diff options
author | Yunhong Jiang <yunhong.jiang@intel.com> | 2015-08-04 12:17:53 -0700 |
---|---|---|
committer | Yunhong Jiang <yunhong.jiang@intel.com> | 2015-08-04 15:44:42 -0700 |
commit | 9ca8dbcc65cfc63d6f5ef3312a33184e1d726e00 (patch) | |
tree | 1c9cafbcd35f783a87880a10f85d1a060db1a563 /kernel/arch/arc/include/asm/mmu_context.h | |
parent | 98260f3884f4a202f9ca5eabed40b1354c489b29 (diff) |
Add the rt linux 4.1.3-rt3 as base
Import the rt linux 4.1.3-rt3 as OPNFV kvm base.
It's from git://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-rt-devel.git linux-4.1.y-rt and
the base is:
commit 0917f823c59692d751951bf5ea699a2d1e2f26a2
Author: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Date: Sat Jul 25 12:13:34 2015 +0200
Prepare v4.1.3-rt3
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
We lose all the git history this way and it's not good. We
should apply another opnfv project repo in future.
Change-Id: I87543d81c9df70d99c5001fbdf646b202c19f423
Signed-off-by: Yunhong Jiang <yunhong.jiang@intel.com>
Diffstat (limited to 'kernel/arch/arc/include/asm/mmu_context.h')
-rw-r--r-- | kernel/arch/arc/include/asm/mmu_context.h | 177 |
1 files changed, 177 insertions, 0 deletions
diff --git a/kernel/arch/arc/include/asm/mmu_context.h b/kernel/arch/arc/include/asm/mmu_context.h new file mode 100644 index 000000000..1fd467ef6 --- /dev/null +++ b/kernel/arch/arc/include/asm/mmu_context.h @@ -0,0 +1,177 @@ +/* + * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * vineetg: May 2011 + * -Refactored get_new_mmu_context( ) to only handle live-mm. + * retiring-mm handled in other hooks + * + * Vineetg: March 25th, 2008: Bug #92690 + * -Major rewrite of Core ASID allocation routine get_new_mmu_context + * + * Amit Bhor, Sameer Dhavale: Codito Technologies 2004 + */ + +#ifndef _ASM_ARC_MMU_CONTEXT_H +#define _ASM_ARC_MMU_CONTEXT_H + +#include <asm/arcregs.h> +#include <asm/tlb.h> + +#include <asm-generic/mm_hooks.h> + +/* ARC700 ASID Management + * + * ARC MMU provides 8-bit ASID (0..255) to TAG TLB entries, allowing entries + * with same vaddr (different tasks) to co-exit. This provides for + * "Fast Context Switch" i.e. no TLB flush on ctxt-switch + * + * Linux assigns each task a unique ASID. A simple round-robin allocation + * of H/w ASID is done using software tracker @asid_cpu. + * When it reaches max 255, the allocation cycle starts afresh by flushing + * the entire TLB and wrapping ASID back to zero. + * + * A new allocation cycle, post rollover, could potentially reassign an ASID + * to a different task. Thus the rule is to refresh the ASID in a new cycle. + * The 32 bit @asid_cpu (and mm->asid) have 8 bits MMU PID and rest 24 bits + * serve as cycle/generation indicator and natural 32 bit unsigned math + * automagically increments the generation when lower 8 bits rollover. + */ + +#define MM_CTXT_ASID_MASK 0x000000ff /* MMU PID reg :8 bit PID */ +#define MM_CTXT_CYCLE_MASK (~MM_CTXT_ASID_MASK) + +#define MM_CTXT_FIRST_CYCLE (MM_CTXT_ASID_MASK + 1) +#define MM_CTXT_NO_ASID 0UL + +#define asid_mm(mm, cpu) mm->context.asid[cpu] +#define hw_pid(mm, cpu) (asid_mm(mm, cpu) & MM_CTXT_ASID_MASK) + +DECLARE_PER_CPU(unsigned int, asid_cache); +#define asid_cpu(cpu) per_cpu(asid_cache, cpu) + +/* + * Get a new ASID if task doesn't have a valid one (unalloc or from prev cycle) + * Also set the MMU PID register to existing/updated ASID + */ +static inline void get_new_mmu_context(struct mm_struct *mm) +{ + const unsigned int cpu = smp_processor_id(); + unsigned long flags; + + local_irq_save(flags); + + /* + * Move to new ASID if it was not from current alloc-cycle/generation. + * This is done by ensuring that the generation bits in both mm->ASID + * and cpu's ASID counter are exactly same. + * + * Note: Callers needing new ASID unconditionally, independent of + * generation, e.g. local_flush_tlb_mm() for forking parent, + * first need to destroy the context, setting it to invalid + * value. + */ + if (!((asid_mm(mm, cpu) ^ asid_cpu(cpu)) & MM_CTXT_CYCLE_MASK)) + goto set_hw; + + /* move to new ASID and handle rollover */ + if (unlikely(!(++asid_cpu(cpu) & MM_CTXT_ASID_MASK))) { + + local_flush_tlb_all(); + + /* + * Above checke for rollover of 8 bit ASID in 32 bit container. + * If the container itself wrapped around, set it to a non zero + * "generation" to distinguish from no context + */ + if (!asid_cpu(cpu)) + asid_cpu(cpu) = MM_CTXT_FIRST_CYCLE; + } + + /* Assign new ASID to tsk */ + asid_mm(mm, cpu) = asid_cpu(cpu); + +set_hw: + write_aux_reg(ARC_REG_PID, hw_pid(mm, cpu) | MMU_ENABLE); + + local_irq_restore(flags); +} + +/* + * Initialize the context related info for a new mm_struct + * instance. + */ +static inline int +init_new_context(struct task_struct *tsk, struct mm_struct *mm) +{ + int i; + + for_each_possible_cpu(i) + asid_mm(mm, i) = MM_CTXT_NO_ASID; + + return 0; +} + +static inline void destroy_context(struct mm_struct *mm) +{ + unsigned long flags; + + /* Needed to elide CONFIG_DEBUG_PREEMPT warning */ + local_irq_save(flags); + asid_mm(mm, smp_processor_id()) = MM_CTXT_NO_ASID; + local_irq_restore(flags); +} + +/* Prepare the MMU for task: setup PID reg with allocated ASID + If task doesn't have an ASID (never alloc or stolen, get a new ASID) +*/ +static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next, + struct task_struct *tsk) +{ + const int cpu = smp_processor_id(); + + /* + * Note that the mm_cpumask is "aggregating" only, we don't clear it + * for the switched-out task, unlike some other arches. + * It is used to enlist cpus for sending TLB flush IPIs and not sending + * it to CPUs where a task once ran-on, could cause stale TLB entry + * re-use, specially for a multi-threaded task. + * e.g. T1 runs on C1, migrates to C3. T2 running on C2 munmaps. + * For a non-aggregating mm_cpumask, IPI not sent C1, and if T1 + * were to re-migrate to C1, it could access the unmapped region + * via any existing stale TLB entries. + */ + cpumask_set_cpu(cpu, mm_cpumask(next)); + +#ifndef CONFIG_SMP + /* PGD cached in MMU reg to avoid 3 mem lookups: task->mm->pgd */ + write_aux_reg(ARC_REG_SCRATCH_DATA0, next->pgd); +#endif + + get_new_mmu_context(next); +} + +/* + * Called at the time of execve() to get a new ASID + * Note the subtlety here: get_new_mmu_context() behaves differently here + * vs. in switch_mm(). Here it always returns a new ASID, because mm has + * an unallocated "initial" value, while in latter, it moves to a new ASID, + * only if it was unallocated + */ +#define activate_mm(prev, next) switch_mm(prev, next, NULL) + +/* it seemed that deactivate_mm( ) is a reasonable place to do book-keeping + * for retiring-mm. However destroy_context( ) still needs to do that because + * between mm_release( ) = >deactive_mm( ) and + * mmput => .. => __mmdrop( ) => destroy_context( ) + * there is a good chance that task gets sched-out/in, making it's ASID valid + * again (this teased me for a whole day). + */ +#define deactivate_mm(tsk, mm) do { } while (0) + +#define enter_lazy_tlb(mm, tsk) + +#endif /* __ASM_ARC_MMU_CONTEXT_H */ |