diff options
author | Yunhong Jiang <yunhong.jiang@intel.com> | 2015-08-04 12:17:53 -0700 |
---|---|---|
committer | Yunhong Jiang <yunhong.jiang@intel.com> | 2015-08-04 15:44:42 -0700 |
commit | 9ca8dbcc65cfc63d6f5ef3312a33184e1d726e00 (patch) | |
tree | 1c9cafbcd35f783a87880a10f85d1a060db1a563 /kernel/Documentation/spi | |
parent | 98260f3884f4a202f9ca5eabed40b1354c489b29 (diff) |
Add the rt linux 4.1.3-rt3 as base
Import the rt linux 4.1.3-rt3 as OPNFV kvm base.
It's from git://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-rt-devel.git linux-4.1.y-rt and
the base is:
commit 0917f823c59692d751951bf5ea699a2d1e2f26a2
Author: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Date: Sat Jul 25 12:13:34 2015 +0200
Prepare v4.1.3-rt3
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
We lose all the git history this way and it's not good. We
should apply another opnfv project repo in future.
Change-Id: I87543d81c9df70d99c5001fbdf646b202c19f423
Signed-off-by: Yunhong Jiang <yunhong.jiang@intel.com>
Diffstat (limited to 'kernel/Documentation/spi')
-rw-r--r-- | kernel/Documentation/spi/.gitignore | 2 | ||||
-rw-r--r-- | kernel/Documentation/spi/00-INDEX | 22 | ||||
-rw-r--r-- | kernel/Documentation/spi/Makefile | 8 | ||||
-rw-r--r-- | kernel/Documentation/spi/butterfly | 68 | ||||
-rw-r--r-- | kernel/Documentation/spi/ep93xx_spi | 105 | ||||
-rw-r--r-- | kernel/Documentation/spi/pxa2xx | 241 | ||||
-rw-r--r-- | kernel/Documentation/spi/spi-lm70llp | 79 | ||||
-rw-r--r-- | kernel/Documentation/spi/spi-sc18is602 | 36 | ||||
-rw-r--r-- | kernel/Documentation/spi/spi-summary | 612 | ||||
-rw-r--r-- | kernel/Documentation/spi/spidev | 149 | ||||
-rw-r--r-- | kernel/Documentation/spi/spidev_fdx.c | 158 | ||||
-rw-r--r-- | kernel/Documentation/spi/spidev_test.c | 318 |
12 files changed, 1798 insertions, 0 deletions
diff --git a/kernel/Documentation/spi/.gitignore b/kernel/Documentation/spi/.gitignore new file mode 100644 index 000000000..428057639 --- /dev/null +++ b/kernel/Documentation/spi/.gitignore @@ -0,0 +1,2 @@ +spidev_fdx +spidev_test diff --git a/kernel/Documentation/spi/00-INDEX b/kernel/Documentation/spi/00-INDEX new file mode 100644 index 000000000..a128fa835 --- /dev/null +++ b/kernel/Documentation/spi/00-INDEX @@ -0,0 +1,22 @@ +00-INDEX + - this file. +Makefile + - Makefile for the example sourcefiles. +butterfly + - AVR Butterfly SPI driver overview and pin configuration. +ep93xx_spi + - Basic EP93xx SPI driver configuration. +pxa2xx + - PXA2xx SPI master controller build by spi_message fifo wq +spidev + - Intro to the userspace API for spi devices +spidev_fdx.c + - spidev example file +spi-lm70llp + - Connecting an LM70-LLP sensor to the kernel via the SPI subsys. +spi-sc18is602 + - NXP SC18IS602/603 I2C-bus to SPI bridge +spi-summary + - (Linux) SPI overview. If unsure about SPI or SPI in Linux, start here. +spidev_test.c + - SPI testing utility. diff --git a/kernel/Documentation/spi/Makefile b/kernel/Documentation/spi/Makefile new file mode 100644 index 000000000..efa255813 --- /dev/null +++ b/kernel/Documentation/spi/Makefile @@ -0,0 +1,8 @@ +# List of programs to build +hostprogs-y := spidev_test spidev_fdx + +# Tell kbuild to always build the programs +always := $(hostprogs-y) + +HOSTCFLAGS_spidev_test.o += -I$(objtree)/usr/include +HOSTCFLAGS_spidev_fdx.o += -I$(objtree)/usr/include diff --git a/kernel/Documentation/spi/butterfly b/kernel/Documentation/spi/butterfly new file mode 100644 index 000000000..9927af7a6 --- /dev/null +++ b/kernel/Documentation/spi/butterfly @@ -0,0 +1,68 @@ +spi_butterfly - parport-to-butterfly adapter driver +=================================================== + +This is a hardware and software project that includes building and using +a parallel port adapter cable, together with an "AVR Butterfly" to run +firmware for user interfacing and/or sensors. A Butterfly is a $US20 +battery powered card with an AVR microcontroller and lots of goodies: +sensors, LCD, flash, toggle stick, and more. You can use AVR-GCC to +develop firmware for this, and flash it using this adapter cable. + +You can make this adapter from an old printer cable and solder things +directly to the Butterfly. Or (if you have the parts and skills) you +can come up with something fancier, providing ciruit protection to the +Butterfly and the printer port, or with a better power supply than two +signal pins from the printer port. Or for that matter, you can use +similar cables to talk to many AVR boards, even a breadboard. + +This is more powerful than "ISP programming" cables since it lets kernel +SPI protocol drivers interact with the AVR, and could even let the AVR +issue interrupts to them. Later, your protocol driver should work +easily with a "real SPI controller", instead of this bitbanger. + + +The first cable connections will hook Linux up to one SPI bus, with the +AVR and a DataFlash chip; and to the AVR reset line. This is all you +need to reflash the firmware, and the pins are the standard Atmel "ISP" +connector pins (used also on non-Butterfly AVR boards). On the parport +side this is like "sp12" programming cables. + + Signal Butterfly Parport (DB-25) + ------ --------- --------------- + SCK = J403.PB1/SCK = pin 2/D0 + RESET = J403.nRST = pin 3/D1 + VCC = J403.VCC_EXT = pin 8/D6 + MOSI = J403.PB2/MOSI = pin 9/D7 + MISO = J403.PB3/MISO = pin 11/S7,nBUSY + GND = J403.GND = pin 23/GND + +Then to let Linux master that bus to talk to the DataFlash chip, you must +(a) flash new firmware that disables SPI (set PRR.2, and disable pullups +by clearing PORTB.[0-3]); (b) configure the mtd_dataflash driver; and +(c) cable in the chipselect. + + Signal Butterfly Parport (DB-25) + ------ --------- --------------- + VCC = J400.VCC_EXT = pin 7/D5 + SELECT = J400.PB0/nSS = pin 17/C3,nSELECT + GND = J400.GND = pin 24/GND + +Or you could flash firmware making the AVR into an SPI slave (keeping the +DataFlash in reset) and tweak the spi_butterfly driver to make it bind to +the driver for your custom SPI-based protocol. + +The "USI" controller, using J405, can also be used for a second SPI bus. +That would let you talk to the AVR using custom SPI-with-USI firmware, +while letting either Linux or the AVR use the DataFlash. There are plenty +of spare parport pins to wire this one up, such as: + + Signal Butterfly Parport (DB-25) + ------ --------- --------------- + SCK = J403.PE4/USCK = pin 5/D3 + MOSI = J403.PE5/DI = pin 6/D4 + MISO = J403.PE6/DO = pin 12/S5,nPAPEROUT + GND = J403.GND = pin 22/GND + + IRQ = J402.PF4 = pin 10/S6,ACK + GND = J402.GND(P2) = pin 25/GND + diff --git a/kernel/Documentation/spi/ep93xx_spi b/kernel/Documentation/spi/ep93xx_spi new file mode 100644 index 000000000..832ddce6e --- /dev/null +++ b/kernel/Documentation/spi/ep93xx_spi @@ -0,0 +1,105 @@ +Cirrus EP93xx SPI controller driver HOWTO +========================================= + +ep93xx_spi driver brings SPI master support for EP93xx SPI controller. Chip +selects are implemented with GPIO lines. + +NOTE: If possible, don't use SFRMOUT (SFRM1) signal as a chip select. It will +not work correctly (it cannot be controlled by software). Use GPIO lines +instead. + +Sample configuration +==================== + +Typically driver configuration is done in platform board files (the files under +arch/arm/mach-ep93xx/*.c). In this example we configure MMC over SPI through +this driver on TS-7260 board. You can adapt the code to suit your needs. + +This example uses EGPIO9 as SD/MMC card chip select (this is wired in DIO1 +header on the board). + +You need to select CONFIG_MMC_SPI to use mmc_spi driver. + +arch/arm/mach-ep93xx/ts72xx.c: + +... +#include <linux/gpio.h> +#include <linux/spi/spi.h> + +#include <linux/platform_data/spi-ep93xx.h> + +/* this is our GPIO line used for chip select */ +#define MMC_CHIP_SELECT_GPIO EP93XX_GPIO_LINE_EGPIO9 + +static int ts72xx_mmc_spi_setup(struct spi_device *spi) +{ + int err; + + err = gpio_request(MMC_CHIP_SELECT_GPIO, spi->modalias); + if (err) + return err; + + gpio_direction_output(MMC_CHIP_SELECT_GPIO, 1); + + return 0; +} + +static void ts72xx_mmc_spi_cleanup(struct spi_device *spi) +{ + gpio_set_value(MMC_CHIP_SELECT_GPIO, 1); + gpio_direction_input(MMC_CHIP_SELECT_GPIO); + gpio_free(MMC_CHIP_SELECT_GPIO); +} + +static void ts72xx_mmc_spi_cs_control(struct spi_device *spi, int value) +{ + gpio_set_value(MMC_CHIP_SELECT_GPIO, value); +} + +static struct ep93xx_spi_chip_ops ts72xx_mmc_spi_ops = { + .setup = ts72xx_mmc_spi_setup, + .cleanup = ts72xx_mmc_spi_cleanup, + .cs_control = ts72xx_mmc_spi_cs_control, +}; + +static struct spi_board_info ts72xx_spi_devices[] __initdata = { + { + .modalias = "mmc_spi", + .controller_data = &ts72xx_mmc_spi_ops, + /* + * We use 10 MHz even though the maximum is 7.4 MHz. The driver + * will limit it automatically to max. frequency. + */ + .max_speed_hz = 10 * 1000 * 1000, + .bus_num = 0, + .chip_select = 0, + .mode = SPI_MODE_0, + }, +}; + +static struct ep93xx_spi_info ts72xx_spi_info = { + .num_chipselect = ARRAY_SIZE(ts72xx_spi_devices), +}; + +static void __init ts72xx_init_machine(void) +{ + ... + ep93xx_register_spi(&ts72xx_spi_info, ts72xx_spi_devices, + ARRAY_SIZE(ts72xx_spi_devices)); +} + +The driver can use DMA for the transfers also. In this case ts72xx_spi_info +becomes: + +static struct ep93xx_spi_info ts72xx_spi_info = { + .num_chipselect = ARRAY_SIZE(ts72xx_spi_devices), + .use_dma = true; +}; + +Note that CONFIG_EP93XX_DMA should be enabled as well. + +Thanks to +========= +Martin Guy, H. Hartley Sweeten and others who helped me during development of +the driver. Simplemachines.it donated me a Sim.One board which I used testing +the driver on EP9307. diff --git a/kernel/Documentation/spi/pxa2xx b/kernel/Documentation/spi/pxa2xx new file mode 100644 index 000000000..3352f9743 --- /dev/null +++ b/kernel/Documentation/spi/pxa2xx @@ -0,0 +1,241 @@ +PXA2xx SPI on SSP driver HOWTO +=================================================== +This a mini howto on the pxa2xx_spi driver. The driver turns a PXA2xx +synchronous serial port into a SPI master controller +(see Documentation/spi/spi-summary). The driver has the following features + +- Support for any PXA2xx SSP +- SSP PIO and SSP DMA data transfers. +- External and Internal (SSPFRM) chip selects. +- Per slave device (chip) configuration. +- Full suspend, freeze, resume support. + +The driver is built around a "spi_message" fifo serviced by workqueue and a +tasklet. The workqueue, "pump_messages", drives message fifo and the tasklet +(pump_transfer) is responsible for queuing SPI transactions and setting up and +launching the dma/interrupt driven transfers. + +Declaring PXA2xx Master Controllers +----------------------------------- +Typically a SPI master is defined in the arch/.../mach-*/board-*.c as a +"platform device". The master configuration is passed to the driver via a table +found in include/linux/spi/pxa2xx_spi.h: + +struct pxa2xx_spi_master { + u32 clock_enable; + u16 num_chipselect; + u8 enable_dma; +}; + +The "pxa2xx_spi_master.clock_enable" field is used to enable/disable the +corresponding SSP peripheral block in the "Clock Enable Register (CKEN"). See +the "PXA2xx Developer Manual" section "Clocks and Power Management". + +The "pxa2xx_spi_master.num_chipselect" field is used to determine the number of +slave device (chips) attached to this SPI master. + +The "pxa2xx_spi_master.enable_dma" field informs the driver that SSP DMA should +be used. This caused the driver to acquire two DMA channels: rx_channel and +tx_channel. The rx_channel has a higher DMA service priority the tx_channel. +See the "PXA2xx Developer Manual" section "DMA Controller". + +NSSP MASTER SAMPLE +------------------ +Below is a sample configuration using the PXA255 NSSP. + +static struct resource pxa_spi_nssp_resources[] = { + [0] = { + .start = __PREG(SSCR0_P(2)), /* Start address of NSSP */ + .end = __PREG(SSCR0_P(2)) + 0x2c, /* Range of registers */ + .flags = IORESOURCE_MEM, + }, + [1] = { + .start = IRQ_NSSP, /* NSSP IRQ */ + .end = IRQ_NSSP, + .flags = IORESOURCE_IRQ, + }, +}; + +static struct pxa2xx_spi_master pxa_nssp_master_info = { + .clock_enable = CKEN_NSSP, /* NSSP Peripheral clock */ + .num_chipselect = 1, /* Matches the number of chips attached to NSSP */ + .enable_dma = 1, /* Enables NSSP DMA */ +}; + +static struct platform_device pxa_spi_nssp = { + .name = "pxa2xx-spi", /* MUST BE THIS VALUE, so device match driver */ + .id = 2, /* Bus number, MUST MATCH SSP number 1..n */ + .resource = pxa_spi_nssp_resources, + .num_resources = ARRAY_SIZE(pxa_spi_nssp_resources), + .dev = { + .platform_data = &pxa_nssp_master_info, /* Passed to driver */ + }, +}; + +static struct platform_device *devices[] __initdata = { + &pxa_spi_nssp, +}; + +static void __init board_init(void) +{ + (void)platform_add_device(devices, ARRAY_SIZE(devices)); +} + +Declaring Slave Devices +----------------------- +Typically each SPI slave (chip) is defined in the arch/.../mach-*/board-*.c +using the "spi_board_info" structure found in "linux/spi/spi.h". See +"Documentation/spi/spi-summary" for additional information. + +Each slave device attached to the PXA must provide slave specific configuration +information via the structure "pxa2xx_spi_chip" found in +"include/linux/spi/pxa2xx_spi.h". The pxa2xx_spi master controller driver +will uses the configuration whenever the driver communicates with the slave +device. All fields are optional. + +struct pxa2xx_spi_chip { + u8 tx_threshold; + u8 rx_threshold; + u8 dma_burst_size; + u32 timeout; + u8 enable_loopback; + void (*cs_control)(u32 command); +}; + +The "pxa2xx_spi_chip.tx_threshold" and "pxa2xx_spi_chip.rx_threshold" fields are +used to configure the SSP hardware fifo. These fields are critical to the +performance of pxa2xx_spi driver and misconfiguration will result in rx +fifo overruns (especially in PIO mode transfers). Good default values are + + .tx_threshold = 8, + .rx_threshold = 8, + +The range is 1 to 16 where zero indicates "use default". + +The "pxa2xx_spi_chip.dma_burst_size" field is used to configure PXA2xx DMA +engine and is related the "spi_device.bits_per_word" field. Read and understand +the PXA2xx "Developer Manual" sections on the DMA controller and SSP Controllers +to determine the correct value. An SSP configured for byte-wide transfers would +use a value of 8. The driver will determine a reasonable default if +dma_burst_size == 0. + +The "pxa2xx_spi_chip.timeout" fields is used to efficiently handle +trailing bytes in the SSP receiver fifo. The correct value for this field is +dependent on the SPI bus speed ("spi_board_info.max_speed_hz") and the specific +slave device. Please note that the PXA2xx SSP 1 does not support trailing byte +timeouts and must busy-wait any trailing bytes. + +The "pxa2xx_spi_chip.enable_loopback" field is used to place the SSP porting +into internal loopback mode. In this mode the SSP controller internally +connects the SSPTX pin to the SSPRX pin. This is useful for initial setup +testing. + +The "pxa2xx_spi_chip.cs_control" field is used to point to a board specific +function for asserting/deasserting a slave device chip select. If the field is +NULL, the pxa2xx_spi master controller driver assumes that the SSP port is +configured to use SSPFRM instead. + +NOTE: the SPI driver cannot control the chip select if SSPFRM is used, so the +chipselect is dropped after each spi_transfer. Most devices need chip select +asserted around the complete message. Use SSPFRM as a GPIO (through cs_control) +to accommodate these chips. + + +NSSP SLAVE SAMPLE +----------------- +The pxa2xx_spi_chip structure is passed to the pxa2xx_spi driver in the +"spi_board_info.controller_data" field. Below is a sample configuration using +the PXA255 NSSP. + +/* Chip Select control for the CS8415A SPI slave device */ +static void cs8415a_cs_control(u32 command) +{ + if (command & PXA2XX_CS_ASSERT) + GPCR(2) = GPIO_bit(2); + else + GPSR(2) = GPIO_bit(2); +} + +/* Chip Select control for the CS8405A SPI slave device */ +static void cs8405a_cs_control(u32 command) +{ + if (command & PXA2XX_CS_ASSERT) + GPCR(3) = GPIO_bit(3); + else + GPSR(3) = GPIO_bit(3); +} + +static struct pxa2xx_spi_chip cs8415a_chip_info = { + .tx_threshold = 8, /* SSP hardward FIFO threshold */ + .rx_threshold = 8, /* SSP hardward FIFO threshold */ + .dma_burst_size = 8, /* Byte wide transfers used so 8 byte bursts */ + .timeout = 235, /* See Intel documentation */ + .cs_control = cs8415a_cs_control, /* Use external chip select */ +}; + +static struct pxa2xx_spi_chip cs8405a_chip_info = { + .tx_threshold = 8, /* SSP hardward FIFO threshold */ + .rx_threshold = 8, /* SSP hardward FIFO threshold */ + .dma_burst_size = 8, /* Byte wide transfers used so 8 byte bursts */ + .timeout = 235, /* See Intel documentation */ + .cs_control = cs8405a_cs_control, /* Use external chip select */ +}; + +static struct spi_board_info streetracer_spi_board_info[] __initdata = { + { + .modalias = "cs8415a", /* Name of spi_driver for this device */ + .max_speed_hz = 3686400, /* Run SSP as fast a possbile */ + .bus_num = 2, /* Framework bus number */ + .chip_select = 0, /* Framework chip select */ + .platform_data = NULL; /* No spi_driver specific config */ + .controller_data = &cs8415a_chip_info, /* Master chip config */ + .irq = STREETRACER_APCI_IRQ, /* Slave device interrupt */ + }, + { + .modalias = "cs8405a", /* Name of spi_driver for this device */ + .max_speed_hz = 3686400, /* Run SSP as fast a possbile */ + .bus_num = 2, /* Framework bus number */ + .chip_select = 1, /* Framework chip select */ + .controller_data = &cs8405a_chip_info, /* Master chip config */ + .irq = STREETRACER_APCI_IRQ, /* Slave device interrupt */ + }, +}; + +static void __init streetracer_init(void) +{ + spi_register_board_info(streetracer_spi_board_info, + ARRAY_SIZE(streetracer_spi_board_info)); +} + + +DMA and PIO I/O Support +----------------------- +The pxa2xx_spi driver supports both DMA and interrupt driven PIO message +transfers. The driver defaults to PIO mode and DMA transfers must be enabled +by setting the "enable_dma" flag in the "pxa2xx_spi_master" structure. The DMA +mode supports both coherent and stream based DMA mappings. + +The following logic is used to determine the type of I/O to be used on +a per "spi_transfer" basis: + +if !enable_dma then + always use PIO transfers + +if spi_message.len > 8191 then + print "rate limited" warning + use PIO transfers + +if spi_message.is_dma_mapped and rx_dma_buf != 0 and tx_dma_buf != 0 then + use coherent DMA mode + +if rx_buf and tx_buf are aligned on 8 byte boundary then + use streaming DMA mode + +otherwise + use PIO transfer + +THANKS TO +--------- + +David Brownell and others for mentoring the development of this driver. + diff --git a/kernel/Documentation/spi/spi-lm70llp b/kernel/Documentation/spi/spi-lm70llp new file mode 100644 index 000000000..463f6d01f --- /dev/null +++ b/kernel/Documentation/spi/spi-lm70llp @@ -0,0 +1,79 @@ +spi_lm70llp : LM70-LLP parport-to-SPI adapter +============================================== + +Supported board/chip: + * National Semiconductor LM70 LLP evaluation board + Datasheet: http://www.national.com/pf/LM/LM70.html + +Author: + Kaiwan N Billimoria <kaiwan@designergraphix.com> + +Description +----------- +This driver provides glue code connecting a National Semiconductor LM70 LLP +temperature sensor evaluation board to the kernel's SPI core subsystem. + +This is a SPI master controller driver. It can be used in conjunction with +(layered under) the LM70 logical driver (a "SPI protocol driver"). +In effect, this driver turns the parallel port interface on the eval board +into a SPI bus with a single device, which will be driven by the generic +LM70 driver (drivers/hwmon/lm70.c). + + +Hardware Interfacing +-------------------- +The schematic for this particular board (the LM70EVAL-LLP) is +available (on page 4) here: + + http://www.national.com/appinfo/tempsensors/files/LM70LLPEVALmanual.pdf + +The hardware interfacing on the LM70 LLP eval board is as follows: + + Parallel LM70 LLP + Port Direction JP2 Header + ----------- --------- ---------------- + D0 2 - - + D1 3 --> V+ 5 + D2 4 --> V+ 5 + D3 5 --> V+ 5 + D4 6 --> V+ 5 + D5 7 --> nCS 8 + D6 8 --> SCLK 3 + D7 9 --> SI/O 5 + GND 25 - GND 7 + Select 13 <-- SI/O 1 + ----------- --------- ---------------- + +Note that since the LM70 uses a "3-wire" variant of SPI, the SI/SO pin +is connected to both pin D7 (as Master Out) and Select (as Master In) +using an arrangement that lets either the parport or the LM70 pull the +pin low. This can't be shared with true SPI devices, but other 3-wire +devices might share the same SI/SO pin. + +The bitbanger routine in this driver (lm70_txrx) is called back from +the bound "hwmon/lm70" protocol driver through its sysfs hook, using a +spi_write_then_read() call. It performs Mode 0 (SPI/Microwire) bitbanging. +The lm70 driver then inteprets the resulting digital temperature value +and exports it through sysfs. + +A "gotcha": National Semiconductor's LM70 LLP eval board circuit schematic +shows that the SI/O line from the LM70 chip is connected to the base of a +transistor Q1 (and also a pullup, and a zener diode to D7); while the +collector is tied to VCC. + +Interpreting this circuit, when the LM70 SI/O line is High (or tristate +and not grounded by the host via D7), the transistor conducts and switches +the collector to zero, which is reflected on pin 13 of the DB25 parport +connector. When SI/O is Low (driven by the LM70 or the host) on the other +hand, the transistor is cut off and the voltage tied to it's collector is +reflected on pin 13 as a High level. + +So: the getmiso inline routine in this driver takes this fact into account, +inverting the value read at pin 13. + + +Thanks to +--------- +o David Brownell for mentoring the SPI-side driver development. +o Dr.Craig Hollabaugh for the (early) "manual" bitbanging driver version. +o Nadir Billimoria for help interpreting the circuit schematic. diff --git a/kernel/Documentation/spi/spi-sc18is602 b/kernel/Documentation/spi/spi-sc18is602 new file mode 100644 index 000000000..a45702865 --- /dev/null +++ b/kernel/Documentation/spi/spi-sc18is602 @@ -0,0 +1,36 @@ +Kernel driver spi-sc18is602 +=========================== + +Supported chips: + * NXP SI18IS602/602B/603 + Datasheet: http://www.nxp.com/documents/data_sheet/SC18IS602_602B_603.pdf + +Author: + Guenter Roeck <linux@roeck-us.net> + + +Description +----------- + +This driver provides connects a NXP SC18IS602/603 I2C-bus to SPI bridge to the +kernel's SPI core subsystem. + +The driver does not probe for supported chips, since the SI18IS602/603 does not +support Chip ID registers. You will have to instantiate the devices explicitly. +Please see Documentation/i2c/instantiating-devices for details. + + +Usage Notes +----------- + +This driver requires the I2C adapter driver to support raw I2C messages. I2C +adapter drivers which can only handle the SMBus protocol are not supported. + +The maximum SPI message size supported by SC18IS602/603 is 200 bytes. Attempts +to initiate longer transfers will fail with -EINVAL. EEPROM read operations and +similar large accesses have to be split into multiple chunks of no more than +200 bytes per SPI message (128 bytes of data per message is recommended). This +means that programs such as "cp" or "od", which automatically use large block +sizes to access a device, can not be used directly to read data from EEPROM. +Programs such as dd, where the block size can be specified, should be used +instead. diff --git a/kernel/Documentation/spi/spi-summary b/kernel/Documentation/spi/spi-summary new file mode 100644 index 000000000..d1824b399 --- /dev/null +++ b/kernel/Documentation/spi/spi-summary @@ -0,0 +1,612 @@ +Overview of Linux kernel SPI support +==================================== + +02-Feb-2012 + +What is SPI? +------------ +The "Serial Peripheral Interface" (SPI) is a synchronous four wire serial +link used to connect microcontrollers to sensors, memory, and peripherals. +It's a simple "de facto" standard, not complicated enough to acquire a +standardization body. SPI uses a master/slave configuration. + +The three signal wires hold a clock (SCK, often on the order of 10 MHz), +and parallel data lines with "Master Out, Slave In" (MOSI) or "Master In, +Slave Out" (MISO) signals. (Other names are also used.) There are four +clocking modes through which data is exchanged; mode-0 and mode-3 are most +commonly used. Each clock cycle shifts data out and data in; the clock +doesn't cycle except when there is a data bit to shift. Not all data bits +are used though; not every protocol uses those full duplex capabilities. + +SPI masters use a fourth "chip select" line to activate a given SPI slave +device, so those three signal wires may be connected to several chips +in parallel. All SPI slaves support chipselects; they are usually active +low signals, labeled nCSx for slave 'x' (e.g. nCS0). Some devices have +other signals, often including an interrupt to the master. + +Unlike serial busses like USB or SMBus, even low level protocols for +SPI slave functions are usually not interoperable between vendors +(except for commodities like SPI memory chips). + + - SPI may be used for request/response style device protocols, as with + touchscreen sensors and memory chips. + + - It may also be used to stream data in either direction (half duplex), + or both of them at the same time (full duplex). + + - Some devices may use eight bit words. Others may use different word + lengths, such as streams of 12-bit or 20-bit digital samples. + + - Words are usually sent with their most significant bit (MSB) first, + but sometimes the least significant bit (LSB) goes first instead. + + - Sometimes SPI is used to daisy-chain devices, like shift registers. + +In the same way, SPI slaves will only rarely support any kind of automatic +discovery/enumeration protocol. The tree of slave devices accessible from +a given SPI master will normally be set up manually, with configuration +tables. + +SPI is only one of the names used by such four-wire protocols, and +most controllers have no problem handling "MicroWire" (think of it as +half-duplex SPI, for request/response protocols), SSP ("Synchronous +Serial Protocol"), PSP ("Programmable Serial Protocol"), and other +related protocols. + +Some chips eliminate a signal line by combining MOSI and MISO, and +limiting themselves to half-duplex at the hardware level. In fact +some SPI chips have this signal mode as a strapping option. These +can be accessed using the same programming interface as SPI, but of +course they won't handle full duplex transfers. You may find such +chips described as using "three wire" signaling: SCK, data, nCSx. +(That data line is sometimes called MOMI or SISO.) + +Microcontrollers often support both master and slave sides of the SPI +protocol. This document (and Linux) currently only supports the master +side of SPI interactions. + + +Who uses it? On what kinds of systems? +--------------------------------------- +Linux developers using SPI are probably writing device drivers for embedded +systems boards. SPI is used to control external chips, and it is also a +protocol supported by every MMC or SD memory card. (The older "DataFlash" +cards, predating MMC cards but using the same connectors and card shape, +support only SPI.) Some PC hardware uses SPI flash for BIOS code. + +SPI slave chips range from digital/analog converters used for analog +sensors and codecs, to memory, to peripherals like USB controllers +or Ethernet adapters; and more. + +Most systems using SPI will integrate a few devices on a mainboard. +Some provide SPI links on expansion connectors; in cases where no +dedicated SPI controller exists, GPIO pins can be used to create a +low speed "bitbanging" adapter. Very few systems will "hotplug" an SPI +controller; the reasons to use SPI focus on low cost and simple operation, +and if dynamic reconfiguration is important, USB will often be a more +appropriate low-pincount peripheral bus. + +Many microcontrollers that can run Linux integrate one or more I/O +interfaces with SPI modes. Given SPI support, they could use MMC or SD +cards without needing a special purpose MMC/SD/SDIO controller. + + +I'm confused. What are these four SPI "clock modes"? +----------------------------------------------------- +It's easy to be confused here, and the vendor documentation you'll +find isn't necessarily helpful. The four modes combine two mode bits: + + - CPOL indicates the initial clock polarity. CPOL=0 means the + clock starts low, so the first (leading) edge is rising, and + the second (trailing) edge is falling. CPOL=1 means the clock + starts high, so the first (leading) edge is falling. + + - CPHA indicates the clock phase used to sample data; CPHA=0 says + sample on the leading edge, CPHA=1 means the trailing edge. + + Since the signal needs to stablize before it's sampled, CPHA=0 + implies that its data is written half a clock before the first + clock edge. The chipselect may have made it become available. + +Chip specs won't always say "uses SPI mode X" in as many words, +but their timing diagrams will make the CPOL and CPHA modes clear. + +In the SPI mode number, CPOL is the high order bit and CPHA is the +low order bit. So when a chip's timing diagram shows the clock +starting low (CPOL=0) and data stabilized for sampling during the +trailing clock edge (CPHA=1), that's SPI mode 1. + +Note that the clock mode is relevant as soon as the chipselect goes +active. So the master must set the clock to inactive before selecting +a slave, and the slave can tell the chosen polarity by sampling the +clock level when its select line goes active. That's why many devices +support for example both modes 0 and 3: they don't care about polarity, +and always clock data in/out on rising clock edges. + + +How do these driver programming interfaces work? +------------------------------------------------ +The <linux/spi/spi.h> header file includes kerneldoc, as does the +main source code, and you should certainly read that chapter of the +kernel API document. This is just an overview, so you get the big +picture before those details. + +SPI requests always go into I/O queues. Requests for a given SPI device +are always executed in FIFO order, and complete asynchronously through +completion callbacks. There are also some simple synchronous wrappers +for those calls, including ones for common transaction types like writing +a command and then reading its response. + +There are two types of SPI driver, here called: + + Controller drivers ... controllers may be built into System-On-Chip + processors, and often support both Master and Slave roles. + These drivers touch hardware registers and may use DMA. + Or they can be PIO bitbangers, needing just GPIO pins. + + Protocol drivers ... these pass messages through the controller + driver to communicate with a Slave or Master device on the + other side of an SPI link. + +So for example one protocol driver might talk to the MTD layer to export +data to filesystems stored on SPI flash like DataFlash; and others might +control audio interfaces, present touchscreen sensors as input interfaces, +or monitor temperature and voltage levels during industrial processing. +And those might all be sharing the same controller driver. + +A "struct spi_device" encapsulates the master-side interface between +those two types of driver. At this writing, Linux has no slave side +programming interface. + +There is a minimal core of SPI programming interfaces, focussing on +using the driver model to connect controller and protocol drivers using +device tables provided by board specific initialization code. SPI +shows up in sysfs in several locations: + + /sys/devices/.../CTLR ... physical node for a given SPI controller + + /sys/devices/.../CTLR/spiB.C ... spi_device on bus "B", + chipselect C, accessed through CTLR. + + /sys/bus/spi/devices/spiB.C ... symlink to that physical + .../CTLR/spiB.C device + + /sys/devices/.../CTLR/spiB.C/modalias ... identifies the driver + that should be used with this device (for hotplug/coldplug) + + /sys/bus/spi/drivers/D ... driver for one or more spi*.* devices + + /sys/class/spi_master/spiB ... symlink (or actual device node) to + a logical node which could hold class related state for the + controller managing bus "B". All spiB.* devices share one + physical SPI bus segment, with SCLK, MOSI, and MISO. + +Note that the actual location of the controller's class state depends +on whether you enabled CONFIG_SYSFS_DEPRECATED or not. At this time, +the only class-specific state is the bus number ("B" in "spiB"), so +those /sys/class entries are only useful to quickly identify busses. + + +How does board-specific init code declare SPI devices? +------------------------------------------------------ +Linux needs several kinds of information to properly configure SPI devices. +That information is normally provided by board-specific code, even for +chips that do support some of automated discovery/enumeration. + +DECLARE CONTROLLERS + +The first kind of information is a list of what SPI controllers exist. +For System-on-Chip (SOC) based boards, these will usually be platform +devices, and the controller may need some platform_data in order to +operate properly. The "struct platform_device" will include resources +like the physical address of the controller's first register and its IRQ. + +Platforms will often abstract the "register SPI controller" operation, +maybe coupling it with code to initialize pin configurations, so that +the arch/.../mach-*/board-*.c files for several boards can all share the +same basic controller setup code. This is because most SOCs have several +SPI-capable controllers, and only the ones actually usable on a given +board should normally be set up and registered. + +So for example arch/.../mach-*/board-*.c files might have code like: + + #include <mach/spi.h> /* for mysoc_spi_data */ + + /* if your mach-* infrastructure doesn't support kernels that can + * run on multiple boards, pdata wouldn't benefit from "__init". + */ + static struct mysoc_spi_data pdata __initdata = { ... }; + + static __init board_init(void) + { + ... + /* this board only uses SPI controller #2 */ + mysoc_register_spi(2, &pdata); + ... + } + +And SOC-specific utility code might look something like: + + #include <mach/spi.h> + + static struct platform_device spi2 = { ... }; + + void mysoc_register_spi(unsigned n, struct mysoc_spi_data *pdata) + { + struct mysoc_spi_data *pdata2; + + pdata2 = kmalloc(sizeof *pdata2, GFP_KERNEL); + *pdata2 = pdata; + ... + if (n == 2) { + spi2->dev.platform_data = pdata2; + register_platform_device(&spi2); + + /* also: set up pin modes so the spi2 signals are + * visible on the relevant pins ... bootloaders on + * production boards may already have done this, but + * developer boards will often need Linux to do it. + */ + } + ... + } + +Notice how the platform_data for boards may be different, even if the +same SOC controller is used. For example, on one board SPI might use +an external clock, where another derives the SPI clock from current +settings of some master clock. + + +DECLARE SLAVE DEVICES + +The second kind of information is a list of what SPI slave devices exist +on the target board, often with some board-specific data needed for the +driver to work correctly. + +Normally your arch/.../mach-*/board-*.c files would provide a small table +listing the SPI devices on each board. (This would typically be only a +small handful.) That might look like: + + static struct ads7846_platform_data ads_info = { + .vref_delay_usecs = 100, + .x_plate_ohms = 580, + .y_plate_ohms = 410, + }; + + static struct spi_board_info spi_board_info[] __initdata = { + { + .modalias = "ads7846", + .platform_data = &ads_info, + .mode = SPI_MODE_0, + .irq = GPIO_IRQ(31), + .max_speed_hz = 120000 /* max sample rate at 3V */ * 16, + .bus_num = 1, + .chip_select = 0, + }, + }; + +Again, notice how board-specific information is provided; each chip may need +several types. This example shows generic constraints like the fastest SPI +clock to allow (a function of board voltage in this case) or how an IRQ pin +is wired, plus chip-specific constraints like an important delay that's +changed by the capacitance at one pin. + +(There's also "controller_data", information that may be useful to the +controller driver. An example would be peripheral-specific DMA tuning +data or chipselect callbacks. This is stored in spi_device later.) + +The board_info should provide enough information to let the system work +without the chip's driver being loaded. The most troublesome aspect of +that is likely the SPI_CS_HIGH bit in the spi_device.mode field, since +sharing a bus with a device that interprets chipselect "backwards" is +not possible until the infrastructure knows how to deselect it. + +Then your board initialization code would register that table with the SPI +infrastructure, so that it's available later when the SPI master controller +driver is registered: + + spi_register_board_info(spi_board_info, ARRAY_SIZE(spi_board_info)); + +Like with other static board-specific setup, you won't unregister those. + +The widely used "card" style computers bundle memory, cpu, and little else +onto a card that's maybe just thirty square centimeters. On such systems, +your arch/.../mach-.../board-*.c file would primarily provide information +about the devices on the mainboard into which such a card is plugged. That +certainly includes SPI devices hooked up through the card connectors! + + +NON-STATIC CONFIGURATIONS + +Developer boards often play by different rules than product boards, and one +example is the potential need to hotplug SPI devices and/or controllers. + +For those cases you might need to use spi_busnum_to_master() to look +up the spi bus master, and will likely need spi_new_device() to provide the +board info based on the board that was hotplugged. Of course, you'd later +call at least spi_unregister_device() when that board is removed. + +When Linux includes support for MMC/SD/SDIO/DataFlash cards through SPI, those +configurations will also be dynamic. Fortunately, such devices all support +basic device identification probes, so they should hotplug normally. + + +How do I write an "SPI Protocol Driver"? +---------------------------------------- +Most SPI drivers are currently kernel drivers, but there's also support +for userspace drivers. Here we talk only about kernel drivers. + +SPI protocol drivers somewhat resemble platform device drivers: + + static struct spi_driver CHIP_driver = { + .driver = { + .name = "CHIP", + .owner = THIS_MODULE, + .pm = &CHIP_pm_ops, + }, + + .probe = CHIP_probe, + .remove = CHIP_remove, + }; + +The driver core will automatically attempt to bind this driver to any SPI +device whose board_info gave a modalias of "CHIP". Your probe() code +might look like this unless you're creating a device which is managing +a bus (appearing under /sys/class/spi_master). + + static int CHIP_probe(struct spi_device *spi) + { + struct CHIP *chip; + struct CHIP_platform_data *pdata; + + /* assuming the driver requires board-specific data: */ + pdata = &spi->dev.platform_data; + if (!pdata) + return -ENODEV; + + /* get memory for driver's per-chip state */ + chip = kzalloc(sizeof *chip, GFP_KERNEL); + if (!chip) + return -ENOMEM; + spi_set_drvdata(spi, chip); + + ... etc + return 0; + } + +As soon as it enters probe(), the driver may issue I/O requests to +the SPI device using "struct spi_message". When remove() returns, +or after probe() fails, the driver guarantees that it won't submit +any more such messages. + + - An spi_message is a sequence of protocol operations, executed + as one atomic sequence. SPI driver controls include: + + + when bidirectional reads and writes start ... by how its + sequence of spi_transfer requests is arranged; + + + which I/O buffers are used ... each spi_transfer wraps a + buffer for each transfer direction, supporting full duplex + (two pointers, maybe the same one in both cases) and half + duplex (one pointer is NULL) transfers; + + + optionally defining short delays after transfers ... using + the spi_transfer.delay_usecs setting (this delay can be the + only protocol effect, if the buffer length is zero); + + + whether the chipselect becomes inactive after a transfer and + any delay ... by using the spi_transfer.cs_change flag; + + + hinting whether the next message is likely to go to this same + device ... using the spi_transfer.cs_change flag on the last + transfer in that atomic group, and potentially saving costs + for chip deselect and select operations. + + - Follow standard kernel rules, and provide DMA-safe buffers in + your messages. That way controller drivers using DMA aren't forced + to make extra copies unless the hardware requires it (e.g. working + around hardware errata that force the use of bounce buffering). + + If standard dma_map_single() handling of these buffers is inappropriate, + you can use spi_message.is_dma_mapped to tell the controller driver + that you've already provided the relevant DMA addresses. + + - The basic I/O primitive is spi_async(). Async requests may be + issued in any context (irq handler, task, etc) and completion + is reported using a callback provided with the message. + After any detected error, the chip is deselected and processing + of that spi_message is aborted. + + - There are also synchronous wrappers like spi_sync(), and wrappers + like spi_read(), spi_write(), and spi_write_then_read(). These + may be issued only in contexts that may sleep, and they're all + clean (and small, and "optional") layers over spi_async(). + + - The spi_write_then_read() call, and convenience wrappers around + it, should only be used with small amounts of data where the + cost of an extra copy may be ignored. It's designed to support + common RPC-style requests, such as writing an eight bit command + and reading a sixteen bit response -- spi_w8r16() being one its + wrappers, doing exactly that. + +Some drivers may need to modify spi_device characteristics like the +transfer mode, wordsize, or clock rate. This is done with spi_setup(), +which would normally be called from probe() before the first I/O is +done to the device. However, that can also be called at any time +that no message is pending for that device. + +While "spi_device" would be the bottom boundary of the driver, the +upper boundaries might include sysfs (especially for sensor readings), +the input layer, ALSA, networking, MTD, the character device framework, +or other Linux subsystems. + +Note that there are two types of memory your driver must manage as part +of interacting with SPI devices. + + - I/O buffers use the usual Linux rules, and must be DMA-safe. + You'd normally allocate them from the heap or free page pool. + Don't use the stack, or anything that's declared "static". + + - The spi_message and spi_transfer metadata used to glue those + I/O buffers into a group of protocol transactions. These can + be allocated anywhere it's convenient, including as part of + other allocate-once driver data structures. Zero-init these. + +If you like, spi_message_alloc() and spi_message_free() convenience +routines are available to allocate and zero-initialize an spi_message +with several transfers. + + +How do I write an "SPI Master Controller Driver"? +------------------------------------------------- +An SPI controller will probably be registered on the platform_bus; write +a driver to bind to the device, whichever bus is involved. + +The main task of this type of driver is to provide an "spi_master". +Use spi_alloc_master() to allocate the master, and spi_master_get_devdata() +to get the driver-private data allocated for that device. + + struct spi_master *master; + struct CONTROLLER *c; + + master = spi_alloc_master(dev, sizeof *c); + if (!master) + return -ENODEV; + + c = spi_master_get_devdata(master); + +The driver will initialize the fields of that spi_master, including the +bus number (maybe the same as the platform device ID) and three methods +used to interact with the SPI core and SPI protocol drivers. It will +also initialize its own internal state. (See below about bus numbering +and those methods.) + +After you initialize the spi_master, then use spi_register_master() to +publish it to the rest of the system. At that time, device nodes for the +controller and any predeclared spi devices will be made available, and +the driver model core will take care of binding them to drivers. + +If you need to remove your SPI controller driver, spi_unregister_master() +will reverse the effect of spi_register_master(). + + +BUS NUMBERING + +Bus numbering is important, since that's how Linux identifies a given +SPI bus (shared SCK, MOSI, MISO). Valid bus numbers start at zero. On +SOC systems, the bus numbers should match the numbers defined by the chip +manufacturer. For example, hardware controller SPI2 would be bus number 2, +and spi_board_info for devices connected to it would use that number. + +If you don't have such hardware-assigned bus number, and for some reason +you can't just assign them, then provide a negative bus number. That will +then be replaced by a dynamically assigned number. You'd then need to treat +this as a non-static configuration (see above). + + +SPI MASTER METHODS + + master->setup(struct spi_device *spi) + This sets up the device clock rate, SPI mode, and word sizes. + Drivers may change the defaults provided by board_info, and then + call spi_setup(spi) to invoke this routine. It may sleep. + + Unless each SPI slave has its own configuration registers, don't + change them right away ... otherwise drivers could corrupt I/O + that's in progress for other SPI devices. + + ** BUG ALERT: for some reason the first version of + ** many spi_master drivers seems to get this wrong. + ** When you code setup(), ASSUME that the controller + ** is actively processing transfers for another device. + + master->cleanup(struct spi_device *spi) + Your controller driver may use spi_device.controller_state to hold + state it dynamically associates with that device. If you do that, + be sure to provide the cleanup() method to free that state. + + master->prepare_transfer_hardware(struct spi_master *master) + This will be called by the queue mechanism to signal to the driver + that a message is coming in soon, so the subsystem requests the + driver to prepare the transfer hardware by issuing this call. + This may sleep. + + master->unprepare_transfer_hardware(struct spi_master *master) + This will be called by the queue mechanism to signal to the driver + that there are no more messages pending in the queue and it may + relax the hardware (e.g. by power management calls). This may sleep. + + master->transfer_one_message(struct spi_master *master, + struct spi_message *mesg) + The subsystem calls the driver to transfer a single message while + queuing transfers that arrive in the meantime. When the driver is + finished with this message, it must call + spi_finalize_current_message() so the subsystem can issue the next + message. This may sleep. + + master->transfer_one(struct spi_master *master, struct spi_device *spi, + struct spi_transfer *transfer) + The subsystem calls the driver to transfer a single transfer while + queuing transfers that arrive in the meantime. When the driver is + finished with this transfer, it must call + spi_finalize_current_transfer() so the subsystem can issue the next + transfer. This may sleep. Note: transfer_one and transfer_one_message + are mutually exclusive; when both are set, the generic subsystem does + not call your transfer_one callback. + + Return values: + negative errno: error + 0: transfer is finished + 1: transfer is still in progress + + DEPRECATED METHODS + + master->transfer(struct spi_device *spi, struct spi_message *message) + This must not sleep. Its responsibility is to arrange that the + transfer happens and its complete() callback is issued. The two + will normally happen later, after other transfers complete, and + if the controller is idle it will need to be kickstarted. This + method is not used on queued controllers and must be NULL if + transfer_one_message() and (un)prepare_transfer_hardware() are + implemented. + + +SPI MESSAGE QUEUE + +If you are happy with the standard queueing mechanism provided by the +SPI subsystem, just implement the queued methods specified above. Using +the message queue has the upside of centralizing a lot of code and +providing pure process-context execution of methods. The message queue +can also be elevated to realtime priority on high-priority SPI traffic. + +Unless the queueing mechanism in the SPI subsystem is selected, the bulk +of the driver will be managing the I/O queue fed by the now deprecated +function transfer(). + +That queue could be purely conceptual. For example, a driver used only +for low-frequency sensor access might be fine using synchronous PIO. + +But the queue will probably be very real, using message->queue, PIO, +often DMA (especially if the root filesystem is in SPI flash), and +execution contexts like IRQ handlers, tasklets, or workqueues (such +as keventd). Your driver can be as fancy, or as simple, as you need. +Such a transfer() method would normally just add the message to a +queue, and then start some asynchronous transfer engine (unless it's +already running). + + +THANKS TO +--------- +Contributors to Linux-SPI discussions include (in alphabetical order, +by last name): + +Mark Brown +David Brownell +Russell King +Grant Likely +Dmitry Pervushin +Stephen Street +Mark Underwood +Andrew Victor +Linus Walleij +Vitaly Wool diff --git a/kernel/Documentation/spi/spidev b/kernel/Documentation/spi/spidev new file mode 100644 index 000000000..3d14035b1 --- /dev/null +++ b/kernel/Documentation/spi/spidev @@ -0,0 +1,149 @@ +SPI devices have a limited userspace API, supporting basic half-duplex +read() and write() access to SPI slave devices. Using ioctl() requests, +full duplex transfers and device I/O configuration are also available. + + #include <fcntl.h> + #include <unistd.h> + #include <sys/ioctl.h> + #include <linux/types.h> + #include <linux/spi/spidev.h> + +Some reasons you might want to use this programming interface include: + + * Prototyping in an environment that's not crash-prone; stray pointers + in userspace won't normally bring down any Linux system. + + * Developing simple protocols used to talk to microcontrollers acting + as SPI slaves, which you may need to change quite often. + +Of course there are drivers that can never be written in userspace, because +they need to access kernel interfaces (such as IRQ handlers or other layers +of the driver stack) that are not accessible to userspace. + + +DEVICE CREATION, DRIVER BINDING +=============================== +The simplest way to arrange to use this driver is to just list it in the +spi_board_info for a device as the driver it should use: the "modalias" +entry is "spidev", matching the name of the driver exposing this API. +Set up the other device characteristics (bits per word, SPI clocking, +chipselect polarity, etc) as usual, so you won't always need to override +them later. + +(Sysfs also supports userspace driven binding/unbinding of drivers to +devices. That mechanism might be supported here in the future.) + +When you do that, the sysfs node for the SPI device will include a child +device node with a "dev" attribute that will be understood by udev or mdev. +(Larger systems will have "udev". Smaller ones may configure "mdev" into +busybox; it's less featureful, but often enough.) For a SPI device with +chipselect C on bus B, you should see: + + /dev/spidevB.C ... character special device, major number 153 with + a dynamically chosen minor device number. This is the node + that userspace programs will open, created by "udev" or "mdev". + + /sys/devices/.../spiB.C ... as usual, the SPI device node will + be a child of its SPI master controller. + + /sys/class/spidev/spidevB.C ... created when the "spidev" driver + binds to that device. (Directory or symlink, based on whether + or not you enabled the "deprecated sysfs files" Kconfig option.) + +Do not try to manage the /dev character device special file nodes by hand. +That's error prone, and you'd need to pay careful attention to system +security issues; udev/mdev should already be configured securely. + +If you unbind the "spidev" driver from that device, those two "spidev" nodes +(in sysfs and in /dev) should automatically be removed (respectively by the +kernel and by udev/mdev). You can unbind by removing the "spidev" driver +module, which will affect all devices using this driver. You can also unbind +by having kernel code remove the SPI device, probably by removing the driver +for its SPI controller (so its spi_master vanishes). + +Since this is a standard Linux device driver -- even though it just happens +to expose a low level API to userspace -- it can be associated with any number +of devices at a time. Just provide one spi_board_info record for each such +SPI device, and you'll get a /dev device node for each device. + + +BASIC CHARACTER DEVICE API +========================== +Normal open() and close() operations on /dev/spidevB.D files work as you +would expect. + +Standard read() and write() operations are obviously only half-duplex, and +the chipselect is deactivated between those operations. Full-duplex access, +and composite operation without chipselect de-activation, is available using +the SPI_IOC_MESSAGE(N) request. + +Several ioctl() requests let your driver read or override the device's current +settings for data transfer parameters: + + SPI_IOC_RD_MODE, SPI_IOC_WR_MODE ... pass a pointer to a byte which will + return (RD) or assign (WR) the SPI transfer mode. Use the constants + SPI_MODE_0..SPI_MODE_3; or if you prefer you can combine SPI_CPOL + (clock polarity, idle high iff this is set) or SPI_CPHA (clock phase, + sample on trailing edge iff this is set) flags. + Note that this request is limited to SPI mode flags that fit in a + single byte. + + SPI_IOC_RD_MODE32, SPI_IOC_WR_MODE32 ... pass a pointer to a uin32_t + which will return (RD) or assign (WR) the full SPI transfer mode, + not limited to the bits that fit in one byte. + + SPI_IOC_RD_LSB_FIRST, SPI_IOC_WR_LSB_FIRST ... pass a pointer to a byte + which will return (RD) or assign (WR) the bit justification used to + transfer SPI words. Zero indicates MSB-first; other values indicate + the less common LSB-first encoding. In both cases the specified value + is right-justified in each word, so that unused (TX) or undefined (RX) + bits are in the MSBs. + + SPI_IOC_RD_BITS_PER_WORD, SPI_IOC_WR_BITS_PER_WORD ... pass a pointer to + a byte which will return (RD) or assign (WR) the number of bits in + each SPI transfer word. The value zero signifies eight bits. + + SPI_IOC_RD_MAX_SPEED_HZ, SPI_IOC_WR_MAX_SPEED_HZ ... pass a pointer to a + u32 which will return (RD) or assign (WR) the maximum SPI transfer + speed, in Hz. The controller can't necessarily assign that specific + clock speed. + +NOTES: + + - At this time there is no async I/O support; everything is purely + synchronous. + + - There's currently no way to report the actual bit rate used to + shift data to/from a given device. + + - From userspace, you can't currently change the chip select polarity; + that could corrupt transfers to other devices sharing the SPI bus. + Each SPI device is deselected when it's not in active use, allowing + other drivers to talk to other devices. + + - There's a limit on the number of bytes each I/O request can transfer + to the SPI device. It defaults to one page, but that can be changed + using a module parameter. + + - Because SPI has no low-level transfer acknowledgement, you usually + won't see any I/O errors when talking to a non-existent device. + + +FULL DUPLEX CHARACTER DEVICE API +================================ + +See the spidev_fdx.c sample program for one example showing the use of the +full duplex programming interface. (Although it doesn't perform a full duplex +transfer.) The model is the same as that used in the kernel spi_sync() +request; the individual transfers offer the same capabilities as are +available to kernel drivers (except that it's not asynchronous). + +The example shows one half-duplex RPC-style request and response message. +These requests commonly require that the chip not be deselected between +the request and response. Several such requests could be chained into +a single kernel request, even allowing the chip to be deselected after +each response. (Other protocol options include changing the word size +and bitrate for each transfer segment.) + +To make a full duplex request, provide both rx_buf and tx_buf for the +same transfer. It's even OK if those are the same buffer. diff --git a/kernel/Documentation/spi/spidev_fdx.c b/kernel/Documentation/spi/spidev_fdx.c new file mode 100644 index 000000000..0ea3e5129 --- /dev/null +++ b/kernel/Documentation/spi/spidev_fdx.c @@ -0,0 +1,158 @@ +#include <stdio.h> +#include <unistd.h> +#include <stdlib.h> +#include <fcntl.h> +#include <string.h> + +#include <sys/ioctl.h> +#include <sys/types.h> +#include <sys/stat.h> + +#include <linux/types.h> +#include <linux/spi/spidev.h> + + +static int verbose; + +static void do_read(int fd, int len) +{ + unsigned char buf[32], *bp; + int status; + + /* read at least 2 bytes, no more than 32 */ + if (len < 2) + len = 2; + else if (len > sizeof(buf)) + len = sizeof(buf); + memset(buf, 0, sizeof buf); + + status = read(fd, buf, len); + if (status < 0) { + perror("read"); + return; + } + if (status != len) { + fprintf(stderr, "short read\n"); + return; + } + + printf("read(%2d, %2d): %02x %02x,", len, status, + buf[0], buf[1]); + status -= 2; + bp = buf + 2; + while (status-- > 0) + printf(" %02x", *bp++); + printf("\n"); +} + +static void do_msg(int fd, int len) +{ + struct spi_ioc_transfer xfer[2]; + unsigned char buf[32], *bp; + int status; + + memset(xfer, 0, sizeof xfer); + memset(buf, 0, sizeof buf); + + if (len > sizeof buf) + len = sizeof buf; + + buf[0] = 0xaa; + xfer[0].tx_buf = (unsigned long)buf; + xfer[0].len = 1; + + xfer[1].rx_buf = (unsigned long) buf; + xfer[1].len = len; + + status = ioctl(fd, SPI_IOC_MESSAGE(2), xfer); + if (status < 0) { + perror("SPI_IOC_MESSAGE"); + return; + } + + printf("response(%2d, %2d): ", len, status); + for (bp = buf; len; len--) + printf(" %02x", *bp++); + printf("\n"); +} + +static void dumpstat(const char *name, int fd) +{ + __u8 lsb, bits; + __u32 mode, speed; + + if (ioctl(fd, SPI_IOC_RD_MODE32, &mode) < 0) { + perror("SPI rd_mode"); + return; + } + if (ioctl(fd, SPI_IOC_RD_LSB_FIRST, &lsb) < 0) { + perror("SPI rd_lsb_fist"); + return; + } + if (ioctl(fd, SPI_IOC_RD_BITS_PER_WORD, &bits) < 0) { + perror("SPI bits_per_word"); + return; + } + if (ioctl(fd, SPI_IOC_RD_MAX_SPEED_HZ, &speed) < 0) { + perror("SPI max_speed_hz"); + return; + } + + printf("%s: spi mode 0x%x, %d bits %sper word, %d Hz max\n", + name, mode, bits, lsb ? "(lsb first) " : "", speed); +} + +int main(int argc, char **argv) +{ + int c; + int readcount = 0; + int msglen = 0; + int fd; + const char *name; + + while ((c = getopt(argc, argv, "hm:r:v")) != EOF) { + switch (c) { + case 'm': + msglen = atoi(optarg); + if (msglen < 0) + goto usage; + continue; + case 'r': + readcount = atoi(optarg); + if (readcount < 0) + goto usage; + continue; + case 'v': + verbose++; + continue; + case 'h': + case '?': +usage: + fprintf(stderr, + "usage: %s [-h] [-m N] [-r N] /dev/spidevB.D\n", + argv[0]); + return 1; + } + } + + if ((optind + 1) != argc) + goto usage; + name = argv[optind]; + + fd = open(name, O_RDWR); + if (fd < 0) { + perror("open"); + return 1; + } + + dumpstat(name, fd); + + if (msglen) + do_msg(fd, msglen); + + if (readcount) + do_read(fd, readcount); + + close(fd); + return 0; +} diff --git a/kernel/Documentation/spi/spidev_test.c b/kernel/Documentation/spi/spidev_test.c new file mode 100644 index 000000000..135b3f592 --- /dev/null +++ b/kernel/Documentation/spi/spidev_test.c @@ -0,0 +1,318 @@ +/* + * SPI testing utility (using spidev driver) + * + * Copyright (c) 2007 MontaVista Software, Inc. + * Copyright (c) 2007 Anton Vorontsov <avorontsov@ru.mvista.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License. + * + * Cross-compile with cross-gcc -I/path/to/cross-kernel/include + */ + +#include <stdint.h> +#include <unistd.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <getopt.h> +#include <fcntl.h> +#include <sys/ioctl.h> +#include <linux/types.h> +#include <linux/spi/spidev.h> + +#define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0])) + +static void pabort(const char *s) +{ + perror(s); + abort(); +} + +static const char *device = "/dev/spidev1.1"; +static uint32_t mode; +static uint8_t bits = 8; +static uint32_t speed = 500000; +static uint16_t delay; +static int verbose; + +uint8_t default_tx[] = { + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0x40, 0x00, 0x00, 0x00, 0x00, 0x95, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xF0, 0x0D, +}; + +uint8_t default_rx[ARRAY_SIZE(default_tx)] = {0, }; +char *input_tx; + +static void hex_dump(const void *src, size_t length, size_t line_size, char *prefix) +{ + int i = 0; + const unsigned char *address = src; + const unsigned char *line = address; + unsigned char c; + + printf("%s | ", prefix); + while (length-- > 0) { + printf("%02X ", *address++); + if (!(++i % line_size) || (length == 0 && i % line_size)) { + if (length == 0) { + while (i++ % line_size) + printf("__ "); + } + printf(" | "); /* right close */ + while (line < address) { + c = *line++; + printf("%c", (c < 33 || c == 255) ? 0x2E : c); + } + printf("\n"); + if (length > 0) + printf("%s | ", prefix); + } + } +} + +/* + * Unescape - process hexadecimal escape character + * converts shell input "\x23" -> 0x23 + */ +static int unescape(char *_dst, char *_src, size_t len) +{ + int ret = 0; + char *src = _src; + char *dst = _dst; + unsigned int ch; + + while (*src) { + if (*src == '\\' && *(src+1) == 'x') { + sscanf(src + 2, "%2x", &ch); + src += 4; + *dst++ = (unsigned char)ch; + } else { + *dst++ = *src++; + } + ret++; + } + return ret; +} + +static void transfer(int fd, uint8_t const *tx, uint8_t const *rx, size_t len) +{ + int ret; + + struct spi_ioc_transfer tr = { + .tx_buf = (unsigned long)tx, + .rx_buf = (unsigned long)rx, + .len = len, + .delay_usecs = delay, + .speed_hz = speed, + .bits_per_word = bits, + }; + + if (mode & SPI_TX_QUAD) + tr.tx_nbits = 4; + else if (mode & SPI_TX_DUAL) + tr.tx_nbits = 2; + if (mode & SPI_RX_QUAD) + tr.rx_nbits = 4; + else if (mode & SPI_RX_DUAL) + tr.rx_nbits = 2; + if (!(mode & SPI_LOOP)) { + if (mode & (SPI_TX_QUAD | SPI_TX_DUAL)) + tr.rx_buf = 0; + else if (mode & (SPI_RX_QUAD | SPI_RX_DUAL)) + tr.tx_buf = 0; + } + + ret = ioctl(fd, SPI_IOC_MESSAGE(1), &tr); + if (ret < 1) + pabort("can't send spi message"); + + if (verbose) + hex_dump(tx, len, 32, "TX"); + hex_dump(rx, len, 32, "RX"); +} + +static void print_usage(const char *prog) +{ + printf("Usage: %s [-DsbdlHOLC3]\n", prog); + puts(" -D --device device to use (default /dev/spidev1.1)\n" + " -s --speed max speed (Hz)\n" + " -d --delay delay (usec)\n" + " -b --bpw bits per word \n" + " -l --loop loopback\n" + " -H --cpha clock phase\n" + " -O --cpol clock polarity\n" + " -L --lsb least significant bit first\n" + " -C --cs-high chip select active high\n" + " -3 --3wire SI/SO signals shared\n" + " -v --verbose Verbose (show tx buffer)\n" + " -p Send data (e.g. \"1234\\xde\\xad\")\n" + " -N --no-cs no chip select\n" + " -R --ready slave pulls low to pause\n" + " -2 --dual dual transfer\n" + " -4 --quad quad transfer\n"); + exit(1); +} + +static void parse_opts(int argc, char *argv[]) +{ + while (1) { + static const struct option lopts[] = { + { "device", 1, 0, 'D' }, + { "speed", 1, 0, 's' }, + { "delay", 1, 0, 'd' }, + { "bpw", 1, 0, 'b' }, + { "loop", 0, 0, 'l' }, + { "cpha", 0, 0, 'H' }, + { "cpol", 0, 0, 'O' }, + { "lsb", 0, 0, 'L' }, + { "cs-high", 0, 0, 'C' }, + { "3wire", 0, 0, '3' }, + { "no-cs", 0, 0, 'N' }, + { "ready", 0, 0, 'R' }, + { "dual", 0, 0, '2' }, + { "verbose", 0, 0, 'v' }, + { "quad", 0, 0, '4' }, + { NULL, 0, 0, 0 }, + }; + int c; + + c = getopt_long(argc, argv, "D:s:d:b:lHOLC3NR24p:v", lopts, NULL); + + if (c == -1) + break; + + switch (c) { + case 'D': + device = optarg; + break; + case 's': + speed = atoi(optarg); + break; + case 'd': + delay = atoi(optarg); + break; + case 'b': + bits = atoi(optarg); + break; + case 'l': + mode |= SPI_LOOP; + break; + case 'H': + mode |= SPI_CPHA; + break; + case 'O': + mode |= SPI_CPOL; + break; + case 'L': + mode |= SPI_LSB_FIRST; + break; + case 'C': + mode |= SPI_CS_HIGH; + break; + case '3': + mode |= SPI_3WIRE; + break; + case 'N': + mode |= SPI_NO_CS; + break; + case 'v': + verbose = 1; + break; + case 'R': + mode |= SPI_READY; + break; + case 'p': + input_tx = optarg; + break; + case '2': + mode |= SPI_TX_DUAL; + break; + case '4': + mode |= SPI_TX_QUAD; + break; + default: + print_usage(argv[0]); + break; + } + } + if (mode & SPI_LOOP) { + if (mode & SPI_TX_DUAL) + mode |= SPI_RX_DUAL; + if (mode & SPI_TX_QUAD) + mode |= SPI_RX_QUAD; + } +} + +int main(int argc, char *argv[]) +{ + int ret = 0; + int fd; + uint8_t *tx; + uint8_t *rx; + int size; + + parse_opts(argc, argv); + + fd = open(device, O_RDWR); + if (fd < 0) + pabort("can't open device"); + + /* + * spi mode + */ + ret = ioctl(fd, SPI_IOC_WR_MODE32, &mode); + if (ret == -1) + pabort("can't set spi mode"); + + ret = ioctl(fd, SPI_IOC_RD_MODE32, &mode); + if (ret == -1) + pabort("can't get spi mode"); + + /* + * bits per word + */ + ret = ioctl(fd, SPI_IOC_WR_BITS_PER_WORD, &bits); + if (ret == -1) + pabort("can't set bits per word"); + + ret = ioctl(fd, SPI_IOC_RD_BITS_PER_WORD, &bits); + if (ret == -1) + pabort("can't get bits per word"); + + /* + * max speed hz + */ + ret = ioctl(fd, SPI_IOC_WR_MAX_SPEED_HZ, &speed); + if (ret == -1) + pabort("can't set max speed hz"); + + ret = ioctl(fd, SPI_IOC_RD_MAX_SPEED_HZ, &speed); + if (ret == -1) + pabort("can't get max speed hz"); + + printf("spi mode: 0x%x\n", mode); + printf("bits per word: %d\n", bits); + printf("max speed: %d Hz (%d KHz)\n", speed, speed/1000); + + if (input_tx) { + size = strlen(input_tx+1); + tx = malloc(size); + rx = malloc(size); + size = unescape((char *)tx, input_tx, size); + transfer(fd, tx, rx, size); + free(rx); + free(tx); + } else { + transfer(fd, default_tx, default_rx, sizeof(default_tx)); + } + + close(fd); + + return ret; +} |