diff options
author | Yunhong Jiang <yunhong.jiang@intel.com> | 2015-08-04 12:17:53 -0700 |
---|---|---|
committer | Yunhong Jiang <yunhong.jiang@intel.com> | 2015-08-04 15:44:42 -0700 |
commit | 9ca8dbcc65cfc63d6f5ef3312a33184e1d726e00 (patch) | |
tree | 1c9cafbcd35f783a87880a10f85d1a060db1a563 /kernel/Documentation/devicetree/bindings/thermal | |
parent | 98260f3884f4a202f9ca5eabed40b1354c489b29 (diff) |
Add the rt linux 4.1.3-rt3 as base
Import the rt linux 4.1.3-rt3 as OPNFV kvm base.
It's from git://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-rt-devel.git linux-4.1.y-rt and
the base is:
commit 0917f823c59692d751951bf5ea699a2d1e2f26a2
Author: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Date: Sat Jul 25 12:13:34 2015 +0200
Prepare v4.1.3-rt3
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
We lose all the git history this way and it's not good. We
should apply another opnfv project repo in future.
Change-Id: I87543d81c9df70d99c5001fbdf646b202c19f423
Signed-off-by: Yunhong Jiang <yunhong.jiang@intel.com>
Diffstat (limited to 'kernel/Documentation/devicetree/bindings/thermal')
13 files changed, 1132 insertions, 0 deletions
diff --git a/kernel/Documentation/devicetree/bindings/thermal/armada-thermal.txt b/kernel/Documentation/devicetree/bindings/thermal/armada-thermal.txt new file mode 100644 index 000000000..4698e0edc --- /dev/null +++ b/kernel/Documentation/devicetree/bindings/thermal/armada-thermal.txt @@ -0,0 +1,24 @@ +* Marvell Armada 370/375/380/XP thermal management + +Required properties: + +- compatible: Should be set to one of the following: + marvell,armada370-thermal + marvell,armada375-thermal + marvell,armada380-thermal + marvell,armadaxp-thermal + +- reg: Device's register space. + Two entries are expected, see the examples below. + The first one is required for the sensor register; + the second one is required for the control register + to be used for sensor initialization (a.k.a. calibration). + +Example: + + thermal@d0018300 { + compatible = "marvell,armada370-thermal"; + reg = <0xd0018300 0x4 + 0xd0018304 0x4>; + status = "okay"; + }; diff --git a/kernel/Documentation/devicetree/bindings/thermal/db8500-thermal.txt b/kernel/Documentation/devicetree/bindings/thermal/db8500-thermal.txt new file mode 100644 index 000000000..2e1c06fad --- /dev/null +++ b/kernel/Documentation/devicetree/bindings/thermal/db8500-thermal.txt @@ -0,0 +1,44 @@ +* ST-Ericsson DB8500 Thermal + +** Thermal node properties: + +- compatible : "stericsson,db8500-thermal"; +- reg : address range of the thermal sensor registers; +- interrupts : interrupts generated from PRCMU; +- interrupt-names : "IRQ_HOTMON_LOW" and "IRQ_HOTMON_HIGH"; +- num-trips : number of total trip points, this is required, set it 0 if none, + if greater than 0, the following properties must be defined; +- tripN-temp : temperature of trip point N, should be in ascending order; +- tripN-type : type of trip point N, should be one of "active" "passive" "hot" + "critical"; +- tripN-cdev-num : number of the cooling devices which can be bound to trip + point N, this is required if trip point N is defined, set it 0 if none, + otherwise the following cooling device names must be defined; +- tripN-cdev-nameM : name of the No. M cooling device of trip point N; + +Usually the num-trips and tripN-*** are separated in board related dts files. + +Example: +thermal@801573c0 { + compatible = "stericsson,db8500-thermal"; + reg = <0x801573c0 0x40>; + interrupts = <21 0x4>, <22 0x4>; + interrupt-names = "IRQ_HOTMON_LOW", "IRQ_HOTMON_HIGH"; + + num-trips = <3>; + + trip0-temp = <75000>; + trip0-type = "active"; + trip0-cdev-num = <1>; + trip0-cdev-name0 = "thermal-cpufreq-0"; + + trip1-temp = <80000>; + trip1-type = "active"; + trip1-cdev-num = <2>; + trip1-cdev-name0 = "thermal-cpufreq-0"; + trip1-cdev-name1 = "thermal-fan"; + + trip2-temp = <85000>; + trip2-type = "critical"; + trip2-cdev-num = <0>; +} diff --git a/kernel/Documentation/devicetree/bindings/thermal/dove-thermal.txt b/kernel/Documentation/devicetree/bindings/thermal/dove-thermal.txt new file mode 100644 index 000000000..6f474677d --- /dev/null +++ b/kernel/Documentation/devicetree/bindings/thermal/dove-thermal.txt @@ -0,0 +1,18 @@ +* Dove Thermal + +This driver is for Dove SoCs which contain a thermal sensor. + +Required properties: +- compatible : "marvell,dove-thermal" +- reg : Address range of the thermal registers + +The reg properties should contain two ranges. The first is for the +three Thermal Manager registers, while the second range contains the +Thermal Diode Control Registers. + +Example: + + thermal@10078 { + compatible = "marvell,dove-thermal"; + reg = <0xd001c 0x0c>, <0xd005c 0x08>; + }; diff --git a/kernel/Documentation/devicetree/bindings/thermal/exynos-thermal.txt b/kernel/Documentation/devicetree/bindings/thermal/exynos-thermal.txt new file mode 100644 index 000000000..695150a41 --- /dev/null +++ b/kernel/Documentation/devicetree/bindings/thermal/exynos-thermal.txt @@ -0,0 +1,121 @@ +* Exynos Thermal Management Unit (TMU) + +** Required properties: + +- compatible : One of the following: + "samsung,exynos3250-tmu" + "samsung,exynos4412-tmu" + "samsung,exynos4210-tmu" + "samsung,exynos5250-tmu" + "samsung,exynos5260-tmu" + "samsung,exynos5420-tmu" for TMU channel 0, 1 on Exynos5420 + "samsung,exynos5420-tmu-ext-triminfo" for TMU channels 2, 3 and 4 + Exynos5420 (Must pass triminfo base and triminfo clock) + "samsung,exynos5440-tmu" + "samsung,exynos7-tmu" +- interrupt-parent : The phandle for the interrupt controller +- reg : Address range of the thermal registers. For soc's which has multiple + instances of TMU and some registers are shared across all TMU's like + interrupt related then 2 set of register has to supplied. First set + belongs to register set of TMU instance and second set belongs to + registers shared with the TMU instance. + + NOTE: On Exynos5420, the TRIMINFO register is misplaced for TMU + channels 2, 3 and 4 + Use "samsung,exynos5420-tmu-ext-triminfo" in cases, there is a misplaced + register, also provide clock to access that base. + + TRIMINFO at 0x1006c000 contains data for TMU channel 3 + TRIMINFO at 0x100a0000 contains data for TMU channel 4 + TRIMINFO at 0x10068000 contains data for TMU channel 2 + +- interrupts : Should contain interrupt for thermal system +- clocks : The main clocks for TMU device + -- 1. operational clock for TMU channel + -- 2. optional clock to access the shared registers of TMU channel + -- 3. optional special clock for functional operation +- clock-names : Thermal system clock name + -- "tmu_apbif" operational clock for current TMU channel + -- "tmu_triminfo_apbif" clock to access the shared triminfo register + for current TMU channel + -- "tmu_sclk" clock for functional operation of the current TMU + channel +- vtmu-supply: This entry is optional and provides the regulator node supplying + voltage to TMU. If needed this entry can be placed inside + board/platform specific dts file. +Following properties are mandatory (depending on SoC): +- samsung,tmu_gain: Gain value for internal TMU operation. +- samsung,tmu_reference_voltage: Value of TMU IP block's reference voltage +- samsung,tmu_noise_cancel_mode: Mode for noise cancellation +- samsung,tmu_efuse_value: Default level of temperature - it is needed when + in factory fusing produced wrong value +- samsung,tmu_min_efuse_value: Minimum temperature fused value +- samsung,tmu_max_efuse_value: Maximum temperature fused value +- samsung,tmu_first_point_trim: First point trimming value +- samsung,tmu_second_point_trim: Second point trimming value +- samsung,tmu_default_temp_offset: Default temperature offset +- samsung,tmu_cal_type: Callibration type + +Example 1): + + tmu@100C0000 { + compatible = "samsung,exynos4412-tmu"; + interrupt-parent = <&combiner>; + reg = <0x100C0000 0x100>; + interrupts = <2 4>; + clocks = <&clock 383>; + clock-names = "tmu_apbif"; + status = "disabled"; + vtmu-supply = <&tmu_regulator_node>; + #include "exynos4412-tmu-sensor-conf.dtsi" + }; + +Example 2): + + tmuctrl_0: tmuctrl@160118 { + compatible = "samsung,exynos5440-tmu"; + reg = <0x160118 0x230>, <0x160368 0x10>; + interrupts = <0 58 0>; + clocks = <&clock 21>; + clock-names = "tmu_apbif"; + #include "exynos5440-tmu-sensor-conf.dtsi" + }; + +Example 3): (In case of Exynos5420 "with misplaced TRIMINFO register") + tmu_cpu2: tmu@10068000 { + compatible = "samsung,exynos5420-tmu-ext-triminfo"; + reg = <0x10068000 0x100>, <0x1006c000 0x4>; + interrupts = <0 184 0>; + clocks = <&clock 318>, <&clock 318>; + clock-names = "tmu_apbif", "tmu_triminfo_apbif"; + #include "exynos4412-tmu-sensor-conf.dtsi" + }; + + tmu_cpu3: tmu@1006c000 { + compatible = "samsung,exynos5420-tmu-ext-triminfo"; + reg = <0x1006c000 0x100>, <0x100a0000 0x4>; + interrupts = <0 185 0>; + clocks = <&clock 318>, <&clock 319>; + clock-names = "tmu_apbif", "tmu_triminfo_apbif"; + #include "exynos4412-tmu-sensor-conf.dtsi" + }; + + tmu_gpu: tmu@100a0000 { + compatible = "samsung,exynos5420-tmu-ext-triminfo"; + reg = <0x100a0000 0x100>, <0x10068000 0x4>; + interrupts = <0 215 0>; + clocks = <&clock 319>, <&clock 318>; + clock-names = "tmu_apbif", "tmu_triminfo_apbif"; + #include "exynos4412-tmu-sensor-conf.dtsi" + }; + +Note: For multi-instance tmu each instance should have an alias correctly +numbered in "aliases" node. + +Example: + +aliases { + tmuctrl0 = &tmuctrl_0; + tmuctrl1 = &tmuctrl_1; + tmuctrl2 = &tmuctrl_2; +}; diff --git a/kernel/Documentation/devicetree/bindings/thermal/imx-thermal.txt b/kernel/Documentation/devicetree/bindings/thermal/imx-thermal.txt new file mode 100644 index 000000000..3c67bd50a --- /dev/null +++ b/kernel/Documentation/devicetree/bindings/thermal/imx-thermal.txt @@ -0,0 +1,24 @@ +* Temperature Monitor (TEMPMON) on Freescale i.MX SoCs + +Required properties: +- compatible : "fsl,imx6q-tempmon" for i.MX6Q, "fsl,imx6sx-tempmon" for i.MX6SX. + i.MX6SX has two more IRQs than i.MX6Q, one is IRQ_LOW and the other is IRQ_PANIC, + when temperature is below than low threshold, IRQ_LOW will be triggered, when temperature + is higher than panic threshold, system will auto reboot by SRC module. +- fsl,tempmon : phandle pointer to system controller that contains TEMPMON + control registers, e.g. ANATOP on imx6q. +- fsl,tempmon-data : phandle pointer to fuse controller that contains TEMPMON + calibration data, e.g. OCOTP on imx6q. The details about calibration data + can be found in SoC Reference Manual. + +Optional properties: +- clocks : thermal sensor's clock source. + +Example: + +tempmon { + compatible = "fsl,imx6q-tempmon"; + fsl,tempmon = <&anatop>; + fsl,tempmon-data = <&ocotp>; + clocks = <&clks 172>; +}; diff --git a/kernel/Documentation/devicetree/bindings/thermal/kirkwood-thermal.txt b/kernel/Documentation/devicetree/bindings/thermal/kirkwood-thermal.txt new file mode 100644 index 000000000..8c0f5eb86 --- /dev/null +++ b/kernel/Documentation/devicetree/bindings/thermal/kirkwood-thermal.txt @@ -0,0 +1,15 @@ +* Kirkwood Thermal + +This version is for Kirkwood 88F8262 & 88F6283 SoCs. Other kirkwoods +don't contain a thermal sensor. + +Required properties: +- compatible : "marvell,kirkwood-thermal" +- reg : Address range of the thermal registers + +Example: + + thermal@10078 { + compatible = "marvell,kirkwood-thermal"; + reg = <0x10078 0x4>; + }; diff --git a/kernel/Documentation/devicetree/bindings/thermal/rcar-thermal.txt b/kernel/Documentation/devicetree/bindings/thermal/rcar-thermal.txt new file mode 100644 index 000000000..332e625f6 --- /dev/null +++ b/kernel/Documentation/devicetree/bindings/thermal/rcar-thermal.txt @@ -0,0 +1,38 @@ +* Renesas R-Car Thermal + +Required properties: +- compatible : "renesas,thermal-<soctype>", "renesas,rcar-thermal" + as fallback. + Examples with soctypes are: + - "renesas,thermal-r8a73a4" (R-Mobile APE6) + - "renesas,thermal-r8a7779" (R-Car H1) + - "renesas,thermal-r8a7790" (R-Car H2) + - "renesas,thermal-r8a7791" (R-Car M2-W) + - "renesas,thermal-r8a7792" (R-Car V2H) + - "renesas,thermal-r8a7793" (R-Car M2-N) + - "renesas,thermal-r8a7794" (R-Car E2) +- reg : Address range of the thermal registers. + The 1st reg will be recognized as common register + if it has "interrupts". + +Option properties: + +- interrupts : use interrupt + +Example (non interrupt support): + +thermal@ffc48000 { + compatible = "renesas,thermal-r8a7779", "renesas,rcar-thermal"; + reg = <0xffc48000 0x38>; +}; + +Example (interrupt support): + +thermal@e61f0000 { + compatible = "renesas,thermal-r8a73a4", "renesas,rcar-thermal"; + reg = <0xe61f0000 0x14 + 0xe61f0100 0x38 + 0xe61f0200 0x38 + 0xe61f0300 0x38>; + interrupts = <0 69 IRQ_TYPE_LEVEL_HIGH>; +}; diff --git a/kernel/Documentation/devicetree/bindings/thermal/rockchip-thermal.txt b/kernel/Documentation/devicetree/bindings/thermal/rockchip-thermal.txt new file mode 100644 index 000000000..ef802de49 --- /dev/null +++ b/kernel/Documentation/devicetree/bindings/thermal/rockchip-thermal.txt @@ -0,0 +1,68 @@ +* Temperature Sensor ADC (TSADC) on rockchip SoCs + +Required properties: +- compatible : "rockchip,rk3288-tsadc" +- reg : physical base address of the controller and length of memory mapped + region. +- interrupts : The interrupt number to the cpu. The interrupt specifier format + depends on the interrupt controller. +- clocks : Must contain an entry for each entry in clock-names. +- clock-names : Shall be "tsadc" for the converter-clock, and "apb_pclk" for + the peripheral clock. +- resets : Must contain an entry for each entry in reset-names. + See ../reset/reset.txt for details. +- reset-names : Must include the name "tsadc-apb". +- #thermal-sensor-cells : Should be 1. See ./thermal.txt for a description. +- rockchip,hw-tshut-temp : The hardware-controlled shutdown temperature value. +- rockchip,hw-tshut-mode : The hardware-controlled shutdown mode 0:CRU 1:GPIO. +- rockchip,hw-tshut-polarity : The hardware-controlled active polarity 0:LOW + 1:HIGH. + +Exiample: +tsadc: tsadc@ff280000 { + compatible = "rockchip,rk3288-tsadc"; + reg = <0xff280000 0x100>; + interrupts = <GIC_SPI 37 IRQ_TYPE_LEVEL_HIGH>; + clocks = <&cru SCLK_TSADC>, <&cru PCLK_TSADC>; + clock-names = "tsadc", "apb_pclk"; + resets = <&cru SRST_TSADC>; + reset-names = "tsadc-apb"; + pinctrl-names = "default"; + pinctrl-0 = <&otp_out>; + #thermal-sensor-cells = <1>; + rockchip,hw-tshut-temp = <95000>; + rockchip,hw-tshut-mode = <0>; + rockchip,hw-tshut-polarity = <0>; +}; + +Example: referring to thermal sensors: +thermal-zones { + cpu_thermal: cpu_thermal { + polling-delay-passive = <1000>; /* milliseconds */ + polling-delay = <5000>; /* milliseconds */ + + /* sensor ID */ + thermal-sensors = <&tsadc 1>; + + trips { + cpu_alert0: cpu_alert { + temperature = <70000>; /* millicelsius */ + hysteresis = <2000>; /* millicelsius */ + type = "passive"; + }; + cpu_crit: cpu_crit { + temperature = <90000>; /* millicelsius */ + hysteresis = <2000>; /* millicelsius */ + type = "critical"; + }; + }; + + cooling-maps { + map0 { + trip = <&cpu_alert0>; + cooling-device = + <&cpu0 THERMAL_NO_LIMIT THERMAL_NO_LIMIT>; + }; + }; + }; +}; diff --git a/kernel/Documentation/devicetree/bindings/thermal/spear-thermal.txt b/kernel/Documentation/devicetree/bindings/thermal/spear-thermal.txt new file mode 100644 index 000000000..93e3b67c1 --- /dev/null +++ b/kernel/Documentation/devicetree/bindings/thermal/spear-thermal.txt @@ -0,0 +1,14 @@ +* SPEAr Thermal + +Required properties: +- compatible : "st,thermal-spear1340" +- reg : Address range of the thermal registers +- st,thermal-flags: flags used to enable thermal sensor + +Example: + + thermal@fc000000 { + compatible = "st,thermal-spear1340"; + reg = <0xfc000000 0x1000>; + st,thermal-flags = <0x7000>; + }; diff --git a/kernel/Documentation/devicetree/bindings/thermal/st-thermal.txt b/kernel/Documentation/devicetree/bindings/thermal/st-thermal.txt new file mode 100644 index 000000000..3b9251b4a --- /dev/null +++ b/kernel/Documentation/devicetree/bindings/thermal/st-thermal.txt @@ -0,0 +1,42 @@ +Binding for Thermal Sensor driver for STMicroelectronics STi series of SoCs. + +Required parameters: +------------------- + +compatible : st,<SoC>-<module>-thermal; should be one of: + "st,stih415-sas-thermal", + "st,stih415-mpe-thermal", + "st,stih416-sas-thermal" + "st,stih416-mpe-thermal" + "st,stid127-thermal" or + "st,stih407-thermal" + according to the SoC type (stih415, stih416, stid127, stih407) + and module type (sas or mpe). On stid127 & stih407 there is only + one die/module, so there is no module type in the compatible + string. +clock-names : Should be "thermal". + See: Documentation/devicetree/bindings/resource-names.txt +clocks : Phandle of the clock used by the thermal sensor. + See: Documentation/devicetree/bindings/clock/clock-bindings.txt + +Optional parameters: +------------------- + +reg : For non-sysconf based sensors, this should be the physical base + address and length of the sensor's registers. +interrupts : Standard way to define interrupt number. + Interrupt is mandatory to be defined when compatible is + "stih416-mpe-thermal". + NB: For thermal sensor's for which no interrupt has been + defined, a polling delay of 1000ms will be used to read the + temperature from device. + +Example: + + temp1@fdfe8000 { + compatible = "st,stih416-mpe-thermal"; + reg = <0xfdfe8000 0x10>; + clock-names = "thermal"; + clocks = <&clk_m_mpethsens>; + interrupts = <GIC_SPI 23 IRQ_TYPE_NONE>; + }; diff --git a/kernel/Documentation/devicetree/bindings/thermal/tegra-soctherm.txt b/kernel/Documentation/devicetree/bindings/thermal/tegra-soctherm.txt new file mode 100644 index 000000000..6b68cd150 --- /dev/null +++ b/kernel/Documentation/devicetree/bindings/thermal/tegra-soctherm.txt @@ -0,0 +1,55 @@ +Tegra124 SOCTHERM thermal management system + +The SOCTHERM IP block contains thermal sensors, support for polled +or interrupt-based thermal monitoring, CPU and GPU throttling based +on temperature trip points, and handling external overcurrent +notifications. It is also used to manage emergency shutdown in an +overheating situation. + +Required properties : +- compatible : For Tegra124, must contain "nvidia,tegra124-soctherm". + For Tegra132, must contain "nvidia,tegra132-soctherm". + For Tegra210, must contain "nvidia,tegra210-soctherm". +- reg : Should contain 1 entry: + - SOCTHERM register set +- interrupts : Defines the interrupt used by SOCTHERM +- clocks : Must contain an entry for each entry in clock-names. + See ../clocks/clock-bindings.txt for details. +- clock-names : Must include the following entries: + - tsensor + - soctherm +- resets : Must contain an entry for each entry in reset-names. + See ../reset/reset.txt for details. +- reset-names : Must include the following entries: + - soctherm +- #thermal-sensor-cells : Should be 1. See ./thermal.txt for a description + of this property. See <dt-bindings/thermal/tegra124-soctherm.h> for a + list of valid values when referring to thermal sensors. + + +Example : + + soctherm@0,700e2000 { + compatible = "nvidia,tegra124-soctherm"; + reg = <0x0 0x700e2000 0x0 0x1000>; + interrupts = <GIC_SPI 48 IRQ_TYPE_LEVEL_HIGH>; + clocks = <&tegra_car TEGRA124_CLK_TSENSOR>, + <&tegra_car TEGRA124_CLK_SOC_THERM>; + clock-names = "tsensor", "soctherm"; + resets = <&tegra_car 78>; + reset-names = "soctherm"; + + #thermal-sensor-cells = <1>; + }; + +Example: referring to thermal sensors : + + thermal-zones { + cpu { + polling-delay-passive = <1000>; + polling-delay = <1000>; + + thermal-sensors = + <&soctherm TEGRA124_SOCTHERM_SENSOR_CPU>; + }; + }; diff --git a/kernel/Documentation/devicetree/bindings/thermal/thermal.txt b/kernel/Documentation/devicetree/bindings/thermal/thermal.txt new file mode 100644 index 000000000..29fe0bfae --- /dev/null +++ b/kernel/Documentation/devicetree/bindings/thermal/thermal.txt @@ -0,0 +1,595 @@ +* Thermal Framework Device Tree descriptor + +This file describes a generic binding to provide a way of +defining hardware thermal structure using device tree. +A thermal structure includes thermal zones and their components, +such as trip points, polling intervals, sensors and cooling devices +binding descriptors. + +The target of device tree thermal descriptors is to describe only +the hardware thermal aspects. The thermal device tree bindings are +not about how the system must control or which algorithm or policy +must be taken in place. + +There are five types of nodes involved to describe thermal bindings: +- thermal sensors: devices which may be used to take temperature + measurements. +- cooling devices: devices which may be used to dissipate heat. +- trip points: describe key temperatures at which cooling is recommended. The + set of points should be chosen based on hardware limits. +- cooling maps: used to describe links between trip points and cooling devices; +- thermal zones: used to describe thermal data within the hardware; + +The following is a description of each of these node types. + +* Thermal sensor devices + +Thermal sensor devices are nodes providing temperature sensing capabilities on +thermal zones. Typical devices are I2C ADC converters and bandgaps. These are +nodes providing temperature data to thermal zones. Thermal sensor devices may +control one or more internal sensors. + +Required property: +- #thermal-sensor-cells: Used to provide sensor device specific information + Type: unsigned while referring to it. Typically 0 on thermal sensor + Size: one cell nodes with only one sensor, and at least 1 on nodes + with several internal sensors, in order + to identify uniquely the sensor instances within + the IC. See thermal zone binding for more details + on how consumers refer to sensor devices. + +* Cooling device nodes + +Cooling devices are nodes providing control on power dissipation. There +are essentially two ways to provide control on power dissipation. First +is by means of regulating device performance, which is known as passive +cooling. A typical passive cooling is a CPU that has dynamic voltage and +frequency scaling (DVFS), and uses lower frequencies as cooling states. +Second is by means of activating devices in order to remove +the dissipated heat, which is known as active cooling, e.g. regulating +fan speeds. In both cases, cooling devices shall have a way to determine +the state of cooling in which the device is. + +Any cooling device has a range of cooling states (i.e. different levels +of heat dissipation). For example a fan's cooling states correspond to +the different fan speeds possible. Cooling states are referred to by +single unsigned integers, where larger numbers mean greater heat +dissipation. The precise set of cooling states associated with a device +(as referred to be the cooling-min-state and cooling-max-state +properties) should be defined in a particular device's binding. +For more examples of cooling devices, refer to the example sections below. + +Required properties: +- cooling-min-state: An integer indicating the smallest + Type: unsigned cooling state accepted. Typically 0. + Size: one cell + +- cooling-max-state: An integer indicating the largest + Type: unsigned cooling state accepted. + Size: one cell + +- #cooling-cells: Used to provide cooling device specific information + Type: unsigned while referring to it. Must be at least 2, in order + Size: one cell to specify minimum and maximum cooling state used + in the reference. The first cell is the minimum + cooling state requested and the second cell is + the maximum cooling state requested in the reference. + See Cooling device maps section below for more details + on how consumers refer to cooling devices. + +* Trip points + +The trip node is a node to describe a point in the temperature domain +in which the system takes an action. This node describes just the point, +not the action. + +Required properties: +- temperature: An integer indicating the trip temperature level, + Type: signed in millicelsius. + Size: one cell + +- hysteresis: A low hysteresis value on temperature property (above). + Type: unsigned This is a relative value, in millicelsius. + Size: one cell + +- type: a string containing the trip type. Expected values are: + "active": A trip point to enable active cooling + "passive": A trip point to enable passive cooling + "hot": A trip point to notify emergency + "critical": Hardware not reliable. + Type: string + +* Cooling device maps + +The cooling device maps node is a node to describe how cooling devices +get assigned to trip points of the zone. The cooling devices are expected +to be loaded in the target system. + +Required properties: +- cooling-device: A phandle of a cooling device with its specifier, + Type: phandle + referring to which cooling device is used in this + cooling specifier binding. In the cooling specifier, the first cell + is the minimum cooling state and the second cell + is the maximum cooling state used in this map. +- trip: A phandle of a trip point node within the same thermal + Type: phandle of zone. + trip point node + +Optional property: +- contribution: The cooling contribution to the thermal zone of the + Type: unsigned referred cooling device at the referred trip point. + Size: one cell The contribution is a ratio of the sum + of all cooling contributions within a thermal zone. + +Note: Using the THERMAL_NO_LIMIT (-1UL) constant in the cooling-device phandle +limit specifier means: +(i) - minimum state allowed for minimum cooling state used in the reference. +(ii) - maximum state allowed for maximum cooling state used in the reference. +Refer to include/dt-bindings/thermal/thermal.h for definition of this constant. + +* Thermal zone nodes + +The thermal zone node is the node containing all the required info +for describing a thermal zone, including its cooling device bindings. The +thermal zone node must contain, apart from its own properties, one sub-node +containing trip nodes and one sub-node containing all the zone cooling maps. + +Required properties: +- polling-delay: The maximum number of milliseconds to wait between polls + Type: unsigned when checking this thermal zone. + Size: one cell + +- polling-delay-passive: The maximum number of milliseconds to wait + Type: unsigned between polls when performing passive cooling. + Size: one cell + +- thermal-sensors: A list of thermal sensor phandles and sensor specifier + Type: list of used while monitoring the thermal zone. + phandles + sensor + specifier + +- trips: A sub-node which is a container of only trip point nodes + Type: sub-node required to describe the thermal zone. + +- cooling-maps: A sub-node which is a container of only cooling device + Type: sub-node map nodes, used to describe the relation between trips + and cooling devices. + +Optional property: +- coefficients: An array of integers (one signed cell) containing + Type: array coefficients to compose a linear relation between + Elem size: one cell the sensors listed in the thermal-sensors property. + Elem type: signed Coefficients defaults to 1, in case this property + is not specified. A simple linear polynomial is used: + Z = c0 * x0 + c1 + x1 + ... + c(n-1) * x(n-1) + cn. + + The coefficients are ordered and they match with sensors + by means of sensor ID. Additional coefficients are + interpreted as constant offset. + +Note: The delay properties are bound to the maximum dT/dt (temperature +derivative over time) in two situations for a thermal zone: +(i) - when passive cooling is activated (polling-delay-passive); and +(ii) - when the zone just needs to be monitored (polling-delay) or +when active cooling is activated. + +The maximum dT/dt is highly bound to hardware power consumption and dissipation +capability. The delays should be chosen to account for said max dT/dt, +such that a device does not cross several trip boundaries unexpectedly +between polls. Choosing the right polling delays shall avoid having the +device in temperature ranges that may damage the silicon structures and +reduce silicon lifetime. + +* The thermal-zones node + +The "thermal-zones" node is a container for all thermal zone nodes. It shall +contain only sub-nodes describing thermal zones as in the section +"Thermal zone nodes". The "thermal-zones" node appears under "/". + +* Examples + +Below are several examples on how to use thermal data descriptors +using device tree bindings: + +(a) - CPU thermal zone + +The CPU thermal zone example below describes how to setup one thermal zone +using one single sensor as temperature source and many cooling devices and +power dissipation control sources. + +#include <dt-bindings/thermal/thermal.h> + +cpus { + /* + * Here is an example of describing a cooling device for a DVFS + * capable CPU. The CPU node describes its four OPPs. + * The cooling states possible are 0..3, and they are + * used as OPP indexes. The minimum cooling state is 0, which means + * all four OPPs can be available to the system. The maximum + * cooling state is 3, which means only the lowest OPPs (198MHz@0.85V) + * can be available in the system. + */ + cpu0: cpu@0 { + ... + operating-points = < + /* kHz uV */ + 970000 1200000 + 792000 1100000 + 396000 950000 + 198000 850000 + >; + cooling-min-state = <0>; + cooling-max-state = <3>; + #cooling-cells = <2>; /* min followed by max */ + }; + ... +}; + +&i2c1 { + ... + /* + * A simple fan controller which supports 10 speeds of operation + * (represented as 0-9). + */ + fan0: fan@0x48 { + ... + cooling-min-state = <0>; + cooling-max-state = <9>; + #cooling-cells = <2>; /* min followed by max */ + }; +}; + +ocp { + ... + /* + * A simple IC with a single bandgap temperature sensor. + */ + bandgap0: bandgap@0x0000ED00 { + ... + #thermal-sensor-cells = <0>; + }; +}; + +thermal-zones { + cpu_thermal: cpu-thermal { + polling-delay-passive = <250>; /* milliseconds */ + polling-delay = <1000>; /* milliseconds */ + + thermal-sensors = <&bandgap0>; + + trips { + cpu_alert0: cpu-alert0 { + temperature = <90000>; /* millicelsius */ + hysteresis = <2000>; /* millicelsius */ + type = "active"; + }; + cpu_alert1: cpu-alert1 { + temperature = <100000>; /* millicelsius */ + hysteresis = <2000>; /* millicelsius */ + type = "passive"; + }; + cpu_crit: cpu-crit { + temperature = <125000>; /* millicelsius */ + hysteresis = <2000>; /* millicelsius */ + type = "critical"; + }; + }; + + cooling-maps { + map0 { + trip = <&cpu_alert0>; + cooling-device = <&fan0 THERMAL_NO_LIMIT 4>; + }; + map1 { + trip = <&cpu_alert1>; + cooling-device = <&fan0 5 THERMAL_NO_LIMIT>; + }; + map2 { + trip = <&cpu_alert1>; + cooling-device = + <&cpu0 THERMAL_NO_LIMIT THERMAL_NO_LIMIT>; + }; + }; + }; +}; + +In the example above, the ADC sensor (bandgap0) at address 0x0000ED00 is +used to monitor the zone 'cpu-thermal' using its sole sensor. A fan +device (fan0) is controlled via I2C bus 1, at address 0x48, and has ten +different cooling states 0-9. It is used to remove the heat out of +the thermal zone 'cpu-thermal' using its cooling states +from its minimum to 4, when it reaches trip point 'cpu_alert0' +at 90C, as an example of active cooling. The same cooling device is used at +'cpu_alert1', but from 5 to its maximum state. The cpu@0 device is also +linked to the same thermal zone, 'cpu-thermal', as a passive cooling device, +using all its cooling states at trip point 'cpu_alert1', +which is a trip point at 100C. On the thermal zone 'cpu-thermal', at the +temperature of 125C, represented by the trip point 'cpu_crit', the silicon +is not reliable anymore. + +(b) - IC with several internal sensors + +The example below describes how to deploy several thermal zones based off a +single sensor IC, assuming it has several internal sensors. This is a common +case on SoC designs with several internal IPs that may need different thermal +requirements, and thus may have their own sensor to monitor or detect internal +hotspots in their silicon. + +#include <dt-bindings/thermal/thermal.h> + +ocp { + ... + /* + * A simple IC with several bandgap temperature sensors. + */ + bandgap0: bandgap@0x0000ED00 { + ... + #thermal-sensor-cells = <1>; + }; +}; + +thermal-zones { + cpu_thermal: cpu-thermal { + polling-delay-passive = <250>; /* milliseconds */ + polling-delay = <1000>; /* milliseconds */ + + /* sensor ID */ + thermal-sensors = <&bandgap0 0>; + + trips { + /* each zone within the SoC may have its own trips */ + cpu_alert: cpu-alert { + temperature = <100000>; /* millicelsius */ + hysteresis = <2000>; /* millicelsius */ + type = "passive"; + }; + cpu_crit: cpu-crit { + temperature = <125000>; /* millicelsius */ + hysteresis = <2000>; /* millicelsius */ + type = "critical"; + }; + }; + + cooling-maps { + /* each zone within the SoC may have its own cooling */ + ... + }; + }; + + gpu_thermal: gpu-thermal { + polling-delay-passive = <120>; /* milliseconds */ + polling-delay = <1000>; /* milliseconds */ + + /* sensor ID */ + thermal-sensors = <&bandgap0 1>; + + trips { + /* each zone within the SoC may have its own trips */ + gpu_alert: gpu-alert { + temperature = <90000>; /* millicelsius */ + hysteresis = <2000>; /* millicelsius */ + type = "passive"; + }; + gpu_crit: gpu-crit { + temperature = <105000>; /* millicelsius */ + hysteresis = <2000>; /* millicelsius */ + type = "critical"; + }; + }; + + cooling-maps { + /* each zone within the SoC may have its own cooling */ + ... + }; + }; + + dsp_thermal: dsp-thermal { + polling-delay-passive = <50>; /* milliseconds */ + polling-delay = <1000>; /* milliseconds */ + + /* sensor ID */ + thermal-sensors = <&bandgap0 2>; + + trips { + /* each zone within the SoC may have its own trips */ + dsp_alert: dsp-alert { + temperature = <90000>; /* millicelsius */ + hysteresis = <2000>; /* millicelsius */ + type = "passive"; + }; + dsp_crit: gpu-crit { + temperature = <135000>; /* millicelsius */ + hysteresis = <2000>; /* millicelsius */ + type = "critical"; + }; + }; + + cooling-maps { + /* each zone within the SoC may have its own cooling */ + ... + }; + }; +}; + +In the example above, there is one bandgap IC which has the capability to +monitor three sensors. The hardware has been designed so that sensors are +placed on different places in the DIE to monitor different temperature +hotspots: one for CPU thermal zone, one for GPU thermal zone and the +other to monitor a DSP thermal zone. + +Thus, there is a need to assign each sensor provided by the bandgap IC +to different thermal zones. This is achieved by means of using the +#thermal-sensor-cells property and using the first cell of the sensor +specifier as sensor ID. In the example, then, <bandgap 0> is used to +monitor CPU thermal zone, <bandgap 1> is used to monitor GPU thermal +zone and <bandgap 2> is used to monitor DSP thermal zone. Each zone +may be uncorrelated, having its own dT/dt requirements, trips +and cooling maps. + + +(c) - Several sensors within one single thermal zone + +The example below illustrates how to use more than one sensor within +one thermal zone. + +#include <dt-bindings/thermal/thermal.h> + +&i2c1 { + ... + /* + * A simple IC with a single temperature sensor. + */ + adc: sensor@0x49 { + ... + #thermal-sensor-cells = <0>; + }; +}; + +ocp { + ... + /* + * A simple IC with a single bandgap temperature sensor. + */ + bandgap0: bandgap@0x0000ED00 { + ... + #thermal-sensor-cells = <0>; + }; +}; + +thermal-zones { + cpu_thermal: cpu-thermal { + polling-delay-passive = <250>; /* milliseconds */ + polling-delay = <1000>; /* milliseconds */ + + thermal-sensors = <&bandgap0>, /* cpu */ + <&adc>; /* pcb north */ + + /* hotspot = 100 * bandgap - 120 * adc + 484 */ + coefficients = <100 -120 484>; + + trips { + ... + }; + + cooling-maps { + ... + }; + }; +}; + +In some cases, there is a need to use more than one sensor to extrapolate +a thermal hotspot in the silicon. The above example illustrates this situation. +For instance, it may be the case that a sensor external to CPU IP may be placed +close to CPU hotspot and together with internal CPU sensor, it is used +to determine the hotspot. Assuming this is the case for the above example, +the hypothetical extrapolation rule would be: + hotspot = 100 * bandgap - 120 * adc + 484 + +In other context, the same idea can be used to add fixed offset. For instance, +consider the hotspot extrapolation rule below: + hotspot = 1 * adc + 6000 + +In the above equation, the hotspot is always 6C higher than what is read +from the ADC sensor. The binding would be then: + thermal-sensors = <&adc>; + + /* hotspot = 1 * adc + 6000 */ + coefficients = <1 6000>; + +(d) - Board thermal + +The board thermal example below illustrates how to setup one thermal zone +with many sensors and many cooling devices. + +#include <dt-bindings/thermal/thermal.h> + +&i2c1 { + ... + /* + * An IC with several temperature sensor. + */ + adc_dummy: sensor@0x50 { + ... + #thermal-sensor-cells = <1>; /* sensor internal ID */ + }; +}; + +thermal-zones { + batt-thermal { + polling-delay-passive = <500>; /* milliseconds */ + polling-delay = <2500>; /* milliseconds */ + + /* sensor ID */ + thermal-sensors = <&adc_dummy 4>; + + trips { + ... + }; + + cooling-maps { + ... + }; + }; + + board_thermal: board-thermal { + polling-delay-passive = <1000>; /* milliseconds */ + polling-delay = <2500>; /* milliseconds */ + + /* sensor ID */ + thermal-sensors = <&adc_dummy 0>, /* pcb top edge */ + <&adc_dummy 1>, /* lcd */ + <&adc_dummy 2>; /* back cover */ + /* + * An array of coefficients describing the sensor + * linear relation. E.g.: + * z = c1*x1 + c2*x2 + c3*x3 + */ + coefficients = <1200 -345 890>; + + trips { + /* Trips are based on resulting linear equation */ + cpu_trip: cpu-trip { + temperature = <60000>; /* millicelsius */ + hysteresis = <2000>; /* millicelsius */ + type = "passive"; + }; + gpu_trip: gpu-trip { + temperature = <55000>; /* millicelsius */ + hysteresis = <2000>; /* millicelsius */ + type = "passive"; + } + lcd_trip: lcp-trip { + temperature = <53000>; /* millicelsius */ + hysteresis = <2000>; /* millicelsius */ + type = "passive"; + }; + crit_trip: crit-trip { + temperature = <68000>; /* millicelsius */ + hysteresis = <2000>; /* millicelsius */ + type = "critical"; + }; + }; + + cooling-maps { + map0 { + trip = <&cpu_trip>; + cooling-device = <&cpu0 0 2>; + contribution = <55>; + }; + map1 { + trip = <&gpu_trip>; + cooling-device = <&gpu0 0 2>; + contribution = <20>; + }; + map2 { + trip = <&lcd_trip>; + cooling-device = <&lcd0 5 10>; + contribution = <15>; + }; + }; + }; +}; + +The above example is a mix of previous examples, a sensor IP with several internal +sensors used to monitor different zones, one of them is composed by several sensors and +with different cooling devices. diff --git a/kernel/Documentation/devicetree/bindings/thermal/ti_soc_thermal.txt b/kernel/Documentation/devicetree/bindings/thermal/ti_soc_thermal.txt new file mode 100644 index 000000000..0c9222d27 --- /dev/null +++ b/kernel/Documentation/devicetree/bindings/thermal/ti_soc_thermal.txt @@ -0,0 +1,74 @@ +* Texas Instrument OMAP SCM bandgap bindings + +In the System Control Module, OMAP supplies a voltage reference +and a temperature sensor feature that are gathered in the band +gap voltage and temperature sensor (VBGAPTS) module. The band +gap provides current and voltage reference for its internal +circuits and other analog IP blocks. The analog-to-digital +converter (ADC) produces an output value that is proportional +to the silicon temperature. + +Required properties: +- compatible : Should be: + - "ti,omap4430-bandgap" : for OMAP4430 bandgap + - "ti,omap4460-bandgap" : for OMAP4460 bandgap + - "ti,omap4470-bandgap" : for OMAP4470 bandgap + - "ti,omap5430-bandgap" : for OMAP5430 bandgap +- interrupts : this entry should indicate which interrupt line +the talert signal is routed to; +Specific: +- gpios : this entry should be used to inform which GPIO +line the tshut signal is routed to. The informed GPIO will +be treated as an IRQ; +- regs : this entry must also be specified and it is specific +to each bandgap version, because the mapping may change from +soc to soc, apart of depending on available features. + +Example: +OMAP4430: +bandgap { + reg = <0x4a002260 0x4 0x4a00232C 0x4>; + compatible = "ti,omap4430-bandgap"; +}; + +OMAP4460: +bandgap { + reg = <0x4a002260 0x4 + 0x4a00232C 0x4 + 0x4a002378 0x18>; + compatible = "ti,omap4460-bandgap"; + interrupts = <0 126 4>; /* talert */ + gpios = <&gpio3 22 0>; /* tshut */ +}; + +OMAP4470: +bandgap { + reg = <0x4a002260 0x4 + 0x4a00232C 0x4 + 0x4a002378 0x18>; + compatible = "ti,omap4470-bandgap"; + interrupts = <0 126 4>; /* talert */ + gpios = <&gpio3 22 0>; /* tshut */ +}; + +OMAP5430: +bandgap { + reg = <0x4a0021e0 0xc + 0x4a00232c 0xc + 0x4a002380 0x2c + 0x4a0023C0 0x3c>; + compatible = "ti,omap5430-bandgap"; + interrupts = <0 126 4>; /* talert */ +}; + +DRA752: +bandgap { + reg = <0x4a0021e0 0xc + 0x4a00232c 0xc + 0x4a002380 0x2c + 0x4a0023C0 0x3c + 0x4a002564 0x8 + 0x4a002574 0x50>; + compatible = "ti,dra752-bandgap"; + interrupts = <0 126 4>; /* talert */ +}; |