summaryrefslogtreecommitdiffstats
path: root/kernel/Documentation/networking/multiqueue.txt
diff options
context:
space:
mode:
authorYunhong Jiang <yunhong.jiang@intel.com>2015-08-04 12:17:53 -0700
committerYunhong Jiang <yunhong.jiang@intel.com>2015-08-04 15:44:42 -0700
commit9ca8dbcc65cfc63d6f5ef3312a33184e1d726e00 (patch)
tree1c9cafbcd35f783a87880a10f85d1a060db1a563 /kernel/Documentation/networking/multiqueue.txt
parent98260f3884f4a202f9ca5eabed40b1354c489b29 (diff)
Add the rt linux 4.1.3-rt3 as base
Import the rt linux 4.1.3-rt3 as OPNFV kvm base. It's from git://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-rt-devel.git linux-4.1.y-rt and the base is: commit 0917f823c59692d751951bf5ea699a2d1e2f26a2 Author: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Date: Sat Jul 25 12:13:34 2015 +0200 Prepare v4.1.3-rt3 Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> We lose all the git history this way and it's not good. We should apply another opnfv project repo in future. Change-Id: I87543d81c9df70d99c5001fbdf646b202c19f423 Signed-off-by: Yunhong Jiang <yunhong.jiang@intel.com>
Diffstat (limited to 'kernel/Documentation/networking/multiqueue.txt')
-rw-r--r--kernel/Documentation/networking/multiqueue.txt79
1 files changed, 79 insertions, 0 deletions
diff --git a/kernel/Documentation/networking/multiqueue.txt b/kernel/Documentation/networking/multiqueue.txt
new file mode 100644
index 000000000..4caa0e314
--- /dev/null
+++ b/kernel/Documentation/networking/multiqueue.txt
@@ -0,0 +1,79 @@
+
+ HOWTO for multiqueue network device support
+ ===========================================
+
+Section 1: Base driver requirements for implementing multiqueue support
+
+Intro: Kernel support for multiqueue devices
+---------------------------------------------------------
+
+Kernel support for multiqueue devices is always present.
+
+Section 1: Base driver requirements for implementing multiqueue support
+-----------------------------------------------------------------------
+
+Base drivers are required to use the new alloc_etherdev_mq() or
+alloc_netdev_mq() functions to allocate the subqueues for the device. The
+underlying kernel API will take care of the allocation and deallocation of
+the subqueue memory, as well as netdev configuration of where the queues
+exist in memory.
+
+The base driver will also need to manage the queues as it does the global
+netdev->queue_lock today. Therefore base drivers should use the
+netif_{start|stop|wake}_subqueue() functions to manage each queue while the
+device is still operational. netdev->queue_lock is still used when the device
+comes online or when it's completely shut down (unregister_netdev(), etc.).
+
+
+Section 2: Qdisc support for multiqueue devices
+
+-----------------------------------------------
+
+Currently two qdiscs are optimized for multiqueue devices. The first is the
+default pfifo_fast qdisc. This qdisc supports one qdisc per hardware queue.
+A new round-robin qdisc, sch_multiq also supports multiple hardware queues. The
+qdisc is responsible for classifying the skb's and then directing the skb's to
+bands and queues based on the value in skb->queue_mapping. Use this field in
+the base driver to determine which queue to send the skb to.
+
+sch_multiq has been added for hardware that wishes to avoid head-of-line
+blocking. It will cycle though the bands and verify that the hardware queue
+associated with the band is not stopped prior to dequeuing a packet.
+
+On qdisc load, the number of bands is based on the number of queues on the
+hardware. Once the association is made, any skb with skb->queue_mapping set,
+will be queued to the band associated with the hardware queue.
+
+
+Section 3: Brief howto using MULTIQ for multiqueue devices
+---------------------------------------------------------------
+
+The userspace command 'tc,' part of the iproute2 package, is used to configure
+qdiscs. To add the MULTIQ qdisc to your network device, assuming the device
+is called eth0, run the following command:
+
+# tc qdisc add dev eth0 root handle 1: multiq
+
+The qdisc will allocate the number of bands to equal the number of queues that
+the device reports, and bring the qdisc online. Assuming eth0 has 4 Tx
+queues, the band mapping would look like:
+
+band 0 => queue 0
+band 1 => queue 1
+band 2 => queue 2
+band 3 => queue 3
+
+Traffic will begin flowing through each queue based on either the simple_tx_hash
+function or based on netdev->select_queue() if you have it defined.
+
+The behavior of tc filters remains the same. However a new tc action,
+skbedit, has been added. Assuming you wanted to route all traffic to a
+specific host, for example 192.168.0.3, through a specific queue you could use
+this action and establish a filter such as:
+
+tc filter add dev eth0 parent 1: protocol ip prio 1 u32 \
+ match ip dst 192.168.0.3 \
+ action skbedit queue_mapping 3
+
+Author: Alexander Duyck <alexander.h.duyck@intel.com>
+Original Author: Peter P. Waskiewicz Jr. <peter.p.waskiewicz.jr@intel.com>