diff options
author | José Pekkarinen <jose.pekkarinen@nokia.com> | 2016-04-11 10:41:07 +0300 |
---|---|---|
committer | José Pekkarinen <jose.pekkarinen@nokia.com> | 2016-04-13 08:17:18 +0300 |
commit | e09b41010ba33a20a87472ee821fa407a5b8da36 (patch) | |
tree | d10dc367189862e7ca5c592f033dc3726e1df4e3 /kernel/Documentation/virtual/kvm/arm | |
parent | f93b97fd65072de626c074dbe099a1fff05ce060 (diff) |
These changes are the raw update to linux-4.4.6-rt14. Kernel sources
are taken from kernel.org, and rt patch from the rt wiki download page.
During the rebasing, the following patch collided:
Force tick interrupt and get rid of softirq magic(I70131fb85).
Collisions have been removed because its logic was found on the
source already.
Change-Id: I7f57a4081d9deaa0d9ccfc41a6c8daccdee3b769
Signed-off-by: José Pekkarinen <jose.pekkarinen@nokia.com>
Diffstat (limited to 'kernel/Documentation/virtual/kvm/arm')
-rw-r--r-- | kernel/Documentation/virtual/kvm/arm/vgic-mapped-irqs.txt | 187 |
1 files changed, 187 insertions, 0 deletions
diff --git a/kernel/Documentation/virtual/kvm/arm/vgic-mapped-irqs.txt b/kernel/Documentation/virtual/kvm/arm/vgic-mapped-irqs.txt new file mode 100644 index 000000000..38bca2835 --- /dev/null +++ b/kernel/Documentation/virtual/kvm/arm/vgic-mapped-irqs.txt @@ -0,0 +1,187 @@ +KVM/ARM VGIC Forwarded Physical Interrupts +========================================== + +The KVM/ARM code implements software support for the ARM Generic +Interrupt Controller's (GIC's) hardware support for virtualization by +allowing software to inject virtual interrupts to a VM, which the guest +OS sees as regular interrupts. The code is famously known as the VGIC. + +Some of these virtual interrupts, however, correspond to physical +interrupts from real physical devices. One example could be the +architected timer, which itself supports virtualization, and therefore +lets a guest OS program the hardware device directly to raise an +interrupt at some point in time. When such an interrupt is raised, the +host OS initially handles the interrupt and must somehow signal this +event as a virtual interrupt to the guest. Another example could be a +passthrough device, where the physical interrupts are initially handled +by the host, but the device driver for the device lives in the guest OS +and KVM must therefore somehow inject a virtual interrupt on behalf of +the physical one to the guest OS. + +These virtual interrupts corresponding to a physical interrupt on the +host are called forwarded physical interrupts, but are also sometimes +referred to as 'virtualized physical interrupts' and 'mapped interrupts'. + +Forwarded physical interrupts are handled slightly differently compared +to virtual interrupts generated purely by a software emulated device. + + +The HW bit +---------- +Virtual interrupts are signalled to the guest by programming the List +Registers (LRs) on the GIC before running a VCPU. The LR is programmed +with the virtual IRQ number and the state of the interrupt (Pending, +Active, or Pending+Active). When the guest ACKs and EOIs a virtual +interrupt, the LR state moves from Pending to Active, and finally to +inactive. + +The LRs include an extra bit, called the HW bit. When this bit is set, +KVM must also program an additional field in the LR, the physical IRQ +number, to link the virtual with the physical IRQ. + +When the HW bit is set, KVM must EITHER set the Pending OR the Active +bit, never both at the same time. + +Setting the HW bit causes the hardware to deactivate the physical +interrupt on the physical distributor when the guest deactivates the +corresponding virtual interrupt. + + +Forwarded Physical Interrupts Life Cycle +---------------------------------------- + +The state of forwarded physical interrupts is managed in the following way: + + - The physical interrupt is acked by the host, and becomes active on + the physical distributor (*). + - KVM sets the LR.Pending bit, because this is the only way the GICV + interface is going to present it to the guest. + - LR.Pending will stay set as long as the guest has not acked the interrupt. + - LR.Pending transitions to LR.Active on the guest read of the IAR, as + expected. + - On guest EOI, the *physical distributor* active bit gets cleared, + but the LR.Active is left untouched (set). + - KVM clears the LR on VM exits when the physical distributor + active state has been cleared. + +(*): The host handling is slightly more complicated. For some forwarded +interrupts (shared), KVM directly sets the active state on the physical +distributor before entering the guest, because the interrupt is never actually +handled on the host (see details on the timer as an example below). For other +forwarded interrupts (non-shared) the host does not deactivate the interrupt +when the host ISR completes, but leaves the interrupt active until the guest +deactivates it. Leaving the interrupt active is allowed, because Linux +configures the physical GIC with EOIMode=1, which causes EOI operations to +perform a priority drop allowing the GIC to receive other interrupts of the +default priority. + + +Forwarded Edge and Level Triggered PPIs and SPIs +------------------------------------------------ +Forwarded physical interrupts injected should always be active on the +physical distributor when injected to a guest. + +Level-triggered interrupts will keep the interrupt line to the GIC +asserted, typically until the guest programs the device to deassert the +line. This means that the interrupt will remain pending on the physical +distributor until the guest has reprogrammed the device. Since we +always run the VM with interrupts enabled on the CPU, a pending +interrupt will exit the guest as soon as we switch into the guest, +preventing the guest from ever making progress as the process repeats +over and over. Therefore, the active state on the physical distributor +must be set when entering the guest, preventing the GIC from forwarding +the pending interrupt to the CPU. As soon as the guest deactivates the +interrupt, the physical line is sampled by the hardware again and the host +takes a new interrupt if and only if the physical line is still asserted. + +Edge-triggered interrupts do not exhibit the same problem with +preventing guest execution that level-triggered interrupts do. One +option is to not use HW bit at all, and inject edge-triggered interrupts +from a physical device as pure virtual interrupts. But that would +potentially slow down handling of the interrupt in the guest, because a +physical interrupt occurring in the middle of the guest ISR would +preempt the guest for the host to handle the interrupt. Additionally, +if you configure the system to handle interrupts on a separate physical +core from that running your VCPU, you still have to interrupt the VCPU +to queue the pending state onto the LR, even though the guest won't use +this information until the guest ISR completes. Therefore, the HW +bit should always be set for forwarded edge-triggered interrupts. With +the HW bit set, the virtual interrupt is injected and additional +physical interrupts occurring before the guest deactivates the interrupt +simply mark the state on the physical distributor as Pending+Active. As +soon as the guest deactivates the interrupt, the host takes another +interrupt if and only if there was a physical interrupt between injecting +the forwarded interrupt to the guest and the guest deactivating the +interrupt. + +Consequently, whenever we schedule a VCPU with one or more LRs with the +HW bit set, the interrupt must also be active on the physical +distributor. + + +Forwarded LPIs +-------------- +LPIs, introduced in GICv3, are always edge-triggered and do not have an +active state. They become pending when a device signal them, and as +soon as they are acked by the CPU, they are inactive again. + +It therefore doesn't make sense, and is not supported, to set the HW bit +for physical LPIs that are forwarded to a VM as virtual interrupts, +typically virtual SPIs. + +For LPIs, there is no other choice than to preempt the VCPU thread if +necessary, and queue the pending state onto the LR. + + +Putting It Together: The Architected Timer +------------------------------------------ +The architected timer is a device that signals interrupts with level +triggered semantics. The timer hardware is directly accessed by VCPUs +which program the timer to fire at some point in time. Each VCPU on a +system programs the timer to fire at different times, and therefore the +hardware is multiplexed between multiple VCPUs. This is implemented by +context-switching the timer state along with each VCPU thread. + +However, this means that a scenario like the following is entirely +possible, and in fact, typical: + +1. KVM runs the VCPU +2. The guest programs the time to fire in T+100 +3. The guest is idle and calls WFI (wait-for-interrupts) +4. The hardware traps to the host +5. KVM stores the timer state to memory and disables the hardware timer +6. KVM schedules a soft timer to fire in T+(100 - time since step 2) +7. KVM puts the VCPU thread to sleep (on a waitqueue) +8. The soft timer fires, waking up the VCPU thread +9. KVM reprograms the timer hardware with the VCPU's values +10. KVM marks the timer interrupt as active on the physical distributor +11. KVM injects a forwarded physical interrupt to the guest +12. KVM runs the VCPU + +Notice that KVM injects a forwarded physical interrupt in step 11 without +the corresponding interrupt having actually fired on the host. That is +exactly why we mark the timer interrupt as active in step 10, because +the active state on the physical distributor is part of the state +belonging to the timer hardware, which is context-switched along with +the VCPU thread. + +If the guest does not idle because it is busy, the flow looks like this +instead: + +1. KVM runs the VCPU +2. The guest programs the time to fire in T+100 +4. At T+100 the timer fires and a physical IRQ causes the VM to exit + (note that this initially only traps to EL2 and does not run the host ISR + until KVM has returned to the host). +5. With interrupts still disabled on the CPU coming back from the guest, KVM + stores the virtual timer state to memory and disables the virtual hw timer. +6. KVM looks at the timer state (in memory) and injects a forwarded physical + interrupt because it concludes the timer has expired. +7. KVM marks the timer interrupt as active on the physical distributor +7. KVM enables the timer, enables interrupts, and runs the VCPU + +Notice that again the forwarded physical interrupt is injected to the +guest without having actually been handled on the host. In this case it +is because the physical interrupt is never actually seen by the host because the +timer is disabled upon guest return, and the virtual forwarded interrupt is +injected on the KVM guest entry path. |