aboutsummaryrefslogtreecommitdiffstats
path: root/api/apidoc/functest.opnfv_tests.openstack.vmtp.vmtp.rst
blob: c6c53d86bdfa8b0f30aef7e14d848e995e09941c (plain)
1
2
3
4
5
6
7
functest.opnfv\_tests.openstack.vmtp.vmtp module
================================================

.. automodule:: functest.opnfv_tests.openstack.vmtp.vmtp
    :members:
    :undoc-members:
    :show-inheritance:
/a> 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
/*
 * mmu_audit.c:
 *
 * Audit code for KVM MMU
 *
 * Copyright (C) 2006 Qumranet, Inc.
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *   Marcelo Tosatti <mtosatti@redhat.com>
 *   Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */

#include <linux/ratelimit.h>

char const *audit_point_name[] = {
	"pre page fault",
	"post page fault",
	"pre pte write",
	"post pte write",
	"pre sync",
	"post sync"
};

#define audit_printk(kvm, fmt, args...)		\
	printk(KERN_ERR "audit: (%s) error: "	\
		fmt, audit_point_name[kvm->arch.audit_point], ##args)

typedef void (*inspect_spte_fn) (struct kvm_vcpu *vcpu, u64 *sptep, int level);

static void __mmu_spte_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			    inspect_spte_fn fn, int level)
{
	int i;

	for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
		u64 *ent = sp->spt;

		fn(vcpu, ent + i, level);

		if (is_shadow_present_pte(ent[i]) &&
		      !is_last_spte(ent[i], level)) {
			struct kvm_mmu_page *child;

			child = page_header(ent[i] & PT64_BASE_ADDR_MASK);
			__mmu_spte_walk(vcpu, child, fn, level - 1);
		}
	}
}

static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
{
	int i;
	struct kvm_mmu_page *sp;

	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;

	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
		hpa_t root = vcpu->arch.mmu.root_hpa;

		sp = page_header(root);
		__mmu_spte_walk(vcpu, sp, fn, PT64_ROOT_LEVEL);
		return;
	}

	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

		if (root && VALID_PAGE(root)) {
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			__mmu_spte_walk(vcpu, sp, fn, 2);
		}
	}

	return;
}

typedef void (*sp_handler) (struct kvm *kvm, struct kvm_mmu_page *sp);

static void walk_all_active_sps(struct kvm *kvm, sp_handler fn)
{
	struct kvm_mmu_page *sp;

	list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link)
		fn(kvm, sp);
}

static void audit_mappings(struct kvm_vcpu *vcpu, u64 *sptep, int level)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
	pfn_t pfn;
	hpa_t hpa;

	sp = page_header(__pa(sptep));

	if (sp->unsync) {
		if (level != PT_PAGE_TABLE_LEVEL) {
			audit_printk(vcpu->kvm, "unsync sp: %p "
				     "level = %d\n", sp, level);
			return;
		}
	}

	if (!is_shadow_present_pte(*sptep) || !is_last_spte(*sptep, level))
		return;

	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
	pfn = kvm_vcpu_gfn_to_pfn_atomic(vcpu, gfn);

	if (is_error_pfn(pfn))
		return;

	hpa =  pfn << PAGE_SHIFT;
	if ((*sptep & PT64_BASE_ADDR_MASK) != hpa)
		audit_printk(vcpu->kvm, "levels %d pfn %llx hpa %llx "
			     "ent %llxn", vcpu->arch.mmu.root_level, pfn,
			     hpa, *sptep);
}

static void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep)
{
	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
	unsigned long *rmapp;
	struct kvm_mmu_page *rev_sp;
	struct kvm_memslots *slots;
	struct kvm_memory_slot *slot;
	gfn_t gfn;

	rev_sp = page_header(__pa(sptep));
	gfn = kvm_mmu_page_get_gfn(rev_sp, sptep - rev_sp->spt);

	slots = kvm_memslots_for_spte_role(kvm, rev_sp->role);
	slot = __gfn_to_memslot(slots, gfn);
	if (!slot) {
		if (!__ratelimit(&ratelimit_state))
			return;
		audit_printk(kvm, "no memslot for gfn %llx\n", gfn);
		audit_printk(kvm, "index %ld of sp (gfn=%llx)\n",
		       (long int)(sptep - rev_sp->spt), rev_sp->gfn);
		dump_stack();
		return;
	}

	rmapp = __gfn_to_rmap(gfn, rev_sp->role.level, slot);
	if (!*rmapp) {
		if (!__ratelimit(&ratelimit_state))
			return;
		audit_printk(kvm, "no rmap for writable spte %llx\n",
			     *sptep);
		dump_stack();
	}
}

static void audit_sptes_have_rmaps(struct kvm_vcpu *vcpu, u64 *sptep, int level)
{
	if (is_shadow_present_pte(*sptep) && is_last_spte(*sptep, level))
		inspect_spte_has_rmap(vcpu->kvm, sptep);
}

static void audit_spte_after_sync(struct kvm_vcpu *vcpu, u64 *sptep, int level)
{
	struct kvm_mmu_page *sp = page_header(__pa(sptep));

	if (vcpu->kvm->arch.audit_point == AUDIT_POST_SYNC && sp->unsync)
		audit_printk(vcpu->kvm, "meet unsync sp(%p) after sync "
			     "root.\n", sp);
}

static void check_mappings_rmap(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	int i;

	if (sp->role.level != PT_PAGE_TABLE_LEVEL)
		return;

	for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
		if (!is_rmap_spte(sp->spt[i]))
			continue;

		inspect_spte_has_rmap(kvm, sp->spt + i);
	}
}

static void audit_write_protection(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	unsigned long *rmapp;
	u64 *sptep;
	struct rmap_iterator iter;
	struct kvm_memslots *slots;
	struct kvm_memory_slot *slot;

	if (sp->role.direct || sp->unsync || sp->role.invalid)
		return;

	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, sp->gfn);
	rmapp = __gfn_to_rmap(sp->gfn, PT_PAGE_TABLE_LEVEL, slot);

	for_each_rmap_spte(rmapp, &iter, sptep)
		if (is_writable_pte(*sptep))
			audit_printk(kvm, "shadow page has writable "
				     "mappings: gfn %llx role %x\n",
				     sp->gfn, sp->role.word);
}

static void audit_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	check_mappings_rmap(kvm, sp);
	audit_write_protection(kvm, sp);
}

static void audit_all_active_sps(struct kvm *kvm)
{
	walk_all_active_sps(kvm, audit_sp);
}

static void audit_spte(struct kvm_vcpu *vcpu, u64 *sptep, int level)
{
	audit_sptes_have_rmaps(vcpu, sptep, level);
	audit_mappings(vcpu, sptep, level);
	audit_spte_after_sync(vcpu, sptep, level);
}

static void audit_vcpu_spte(struct kvm_vcpu *vcpu)
{
	mmu_spte_walk(vcpu, audit_spte);
}

static bool mmu_audit;
static struct static_key mmu_audit_key;

static void __kvm_mmu_audit(struct kvm_vcpu *vcpu, int point)
{
	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);

	if (!__ratelimit(&ratelimit_state))
		return;

	vcpu->kvm->arch.audit_point = point;
	audit_all_active_sps(vcpu->kvm);
	audit_vcpu_spte(vcpu);
}

static inline void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point)
{
	if (static_key_false((&mmu_audit_key)))
		__kvm_mmu_audit(vcpu, point);
}

static void mmu_audit_enable(void)
{
	if (mmu_audit)
		return;

	static_key_slow_inc(&mmu_audit_key);
	mmu_audit = true;
}

static void mmu_audit_disable(void)
{
	if (!mmu_audit)
		return;

	static_key_slow_dec(&mmu_audit_key);
	mmu_audit = false;
}

static int mmu_audit_set(const char *val, const struct kernel_param *kp)
{
	int ret;
	unsigned long enable;

	ret = kstrtoul(val, 10, &enable);
	if (ret < 0)
		return -EINVAL;

	switch (enable) {
	case 0:
		mmu_audit_disable();
		break;
	case 1:
		mmu_audit_enable();
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static const struct kernel_param_ops audit_param_ops = {
	.set = mmu_audit_set,
	.get = param_get_bool,
};

arch_param_cb(mmu_audit, &audit_param_ops, &mmu_audit, 0644);