + /* At this point kasan is fully initialized. Enable error messages */ + init_task.kasan_depth = 0; + pr_info("KernelAddressSanitizer initialized\n"); +} diff --git a/kernel/arch/arm64/mm/mmu.c b/kernel/arch/arm64/mm/mmu.c index 5b8b66442..116ad654d 100644 --- a/kernel/arch/arm64/mm/mmu.c +++ b/kernel/arch/arm64/mm/mmu.c @@ -21,6 +21,7 @@ #include <linux/kernel.h> #include <linux/errno.h> #include <linux/init.h> +#include <linux/libfdt.h> #include <linux/mman.h> #include <linux/nodemask.h> #include <linux/memblock.h> @@ -31,6 +32,7 @@ #include <asm/cputype.h> #include <asm/fixmap.h> +#include <asm/kernel-pgtable.h> #include <asm/sections.h> #include <asm/setup.h> #include <asm/sizes.h> @@ -62,8 +64,12 @@ EXPORT_SYMBOL(phys_mem_access_prot); static void __init *early_alloc(unsigned long sz) { - void *ptr = __va(memblock_alloc(sz, sz)); - BUG_ON(!ptr); + phys_addr_t phys; + void *ptr; + + phys = memblock_alloc(sz, sz); + BUG_ON(!phys); + ptr = __va(phys); memset(ptr, 0, sz); return ptr; } @@ -109,14 +115,14 @@ static void alloc_init_pte(pmd_t *pmd, unsigned long addr, } while (pte++, addr += PAGE_SIZE, addr != end); } -void split_pud(pud_t *old_pud, pmd_t *pmd) +static void split_pud(pud_t *old_pud, pmd_t *pmd) { unsigned long addr = pud_pfn(*old_pud) << PAGE_SHIFT; pgprot_t prot = __pgprot(pud_val(*old_pud) ^ addr); int i = 0; do { - set_pmd(pmd, __pmd(addr | prot)); + set_pmd(pmd, __pmd(addr | pgprot_val(prot))); addr += PMD_SIZE; } while (pmd++, i++, i < PTRS_PER_PMD); } @@ -266,7 +272,7 @@ static void *late_alloc(unsigned long size) return ptr; } -static void __ref create_mapping(phys_addr_t phys, unsigned long virt, +static void __init create_mapping(phys_addr_t phys, unsigned long virt, phys_addr_t size, pgprot_t prot) { if (virt < VMALLOC_START) { @@ -307,8 +313,8 @@ static void __init __map_memblock(phys_addr_t start, phys_addr_t end) * for now. This will get more fine grained later once all memory * is mapped */ - unsigned long kernel_x_start = round_down(__pa(_stext), SECTION_SIZE); - unsigned long kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE); + unsigned long kernel_x_start = round_down(__pa(_stext), SWAPPER_BLOCK_SIZE); + unsigned long kernel_x_end = round_up(__pa(__init_end), SWAPPER_BLOCK_SIZE); if (end < kernel_x_start) { create_mapping(start, __phys_to_virt(start), @@ -352,14 +358,11 @@ static void __init map_mem(void) * memory addressable from the initial direct kernel mapping. * * The initial direct kernel mapping, located at swapper_pg_dir, gives - * us PUD_SIZE (4K pages) or PMD_SIZE (64K pages) memory starting from - * PHYS_OFFSET (which must be aligned to 2MB as per - * Documentation/arm64/booting.txt). + * us PUD_SIZE (with SECTION maps) or PMD_SIZE (without SECTION maps, + * memory starting from PHYS_OFFSET (which must be aligned to 2MB as + * per Documentation/arm64/booting.txt). */ - if (IS_ENABLED(CONFIG_ARM64_64K_PAGES)) - limit = PHYS_OFFSET + PMD_SIZE; - else - limit = PHYS_OFFSET + PUD_SIZE; + limit = PHYS_OFFSET + SWAPPER_INIT_MAP_SIZE; memblock_set_current_limit(limit); /* map all the memory banks */ @@ -370,21 +373,24 @@ static void __init map_mem(void) if (start >= end) break; -#ifndef CONFIG_ARM64_64K_PAGES - /* - * For the first memory bank align the start address and - * current memblock limit to prevent create_mapping() from - * allocating pte page tables from unmapped memory. - * When 64K pages are enabled, the pte page table for the - * first PGDIR_SIZE is already present in swapper_pg_dir. - */ - if (start < limit) - start = ALIGN(start, PMD_SIZE); - if (end < limit) { - limit = end & PMD_MASK; - memblock_set_current_limit(limit); + if (ARM64_SWAPPER_USES_SECTION_MAPS) { + /* + * For the first memory bank align the start address and + * current memblock limit to prevent create_mapping() from + * allocating pte page tables from unmapped memory. With + * the section maps, if the first block doesn't end on section + * size boundary, create_mapping() will try to allocate a pte + * page, which may be returned from an unmapped area. + * When section maps are not used, the pte page table for the + * current limit is already present in swapper_pg_dir. + */ + if (start < limit) + start = ALIGN(start, SECTION_SIZE); + if (end < limit) { + limit = end & SECTION_MASK; + memblock_set_current_limit(limit); + } } -#endif __map_memblock(start, end); } @@ -392,22 +398,22 @@ static void __init map_mem(void) memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE); } -void __init fixup_executable(void) +static void __init fixup_executable(void) { #ifdef CONFIG_DEBUG_RODATA /* now that we are actually fully mapped, make the start/end more fine grained */ - if (!IS_ALIGNED((unsigned long)_stext, SECTION_SIZE)) { + if (!IS_ALIGNED((unsigned long)_stext, SWAPPER_BLOCK_SIZE)) { unsigned long aligned_start = round_down(__pa(_stext), - SECTION_SIZE); + SWAPPER_BLOCK_SIZE); create_mapping(aligned_start, __phys_to_virt(aligned_start), __pa(_stext) - aligned_start, PAGE_KERNEL); } - if (!IS_ALIGNED((unsigned long)__init_end, SECTION_SIZE)) { + if (!IS_ALIGNED((unsigned long)__init_end, SWAPPER_BLOCK_SIZE)) { unsigned long aligned_end = round_up(__pa(__init_end), - SECTION_SIZE); + SWAPPER_BLOCK_SIZE); create_mapping(__pa(__init_end), (unsigned long)__init_end, aligned_end - __pa(__init_end), PAGE_KERNEL); @@ -420,7 +426,7 @@ void mark_rodata_ro(void) { create_mapping_late(__pa(_stext), (unsigned long)_stext, (unsigned long)_etext - (unsigned long)_stext, - PAGE_KERNEL_EXEC | PTE_RDONLY); + PAGE_KERNEL_ROX); } #endif @@ -450,27 +456,19 @@ void __init paging_init(void) empty_zero_page = virt_to_page(zero_page); + /* Ensure the zero page is visible to the page table walker */ + dsb(ishst); + /* * TTBR0 is only used for the identity mapping at this stage. Make it * point to zero page to avoid speculatively fetching new entries. */ cpu_set_reserved_ttbr0(); - flush_tlb_all(); + local_flush_tlb_all(); cpu_set_default_tcr_t0sz(); } /* - * Enable the identity mapping to allow the MMU disabling. - */ -void setup_mm_for_reboot(void) -{ - cpu_set_reserved_ttbr0(); - flush_tlb_all(); - cpu_set_idmap_tcr_t0sz(); - cpu_switch_mm(idmap_pg_dir, &init_mm); -} - -/* * Check whether a kernel address is valid (derived from arch/x86/). */ int kern_addr_valid(unsigned long addr) @@ -508,12 +506,12 @@ int kern_addr_valid(unsigned long addr) return pfn_valid(pte_pfn(*pte)); } #ifdef CONFIG_SPARSEMEM_VMEMMAP -#ifdef CONFIG_ARM64_64K_PAGES +#if !ARM64_SWAPPER_USES_SECTION_MAPS int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node) { return vmemmap_populate_basepages(start, end, node); } -#else /* !CONFIG_ARM64_64K_PAGES */ +#else /* !ARM64_SWAPPER_USES_SECTION_MAPS */ int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node) { unsigned long addr = start; @@ -643,3 +641,59 @@ void __set_fixmap(enum fixed_addresses idx, flush_tlb_kernel_range(addr, addr+PAGE_SIZE); } } + +void *__init fixmap_remap_fdt(phys_addr_t dt_phys) +{ + const u64 dt_virt_base = __fix_to_virt(FIX_FDT); + pgprot_t prot = PAGE_KERNEL_RO; + int size, offset; + void *dt_virt; + + /* + * Check whether the physical FDT address is set and meets the minimum + * alignment requirement. Since we are relying on MIN_FDT_ALIGN to be + * at least 8 bytes so that we can always access the size field of the + * FDT header after mapping the first chunk, double check here if that + * is indeed the case. + */ + BUILD_BUG_ON(MIN_FDT_ALIGN < 8); + if (!dt_phys || dt_phys % MIN_FDT_ALIGN) + return NULL; + + /* + * Make sure that the FDT region can be mapped without the need to + * allocate additional translation table pages, so that it is safe + * to call create_mapping() this early. + * + * On 64k pages, the FDT will be mapped using PTEs, so we need to + * be in the same PMD as the rest of the fixmap. + * On 4k pages, we'll use section mappings for the FDT so we only + * have to be in the same PUD. + */ + BUILD_BUG_ON(dt_virt_base % SZ_2M); + + BUILD_BUG_ON(__fix_to_virt(FIX_FDT_END) >> SWAPPER_TABLE_SHIFT != + __fix_to_virt(FIX_BTMAP_BEGIN) >> SWAPPER_TABLE_SHIFT); + + offset = dt_phys % SWAPPER_BLOCK_SIZE; + dt_virt = (void *)dt_virt_base + offset; + + /* map the first chunk so we can read the size from the header */ + create_mapping(round_down(dt_phys, SWAPPER_BLOCK_SIZE), dt_virt_base, + SWAPPER_BLOCK_SIZE, prot); + + if (fdt_check_header(dt_virt) != 0) + return NULL; + + size = fdt_totalsize(dt_virt); + if (size > MAX_FDT_SIZE) + return NULL; + + if (offset + size > SWAPPER_BLOCK_SIZE) + create_mapping(round_down(dt_phys, SWAPPER_BLOCK_SIZE), dt_virt_base, + round_up(offset + size, SWAPPER_BLOCK_SIZE), prot); + + memblock_reserve(dt_phys, size); + + return dt_virt; +} diff --git a/kernel/arch/arm64/mm/pageattr.c b/kernel/arch/arm64/mm/pageattr.c index e47ed1c5d..cf6240741 100644 --- a/kernel/arch/arm64/mm/pageattr.c +++ b/kernel/arch/arm64/mm/pageattr.c @@ -45,7 +45,7 @@ static int change_memory_common(unsigned long addr, int numpages, int ret; struct page_change_data data; - if (!IS_ALIGNED(addr, PAGE_SIZE)) { + if (!PAGE_ALIGNED(addr)) { start &= PAGE_MASK; end = start + size; WARN_ON_ONCE(1); @@ -57,6 +57,9 @@ static int change_memory_common(unsigned long addr, int numpages, if (end < MODULES_VADDR || end >= MODULES_END) return -EINVAL; + if (!numpages) + return 0; + data.set_mask = set_mask; data.clear_mask = clear_mask; diff --git a/kernel/arch/arm64/mm/pgd.c b/kernel/arch/arm64/mm/pgd.c index 71ca104f9..cb3ba1b81 100644 --- a/kernel/arch/arm64/mm/pgd.c +++ b/kernel/arch/arm64/mm/pgd.c @@ -28,8 +28,6 @@ #include "mm.h" -#define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t)) - static struct kmem_cache *pgd_cache; pgd_t *pgd_alloc(struct mm_struct *mm) diff --git a/kernel/arch/arm64/mm/proc-macros.S b/kernel/arch/arm64/mm/proc-macros.S index 4c4d93c4b..d69dffffa 100644 --- a/kernel/arch/arm64/mm/proc-macros.S +++ b/kernel/arch/arm64/mm/proc-macros.S @@ -62,3 +62,15 @@ bfi \valreg, \tmpreg, #TCR_T0SZ_OFFSET, #TCR_TxSZ_WIDTH #endif .endm + +/* + * reset_pmuserenr_el0 - reset PMUSERENR_EL0 if PMUv3 present + */ + .macro reset_pmuserenr_el0, tmpreg + mrs \tmpreg, id_aa64dfr0_el1 // Check ID_AA64DFR0_EL1 PMUVer + sbfx \tmpreg, \tmpreg, #8, #4 + cmp \tmpreg, #1 // Skip if no PMU present + b.lt 9000f + msr pmuserenr_el0, xzr // Disable PMU access from EL0 +9000: + .endm diff --git a/kernel/arch/arm64/mm/proc.S b/kernel/arch/arm64/mm/proc.S index cdd754e19..b8f04b3f2 100644 --- a/kernel/arch/arm64/mm/proc.S +++ b/kernel/arch/arm64/mm/proc.S @@ -30,15 +30,13 @@ #ifdef CONFIG_ARM64_64K_PAGES #define TCR_TG_FLAGS TCR_TG0_64K | TCR_TG1_64K -#else +#elif defined(CONFIG_ARM64_16K_PAGES) +#define TCR_TG_FLAGS TCR_TG0_16K | TCR_TG1_16K +#else /* CONFIG_ARM64_4K_PAGES */ #define TCR_TG_FLAGS TCR_TG0_4K | TCR_TG1_4K #endif -#ifdef CONFIG_SMP #define TCR_SMP_FLAGS TCR_SHARED -#else -#define TCR_SMP_FLAGS 0 -#endif /* PTWs cacheable, inner/outer WBWA */ #define TCR_CACHE_FLAGS TCR_IRGN_WBWA | TCR_ORGN_WBWA @@ -46,52 +44,6 @@ #define MAIR(attr, mt) ((attr) << ((mt) * 8)) /* - * cpu_cache_off() - * - * Turn the CPU D-cache off. - */ -ENTRY(cpu_cache_off) - mrs x0, sctlr_el1 - bic x0, x0, #1 << 2 // clear SCTLR.C - msr sctlr_el1, x0 - isb - ret -ENDPROC(cpu_cache_off) - -/* - * cpu_reset(loc) - * - * Perform a soft reset of the system. Put the CPU into the same state - * as it would be if it had been reset, and branch to what would be the - * reset vector. It must be executed with the flat identity mapping. - * - * - loc - location to jump to for soft reset - */ - .align 5 -ENTRY(cpu_reset) - mrs x1, sctlr_el1 - bic x1, x1, #1 - msr sctlr_el1, x1 // disable the MMU - isb - ret x0 -ENDPROC(cpu_reset) - -ENTRY(cpu_soft_restart) - /* Save address of cpu_reset() and reset address */ - mov x19, x0 - mov x20, x1 - - /* Turn D-cache off */ - bl cpu_cache_off - - /* Push out all dirty data, and ensure cache is empty */ - bl flush_cache_all - - mov x0, x20 - ret x19 -ENDPROC(cpu_soft_restart) - -/* * cpu_do_idle() * * Idle the processor (wait for interrupt). @@ -165,6 +117,7 @@ ENTRY(cpu_do_resume) */ ubfx x11, x11, #1, #1 msr oslar_el1, x11 + reset_pmuserenr_el0 x0 // Disable PMU access from EL0 mov x0, x12 dsb nsh // Make sure local tlb invalidation completed isb @@ -180,7 +133,7 @@ ENDPROC(cpu_do_resume) * - pgd_phys - physical address of new TTB */ ENTRY(cpu_do_switch_mm) - mmid w1, x1 // get mm->context.id + mmid x1, x1 // get mm->context.id bfi x0, x1, #48, #16 // set the ASID msr ttbr0_el1, x0 // set TTBR0 isb @@ -196,13 +149,14 @@ ENDPROC(cpu_do_switch_mm) * value of the SCTLR_EL1 register. */ ENTRY(__cpu_setup) - ic iallu // I+BTB cache invalidate - tlbi vmalle1is // invalidate I + D TLBs - dsb ish + tlbi vmalle1 // Invalidate local TLB + dsb nsh mov x0, #3 << 20 msr cpacr_el1, x0 // Enable FP/ASIMD - msr mdscr_el1, xzr // Reset mdscr_el1 + mov x0, #1 << 12 // Reset mdscr_el1 and disable + msr mdscr_el1, x0 // access to the DCC from EL0 + reset_pmuserenr_el0 x0 // Disable PMU access from EL0 /* * Memory region attributes for LPAE: * @@ -213,12 +167,14 @@ ENTRY(__cpu_setup) * DEVICE_GRE 010 00001100 * NORMAL_NC 011 01000100 * NORMAL 100 11111111 + * NORMAL_WT 101 10111011 */ ldr x5, =MAIR(0x00, MT_DEVICE_nGnRnE) | \ MAIR(0x04, MT_DEVICE_nGnRE) | \ MAIR(0x0c, MT_DEVICE_GRE) | \ MAIR(0x44, MT_NORMAL_NC) | \ - MAIR(0xff, MT_NORMAL) + MAIR(0xff, MT_NORMAL) | \ + MAIR(0xbb, MT_NORMAL_WT) msr mair_el1, x5 /* * Prepare SCTLR @@ -242,6 +198,19 @@ ENTRY(__cpu_setup) */ mrs x9, ID_AA64MMFR0_EL1 bfi x10, x9, #32, #3 +#ifdef CONFIG_ARM64_HW_AFDBM + /* + * Hardware update of the Access and Dirty bits. + */ + mrs x9, ID_AA64MMFR1_EL1 + and x9, x9, #0xf + cbz x9, 2f + cmp x9, #2 + b.lt 1f + orr x10, x10, #TCR_HD // hardware Dirty flag update +1: orr x10, x10, #TCR_HA // hardware Access flag update +2: +#endif /* CONFIG_ARM64_HW_AFDBM */ msr tcr_el1, x10 ret // return to head.S ENDPROC(__cpu_setup) |