summaryrefslogtreecommitdiffstats
path: root/mcp/scripts
AgeCommit message (Expand)AuthorFilesLines
2018-09-26[ha] Fix missing aodh_version paramAlexandru Avadanii1-1/+1
2018-09-24[lib.sh] Split into multiple files for readabilityAlexandru Avadanii4-615/+672
2018-09-21Merge "[state] virtual_init: Limit to mas01 on baremetal"Alexandru Avadanii2-2/+4
2018-09-20[state] virtual_init: Limit to mas01 on baremetalAlexandru Avadanii2-2/+4
2018-09-20[infra] Bind mas01 mcpcontrol DHCP to MAAS_IPAlexandru Avadanii2-0/+8
2018-09-12[docker] Relax verify check for docker pullAlexandru Avadanii1-1/+1
2018-09-11[cleanup] FN VMs: Fold user-data templatesAlexandru Avadanii7-32/+11
2018-09-10Merge "[nosdn-noha] Meet EPA testcases requirements (NUMA)"Alexandru Avadanii3-6/+53
2018-09-10Merge "[submodule] Bump Pharos for maas:machines sync"Alexandru Avadanii2-1/+5
2018-09-10[nosdn-noha] Meet EPA testcases requirements (NUMA)Dimitrios Markou3-6/+53
2018-09-10[docker] Add MCP_DOCKER_TAG env varAlexandru Avadanii2-2/+4
2018-09-06[submodule] Bump Pharos for maas:machines syncAlexandru Avadanii2-1/+5
2018-09-04Merge "[scenario] Factor out common nodes, states"Alexandru Avadanii1-1/+2
2018-09-02[docker] Fix untagged mgmt by defaultAlexandru Avadanii1-0/+4
2018-09-02[scenario] Factor out common nodes, statesAlexandru Avadanii1-1/+2
2018-09-01[docker] Cleanup, minor fixes, formula bumpAlexandru Avadanii4-8/+29
2018-08-31[docker] Cleanup hosts file on redeployAlexandru Avadanii1-1/+1
2018-08-31[docker] Use distro docker-compose if not brokenAlexandru Avadanii1-9/+14
2018-08-29[salt-formulas] Add & enable armband formulaGuillermo Herrero1-1/+1
2018-08-29[docker] Switch to containerized Salt MasterAlexandru Avadanii3-138/+41
2018-08-29[docker] Add docker-compose definitionsAlexandru Avadanii4-1/+146
2018-08-29[lib.sh] Add veth pair handling supportAlexandru Avadanii1-2/+10
2018-08-29[jump vnet] Workaround MTU set race conditionAlexandru Avadanii1-2/+4
2018-08-27[jump vnet] Fix udev rule event for older libvirtAlexandru Avadanii1-1/+1
2018-08-21[deploy.sh] Install Docker if not presentAlexandru Avadanii1-0/+11
2018-08-21[jump req] Add build/deploy specific requirementsAlexandru Avadanii3-3/+14
2018-08-13[jump] Enable jumbo frames for vnet devicesAlexandru Avadanii1-0/+7
2018-08-09[IDF] infra VMs: Allow trunking mgmt networkAlexandru Avadanii1-0/+0
2018-08-09Update Salt version to 2017.7Michael Polenchuk1-1/+1
2018-08-07[states] baremetal_init: Parameterize kvm hostsAlexandru Avadanii1-0/+1
2018-08-07[scenarios] Differentiate virtual node rolesAlexandru Avadanii2-6/+36
2018-08-03[lib.sh] Reset virtual nodes after MaaS installAlexandru Avadanii1-0/+17
2018-08-03[lib.sh] Support older jumpserver libvirtAlexandru Avadanii1-1/+2
2018-07-26Revert "[salt master] Disable broken _orchestration.conf"Michael Polenchuk1-1/+1
2018-07-26[salt master] Disable broken _orchestration.confAlexandru Avadanii1-1/+1
2018-07-24Merge "[salt-formulas] opnfv: Drop obsolete route_wrapper"Alexandru Avadanii1-1/+0
2018-07-16[salt-formulas] opnfv: Drop obsolete route_wrapperAlexandru Avadanii1-1/+0
2018-07-12[salt.sh] Ignoring files using rsyncJunaid Ali1-1/+7
2018-06-29Revert "[salt-formulas] Switch to 'testing' dist"Alexandru Avadanii1-1/+1
2018-06-29sysinfo_print: Dump all iptables rulesAlexandru Avadanii1-0/+1
2018-06-28[salt-formulas] Switch to 'testing' distAlexandru Avadanii1-1/+1
2018-06-28[submodule] Bump Pharos for arm-virtual2 ip-rangeAlexandru Avadanii1-0/+0
2018-06-21[submodule] Bump Pharos for unh-pod1 updatesAlexandru Avadanii1-0/+0
2018-06-19Enforce static configuration instead of DHCPAlexandru Avadanii8-38/+14
2018-06-14Get back to salt 2016.11Michael Polenchuk1-1/+1
2018-06-08[state] Stop expecting linux.network failuresAlexandru Avadanii1-1/+1
2018-06-07[noha] Update OpenStack version to QueensMichael Polenchuk1-2/+2
2018-06-04[submodule] Bump Pharos for ericsson-pod1 updatesAlexandru Avadanii1-0/+0
2018-05-17[noha] Bring in gnocchi/panko servicesMichael Polenchuk1-1/+1
2018-04-26[jump] Print CPU, RAM, disk info for debugAlexandru Avadanii1-0/+10
d='n972' href='#n972'>972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
/*
 * RocketPort device driver for Linux
 *
 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000.
 * 
 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc.
 * 
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * Kernel Synchronization:
 *
 * This driver has 2 kernel control paths - exception handlers (calls into the driver
 * from user mode) and the timer bottom half (tasklet).  This is a polled driver, interrupts
 * are not used.
 *
 * Critical data: 
 * -  rp_table[], accessed through passed "info" pointers, is a global (static) array of 
 *    serial port state information and the xmit_buf circular buffer.  Protected by 
 *    a per port spinlock.
 * -  xmit_flags[], an array of ints indexed by line (port) number, indicating that there
 *    is data to be transmitted.  Protected by atomic bit operations.
 * -  rp_num_ports, int indicating number of open ports, protected by atomic operations.
 * 
 * rp_write() and rp_write_char() functions use a per port semaphore to protect against
 * simultaneous access to the same port by more than one process.
 */

/****** Defines ******/
#define ROCKET_PARANOIA_CHECK
#define ROCKET_DISABLE_SIMUSAGE

#undef ROCKET_SOFT_FLOW
#undef ROCKET_DEBUG_OPEN
#undef ROCKET_DEBUG_INTR
#undef ROCKET_DEBUG_WRITE
#undef ROCKET_DEBUG_FLOW
#undef ROCKET_DEBUG_THROTTLE
#undef ROCKET_DEBUG_WAIT_UNTIL_SENT
#undef ROCKET_DEBUG_RECEIVE
#undef ROCKET_DEBUG_HANGUP
#undef REV_PCI_ORDER
#undef ROCKET_DEBUG_IO

#define POLL_PERIOD (HZ/100)	/*  Polling period .01 seconds (10ms) */

/****** Kernel includes ******/

#include <linux/module.h>
#include <linux/errno.h>
#include <linux/major.h>
#include <linux/kernel.h>
#include <linux/signal.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/interrupt.h>
#include <linux/tty.h>
#include <linux/tty_driver.h>
#include <linux/tty_flip.h>
#include <linux/serial.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/ptrace.h>
#include <linux/mutex.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/completion.h>
#include <linux/wait.h>
#include <linux/pci.h>
#include <linux/uaccess.h>
#include <linux/atomic.h>
#include <asm/unaligned.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <linux/init.h>

/****** RocketPort includes ******/

#include "rocket_int.h"
#include "rocket.h"

#define ROCKET_VERSION "2.09"
#define ROCKET_DATE "12-June-2003"

/****** RocketPort Local Variables ******/

static void rp_do_poll(unsigned long dummy);

static struct tty_driver *rocket_driver;

static struct rocket_version driver_version = {	
	ROCKET_VERSION, ROCKET_DATE
};

static struct r_port *rp_table[MAX_RP_PORTS];	       /*  The main repository of serial port state information. */
static unsigned int xmit_flags[NUM_BOARDS];	       /*  Bit significant, indicates port had data to transmit. */
						       /*  eg.  Bit 0 indicates port 0 has xmit data, ...        */
static atomic_t rp_num_ports_open;	               /*  Number of serial ports open                           */
static DEFINE_TIMER(rocket_timer, rp_do_poll, 0, 0);

static unsigned long board1;	                       /* ISA addresses, retrieved from rocketport.conf          */
static unsigned long board2;
static unsigned long board3;
static unsigned long board4;
static unsigned long controller;
static bool support_low_speed;
static unsigned long modem1;
static unsigned long modem2;
static unsigned long modem3;
static unsigned long modem4;
static unsigned long pc104_1[8];
static unsigned long pc104_2[8];
static unsigned long pc104_3[8];
static unsigned long pc104_4[8];
static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 };

static int rp_baud_base[NUM_BOARDS];	               /*  Board config info (Someday make a per-board structure)  */
static unsigned long rcktpt_io_addr[NUM_BOARDS];
static int rcktpt_type[NUM_BOARDS];
static int is_PCI[NUM_BOARDS];
static rocketModel_t rocketModel[NUM_BOARDS];
static int max_board;
static const struct tty_port_operations rocket_port_ops;

/*
 * The following arrays define the interrupt bits corresponding to each AIOP.
 * These bits are different between the ISA and regular PCI boards and the
 * Universal PCI boards.
 */

static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = {
	AIOP_INTR_BIT_0,
	AIOP_INTR_BIT_1,
	AIOP_INTR_BIT_2,
	AIOP_INTR_BIT_3
};

#ifdef CONFIG_PCI
static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = {
	UPCI_AIOP_INTR_BIT_0,
	UPCI_AIOP_INTR_BIT_1,
	UPCI_AIOP_INTR_BIT_2,
	UPCI_AIOP_INTR_BIT_3
};
#endif

static Byte_t RData[RDATASIZE] = {
	0x00, 0x09, 0xf6, 0x82,
	0x02, 0x09, 0x86, 0xfb,
	0x04, 0x09, 0x00, 0x0a,
	0x06, 0x09, 0x01, 0x0a,
	0x08, 0x09, 0x8a, 0x13,
	0x0a, 0x09, 0xc5, 0x11,
	0x0c, 0x09, 0x86, 0x85,
	0x0e, 0x09, 0x20, 0x0a,
	0x10, 0x09, 0x21, 0x0a,
	0x12, 0x09, 0x41, 0xff,
	0x14, 0x09, 0x82, 0x00,
	0x16, 0x09, 0x82, 0x7b,
	0x18, 0x09, 0x8a, 0x7d,
	0x1a, 0x09, 0x88, 0x81,
	0x1c, 0x09, 0x86, 0x7a,
	0x1e, 0x09, 0x84, 0x81,
	0x20, 0x09, 0x82, 0x7c,
	0x22, 0x09, 0x0a, 0x0a
};

static Byte_t RRegData[RREGDATASIZE] = {
	0x00, 0x09, 0xf6, 0x82,	/* 00: Stop Rx processor */
	0x08, 0x09, 0x8a, 0x13,	/* 04: Tx software flow control */
	0x0a, 0x09, 0xc5, 0x11,	/* 08: XON char */
	0x0c, 0x09, 0x86, 0x85,	/* 0c: XANY */
	0x12, 0x09, 0x41, 0xff,	/* 10: Rx mask char */
	0x14, 0x09, 0x82, 0x00,	/* 14: Compare/Ignore #0 */
	0x16, 0x09, 0x82, 0x7b,	/* 18: Compare #1 */
	0x18, 0x09, 0x8a, 0x7d,	/* 1c: Compare #2 */
	0x1a, 0x09, 0x88, 0x81,	/* 20: Interrupt #1 */
	0x1c, 0x09, 0x86, 0x7a,	/* 24: Ignore/Replace #1 */
	0x1e, 0x09, 0x84, 0x81,	/* 28: Interrupt #2 */
	0x20, 0x09, 0x82, 0x7c,	/* 2c: Ignore/Replace #2 */
	0x22, 0x09, 0x0a, 0x0a	/* 30: Rx FIFO Enable */
};

static CONTROLLER_T sController[CTL_SIZE] = {
	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}
};

static Byte_t sBitMapClrTbl[8] = {
	0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f
};

static Byte_t sBitMapSetTbl[8] = {
	0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80
};

static int sClockPrescale = 0x14;

/*
 *  Line number is the ttySIx number (x), the Minor number.  We 
 *  assign them sequentially, starting at zero.  The following 
 *  array keeps track of the line number assigned to a given board/aiop/channel.
 */
static unsigned char lineNumbers[MAX_RP_PORTS];
static unsigned long nextLineNumber;

/*****  RocketPort Static Prototypes   *********/
static int __init init_ISA(int i);
static void rp_wait_until_sent(struct tty_struct *tty, int timeout);
static void rp_flush_buffer(struct tty_struct *tty);
static unsigned char GetLineNumber(int ctrl, int aiop, int ch);
static unsigned char SetLineNumber(int ctrl, int aiop, int ch);
static void rp_start(struct tty_struct *tty);
static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
		     int ChanNum);
static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode);
static void sFlushRxFIFO(CHANNEL_T * ChP);
static void sFlushTxFIFO(CHANNEL_T * ChP);
static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags);
static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags);
static void sModemReset(CONTROLLER_T * CtlP, int chan, int on);
static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on);
static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data);
static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
			   ByteIO_t * AiopIOList, int AiopIOListSize,
			   int IRQNum, Byte_t Frequency, int PeriodicOnly);
static int sReadAiopID(ByteIO_t io);
static int sReadAiopNumChan(WordIO_t io);

MODULE_AUTHOR("Theodore Ts'o");
MODULE_DESCRIPTION("Comtrol RocketPort driver");
module_param(board1, ulong, 0);
MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1");
module_param(board2, ulong, 0);
MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2");
module_param(board3, ulong, 0);
MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3");
module_param(board4, ulong, 0);
MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4");
module_param(controller, ulong, 0);
MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller");
module_param(support_low_speed, bool, 0);
MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud");
module_param(modem1, ulong, 0);
MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem");
module_param(modem2, ulong, 0);
MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem");
module_param(modem3, ulong, 0);
MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem");
module_param(modem4, ulong, 0);
MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem");
module_param_array(pc104_1, ulong, NULL, 0);
MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,...");
module_param_array(pc104_2, ulong, NULL, 0);
MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,...");
module_param_array(pc104_3, ulong, NULL, 0);
MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,...");
module_param_array(pc104_4, ulong, NULL, 0);
MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,...");

static int rp_init(void);
static void rp_cleanup_module(void);

module_init(rp_init);
module_exit(rp_cleanup_module);


MODULE_LICENSE("Dual BSD/GPL");

/*************************************************************************/
/*                     Module code starts here                           */

static inline int rocket_paranoia_check(struct r_port *info,
					const char *routine)
{
#ifdef ROCKET_PARANOIA_CHECK
	if (!info)
		return 1;
	if (info->magic != RPORT_MAGIC) {
		printk(KERN_WARNING "Warning: bad magic number for rocketport "
				"struct in %s\n", routine);
		return 1;
	}
#endif
	return 0;
}


/*  Serial port receive data function.  Called (from timer poll) when an AIOPIC signals 
 *  that receive data is present on a serial port.  Pulls data from FIFO, moves it into the 
 *  tty layer.  
 */
static void rp_do_receive(struct r_port *info, CHANNEL_t *cp,
		unsigned int ChanStatus)
{
	unsigned int CharNStat;
	int ToRecv, wRecv, space;
	unsigned char *cbuf;

	ToRecv = sGetRxCnt(cp);
#ifdef ROCKET_DEBUG_INTR
	printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv);
#endif
	if (ToRecv == 0)
		return;

	/*
	 * if status indicates there are errored characters in the
	 * FIFO, then enter status mode (a word in FIFO holds
	 * character and status).
	 */
	if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) {
		if (!(ChanStatus & STATMODE)) {
#ifdef ROCKET_DEBUG_RECEIVE
			printk(KERN_INFO "Entering STATMODE...\n");
#endif
			ChanStatus |= STATMODE;
			sEnRxStatusMode(cp);
		}
	}

	/* 
	 * if we previously entered status mode, then read down the
	 * FIFO one word at a time, pulling apart the character and
	 * the status.  Update error counters depending on status
	 */
	if (ChanStatus & STATMODE) {
#ifdef ROCKET_DEBUG_RECEIVE
		printk(KERN_INFO "Ignore %x, read %x...\n",
			info->ignore_status_mask, info->read_status_mask);
#endif
		while (ToRecv) {
			char flag;

			CharNStat = sInW(sGetTxRxDataIO(cp));
#ifdef ROCKET_DEBUG_RECEIVE
			printk(KERN_INFO "%x...\n", CharNStat);
#endif
			if (CharNStat & STMBREAKH)
				CharNStat &= ~(STMFRAMEH | STMPARITYH);
			if (CharNStat & info->ignore_status_mask) {
				ToRecv--;
				continue;
			}
			CharNStat &= info->read_status_mask;
			if (CharNStat & STMBREAKH)
				flag = TTY_BREAK;
			else if (CharNStat & STMPARITYH)
				flag = TTY_PARITY;
			else if (CharNStat & STMFRAMEH)
				flag = TTY_FRAME;
			else if (CharNStat & STMRCVROVRH)
				flag = TTY_OVERRUN;
			else
				flag = TTY_NORMAL;
			tty_insert_flip_char(&info->port, CharNStat & 0xff,
					flag);
			ToRecv--;
		}

		/*
		 * after we've emptied the FIFO in status mode, turn
		 * status mode back off
		 */
		if (sGetRxCnt(cp) == 0) {
#ifdef ROCKET_DEBUG_RECEIVE
			printk(KERN_INFO "Status mode off.\n");
#endif
			sDisRxStatusMode(cp);
		}
	} else {
		/*
		 * we aren't in status mode, so read down the FIFO two
		 * characters at time by doing repeated word IO
		 * transfer.
		 */
		space = tty_prepare_flip_string(&info->port, &cbuf, ToRecv);
		if (space < ToRecv) {
#ifdef ROCKET_DEBUG_RECEIVE
			printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space);
#endif
			if (space <= 0)
				return;
			ToRecv = space;
		}
		wRecv = ToRecv >> 1;
		if (wRecv)
			sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv);
		if (ToRecv & 1)
			cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp));
	}
	/*  Push the data up to the tty layer */
	tty_flip_buffer_push(&info->port);
}

/*
 *  Serial port transmit data function.  Called from the timer polling loop as a 
 *  result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready
 *  to be sent out the serial port.  Data is buffered in rp_table[line].xmit_buf, it is 
 *  moved to the port's xmit FIFO.  *info is critical data, protected by spinlocks.
 */
static void rp_do_transmit(struct r_port *info)
{
	int c;
	CHANNEL_t *cp = &info->channel;
	struct tty_struct *tty;
	unsigned long flags;

#ifdef ROCKET_DEBUG_INTR
	printk(KERN_DEBUG "%s\n", __func__);
#endif
	if (!info)
		return;
	tty = tty_port_tty_get(&info->port);

	if (tty == NULL) {
		printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__);
		clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
		return;
	}

	spin_lock_irqsave(&info->slock, flags);
	info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);

	/*  Loop sending data to FIFO until done or FIFO full */
	while (1) {
		if (tty->stopped)
			break;
		c = min(info->xmit_fifo_room, info->xmit_cnt);
		c = min(c, XMIT_BUF_SIZE - info->xmit_tail);
		if (c <= 0 || info->xmit_fifo_room <= 0)
			break;
		sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2);
		if (c & 1)
			sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]);
		info->xmit_tail += c;
		info->xmit_tail &= XMIT_BUF_SIZE - 1;
		info->xmit_cnt -= c;
		info->xmit_fifo_room -= c;
#ifdef ROCKET_DEBUG_INTR
		printk(KERN_INFO "tx %d chars...\n", c);
#endif
	}

	if (info->xmit_cnt == 0)
		clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);

	if (info->xmit_cnt < WAKEUP_CHARS) {
		tty_wakeup(tty);
#ifdef ROCKETPORT_HAVE_POLL_WAIT
		wake_up_interruptible(&tty->poll_wait);
#endif
	}

	spin_unlock_irqrestore(&info->slock, flags);
	tty_kref_put(tty);

#ifdef ROCKET_DEBUG_INTR
	printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head,
	       info->xmit_tail, info->xmit_fifo_room);
#endif
}

/*
 *  Called when a serial port signals it has read data in it's RX FIFO.
 *  It checks what interrupts are pending and services them, including
 *  receiving serial data.  
 */
static void rp_handle_port(struct r_port *info)
{
	CHANNEL_t *cp;
	unsigned int IntMask, ChanStatus;

	if (!info)
		return;

	if ((info->port.flags & ASYNC_INITIALIZED) == 0) {
		printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
				"info->flags & NOT_INIT\n");
		return;
	}

	cp = &info->channel;

	IntMask = sGetChanIntID(cp) & info->intmask;
#ifdef ROCKET_DEBUG_INTR
	printk(KERN_INFO "rp_interrupt %02x...\n", IntMask);
#endif
	ChanStatus = sGetChanStatus(cp);
	if (IntMask & RXF_TRIG) {	/* Rx FIFO trigger level */
		rp_do_receive(info, cp, ChanStatus);
	}
	if (IntMask & DELTA_CD) {	/* CD change  */
#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP))
		printk(KERN_INFO "ttyR%d CD now %s...\n", info->line,
		       (ChanStatus & CD_ACT) ? "on" : "off");
#endif
		if (!(ChanStatus & CD_ACT) && info->cd_status) {
#ifdef ROCKET_DEBUG_HANGUP
			printk(KERN_INFO "CD drop, calling hangup.\n");
#endif
			tty_port_tty_hangup(&info->port, false);
		}
		info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0;
		wake_up_interruptible(&info->port.open_wait);
	}
#ifdef ROCKET_DEBUG_INTR
	if (IntMask & DELTA_CTS) {	/* CTS change */
		printk(KERN_INFO "CTS change...\n");
	}
	if (IntMask & DELTA_DSR) {	/* DSR change */
		printk(KERN_INFO "DSR change...\n");
	}
#endif
}

/*
 *  The top level polling routine.  Repeats every 1/100 HZ (10ms).
 */
static void rp_do_poll(unsigned long dummy)
{
	CONTROLLER_t *ctlp;
	int ctrl, aiop, ch, line;
	unsigned int xmitmask, i;
	unsigned int CtlMask;
	unsigned char AiopMask;
	Word_t bit;

	/*  Walk through all the boards (ctrl's) */
	for (ctrl = 0; ctrl < max_board; ctrl++) {
		if (rcktpt_io_addr[ctrl] <= 0)
			continue;

		/*  Get a ptr to the board's control struct */
		ctlp = sCtlNumToCtlPtr(ctrl);

		/*  Get the interrupt status from the board */
#ifdef CONFIG_PCI
		if (ctlp->BusType == isPCI)
			CtlMask = sPCIGetControllerIntStatus(ctlp);
		else
#endif
			CtlMask = sGetControllerIntStatus(ctlp);

		/*  Check if any AIOP read bits are set */
		for (aiop = 0; CtlMask; aiop++) {
			bit = ctlp->AiopIntrBits[aiop];
			if (CtlMask & bit) {
				CtlMask &= ~bit;
				AiopMask = sGetAiopIntStatus(ctlp, aiop);

				/*  Check if any port read bits are set */
				for (ch = 0; AiopMask;  AiopMask >>= 1, ch++) {
					if (AiopMask & 1) {

						/*  Get the line number (/dev/ttyRx number). */
						/*  Read the data from the port. */
						line = GetLineNumber(ctrl, aiop, ch);
						rp_handle_port(rp_table[line]);
					}
				}
			}
		}

		xmitmask = xmit_flags[ctrl];

		/*
		 *  xmit_flags contains bit-significant flags, indicating there is data
		 *  to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port 
		 *  1, ... (32 total possible).  The variable i has the aiop and ch 
		 *  numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc).
		 */
		if (xmitmask) {
			for (i = 0; i < rocketModel[ctrl].numPorts; i++) {
				if (xmitmask & (1 << i)) {
					aiop = (i & 0x18) >> 3;
					ch = i & 0x07;
					line = GetLineNumber(ctrl, aiop, ch);
					rp_do_transmit(rp_table[line]);
				}
			}
		}
	}

	/*
	 * Reset the timer so we get called at the next clock tick (10ms).
	 */
	if (atomic_read(&rp_num_ports_open))
		mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
}

/*
 *  Initializes the r_port structure for a port, as well as enabling the port on 
 *  the board.  
 *  Inputs:  board, aiop, chan numbers
 */
static void init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev)
{
	unsigned rocketMode;
	struct r_port *info;
	int line;
	CONTROLLER_T *ctlp;

	/*  Get the next available line number */
	line = SetLineNumber(board, aiop, chan);

	ctlp = sCtlNumToCtlPtr(board);

	/*  Get a r_port struct for the port, fill it in and save it globally, indexed by line number */
	info = kzalloc(sizeof (struct r_port), GFP_KERNEL);
	if (!info) {
		printk(KERN_ERR "Couldn't allocate info struct for line #%d\n",
				line);
		return;
	}

	info->magic = RPORT_MAGIC;
	info->line = line;
	info->ctlp = ctlp;
	info->board = board;
	info->aiop = aiop;
	info->chan = chan;
	tty_port_init(&info->port);
	info->port.ops = &rocket_port_ops;
	init_completion(&info->close_wait);
	info->flags &= ~ROCKET_MODE_MASK;
	switch (pc104[board][line]) {
	case 422:
		info->flags |= ROCKET_MODE_RS422;
		break;
	case 485:
		info->flags |= ROCKET_MODE_RS485;
		break;
	case 232:
	default:
		info->flags |= ROCKET_MODE_RS232;
		break;
	}

	info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR;
	if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) {
		printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n",
				board, aiop, chan);
		tty_port_destroy(&info->port);
		kfree(info);
		return;
	}

	rocketMode = info->flags & ROCKET_MODE_MASK;

	if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485))
		sEnRTSToggle(&info->channel);
	else
		sDisRTSToggle(&info->channel);

	if (ctlp->boardType == ROCKET_TYPE_PC104) {
		switch (rocketMode) {
		case ROCKET_MODE_RS485:
			sSetInterfaceMode(&info->channel, InterfaceModeRS485);
			break;
		case ROCKET_MODE_RS422:
			sSetInterfaceMode(&info->channel, InterfaceModeRS422);
			break;
		case ROCKET_MODE_RS232:
		default:
			if (info->flags & ROCKET_RTS_TOGGLE)
				sSetInterfaceMode(&info->channel, InterfaceModeRS232T);
			else
				sSetInterfaceMode(&info->channel, InterfaceModeRS232);
			break;
		}
	}
	spin_lock_init(&info->slock);
	mutex_init(&info->write_mtx);
	rp_table[line] = info;
	tty_port_register_device(&info->port, rocket_driver, line,
			pci_dev ? &pci_dev->dev : NULL);
}

/*
 *  Configures a rocketport port according to its termio settings.  Called from 
 *  user mode into the driver (exception handler).  *info CD manipulation is spinlock protected.
 */
static void configure_r_port(struct tty_struct *tty, struct r_port *info,
			     struct ktermios *old_termios)
{
	unsigned cflag;
	unsigned long flags;
	unsigned rocketMode;
	int bits, baud, divisor;
	CHANNEL_t *cp;
	struct ktermios *t = &tty->termios;

	cp = &info->channel;
	cflag = t->c_cflag;

	/* Byte size and parity */
	if ((cflag & CSIZE) == CS8) {
		sSetData8(cp);
		bits = 10;
	} else {
		sSetData7(cp);
		bits = 9;
	}
	if (cflag & CSTOPB) {
		sSetStop2(cp);
		bits++;
	} else {
		sSetStop1(cp);
	}

	if (cflag & PARENB) {
		sEnParity(cp);
		bits++;
		if (cflag & PARODD) {
			sSetOddParity(cp);
		} else {
			sSetEvenParity(cp);
		}
	} else {
		sDisParity(cp);
	}

	/* baud rate */
	baud = tty_get_baud_rate(tty);
	if (!baud)
		baud = 9600;
	divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1;
	if ((divisor >= 8192 || divisor < 0) && old_termios) {
		baud = tty_termios_baud_rate(old_termios);
		if (!baud)
			baud = 9600;
		divisor = (rp_baud_base[info->board] / baud) - 1;
	}
	if (divisor >= 8192 || divisor < 0) {
		baud = 9600;
		divisor = (rp_baud_base[info->board] / baud) - 1;
	}
	info->cps = baud / bits;
	sSetBaud(cp, divisor);

	/* FIXME: Should really back compute a baud rate from the divisor */
	tty_encode_baud_rate(tty, baud, baud);

	if (cflag & CRTSCTS) {
		info->intmask |= DELTA_CTS;
		sEnCTSFlowCtl(cp);
	} else {
		info->intmask &= ~DELTA_CTS;
		sDisCTSFlowCtl(cp);
	}
	if (cflag & CLOCAL) {
		info->intmask &= ~DELTA_CD;
	} else {
		spin_lock_irqsave(&info->slock, flags);
		if (sGetChanStatus(cp) & CD_ACT)
			info->cd_status = 1;
		else
			info->cd_status = 0;
		info->intmask |= DELTA_CD;
		spin_unlock_irqrestore(&info->slock, flags);
	}

	/*
	 * Handle software flow control in the board
	 */
#ifdef ROCKET_SOFT_FLOW
	if (I_IXON(tty)) {
		sEnTxSoftFlowCtl(cp);
		if (I_IXANY(tty)) {
			sEnIXANY(cp);
		} else {
			sDisIXANY(cp);
		}
		sSetTxXONChar(cp, START_CHAR(tty));
		sSetTxXOFFChar(cp, STOP_CHAR(tty));
	} else {
		sDisTxSoftFlowCtl(cp);
		sDisIXANY(cp);
		sClrTxXOFF(cp);
	}
#endif

	/*
	 * Set up ignore/read mask words
	 */
	info->read_status_mask = STMRCVROVRH | 0xFF;
	if (I_INPCK(tty))
		info->read_status_mask |= STMFRAMEH | STMPARITYH;
	if (I_BRKINT(tty) || I_PARMRK(tty))
		info->read_status_mask |= STMBREAKH;

	/*
	 * Characters to ignore
	 */
	info->ignore_status_mask = 0;
	if (I_IGNPAR(tty))
		info->ignore_status_mask |= STMFRAMEH | STMPARITYH;
	if (I_IGNBRK(tty)) {
		info->ignore_status_mask |= STMBREAKH;
		/*
		 * If we're ignoring parity and break indicators,
		 * ignore overruns too.  (For real raw support).
		 */
		if (I_IGNPAR(tty))
			info->ignore_status_mask |= STMRCVROVRH;
	}

	rocketMode = info->flags & ROCKET_MODE_MASK;

	if ((info->flags & ROCKET_RTS_TOGGLE)
	    || (rocketMode == ROCKET_MODE_RS485))
		sEnRTSToggle(cp);
	else
		sDisRTSToggle(cp);

	sSetRTS(&info->channel);

	if (cp->CtlP->boardType == ROCKET_TYPE_PC104) {
		switch (rocketMode) {
		case ROCKET_MODE_RS485:
			sSetInterfaceMode(cp, InterfaceModeRS485);
			break;
		case ROCKET_MODE_RS422:
			sSetInterfaceMode(cp, InterfaceModeRS422);
			break;
		case ROCKET_MODE_RS232:
		default:
			if (info->flags & ROCKET_RTS_TOGGLE)
				sSetInterfaceMode(cp, InterfaceModeRS232T);
			else
				sSetInterfaceMode(cp, InterfaceModeRS232);
			break;
		}
	}
}

static int carrier_raised(struct tty_port *port)
{
	struct r_port *info = container_of(port, struct r_port, port);
	return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0;
}

static void dtr_rts(struct tty_port *port, int on)
{
	struct r_port *info = container_of(port, struct r_port, port);
	if (on) {
		sSetDTR(&info->channel);
		sSetRTS(&info->channel);
	} else {
		sClrDTR(&info->channel);
		sClrRTS(&info->channel);
	}
}

/*
 *  Exception handler that opens a serial port.  Creates xmit_buf storage, fills in 
 *  port's r_port struct.  Initializes the port hardware.  
 */
static int rp_open(struct tty_struct *tty, struct file *filp)
{
	struct r_port *info;
	struct tty_port *port;
	int retval;
	CHANNEL_t *cp;
	unsigned long page;

	info = rp_table[tty->index];
	if (info == NULL)
		return -ENXIO;
	port = &info->port;
	
	page = __get_free_page(GFP_KERNEL);
	if (!page)
		return -ENOMEM;

	/*
	 * We must not sleep from here until the port is marked fully in use.
	 */
	if (info->xmit_buf)
		free_page(page);
	else
		info->xmit_buf = (unsigned char *) page;

	tty->driver_data = info;
	tty_port_tty_set(port, tty);

	if (port->count++ == 0) {
		atomic_inc(&rp_num_ports_open);

#ifdef ROCKET_DEBUG_OPEN
		printk(KERN_INFO "rocket mod++ = %d...\n",
				atomic_read(&rp_num_ports_open));
#endif
	}
#ifdef ROCKET_DEBUG_OPEN
	printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count);
#endif

	/*
	 * Info->count is now 1; so it's safe to sleep now.
	 */
	if (!test_bit(ASYNCB_INITIALIZED, &port->flags)) {
		cp = &info->channel;
		sSetRxTrigger(cp, TRIG_1);
		if (sGetChanStatus(cp) & CD_ACT)
			info->cd_status = 1;
		else
			info->cd_status = 0;
		sDisRxStatusMode(cp);
		sFlushRxFIFO(cp);
		sFlushTxFIFO(cp);

		sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
		sSetRxTrigger(cp, TRIG_1);

		sGetChanStatus(cp);
		sDisRxStatusMode(cp);
		sClrTxXOFF(cp);

		sDisCTSFlowCtl(cp);
		sDisTxSoftFlowCtl(cp);

		sEnRxFIFO(cp);
		sEnTransmit(cp);

		set_bit(ASYNCB_INITIALIZED, &info->port.flags);

		/*
		 * Set up the tty->alt_speed kludge
		 */
		if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
			tty->alt_speed = 57600;
		if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
			tty->alt_speed = 115200;
		if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
			tty->alt_speed = 230400;
		if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
			tty->alt_speed = 460800;

		configure_r_port(tty, info, NULL);
		if (tty->termios.c_cflag & CBAUD) {
			sSetDTR(cp);
			sSetRTS(cp);
		}
	}
	/*  Starts (or resets) the maint polling loop */
	mod_timer(&rocket_timer, jiffies + POLL_PERIOD);

	retval = tty_port_block_til_ready(port, tty, filp);
	if (retval) {
#ifdef ROCKET_DEBUG_OPEN
		printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval);
#endif
		return retval;
	}
	return 0;
}

/*
 *  Exception handler that closes a serial port. info->port.count is considered critical.
 */
static void rp_close(struct tty_struct *tty, struct file *filp)
{
	struct r_port *info = tty->driver_data;
	struct tty_port *port = &info->port;
	int timeout;
	CHANNEL_t *cp;
	
	if (rocket_paranoia_check(info, "rp_close"))
		return;

#ifdef ROCKET_DEBUG_OPEN
	printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count);
#endif

	if (tty_port_close_start(port, tty, filp) == 0)
		return;

	mutex_lock(&port->mutex);
	cp = &info->channel;
	/*
	 * Before we drop DTR, make sure the UART transmitter
	 * has completely drained; this is especially
	 * important if there is a transmit FIFO!
	 */
	timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps;
	if (timeout == 0)
		timeout = 1;
	rp_wait_until_sent(tty, timeout);
	clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);

	sDisTransmit(cp);
	sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
	sDisCTSFlowCtl(cp);
	sDisTxSoftFlowCtl(cp);
	sClrTxXOFF(cp);
	sFlushRxFIFO(cp);
	sFlushTxFIFO(cp);
	sClrRTS(cp);
	if (C_HUPCL(tty))
		sClrDTR(cp);

	rp_flush_buffer(tty);
		
	tty_ldisc_flush(tty);

	clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);

	/* We can't yet use tty_port_close_end as the buffer handling in this
	   driver is a bit different to the usual */

	if (port->blocked_open) {
		if (port->close_delay) {
			msleep_interruptible(jiffies_to_msecs(port->close_delay));
		}
		wake_up_interruptible(&port->open_wait);
	} else {
		if (info->xmit_buf) {
			free_page((unsigned long) info->xmit_buf);
			info->xmit_buf = NULL;
		}
	}
	spin_lock_irq(&port->lock);
	info->port.flags &= ~(ASYNC_INITIALIZED | ASYNC_CLOSING | ASYNC_NORMAL_ACTIVE);
	tty->closing = 0;
	spin_unlock_irq(&port->lock);
	mutex_unlock(&port->mutex);
	tty_port_tty_set(port, NULL);

	complete_all(&info->close_wait);
	atomic_dec(&rp_num_ports_open);

#ifdef ROCKET_DEBUG_OPEN
	printk(KERN_INFO "rocket mod-- = %d...\n",
			atomic_read(&rp_num_ports_open));
	printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line);
#endif

}

static void rp_set_termios(struct tty_struct *tty,
			   struct ktermios *old_termios)
{
	struct r_port *info = tty->driver_data;
	CHANNEL_t *cp;
	unsigned cflag;

	if (rocket_paranoia_check(info, "rp_set_termios"))
		return;

	cflag = tty->termios.c_cflag;

	/*
	 * This driver doesn't support CS5 or CS6
	 */
	if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6))
		tty->termios.c_cflag =
		    ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE));
	/* Or CMSPAR */
	tty->termios.c_cflag &= ~CMSPAR;

	configure_r_port(tty, info, old_termios);

	cp = &info->channel;

	/* Handle transition to B0 status */
	if ((old_termios->c_cflag & CBAUD) && !(tty->termios.c_cflag & CBAUD)) {
		sClrDTR(cp);
		sClrRTS(cp);
	}

	/* Handle transition away from B0 status */
	if (!(old_termios->c_cflag & CBAUD) && (tty->termios.c_cflag & CBAUD)) {
		sSetRTS(cp);
		sSetDTR(cp);
	}

	if ((old_termios->c_cflag & CRTSCTS) && !(tty->termios.c_cflag & CRTSCTS))
		rp_start(tty);
}

static int rp_break(struct tty_struct *tty, int break_state)
{
	struct r_port *info = tty->driver_data;
	unsigned long flags;

	if (rocket_paranoia_check(info, "rp_break"))
		return -EINVAL;

	spin_lock_irqsave(&info->slock, flags);
	if (break_state == -1)
		sSendBreak(&info->channel);
	else
		sClrBreak(&info->channel);
	spin_unlock_irqrestore(&info->slock, flags);
	return 0;
}

/*
 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for
 * the UPCI boards was added, it was decided to make this a function because
 * the macro was getting too complicated. All cases except the first one
 * (UPCIRingInd) are taken directly from the original macro.
 */
static int sGetChanRI(CHANNEL_T * ChP)
{
	CONTROLLER_t *CtlP = ChP->CtlP;
	int ChanNum = ChP->ChanNum;
	int RingInd = 0;

	if (CtlP->UPCIRingInd)
		RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]);
	else if (CtlP->AltChanRingIndicator)
		RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT;
	else if (CtlP->boardType == ROCKET_TYPE_PC104)
		RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]);

	return RingInd;
}

/********************************************************************************************/
/*  Here are the routines used by rp_ioctl.  These are all called from exception handlers.  */

/*
 *  Returns the state of the serial modem control lines.  These next 2 functions 
 *  are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs.
 */
static int rp_tiocmget(struct tty_struct *tty)
{
	struct r_port *info = tty->driver_data;
	unsigned int control, result, ChanStatus;

	ChanStatus = sGetChanStatusLo(&info->channel);
	control = info->channel.TxControl[3];
	result = ((control & SET_RTS) ? TIOCM_RTS : 0) | 
		((control & SET_DTR) ?  TIOCM_DTR : 0) |
		((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) |
		(sGetChanRI(&info->channel) ? TIOCM_RNG : 0) |
		((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) |
		((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0);

	return result;
}

/* 
 *  Sets the modem control lines
 */
static int rp_tiocmset(struct tty_struct *tty,
				unsigned int set, unsigned int clear)
{
	struct r_port *info = tty->driver_data;

	if (set & TIOCM_RTS)
		info->channel.TxControl[3] |= SET_RTS;
	if (set & TIOCM_DTR)
		info->channel.TxControl[3] |= SET_DTR;
	if (clear & TIOCM_RTS)
		info->channel.TxControl[3] &= ~SET_RTS;
	if (clear & TIOCM_DTR)
		info->channel.TxControl[3] &= ~SET_DTR;

	out32(info->channel.IndexAddr, info->channel.TxControl);
	return 0;
}

static int get_config(struct r_port *info, struct rocket_config __user *retinfo)
{
	struct rocket_config tmp;

	if (!retinfo)
		return -EFAULT;
	memset(&tmp, 0, sizeof (tmp));
	mutex_lock(&info->port.mutex);
	tmp.line = info->line;
	tmp.flags = info->flags;
	tmp.close_delay = info->port.close_delay;
	tmp.closing_wait = info->port.closing_wait;
	tmp.port = rcktpt_io_addr[(info->line >> 5) & 3];
	mutex_unlock(&info->port.mutex);

	if (copy_to_user(retinfo, &tmp, sizeof (*retinfo)))
		return -EFAULT;
	return 0;
}

static int set_config(struct tty_struct *tty, struct r_port *info,
					struct rocket_config __user *new_info)
{
	struct rocket_config new_serial;

	if (copy_from_user(&new_serial, new_info, sizeof (new_serial)))
		return -EFAULT;

	mutex_lock(&info->port.mutex);
	if (!capable(CAP_SYS_ADMIN))
	{
		if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) {
			mutex_unlock(&info->port.mutex);
			return -EPERM;
		}
		info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK));
		configure_r_port(tty, info, NULL);
		mutex_unlock(&info->port.mutex);
		return 0;
	}

	info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS));
	info->port.close_delay = new_serial.close_delay;
	info->port.closing_wait = new_serial.closing_wait;

	if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
		tty->alt_speed = 57600;
	if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
		tty->alt_speed = 115200;
	if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
		tty->alt_speed = 230400;
	if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
		tty->alt_speed = 460800;
	mutex_unlock(&info->port.mutex);

	configure_r_port(tty, info, NULL);
	return 0;
}

/*
 *  This function fills in a rocket_ports struct with information
 *  about what boards/ports are in the system.  This info is passed
 *  to user space.  See setrocket.c where the info is used to create
 *  the /dev/ttyRx ports.
 */
static int get_ports(struct r_port *info, struct rocket_ports __user *retports)
{
	struct rocket_ports tmp;
	int board;

	if (!retports)
		return -EFAULT;
	memset(&tmp, 0, sizeof (tmp));
	tmp.tty_major = rocket_driver->major;

	for (board = 0; board < 4; board++) {
		tmp.rocketModel[board].model = rocketModel[board].model;
		strcpy(tmp.rocketModel[board].modelString, rocketModel[board].modelString);
		tmp.rocketModel[board].numPorts = rocketModel[board].numPorts;
		tmp.rocketModel[board].loadrm2 = rocketModel[board].loadrm2;
		tmp.rocketModel[board].startingPortNumber = rocketModel[board].startingPortNumber;
	}
	if (copy_to_user(retports, &tmp, sizeof (*retports)))
		return -EFAULT;
	return 0;
}

static int reset_rm2(struct r_port *info, void __user *arg)
{
	int reset;

	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;

	if (copy_from_user(&reset, arg, sizeof (int)))
		return -EFAULT;
	if (reset)
		reset = 1;

	if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII &&
            rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII)
		return -EINVAL;

	if (info->ctlp->BusType == isISA)
		sModemReset(info->ctlp, info->chan, reset);
	else
		sPCIModemReset(info->ctlp, info->chan, reset);

	return 0;
}

static int get_version(struct r_port *info, struct rocket_version __user *retvers)
{
	if (copy_to_user(retvers, &driver_version, sizeof (*retvers)))
		return -EFAULT;
	return 0;
}

/*  IOCTL call handler into the driver */
static int rp_ioctl(struct tty_struct *tty,
		    unsigned int cmd, unsigned long arg)
{
	struct r_port *info = tty->driver_data;
	void __user *argp = (void __user *)arg;
	int ret = 0;

	if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl"))
		return -ENXIO;

	switch (cmd) {
	case RCKP_GET_STRUCT:
		if (copy_to_user(argp, info, sizeof (struct r_port)))
			ret = -EFAULT;
		break;
	case RCKP_GET_CONFIG:
		ret = get_config(info, argp);
		break;
	case RCKP_SET_CONFIG:
		ret = set_config(tty, info, argp);
		break;
	case RCKP_GET_PORTS:
		ret = get_ports(info, argp);
		break;
	case RCKP_RESET_RM2:
		ret = reset_rm2(info, argp);
		break;
	case RCKP_GET_VERSION:
		ret = get_version(info, argp);
		break;
	default:
		ret = -ENOIOCTLCMD;
	}
	return ret;
}

static void rp_send_xchar(struct tty_struct *tty, char ch)
{
	struct r_port *info = tty->driver_data;
	CHANNEL_t *cp;

	if (rocket_paranoia_check(info, "rp_send_xchar"))
		return;

	cp = &info->channel;
	if (sGetTxCnt(cp))
		sWriteTxPrioByte(cp, ch);
	else
		sWriteTxByte(sGetTxRxDataIO(cp), ch);
}

static void rp_throttle(struct tty_struct *tty)
{
	struct r_port *info = tty->driver_data;

#ifdef ROCKET_DEBUG_THROTTLE
	printk(KERN_INFO "throttle %s: %d....\n", tty->name,
	       tty->ldisc.chars_in_buffer(tty));
#endif

	if (rocket_paranoia_check(info, "rp_throttle"))
		return;

	if (I_IXOFF(tty))
		rp_send_xchar(tty, STOP_CHAR(tty));

	sClrRTS(&info->channel);
}

static void rp_unthrottle(struct tty_struct *tty)
{
	struct r_port *info = tty->driver_data;
#ifdef ROCKET_DEBUG_THROTTLE
	printk(KERN_INFO "unthrottle %s: %d....\n", tty->name,
	       tty->ldisc.chars_in_buffer(tty));
#endif

	if (rocket_paranoia_check(info, "rp_unthrottle"))
		return;

	if (I_IXOFF(tty))
		rp_send_xchar(tty, START_CHAR(tty));

	sSetRTS(&info->channel);
}

/*
 * ------------------------------------------------------------
 * rp_stop() and rp_start()
 *
 * This routines are called before setting or resetting tty->stopped.
 * They enable or disable transmitter interrupts, as necessary.
 * ------------------------------------------------------------
 */
static void rp_stop(struct tty_struct *tty)
{
	struct r_port *info = tty->driver_data;

#ifdef ROCKET_DEBUG_FLOW
	printk(KERN_INFO "stop %s: %d %d....\n", tty->name,
	       info->xmit_cnt, info->xmit_fifo_room);
#endif

	if (rocket_paranoia_check(info, "rp_stop"))
		return;

	if (sGetTxCnt(&info->channel))
		sDisTransmit(&info->channel);
}

static void rp_start(struct tty_struct *tty)
{
	struct r_port *info = tty->driver_data;

#ifdef ROCKET_DEBUG_FLOW
	printk(KERN_INFO "start %s: %d %d....\n", tty->name,
	       info->xmit_cnt, info->xmit_fifo_room);
#endif

	if (rocket_paranoia_check(info, "rp_stop"))
		return;

	sEnTransmit(&info->channel);
	set_bit((info->aiop * 8) + info->chan,
		(void *) &xmit_flags[info->board]);
}

/*
 * rp_wait_until_sent() --- wait until the transmitter is empty
 */
static void rp_wait_until_sent(struct tty_struct *tty, int timeout)
{
	struct r_port *info = tty->driver_data;
	CHANNEL_t *cp;
	unsigned long orig_jiffies;
	int check_time, exit_time;
	int txcnt;

	if (rocket_paranoia_check(info, "rp_wait_until_sent"))
		return;

	cp = &info->channel;

	orig_jiffies = jiffies;
#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
	printk(KERN_INFO "In %s(%d) (jiff=%lu)...\n", __func__, timeout,
	       jiffies);
	printk(KERN_INFO "cps=%d...\n", info->cps);
#endif
	while (1) {
		txcnt = sGetTxCnt(cp);
		if (!txcnt) {
			if (sGetChanStatusLo(cp) & TXSHRMT)
				break;
			check_time = (HZ / info->cps) / 5;
		} else {
			check_time = HZ * txcnt / info->cps;
		}
		if (timeout) {
			exit_time = orig_jiffies + timeout - jiffies;
			if (exit_time <= 0)
				break;
			if (exit_time < check_time)
				check_time = exit_time;
		}
		if (check_time == 0)
			check_time = 1;
#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
		printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt,
				jiffies, check_time);
#endif
		msleep_interruptible(jiffies_to_msecs(check_time));
		if (signal_pending(current))
			break;
	}
	__set_current_state(TASK_RUNNING);
#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
	printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies);
#endif
}

/*
 * rp_hangup() --- called by tty_hangup() when a hangup is signaled.
 */
static void rp_hangup(struct tty_struct *tty)
{
	CHANNEL_t *cp;
	struct r_port *info = tty->driver_data;
	unsigned long flags;

	if (rocket_paranoia_check(info, "rp_hangup"))
		return;

#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP))
	printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line);
#endif
	rp_flush_buffer(tty);
	spin_lock_irqsave(&info->port.lock, flags);
	if (info->port.count)
		atomic_dec(&rp_num_ports_open);
	clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
	spin_unlock_irqrestore(&info->port.lock, flags);

	tty_port_hangup(&info->port);

	cp = &info->channel;
	sDisRxFIFO(cp);
	sDisTransmit(cp);
	sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
	sDisCTSFlowCtl(cp);
	sDisTxSoftFlowCtl(cp);
	sClrTxXOFF(cp);
	clear_bit(ASYNCB_INITIALIZED, &info->port.flags);

	wake_up_interruptible(&info->port.open_wait);
}

/*
 *  Exception handler - write char routine.  The RocketPort driver uses a
 *  double-buffering strategy, with the twist that if the in-memory CPU
 *  buffer is empty, and there's space in the transmit FIFO, the
 *  writing routines will write directly to transmit FIFO.
 *  Write buffer and counters protected by spinlocks
 */
static int rp_put_char(struct tty_struct *tty, unsigned char ch)
{
	struct r_port *info = tty->driver_data;
	CHANNEL_t *cp;
	unsigned long flags;

	if (rocket_paranoia_check(info, "rp_put_char"))
		return 0;

	/*
	 * Grab the port write mutex, locking out other processes that try to
	 * write to this port
	 */
	mutex_lock(&info->write_mtx);

#ifdef ROCKET_DEBUG_WRITE
	printk(KERN_INFO "rp_put_char %c...\n", ch);
#endif

	spin_lock_irqsave(&info->slock, flags);
	cp = &info->channel;

	if (!tty->stopped && info->xmit_fifo_room == 0)
		info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);

	if (tty->stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) {
		info->xmit_buf[info->xmit_head++] = ch;
		info->xmit_head &= XMIT_BUF_SIZE - 1;
		info->xmit_cnt++;
		set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
	} else {
		sOutB(sGetTxRxDataIO(cp), ch);
		info->xmit_fifo_room--;
	}
	spin_unlock_irqrestore(&info->slock, flags);
	mutex_unlock(&info->write_mtx);
	return 1;
}

/*
 *  Exception handler - write routine, called when user app writes to the device.
 *  A per port write mutex is used to protect from another process writing to
 *  this port at the same time.  This other process could be running on the other CPU
 *  or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out). 
 *  Spinlocks protect the info xmit members.
 */
static int rp_write(struct tty_struct *tty,
		    const unsigned char *buf, int count)
{
	struct r_port *info = tty->driver_data;
	CHANNEL_t *cp;
	const unsigned char *b;
	int c, retval = 0;
	unsigned long flags;

	if (count <= 0 || rocket_paranoia_check(info, "rp_write"))
		return 0;

	if (mutex_lock_interruptible(&info->write_mtx))
		return -ERESTARTSYS;

#ifdef ROCKET_DEBUG_WRITE
	printk(KERN_INFO "rp_write %d chars...\n", count);
#endif
	cp = &info->channel;

	if (!tty->stopped && info->xmit_fifo_room < count)
		info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);

        /*
	 *  If the write queue for the port is empty, and there is FIFO space, stuff bytes 
	 *  into FIFO.  Use the write queue for temp storage.
         */
	if (!tty->stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) {
		c = min(count, info->xmit_fifo_room);
		b = buf;

		/*  Push data into FIFO, 2 bytes at a time */
		sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2);

		/*  If there is a byte remaining, write it */
		if (c & 1)
			sOutB(sGetTxRxDataIO(cp), b[c - 1]);

		retval += c;
		buf += c;
		count -= c;

		spin_lock_irqsave(&info->slock, flags);
		info->xmit_fifo_room -= c;
		spin_unlock_irqrestore(&info->slock, flags);
	}

	/* If count is zero, we wrote it all and are done */
	if (!count)
		goto end;

	/*  Write remaining data into the port's xmit_buf */
	while (1) {
		/* Hung up ? */
		if (!test_bit(ASYNCB_NORMAL_ACTIVE, &info->port.flags))
			goto end;
		c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1);
		c = min(c, XMIT_BUF_SIZE - info->xmit_head);
		if (c <= 0)
			break;

		b = buf;
		memcpy(info->xmit_buf + info->xmit_head, b, c);

		spin_lock_irqsave(&info->slock, flags);
		info->xmit_head =
		    (info->xmit_head + c) & (XMIT_BUF_SIZE - 1);
		info->xmit_cnt += c;
		spin_unlock_irqrestore(&info->slock, flags);

		buf += c;
		count -= c;
		retval += c;
	}

	if ((retval > 0) && !tty->stopped)
		set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
	
end:
 	if (info->xmit_cnt < WAKEUP_CHARS) {
 		tty_wakeup(tty);
#ifdef ROCKETPORT_HAVE_POLL_WAIT
		wake_up_interruptible(&tty->poll_wait);
#endif
	}
	mutex_unlock(&info->write_mtx);
	return retval;
}

/*
 * Return the number of characters that can be sent.  We estimate
 * only using the in-memory transmit buffer only, and ignore the
 * potential space in the transmit FIFO.
 */
static int rp_write_room(struct tty_struct *tty)
{
	struct r_port *info = tty->driver_data;
	int ret;

	if (rocket_paranoia_check(info, "rp_write_room"))
		return 0;

	ret = XMIT_BUF_SIZE - info->xmit_cnt - 1;
	if (ret < 0)
		ret = 0;
#ifdef ROCKET_DEBUG_WRITE
	printk(KERN_INFO "rp_write_room returns %d...\n", ret);
#endif
	return ret;
}

/*
 * Return the number of characters in the buffer.  Again, this only
 * counts those characters in the in-memory transmit buffer.
 */
static int rp_chars_in_buffer(struct tty_struct *tty)
{
	struct r_port *info = tty->driver_data;

	if (rocket_paranoia_check(info, "rp_chars_in_buffer"))
		return 0;

#ifdef ROCKET_DEBUG_WRITE
	printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt);
#endif
	return info->xmit_cnt;
}

/*
 *  Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the
 *  r_port struct for the port.  Note that spinlock are used to protect info members,
 *  do not call this function if the spinlock is already held.
 */
static void rp_flush_buffer(struct tty_struct *tty)
{
	struct r_port *info = tty->driver_data;
	CHANNEL_t *cp;
	unsigned long flags;

	if (rocket_paranoia_check(info, "rp_flush_buffer"))
		return;

	spin_lock_irqsave(&info->slock, flags);
	info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
	spin_unlock_irqrestore(&info->slock, flags);

#ifdef ROCKETPORT_HAVE_POLL_WAIT
	wake_up_interruptible(&tty->poll_wait);
#endif
	tty_wakeup(tty);

	cp = &info->channel;
	sFlushTxFIFO(cp);
}

#ifdef CONFIG_PCI

static const struct pci_device_id rocket_pci_ids[] = {
	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4QUAD) },
	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8OCTA) },
	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8OCTA) },
	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8INTF) },
	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8INTF) },
	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8J) },
	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4J) },
	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8SNI) },
	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16SNI) },
	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16INTF) },
	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP16INTF) },
	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_CRP16INTF) },
	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP32INTF) },
	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP32INTF) },
	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP4) },
	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP8) },
	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_232) },
	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_422) },
	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP6M) },
	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4M) },
	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_8PORT) },
	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_4PORT) },
	{ }
};
MODULE_DEVICE_TABLE(pci, rocket_pci_ids);

/*  Resets the speaker controller on RocketModem II and III devices */
static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model)
{
	ByteIO_t addr;

	/* RocketModem II speaker control is at the 8th port location of offset 0x40 */
	if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) {
		addr = CtlP->AiopIO[0] + 0x4F;
		sOutB(addr, 0);
	}

	/* RocketModem III speaker control is at the 1st port location of offset 0x80 */
	if ((model == MODEL_UPCI_RM3_8PORT)
	    || (model == MODEL_UPCI_RM3_4PORT)) {
		addr = CtlP->AiopIO[0] + 0x88;
		sOutB(addr, 0);
	}
}

/***************************************************************************
Function: sPCIInitController
Purpose:  Initialization of controller global registers and controller
          structure.
Call:     sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize,
                          IRQNum,Frequency,PeriodicOnly)
          CONTROLLER_T *CtlP; Ptr to controller structure
          int CtlNum; Controller number
          ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
             This list must be in the order the AIOPs will be found on the
             controller.  Once an AIOP in the list is not found, it is
             assumed that there are no more AIOPs on the controller.
          int AiopIOListSize; Number of addresses in AiopIOList
          int IRQNum; Interrupt Request number.  Can be any of the following:
                         0: Disable global interrupts
                         3: IRQ 3
                         4: IRQ 4
                         5: IRQ 5
                         9: IRQ 9
                         10: IRQ 10
                         11: IRQ 11
                         12: IRQ 12
                         15: IRQ 15
          Byte_t Frequency: A flag identifying the frequency
                   of the periodic interrupt, can be any one of the following:
                      FREQ_DIS - periodic interrupt disabled
                      FREQ_137HZ - 137 Hertz
                      FREQ_69HZ - 69 Hertz
                      FREQ_34HZ - 34 Hertz
                      FREQ_17HZ - 17 Hertz
                      FREQ_9HZ - 9 Hertz
                      FREQ_4HZ - 4 Hertz
                   If IRQNum is set to 0 the Frequency parameter is
                   overidden, it is forced to a value of FREQ_DIS.
          int PeriodicOnly: 1 if all interrupts except the periodic
                               interrupt are to be blocked.
                            0 is both the periodic interrupt and
                               other channel interrupts are allowed.
                            If IRQNum is set to 0 the PeriodicOnly parameter is
                               overidden, it is forced to a value of 0.
Return:   int: Number of AIOPs on the controller, or CTLID_NULL if controller
               initialization failed.

Comments:
          If periodic interrupts are to be disabled but AIOP interrupts
          are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.

          If interrupts are to be completely disabled set IRQNum to 0.

          Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
          invalid combination.

          This function performs initialization of global interrupt modes,
          but it does not actually enable global interrupts.  To enable
          and disable global interrupts use functions sEnGlobalInt() and
          sDisGlobalInt().  Enabling of global interrupts is normally not
          done until all other initializations are complete.

          Even if interrupts are globally enabled, they must also be
          individually enabled for each channel that is to generate
          interrupts.

Warnings: No range checking on any of the parameters is done.

          No context switches are allowed while executing this function.

          After this function all AIOPs on the controller are disabled,
          they can be enabled with sEnAiop().
*/
static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
			      ByteIO_t * AiopIOList, int AiopIOListSize,
			      WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
			      int PeriodicOnly, int altChanRingIndicator,
			      int UPCIRingInd)
{
	int i;
	ByteIO_t io;

	CtlP->AltChanRingIndicator = altChanRingIndicator;
	CtlP->UPCIRingInd = UPCIRingInd;
	CtlP->CtlNum = CtlNum;
	CtlP->CtlID = CTLID_0001;	/* controller release 1 */
	CtlP->BusType = isPCI;	/* controller release 1 */

	if (ConfigIO) {
		CtlP->isUPCI = 1;
		CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL;
		CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL;
		CtlP->AiopIntrBits = upci_aiop_intr_bits;
	} else {
		CtlP->isUPCI = 0;
		CtlP->PCIIO =
		    (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC);
		CtlP->AiopIntrBits = aiop_intr_bits;
	}

	sPCIControllerEOI(CtlP);	/* clear EOI if warm init */
	/* Init AIOPs */
	CtlP->NumAiop = 0;
	for (i = 0; i < AiopIOListSize; i++) {
		io = AiopIOList[i];
		CtlP->AiopIO[i] = (WordIO_t) io;
		CtlP->AiopIntChanIO[i] = io + _INT_CHAN;

		CtlP->AiopID[i] = sReadAiopID(io);	/* read AIOP ID */
		if (CtlP->AiopID[i] == AIOPID_NULL)	/* if AIOP does not exist */
			break;	/* done looking for AIOPs */

		CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io);	/* num channels in AIOP */
		sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE);	/* clock prescaler */
		sOutB(io + _INDX_DATA, sClockPrescale);
		CtlP->NumAiop++;	/* bump count of AIOPs */
	}

	if (CtlP->NumAiop == 0)
		return (-1);
	else
		return (CtlP->NumAiop);
}

/*
 *  Called when a PCI card is found.  Retrieves and stores model information,
 *  init's aiopic and serial port hardware.
 *  Inputs:  i is the board number (0-n)
 */
static __init int register_PCI(int i, struct pci_dev *dev)
{
	int num_aiops, aiop, max_num_aiops, num_chan, chan;
	unsigned int aiopio[MAX_AIOPS_PER_BOARD];
	CONTROLLER_t *ctlp;

	int fast_clock = 0;
	int altChanRingIndicator = 0;
	int ports_per_aiop = 8;
	WordIO_t ConfigIO = 0;
	ByteIO_t UPCIRingInd = 0;

	if (!dev || !pci_match_id(rocket_pci_ids, dev) ||
	    pci_enable_device(dev))
		return 0;

	rcktpt_io_addr[i] = pci_resource_start(dev, 0);

	rcktpt_type[i] = ROCKET_TYPE_NORMAL;
	rocketModel[i].loadrm2 = 0;
	rocketModel[i].startingPortNumber = nextLineNumber;

	/*  Depending on the model, set up some config variables */
	switch (dev->device) {
	case PCI_DEVICE_ID_RP4QUAD:
		max_num_aiops = 1;
		ports_per_aiop = 4;
		rocketModel[i].model = MODEL_RP4QUAD;
		strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable");
		rocketModel[i].numPorts = 4;
		break;
	case PCI_DEVICE_ID_RP8OCTA:
		max_num_aiops = 1;
		rocketModel[i].model = MODEL_RP8OCTA;
		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable");
		rocketModel[i].numPorts = 8;
		break;
	case PCI_DEVICE_ID_URP8OCTA:
		max_num_aiops = 1;
		rocketModel[i].model = MODEL_UPCI_RP8OCTA;
		strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable");
		rocketModel[i].numPorts = 8;
		break;
	case PCI_DEVICE_ID_RP8INTF:
		max_num_aiops = 1;
		rocketModel[i].model = MODEL_RP8INTF;
		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F");
		rocketModel[i].numPorts = 8;
		break;
	case PCI_DEVICE_ID_URP8INTF:
		max_num_aiops = 1;
		rocketModel[i].model = MODEL_UPCI_RP8INTF;
		strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F");
		rocketModel[i].numPorts = 8;
		break;
	case PCI_DEVICE_ID_RP8J:
		max_num_aiops = 1;
		rocketModel[i].model = MODEL_RP8J;
		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors");
		rocketModel[i].numPorts = 8;
		break;
	case PCI_DEVICE_ID_RP4J:
		max_num_aiops = 1;
		ports_per_aiop = 4;
		rocketModel[i].model = MODEL_RP4J;
		strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors");
		rocketModel[i].numPorts = 4;
		break;
	case PCI_DEVICE_ID_RP8SNI:
		max_num_aiops = 1;
		rocketModel[i].model = MODEL_RP8SNI;
		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78");
		rocketModel[i].numPorts = 8;
		break;
	case PCI_DEVICE_ID_RP16SNI:
		max_num_aiops = 2;
		rocketModel[i].model = MODEL_RP16SNI;
		strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78");
		rocketModel[i].numPorts = 16;
		break;
	case PCI_DEVICE_ID_RP16INTF:
		max_num_aiops = 2;
		rocketModel[i].model = MODEL_RP16INTF;
		strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F");
		rocketModel[i].numPorts = 16;
		break;
	case PCI_DEVICE_ID_URP16INTF:
		max_num_aiops = 2;
		rocketModel[i].model = MODEL_UPCI_RP16INTF;
		strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F");
		rocketModel[i].numPorts = 16;
		break;
	case PCI_DEVICE_ID_CRP16INTF:
		max_num_aiops = 2;
		rocketModel[i].model = MODEL_CPCI_RP16INTF;
		strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F");
		rocketModel[i].numPorts = 16;
		break;
	case PCI_DEVICE_ID_RP32INTF:
		max_num_aiops = 4;
		rocketModel[i].model = MODEL_RP32INTF;
		strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F");
		rocketModel[i].numPorts = 32;
		break;
	case PCI_DEVICE_ID_URP32INTF:
		max_num_aiops = 4;
		rocketModel[i].model = MODEL_UPCI_RP32INTF;
		strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F");
		rocketModel[i].numPorts = 32;
		break;
	case PCI_DEVICE_ID_RPP4:
		max_num_aiops = 1;
		ports_per_aiop = 4;
		altChanRingIndicator++;
		fast_clock++;
		rocketModel[i].model = MODEL_RPP4;
		strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port");
		rocketModel[i].numPorts = 4;
		break;
	case PCI_DEVICE_ID_RPP8:
		max_num_aiops = 2;
		ports_per_aiop = 4;
		altChanRingIndicator++;
		fast_clock++;
		rocketModel[i].model = MODEL_RPP8;
		strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port");
		rocketModel[i].numPorts = 8;
		break;
	case PCI_DEVICE_ID_RP2_232:
		max_num_aiops = 1;
		ports_per_aiop = 2;
		altChanRingIndicator++;
		fast_clock++;
		rocketModel[i].model = MODEL_RP2_232;
		strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232");
		rocketModel[i].numPorts = 2;
		break;
	case PCI_DEVICE_ID_RP2_422:
		max_num_aiops = 1;
		ports_per_aiop = 2;
		altChanRingIndicator++;
		fast_clock++;
		rocketModel[i].model = MODEL_RP2_422;
		strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422");
		rocketModel[i].numPorts = 2;
		break;
	case PCI_DEVICE_ID_RP6M:

		max_num_aiops = 1;
		ports_per_aiop = 6;

		/*  If revision is 1, the rocketmodem flash must be loaded.
		 *  If it is 2 it is a "socketed" version. */
		if (dev->revision == 1) {
			rcktpt_type[i] = ROCKET_TYPE_MODEMII;
			rocketModel[i].loadrm2 = 1;
		} else {
			rcktpt_type[i] = ROCKET_TYPE_MODEM;
		}

		rocketModel[i].model = MODEL_RP6M;
		strcpy(rocketModel[i].modelString, "RocketModem 6 port");
		rocketModel[i].numPorts = 6;
		break;
	case PCI_DEVICE_ID_RP4M:
		max_num_aiops = 1;
		ports_per_aiop = 4;
		if (dev->revision == 1) {
			rcktpt_type[i] = ROCKET_TYPE_MODEMII;
			rocketModel[i].loadrm2 = 1;
		} else {
			rcktpt_type[i] = ROCKET_TYPE_MODEM;
		}

		rocketModel[i].model = MODEL_RP4M;
		strcpy(rocketModel[i].modelString, "RocketModem 4 port");
		rocketModel[i].numPorts = 4;
		break;
	default:
		max_num_aiops = 0;
		break;
	}

	/*
	 * Check for UPCI boards.
	 */

	switch (dev->device) {
	case PCI_DEVICE_ID_URP32INTF:
	case PCI_DEVICE_ID_URP8INTF:
	case PCI_DEVICE_ID_URP16INTF:
	case PCI_DEVICE_ID_CRP16INTF:
	case PCI_DEVICE_ID_URP8OCTA:
		rcktpt_io_addr[i] = pci_resource_start(dev, 2);
		ConfigIO = pci_resource_start(dev, 1);
		if (dev->device == PCI_DEVICE_ID_URP8OCTA) {
			UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;

			/*
			 * Check for octa or quad cable.
			 */
			if (!
			    (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) &
			     PCI_GPIO_CTRL_8PORT)) {
				ports_per_aiop = 4;
				rocketModel[i].numPorts = 4;
			}
		}
		break;
	case PCI_DEVICE_ID_UPCI_RM3_8PORT:
		max_num_aiops = 1;
		rocketModel[i].model = MODEL_UPCI_RM3_8PORT;
		strcpy(rocketModel[i].modelString, "RocketModem III 8 port");
		rocketModel[i].numPorts = 8;
		rcktpt_io_addr[i] = pci_resource_start(dev, 2);
		UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
		ConfigIO = pci_resource_start(dev, 1);
		rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
		break;
	case PCI_DEVICE_ID_UPCI_RM3_4PORT:
		max_num_aiops = 1;
		rocketModel[i].model = MODEL_UPCI_RM3_4PORT;
		strcpy(rocketModel[i].modelString, "RocketModem III 4 port");
		rocketModel[i].numPorts = 4;
		rcktpt_io_addr[i] = pci_resource_start(dev, 2);
		UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
		ConfigIO = pci_resource_start(dev, 1);
		rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
		break;
	default:
		break;
	}

	if (fast_clock) {
		sClockPrescale = 0x12;	/* mod 2 (divide by 3) */
		rp_baud_base[i] = 921600;
	} else {
		/*
		 * If support_low_speed is set, use the slow clock
		 * prescale, which supports 50 bps
		 */
		if (support_low_speed) {
			/* mod 9 (divide by 10) prescale */
			sClockPrescale = 0x19;
			rp_baud_base[i] = 230400;
		} else {
			/* mod 4 (divide by 5) prescale */
			sClockPrescale = 0x14;
			rp_baud_base[i] = 460800;
		}
	}

	for (aiop = 0; aiop < max_num_aiops; aiop++)
		aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40);
	ctlp = sCtlNumToCtlPtr(i);
	num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd);
	for (aiop = 0; aiop < max_num_aiops; aiop++)
		ctlp->AiopNumChan[aiop] = ports_per_aiop;

	dev_info(&dev->dev, "comtrol PCI controller #%d found at "
		"address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n",
		i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString,
		rocketModel[i].startingPortNumber,
		rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1);

	if (num_aiops <= 0) {
		rcktpt_io_addr[i] = 0;
		return (0);
	}
	is_PCI[i] = 1;

	/*  Reset the AIOPIC, init the serial ports */
	for (aiop = 0; aiop < num_aiops; aiop++) {
		sResetAiopByNum(ctlp, aiop);
		num_chan = ports_per_aiop;
		for (chan = 0; chan < num_chan; chan++)
			init_r_port(i, aiop, chan, dev);
	}

	/*  Rocket modems must be reset */
	if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) ||
	    (rcktpt_type[i] == ROCKET_TYPE_MODEMII) ||
	    (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) {
		num_chan = ports_per_aiop;
		for (chan = 0; chan < num_chan; chan++)
			sPCIModemReset(ctlp, chan, 1);
		msleep(500);
		for (chan = 0; chan < num_chan; chan++)
			sPCIModemReset(ctlp, chan, 0);
		msleep(500);
		rmSpeakerReset(ctlp, rocketModel[i].model);
	}
	return (1);
}

/*
 *  Probes for PCI cards, inits them if found
 *  Input:   board_found = number of ISA boards already found, or the
 *           starting board number
 *  Returns: Number of PCI boards found
 */
static int __init init_PCI(int boards_found)
{
	struct pci_dev *dev = NULL;
	int count = 0;

	/*  Work through the PCI device list, pulling out ours */
	while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) {
		if (register_PCI(count + boards_found, dev))
			count++;
	}
	return (count);
}

#endif				/* CONFIG_PCI */

/*
 *  Probes for ISA cards
 *  Input:   i = the board number to look for
 *  Returns: 1 if board found, 0 else
 */
static int __init init_ISA(int i)
{
	int num_aiops, num_chan = 0, total_num_chan = 0;
	int aiop, chan;
	unsigned int aiopio[MAX_AIOPS_PER_BOARD];
	CONTROLLER_t *ctlp;
	char *type_string;

	/*  If io_addr is zero, no board configured */
	if (rcktpt_io_addr[i] == 0)
		return (0);

	/*  Reserve the IO region */
	if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) {
		printk(KERN_ERR "Unable to reserve IO region for configured "
				"ISA RocketPort at address 0x%lx, board not "
				"installed...\n", rcktpt_io_addr[i]);
		rcktpt_io_addr[i] = 0;
		return (0);
	}

	ctlp = sCtlNumToCtlPtr(i);

	ctlp->boardType = rcktpt_type[i];

	switch (rcktpt_type[i]) {
	case ROCKET_TYPE_PC104:
		type_string = "(PC104)";
		break;
	case ROCKET_TYPE_MODEM:
		type_string = "(RocketModem)";
		break;
	case ROCKET_TYPE_MODEMII:
		type_string = "(RocketModem II)";
		break;
	default:
		type_string = "";
		break;
	}

	/*
	 * If support_low_speed is set, use the slow clock prescale,
	 * which supports 50 bps
	 */
	if (support_low_speed) {
		sClockPrescale = 0x19;	/* mod 9 (divide by 10) prescale */
		rp_baud_base[i] = 230400;
	} else {
		sClockPrescale = 0x14;	/* mod 4 (divide by 5) prescale */
		rp_baud_base[i] = 460800;
	}

	for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++)
		aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400);

	num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio,  MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0);

	if (ctlp->boardType == ROCKET_TYPE_PC104) {
		sEnAiop(ctlp, 2);	/* only one AIOPIC, but these */
		sEnAiop(ctlp, 3);	/* CSels used for other stuff */
	}

	/*  If something went wrong initing the AIOP's release the ISA IO memory */
	if (num_aiops <= 0) {
		release_region(rcktpt_io_addr[i], 64);
		rcktpt_io_addr[i] = 0;
		return (0);
	}
  
	rocketModel[i].startingPortNumber = nextLineNumber;

	for (aiop = 0; aiop < num_aiops; aiop++) {
		sResetAiopByNum(ctlp, aiop);
		sEnAiop(ctlp, aiop);
		num_chan = sGetAiopNumChan(ctlp, aiop);
		total_num_chan += num_chan;
		for (chan = 0; chan < num_chan; chan++)
			init_r_port(i, aiop, chan, NULL);
	}
	is_PCI[i] = 0;
	if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) {
		num_chan = sGetAiopNumChan(ctlp, 0);
		total_num_chan = num_chan;
		for (chan = 0; chan < num_chan; chan++)
			sModemReset(ctlp, chan, 1);
		msleep(500);
		for (chan = 0; chan < num_chan; chan++)
			sModemReset(ctlp, chan, 0);
		msleep(500);
		strcpy(rocketModel[i].modelString, "RocketModem ISA");
	} else {
		strcpy(rocketModel[i].modelString, "RocketPort ISA");
	}
	rocketModel[i].numPorts = total_num_chan;
	rocketModel[i].model = MODEL_ISA;

	printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n", 
	       i, rcktpt_io_addr[i], num_aiops, type_string);

	printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n",
	       rocketModel[i].modelString,
	       rocketModel[i].startingPortNumber,
	       rocketModel[i].startingPortNumber +
	       rocketModel[i].numPorts - 1);

	return (1);
}

static const struct tty_operations rocket_ops = {
	.open = rp_open,
	.close = rp_close,
	.write = rp_write,
	.put_char = rp_put_char,
	.write_room = rp_write_room,
	.chars_in_buffer = rp_chars_in_buffer,
	.flush_buffer = rp_flush_buffer,
	.ioctl = rp_ioctl,
	.throttle = rp_throttle,
	.unthrottle = rp_unthrottle,
	.set_termios = rp_set_termios,
	.stop = rp_stop,
	.start = rp_start,
	.hangup = rp_hangup,
	.break_ctl = rp_break,
	.send_xchar = rp_send_xchar,
	.wait_until_sent = rp_wait_until_sent,
	.tiocmget = rp_tiocmget,
	.tiocmset = rp_tiocmset,
};

static const struct tty_port_operations rocket_port_ops = {
	.carrier_raised = carrier_raised,
	.dtr_rts = dtr_rts,
};

/*
 * The module "startup" routine; it's run when the module is loaded.
 */
static int __init rp_init(void)
{
	int ret = -ENOMEM, pci_boards_found, isa_boards_found, i;

	printk(KERN_INFO "RocketPort device driver module, version %s, %s\n",
	       ROCKET_VERSION, ROCKET_DATE);

	rocket_driver = alloc_tty_driver(MAX_RP_PORTS);
	if (!rocket_driver)
		goto err;

	/*
	 *  If board 1 is non-zero, there is at least one ISA configured.  If controller is 
	 *  zero, use the default controller IO address of board1 + 0x40.
	 */
	if (board1) {
		if (controller == 0)
			controller = board1 + 0x40;
	} else {
		controller = 0;  /*  Used as a flag, meaning no ISA boards */
	}

	/*  If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */
	if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) {
		printk(KERN_ERR "Unable to reserve IO region for first "
			"configured ISA RocketPort controller 0x%lx.  "
			"Driver exiting\n", controller);
		ret = -EBUSY;
		goto err_tty;
	}

	/*  Store ISA variable retrieved from command line or .conf file. */
	rcktpt_io_addr[0] = board1;
	rcktpt_io_addr[1] = board2;
	rcktpt_io_addr[2] = board3;
	rcktpt_io_addr[3] = board4;

	rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
	rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0];
	rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
	rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1];
	rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
	rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2];
	rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
	rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3];

	/*
	 * Set up the tty driver structure and then register this
	 * driver with the tty layer.
	 */

	rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV;
	rocket_driver->name = "ttyR";
	rocket_driver->driver_name = "Comtrol RocketPort";
	rocket_driver->major = TTY_ROCKET_MAJOR;
	rocket_driver->minor_start = 0;
	rocket_driver->type = TTY_DRIVER_TYPE_SERIAL;
	rocket_driver->subtype = SERIAL_TYPE_NORMAL;
	rocket_driver->init_termios = tty_std_termios;
	rocket_driver->init_termios.c_cflag =
	    B9600 | CS8 | CREAD | HUPCL | CLOCAL;
	rocket_driver->init_termios.c_ispeed = 9600;
	rocket_driver->init_termios.c_ospeed = 9600;
#ifdef ROCKET_SOFT_FLOW
	rocket_driver->flags |= TTY_DRIVER_REAL_RAW;
#endif
	tty_set_operations(rocket_driver, &rocket_ops);

	ret = tty_register_driver(rocket_driver);
	if (ret < 0) {
		printk(KERN_ERR "Couldn't install tty RocketPort driver\n");
		goto err_controller;
	}

#ifdef ROCKET_DEBUG_OPEN
	printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major);
#endif

	/*
	 *  OK, let's probe each of the controllers looking for boards.  Any boards found
         *  will be initialized here.
	 */
	isa_boards_found = 0;
	pci_boards_found = 0;

	for (i = 0; i < NUM_BOARDS; i++) {
		if (init_ISA(i))
			isa_boards_found++;
	}

#ifdef CONFIG_PCI
	if (isa_boards_found < NUM_BOARDS)
		pci_boards_found = init_PCI(isa_boards_found);
#endif

	max_board = pci_boards_found + isa_boards_found;

	if (max_board == 0) {
		printk(KERN_ERR "No rocketport ports found; unloading driver\n");
		ret = -ENXIO;
		goto err_ttyu;
	}

	return 0;
err_ttyu:
	tty_unregister_driver(rocket_driver);
err_controller:
	if (controller)
		release_region(controller, 4);
err_tty:
	put_tty_driver(rocket_driver);
err:
	return ret;
}


static void rp_cleanup_module(void)
{
	int retval;
	int i;

	del_timer_sync(&rocket_timer);

	retval = tty_unregister_driver(rocket_driver);
	if (retval)
		printk(KERN_ERR "Error %d while trying to unregister "
		       "rocketport driver\n", -retval);

	for (i = 0; i < MAX_RP_PORTS; i++)
		if (rp_table[i]) {
			tty_unregister_device(rocket_driver, i);
			tty_port_destroy(&rp_table[i]->port);
			kfree(rp_table[i]);
		}

	put_tty_driver(rocket_driver);

	for (i = 0; i < NUM_BOARDS; i++) {
		if (rcktpt_io_addr[i] <= 0 || is_PCI[i])
			continue;
		release_region(rcktpt_io_addr[i], 64);
	}
	if (controller)
		release_region(controller, 4);
}

/***************************************************************************
Function: sInitController
Purpose:  Initialization of controller global registers and controller
          structure.
Call:     sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize,
                          IRQNum,Frequency,PeriodicOnly)
          CONTROLLER_T *CtlP; Ptr to controller structure
          int CtlNum; Controller number
          ByteIO_t MudbacIO; Mudbac base I/O address.
          ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
             This list must be in the order the AIOPs will be found on the
             controller.  Once an AIOP in the list is not found, it is
             assumed that there are no more AIOPs on the controller.
          int AiopIOListSize; Number of addresses in AiopIOList
          int IRQNum; Interrupt Request number.  Can be any of the following:
                         0: Disable global interrupts
                         3: IRQ 3
                         4: IRQ 4
                         5: IRQ 5
                         9: IRQ 9
                         10: IRQ 10
                         11: IRQ 11
                         12: IRQ 12
                         15: IRQ 15
          Byte_t Frequency: A flag identifying the frequency
                   of the periodic interrupt, can be any one of the following:
                      FREQ_DIS - periodic interrupt disabled
                      FREQ_137HZ - 137 Hertz
                      FREQ_69HZ - 69 Hertz
                      FREQ_34HZ - 34 Hertz
                      FREQ_17HZ - 17 Hertz
                      FREQ_9HZ - 9 Hertz
                      FREQ_4HZ - 4 Hertz
                   If IRQNum is set to 0 the Frequency parameter is
                   overidden, it is forced to a value of FREQ_DIS.
          int PeriodicOnly: 1 if all interrupts except the periodic
                               interrupt are to be blocked.
                            0 is both the periodic interrupt and
                               other channel interrupts are allowed.
                            If IRQNum is set to 0 the PeriodicOnly parameter is
                               overidden, it is forced to a value of 0.
Return:   int: Number of AIOPs on the controller, or CTLID_NULL if controller
               initialization failed.

Comments:
          If periodic interrupts are to be disabled but AIOP interrupts
          are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.

          If interrupts are to be completely disabled set IRQNum to 0.

          Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
          invalid combination.

          This function performs initialization of global interrupt modes,
          but it does not actually enable global interrupts.  To enable
          and disable global interrupts use functions sEnGlobalInt() and
          sDisGlobalInt().  Enabling of global interrupts is normally not
          done until all other initializations are complete.

          Even if interrupts are globally enabled, they must also be
          individually enabled for each channel that is to generate
          interrupts.

Warnings: No range checking on any of the parameters is done.

          No context switches are allowed while executing this function.

          After this function all AIOPs on the controller are disabled,
          they can be enabled with sEnAiop().
*/
static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
			   ByteIO_t * AiopIOList, int AiopIOListSize,
			   int IRQNum, Byte_t Frequency, int PeriodicOnly)
{
	int i;
	ByteIO_t io;
	int done;

	CtlP->AiopIntrBits = aiop_intr_bits;
	CtlP->AltChanRingIndicator = 0;
	CtlP->CtlNum = CtlNum;
	CtlP->CtlID = CTLID_0001;	/* controller release 1 */
	CtlP->BusType = isISA;
	CtlP->MBaseIO = MudbacIO;
	CtlP->MReg1IO = MudbacIO + 1;
	CtlP->MReg2IO = MudbacIO + 2;
	CtlP->MReg3IO = MudbacIO + 3;
#if 1
	CtlP->MReg2 = 0;	/* interrupt disable */
	CtlP->MReg3 = 0;	/* no periodic interrupts */
#else
	if (sIRQMap[IRQNum] == 0) {	/* interrupts globally disabled */
		CtlP->MReg2 = 0;	/* interrupt disable */
		CtlP->MReg3 = 0;	/* no periodic interrupts */
	} else {
		CtlP->MReg2 = sIRQMap[IRQNum];	/* set IRQ number */
		CtlP->MReg3 = Frequency;	/* set frequency */
		if (PeriodicOnly) {	/* periodic interrupt only */
			CtlP->MReg3 |= PERIODIC_ONLY;
		}
	}
#endif
	sOutB(CtlP->MReg2IO, CtlP->MReg2);
	sOutB(CtlP->MReg3IO, CtlP->MReg3);
	sControllerEOI(CtlP);	/* clear EOI if warm init */
	/* Init AIOPs */
	CtlP->NumAiop = 0;
	for (i = done = 0; i < AiopIOListSize; i++) {
		io = AiopIOList[i];
		CtlP->AiopIO[i] = (WordIO_t) io;
		CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
		sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03));	/* AIOP index */
		sOutB(MudbacIO, (Byte_t) (io >> 6));	/* set up AIOP I/O in MUDBAC */
		if (done)
			continue;
		sEnAiop(CtlP, i);	/* enable the AIOP */
		CtlP->AiopID[i] = sReadAiopID(io);	/* read AIOP ID */
		if (CtlP->AiopID[i] == AIOPID_NULL)	/* if AIOP does not exist */
			done = 1;	/* done looking for AIOPs */
		else {
			CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io);	/* num channels in AIOP */
			sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE);	/* clock prescaler */
			sOutB(io + _INDX_DATA, sClockPrescale);
			CtlP->NumAiop++;	/* bump count of AIOPs */
		}
		sDisAiop(CtlP, i);	/* disable AIOP */
	}

	if (CtlP->NumAiop == 0)
		return (-1);
	else
		return (CtlP->NumAiop);
}

/***************************************************************************
Function: sReadAiopID
Purpose:  Read the AIOP idenfication number directly from an AIOP.
Call:     sReadAiopID(io)
          ByteIO_t io: AIOP base I/O address
Return:   int: Flag AIOPID_XXXX if a valid AIOP is found, where X
                 is replace by an identifying number.
          Flag AIOPID_NULL if no valid AIOP is found
Warnings: No context switches are allowed while executing this function.

*/
static int sReadAiopID(ByteIO_t io)
{
	Byte_t AiopID;		/* ID byte from AIOP */

	sOutB(io + _CMD_REG, RESET_ALL);	/* reset AIOP */
	sOutB(io + _CMD_REG, 0x0);
	AiopID = sInW(io + _CHN_STAT0) & 0x07;
	if (AiopID == 0x06)
		return (1);
	else			/* AIOP does not exist */
		return (-1);
}

/***************************************************************************
Function: sReadAiopNumChan
Purpose:  Read the number of channels available in an AIOP directly from
          an AIOP.
Call:     sReadAiopNumChan(io)
          WordIO_t io: AIOP base I/O address
Return:   int: The number of channels available
Comments: The number of channels is determined by write/reads from identical
          offsets within the SRAM address spaces for channels 0 and 4.
          If the channel 4 space is mirrored to channel 0 it is a 4 channel
          AIOP, otherwise it is an 8 channel.
Warnings: No context switches are allowed while executing this function.
*/
static int sReadAiopNumChan(WordIO_t io)
{
	Word_t x;
	static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 };

	/* write to chan 0 SRAM */
	out32((DWordIO_t) io + _INDX_ADDR, R);
	sOutW(io + _INDX_ADDR, 0);	/* read from SRAM, chan 0 */
	x = sInW(io + _INDX_DATA);
	sOutW(io + _INDX_ADDR, 0x4000);	/* read from SRAM, chan 4 */
	if (x != sInW(io + _INDX_DATA))	/* if different must be 8 chan */
		return (8);
	else
		return (4);
}

/***************************************************************************
Function: sInitChan
Purpose:  Initialization of a channel and channel structure
Call:     sInitChan(CtlP,ChP,AiopNum,ChanNum)
          CONTROLLER_T *CtlP; Ptr to controller structure
          CHANNEL_T *ChP; Ptr to channel structure
          int AiopNum; AIOP number within controller
          int ChanNum; Channel number within AIOP
Return:   int: 1 if initialization succeeded, 0 if it fails because channel
               number exceeds number of channels available in AIOP.
Comments: This function must be called before a channel can be used.
Warnings: No range checking on any of the parameters is done.

          No context switches are allowed while executing this function.
*/
static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
		     int ChanNum)
{
	int i;
	WordIO_t AiopIO;
	WordIO_t ChIOOff;
	Byte_t *ChR;
	Word_t ChOff;
	static Byte_t R[4];
	int brd9600;

	if (ChanNum >= CtlP->AiopNumChan[AiopNum])
		return 0;	/* exceeds num chans in AIOP */

	/* Channel, AIOP, and controller identifiers */
	ChP->CtlP = CtlP;
	ChP->ChanID = CtlP->AiopID[AiopNum];
	ChP->AiopNum = AiopNum;
	ChP->ChanNum = ChanNum;

	/* Global direct addresses */
	AiopIO = CtlP->AiopIO[AiopNum];
	ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG;
	ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN;
	ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK;
	ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR;
	ChP->IndexData = AiopIO + _INDX_DATA;

	/* Channel direct addresses */
	ChIOOff = AiopIO + ChP->ChanNum * 2;
	ChP->TxRxData = ChIOOff + _TD0;
	ChP->ChanStat = ChIOOff + _CHN_STAT0;
	ChP->TxRxCount = ChIOOff + _FIFO_CNT0;
	ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0;

	/* Initialize the channel from the RData array */
	for (i = 0; i < RDATASIZE; i += 4) {
		R[0] = RData[i];
		R[1] = RData[i + 1] + 0x10 * ChanNum;
		R[2] = RData[i + 2];
		R[3] = RData[i + 3];
		out32(ChP->IndexAddr, R);
	}

	ChR = ChP->R;
	for (i = 0; i < RREGDATASIZE; i += 4) {
		ChR[i] = RRegData[i];
		ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum;
		ChR[i + 2] = RRegData[i + 2];
		ChR[i + 3] = RRegData[i + 3];
	}

	/* Indexed registers */
	ChOff = (Word_t) ChanNum *0x1000;

	if (sClockPrescale == 0x14)
		brd9600 = 47;
	else
		brd9600 = 23;

	ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD);
	ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8);
	ChP->BaudDiv[2] = (Byte_t) brd9600;
	ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8);
	out32(ChP->IndexAddr, ChP->BaudDiv);

	ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL);
	ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8);
	ChP->TxControl[2] = 0;
	ChP->TxControl[3] = 0;
	out32(ChP->IndexAddr, ChP->TxControl);

	ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL);
	ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8);
	ChP->RxControl[2] = 0;
	ChP->RxControl[3] = 0;
	out32(ChP->IndexAddr, ChP->RxControl);

	ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS);
	ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8);
	ChP->TxEnables[2] = 0;
	ChP->TxEnables[3] = 0;
	out32(ChP->IndexAddr, ChP->TxEnables);

	ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1);
	ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8);
	ChP->TxCompare[2] = 0;
	ChP->TxCompare[3] = 0;
	out32(ChP->IndexAddr, ChP->TxCompare);

	ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1);
	ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8);
	ChP->TxReplace1[2] = 0;
	ChP->TxReplace1[3] = 0;
	out32(ChP->IndexAddr, ChP->TxReplace1);

	ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2);
	ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8);
	ChP->TxReplace2[2] = 0;
	ChP->TxReplace2[3] = 0;
	out32(ChP->IndexAddr, ChP->TxReplace2);

	ChP->TxFIFOPtrs = ChOff + _TXF_OUTP;
	ChP->TxFIFO = ChOff + _TX_FIFO;

	sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT);	/* apply reset Tx FIFO count */
	sOutB(ChP->Cmd, (Byte_t) ChanNum);	/* remove reset Tx FIFO count */
	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs);	/* clear Tx in/out ptrs */
	sOutW(ChP->IndexData, 0);
	ChP->RxFIFOPtrs = ChOff + _RXF_OUTP;
	ChP->RxFIFO = ChOff + _RX_FIFO;

	sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT);	/* apply reset Rx FIFO count */
	sOutB(ChP->Cmd, (Byte_t) ChanNum);	/* remove reset Rx FIFO count */
	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs);	/* clear Rx out ptr */
	sOutW(ChP->IndexData, 0);
	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2);	/* clear Rx in ptr */
	sOutW(ChP->IndexData, 0);
	ChP->TxPrioCnt = ChOff + _TXP_CNT;
	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt);
	sOutB(ChP->IndexData, 0);
	ChP->TxPrioPtr = ChOff + _TXP_PNTR;
	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr);
	sOutB(ChP->IndexData, 0);
	ChP->TxPrioBuf = ChOff + _TXP_BUF;
	sEnRxProcessor(ChP);	/* start the Rx processor */

	return 1;
}

/***************************************************************************
Function: sStopRxProcessor
Purpose:  Stop the receive processor from processing a channel.
Call:     sStopRxProcessor(ChP)
          CHANNEL_T *ChP; Ptr to channel structure

Comments: The receive processor can be started again with sStartRxProcessor().
          This function causes the receive processor to skip over the
          stopped channel.  It does not stop it from processing other channels.

Warnings: No context switches are allowed while executing this function.

          Do not leave the receive processor stopped for more than one
          character time.

          After calling this function a delay of 4 uS is required to ensure
          that the receive processor is no longer processing this channel.
*/
static void sStopRxProcessor(CHANNEL_T * ChP)
{
	Byte_t R[4];

	R[0] = ChP->R[0];
	R[1] = ChP->R[1];
	R[2] = 0x0a;
	R[3] = ChP->R[3];
	out32(ChP->IndexAddr, R);
}

/***************************************************************************
Function: sFlushRxFIFO
Purpose:  Flush the Rx FIFO
Call:     sFlushRxFIFO(ChP)
          CHANNEL_T *ChP; Ptr to channel structure
Return:   void
Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
          while it is being flushed the receive processor is stopped
          and the transmitter is disabled.  After these operations a
          4 uS delay is done before clearing the pointers to allow
          the receive processor to stop.  These items are handled inside
          this function.
Warnings: No context switches are allowed while executing this function.
*/
static void sFlushRxFIFO(CHANNEL_T * ChP)
{
	int i;
	Byte_t Ch;		/* channel number within AIOP */
	int RxFIFOEnabled;	/* 1 if Rx FIFO enabled */

	if (sGetRxCnt(ChP) == 0)	/* Rx FIFO empty */
		return;		/* don't need to flush */

	RxFIFOEnabled = 0;
	if (ChP->R[0x32] == 0x08) {	/* Rx FIFO is enabled */
		RxFIFOEnabled = 1;
		sDisRxFIFO(ChP);	/* disable it */
		for (i = 0; i < 2000 / 200; i++)	/* delay 2 uS to allow proc to disable FIFO */
			sInB(ChP->IntChan);	/* depends on bus i/o timing */
	}
	sGetChanStatus(ChP);	/* clear any pending Rx errors in chan stat */
	Ch = (Byte_t) sGetChanNum(ChP);
	sOutB(ChP->Cmd, Ch | RESRXFCNT);	/* apply reset Rx FIFO count */
	sOutB(ChP->Cmd, Ch);	/* remove reset Rx FIFO count */
	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs);	/* clear Rx out ptr */
	sOutW(ChP->IndexData, 0);
	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2);	/* clear Rx in ptr */
	sOutW(ChP->IndexData, 0);
	if (RxFIFOEnabled)
		sEnRxFIFO(ChP);	/* enable Rx FIFO */
}

/***************************************************************************
Function: sFlushTxFIFO
Purpose:  Flush the Tx FIFO
Call:     sFlushTxFIFO(ChP)
          CHANNEL_T *ChP; Ptr to channel structure
Return:   void
Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
          while it is being flushed the receive processor is stopped
          and the transmitter is disabled.  After these operations a
          4 uS delay is done before clearing the pointers to allow
          the receive processor to stop.  These items are handled inside
          this function.
Warnings: No context switches are allowed while executing this function.
*/
static void sFlushTxFIFO(CHANNEL_T * ChP)
{
	int i;
	Byte_t Ch;		/* channel number within AIOP */
	int TxEnabled;		/* 1 if transmitter enabled */

	if (sGetTxCnt(ChP) == 0)	/* Tx FIFO empty */
		return;		/* don't need to flush */

	TxEnabled = 0;
	if (ChP->TxControl[3] & TX_ENABLE) {
		TxEnabled = 1;
		sDisTransmit(ChP);	/* disable transmitter */
	}
	sStopRxProcessor(ChP);	/* stop Rx processor */
	for (i = 0; i < 4000 / 200; i++)	/* delay 4 uS to allow proc to stop */
		sInB(ChP->IntChan);	/* depends on bus i/o timing */
	Ch = (Byte_t) sGetChanNum(ChP);
	sOutB(ChP->Cmd, Ch | RESTXFCNT);	/* apply reset Tx FIFO count */
	sOutB(ChP->Cmd, Ch);	/* remove reset Tx FIFO count */
	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs);	/* clear Tx in/out ptrs */
	sOutW(ChP->IndexData, 0);
	if (TxEnabled)
		sEnTransmit(ChP);	/* enable transmitter */
	sStartRxProcessor(ChP);	/* restart Rx processor */
}

/***************************************************************************
Function: sWriteTxPrioByte
Purpose:  Write a byte of priority transmit data to a channel
Call:     sWriteTxPrioByte(ChP,Data)
          CHANNEL_T *ChP; Ptr to channel structure
          Byte_t Data; The transmit data byte

Return:   int: 1 if the bytes is successfully written, otherwise 0.

Comments: The priority byte is transmitted before any data in the Tx FIFO.

Warnings: No context switches are allowed while executing this function.
*/
static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data)
{
	Byte_t DWBuf[4];	/* buffer for double word writes */
	Word_t *WordPtr;	/* must be far because Win SS != DS */
	register DWordIO_t IndexAddr;

	if (sGetTxCnt(ChP) > 1) {	/* write it to Tx priority buffer */
		IndexAddr = ChP->IndexAddr;
		sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt);	/* get priority buffer status */
		if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND)	/* priority buffer busy */
			return (0);	/* nothing sent */

		WordPtr = (Word_t *) (&DWBuf[0]);
		*WordPtr = ChP->TxPrioBuf;	/* data byte address */

		DWBuf[2] = Data;	/* data byte value */
		out32(IndexAddr, DWBuf);	/* write it out */

		*WordPtr = ChP->TxPrioCnt;	/* Tx priority count address */

		DWBuf[2] = PRI_PEND + 1;	/* indicate 1 byte pending */
		DWBuf[3] = 0;	/* priority buffer pointer */
		out32(IndexAddr, DWBuf);	/* write it out */
	} else {		/* write it to Tx FIFO */

		sWriteTxByte(sGetTxRxDataIO(ChP), Data);
	}
	return (1);		/* 1 byte sent */
}

/***************************************************************************
Function: sEnInterrupts
Purpose:  Enable one or more interrupts for a channel
Call:     sEnInterrupts(ChP,Flags)
          CHANNEL_T *ChP; Ptr to channel structure
          Word_t Flags: Interrupt enable flags, can be any combination
             of the following flags:
                TXINT_EN:   Interrupt on Tx FIFO empty
                RXINT_EN:   Interrupt on Rx FIFO at trigger level (see
                            sSetRxTrigger())
                SRCINT_EN:  Interrupt on SRC (Special Rx Condition)
                MCINT_EN:   Interrupt on modem input change
                CHANINT_EN: Allow channel interrupt signal to the AIOP's
                            Interrupt Channel Register.
Return:   void
Comments: If an interrupt enable flag is set in Flags, that interrupt will be
          enabled.  If an interrupt enable flag is not set in Flags, that
          interrupt will not be changed.  Interrupts can be disabled with
          function sDisInterrupts().

          This function sets the appropriate bit for the channel in the AIOP's
          Interrupt Mask Register if the CHANINT_EN flag is set.  This allows
          this channel's bit to be set in the AIOP's Interrupt Channel Register.

          Interrupts must also be globally enabled before channel interrupts
          will be passed on to the host.  This is done with function
          sEnGlobalInt().

          In some cases it may be desirable to disable interrupts globally but
          enable channel interrupts.  This would allow the global interrupt
          status register to be used to determine which AIOPs need service.
*/
static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags)
{
	Byte_t Mask;		/* Interrupt Mask Register */

	ChP->RxControl[2] |=
	    ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));

	out32(ChP->IndexAddr, ChP->RxControl);

	ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN);

	out32(ChP->IndexAddr, ChP->TxControl);

	if (Flags & CHANINT_EN) {
		Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum];
		sOutB(ChP->IntMask, Mask);
	}
}

/***************************************************************************
Function: sDisInterrupts
Purpose:  Disable one or more interrupts for a channel
Call:     sDisInterrupts(ChP,Flags)
          CHANNEL_T *ChP; Ptr to channel structure
          Word_t Flags: Interrupt flags, can be any combination
             of the following flags:
                TXINT_EN:   Interrupt on Tx FIFO empty
                RXINT_EN:   Interrupt on Rx FIFO at trigger level (see
                            sSetRxTrigger())
                SRCINT_EN:  Interrupt on SRC (Special Rx Condition)
                MCINT_EN:   Interrupt on modem input change
                CHANINT_EN: Disable channel interrupt signal to the
                            AIOP's Interrupt Channel Register.
Return:   void
Comments: If an interrupt flag is set in Flags, that interrupt will be
          disabled.  If an interrupt flag is not set in Flags, that
          interrupt will not be changed.  Interrupts can be enabled with
          function sEnInterrupts().

          This function clears the appropriate bit for the channel in the AIOP's
          Interrupt Mask Register if the CHANINT_EN flag is set.  This blocks
          this channel's bit from being set in the AIOP's Interrupt Channel
          Register.
*/
static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags)
{
	Byte_t Mask;		/* Interrupt Mask Register */

	ChP->RxControl[2] &=
	    ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
	out32(ChP->IndexAddr, ChP->RxControl);
	ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN);
	out32(ChP->IndexAddr, ChP->TxControl);

	if (Flags & CHANINT_EN) {
		Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum];
		sOutB(ChP->IntMask, Mask);
	}
}

static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode)
{
	sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum);
}

/*
 *  Not an official SSCI function, but how to reset RocketModems.
 *  ISA bus version
 */
static void sModemReset(CONTROLLER_T * CtlP, int chan, int on)
{
	ByteIO_t addr;
	Byte_t val;

	addr = CtlP->AiopIO[0] + 0x400;
	val = sInB(CtlP->MReg3IO);
	/* if AIOP[1] is not enabled, enable it */
	if ((val & 2) == 0) {
		val = sInB(CtlP->MReg2IO);
		sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03));
		sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6));
	}

	sEnAiop(CtlP, 1);
	if (!on)
		addr += 8;
	sOutB(addr + chan, 0);	/* apply or remove reset */
	sDisAiop(CtlP, 1);
}

/*
 *  Not an official SSCI function, but how to reset RocketModems.
 *  PCI bus version
 */
static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on)
{
	ByteIO_t addr;

	addr = CtlP->AiopIO[0] + 0x40;	/* 2nd AIOP */
	if (!on)
		addr += 8;
	sOutB(addr + chan, 0);	/* apply or remove reset */
}

/*  Returns the line number given the controller (board), aiop and channel number */
static unsigned char GetLineNumber(int ctrl, int aiop, int ch)
{
	return lineNumbers[(ctrl << 5) | (aiop << 3) | ch];
}

/*
 *  Stores the line number associated with a given controller (board), aiop
 *  and channel number.  
 *  Returns:  The line number assigned 
 */
static unsigned char SetLineNumber(int ctrl, int aiop, int ch)
{
	lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++;
	return (nextLineNumber - 1);
}