diff options
author | Yunhong Jiang <yunhong.jiang@intel.com> | 2015-08-04 12:17:53 -0700 |
---|---|---|
committer | Yunhong Jiang <yunhong.jiang@intel.com> | 2015-08-04 15:44:42 -0700 |
commit | 9ca8dbcc65cfc63d6f5ef3312a33184e1d726e00 (patch) | |
tree | 1c9cafbcd35f783a87880a10f85d1a060db1a563 /kernel/Documentation/driver-model/driver.txt | |
parent | 98260f3884f4a202f9ca5eabed40b1354c489b29 (diff) |
Add the rt linux 4.1.3-rt3 as base
Import the rt linux 4.1.3-rt3 as OPNFV kvm base.
It's from git://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-rt-devel.git linux-4.1.y-rt and
the base is:
commit 0917f823c59692d751951bf5ea699a2d1e2f26a2
Author: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Date: Sat Jul 25 12:13:34 2015 +0200
Prepare v4.1.3-rt3
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
We lose all the git history this way and it's not good. We
should apply another opnfv project repo in future.
Change-Id: I87543d81c9df70d99c5001fbdf646b202c19f423
Signed-off-by: Yunhong Jiang <yunhong.jiang@intel.com>
Diffstat (limited to 'kernel/Documentation/driver-model/driver.txt')
-rw-r--r-- | kernel/Documentation/driver-model/driver.txt | 214 |
1 files changed, 214 insertions, 0 deletions
diff --git a/kernel/Documentation/driver-model/driver.txt b/kernel/Documentation/driver-model/driver.txt new file mode 100644 index 000000000..442113582 --- /dev/null +++ b/kernel/Documentation/driver-model/driver.txt @@ -0,0 +1,214 @@ + +Device Drivers + +See the kerneldoc for the struct device_driver. + + +Allocation +~~~~~~~~~~ + +Device drivers are statically allocated structures. Though there may +be multiple devices in a system that a driver supports, struct +device_driver represents the driver as a whole (not a particular +device instance). + +Initialization +~~~~~~~~~~~~~~ + +The driver must initialize at least the name and bus fields. It should +also initialize the devclass field (when it arrives), so it may obtain +the proper linkage internally. It should also initialize as many of +the callbacks as possible, though each is optional. + +Declaration +~~~~~~~~~~~ + +As stated above, struct device_driver objects are statically +allocated. Below is an example declaration of the eepro100 +driver. This declaration is hypothetical only; it relies on the driver +being converted completely to the new model. + +static struct device_driver eepro100_driver = { + .name = "eepro100", + .bus = &pci_bus_type, + + .probe = eepro100_probe, + .remove = eepro100_remove, + .suspend = eepro100_suspend, + .resume = eepro100_resume, +}; + +Most drivers will not be able to be converted completely to the new +model because the bus they belong to has a bus-specific structure with +bus-specific fields that cannot be generalized. + +The most common example of this are device ID structures. A driver +typically defines an array of device IDs that it supports. The format +of these structures and the semantics for comparing device IDs are +completely bus-specific. Defining them as bus-specific entities would +sacrifice type-safety, so we keep bus-specific structures around. + +Bus-specific drivers should include a generic struct device_driver in +the definition of the bus-specific driver. Like this: + +struct pci_driver { + const struct pci_device_id *id_table; + struct device_driver driver; +}; + +A definition that included bus-specific fields would look like +(using the eepro100 driver again): + +static struct pci_driver eepro100_driver = { + .id_table = eepro100_pci_tbl, + .driver = { + .name = "eepro100", + .bus = &pci_bus_type, + .probe = eepro100_probe, + .remove = eepro100_remove, + .suspend = eepro100_suspend, + .resume = eepro100_resume, + }, +}; + +Some may find the syntax of embedded struct initialization awkward or +even a bit ugly. So far, it's the best way we've found to do what we want... + +Registration +~~~~~~~~~~~~ + +int driver_register(struct device_driver * drv); + +The driver registers the structure on startup. For drivers that have +no bus-specific fields (i.e. don't have a bus-specific driver +structure), they would use driver_register and pass a pointer to their +struct device_driver object. + +Most drivers, however, will have a bus-specific structure and will +need to register with the bus using something like pci_driver_register. + +It is important that drivers register their driver structure as early as +possible. Registration with the core initializes several fields in the +struct device_driver object, including the reference count and the +lock. These fields are assumed to be valid at all times and may be +used by the device model core or the bus driver. + + +Transition Bus Drivers +~~~~~~~~~~~~~~~~~~~~~~ + +By defining wrapper functions, the transition to the new model can be +made easier. Drivers can ignore the generic structure altogether and +let the bus wrapper fill in the fields. For the callbacks, the bus can +define generic callbacks that forward the call to the bus-specific +callbacks of the drivers. + +This solution is intended to be only temporary. In order to get class +information in the driver, the drivers must be modified anyway. Since +converting drivers to the new model should reduce some infrastructural +complexity and code size, it is recommended that they are converted as +class information is added. + +Access +~~~~~~ + +Once the object has been registered, it may access the common fields of +the object, like the lock and the list of devices. + +int driver_for_each_dev(struct device_driver * drv, void * data, + int (*callback)(struct device * dev, void * data)); + +The devices field is a list of all the devices that have been bound to +the driver. The LDM core provides a helper function to operate on all +the devices a driver controls. This helper locks the driver on each +node access, and does proper reference counting on each device as it +accesses it. + + +sysfs +~~~~~ + +When a driver is registered, a sysfs directory is created in its +bus's directory. In this directory, the driver can export an interface +to userspace to control operation of the driver on a global basis; +e.g. toggling debugging output in the driver. + +A future feature of this directory will be a 'devices' directory. This +directory will contain symlinks to the directories of devices it +supports. + + + +Callbacks +~~~~~~~~~ + + int (*probe) (struct device * dev); + +The probe() entry is called in task context, with the bus's rwsem locked +and the driver partially bound to the device. Drivers commonly use +container_of() to convert "dev" to a bus-specific type, both in probe() +and other routines. That type often provides device resource data, such +as pci_dev.resource[] or platform_device.resources, which is used in +addition to dev->platform_data to initialize the driver. + +This callback holds the driver-specific logic to bind the driver to a +given device. That includes verifying that the device is present, that +it's a version the driver can handle, that driver data structures can +be allocated and initialized, and that any hardware can be initialized. +Drivers often store a pointer to their state with dev_set_drvdata(). +When the driver has successfully bound itself to that device, then probe() +returns zero and the driver model code will finish its part of binding +the driver to that device. + +A driver's probe() may return a negative errno value to indicate that +the driver did not bind to this device, in which case it should have +released all resources it allocated. + + int (*remove) (struct device * dev); + +remove is called to unbind a driver from a device. This may be +called if a device is physically removed from the system, if the +driver module is being unloaded, during a reboot sequence, or +in other cases. + +It is up to the driver to determine if the device is present or +not. It should free any resources allocated specifically for the +device; i.e. anything in the device's driver_data field. + +If the device is still present, it should quiesce the device and place +it into a supported low-power state. + + int (*suspend) (struct device * dev, pm_message_t state); + +suspend is called to put the device in a low power state. + + int (*resume) (struct device * dev); + +Resume is used to bring a device back from a low power state. + + +Attributes +~~~~~~~~~~ +struct driver_attribute { + struct attribute attr; + ssize_t (*show)(struct device_driver *driver, char *buf); + ssize_t (*store)(struct device_driver *, const char * buf, size_t count); +}; + +Device drivers can export attributes via their sysfs directories. +Drivers can declare attributes using a DRIVER_ATTR macro that works +identically to the DEVICE_ATTR macro. + +Example: + +DRIVER_ATTR(debug,0644,show_debug,store_debug); + +This is equivalent to declaring: + +struct driver_attribute driver_attr_debug; + +This can then be used to add and remove the attribute from the +driver's directory using: + +int driver_create_file(struct device_driver *, const struct driver_attribute *); +void driver_remove_file(struct device_driver *, const struct driver_attribute *); |