diff options
Diffstat (limited to 'docs/scenarios/os-odl_l2-fdio-noha')
-rwxr-xr-x | docs/scenarios/os-odl_l2-fdio-noha/FDS-L3-tenant-connectivity.png | bin | 0 -> 50947 bytes | |||
-rwxr-xr-x | docs/scenarios/os-odl_l2-fdio-noha/FDS-basic-callflow.jpg | bin | 0 -> 148454 bytes | |||
-rwxr-xr-x | docs/scenarios/os-odl_l2-fdio-noha/FDS-odl_l2-overview.png | bin | 0 -> 90635 bytes | |||
-rw-r--r-- | docs/scenarios/os-odl_l2-fdio-noha/index.rst | 18 | ||||
-rwxr-xr-x | docs/scenarios/os-odl_l2-fdio-noha/scenario.description.rst | 222 |
5 files changed, 240 insertions, 0 deletions
diff --git a/docs/scenarios/os-odl_l2-fdio-noha/FDS-L3-tenant-connectivity.png b/docs/scenarios/os-odl_l2-fdio-noha/FDS-L3-tenant-connectivity.png Binary files differnew file mode 100755 index 0000000..9de77e5 --- /dev/null +++ b/docs/scenarios/os-odl_l2-fdio-noha/FDS-L3-tenant-connectivity.png diff --git a/docs/scenarios/os-odl_l2-fdio-noha/FDS-basic-callflow.jpg b/docs/scenarios/os-odl_l2-fdio-noha/FDS-basic-callflow.jpg Binary files differnew file mode 100755 index 0000000..96464f8 --- /dev/null +++ b/docs/scenarios/os-odl_l2-fdio-noha/FDS-basic-callflow.jpg diff --git a/docs/scenarios/os-odl_l2-fdio-noha/FDS-odl_l2-overview.png b/docs/scenarios/os-odl_l2-fdio-noha/FDS-odl_l2-overview.png Binary files differnew file mode 100755 index 0000000..2755099 --- /dev/null +++ b/docs/scenarios/os-odl_l2-fdio-noha/FDS-odl_l2-overview.png diff --git a/docs/scenarios/os-odl_l2-fdio-noha/index.rst b/docs/scenarios/os-odl_l2-fdio-noha/index.rst new file mode 100644 index 0000000..cd8f2d8 --- /dev/null +++ b/docs/scenarios/os-odl_l2-fdio-noha/index.rst @@ -0,0 +1,18 @@ +.. OPNFV - Open Platform for Network Function Virtualization +.. This work is licensed under a Creative Commons Attribution 4.0 International License. +.. http://creativecommons.org/licenses/by/4.0 + + +*********************************************************************** +Fast Data Stacks Scenario: os-odl_l2-fdio-noha Overview and Description +*********************************************************************** + +Scenario: "OpenStack - Opendaylight (L2) - FD.io" (apex-os-odl_l2-fdio-noha) +is a scenario developed as part of the FastDataStacks +OPNFV project. + +.. toctree:: + :numbered: + :maxdepth: 2 + + scenario.description.rst diff --git a/docs/scenarios/os-odl_l2-fdio-noha/scenario.description.rst b/docs/scenarios/os-odl_l2-fdio-noha/scenario.description.rst new file mode 100755 index 0000000..c2f2fca --- /dev/null +++ b/docs/scenarios/os-odl_l2-fdio-noha/scenario.description.rst @@ -0,0 +1,222 @@ +.. OPNFV - Open Platform for Network Function Virtualization +.. This work is licensed under a Creative Commons Attribution 4.0 International License. +.. http://creativecommons.org/licenses/by/4.0 + +Scenario: "OpenStack - OpenDaylight (Layer 2) - FD.io" +====================================================== + +Scenario: apex-os-odl_l2-fdio-noha + +"apex-os-odl_l2-fdio-noha" is a scenario developed as part of the +FastDataStacks OPNFV project. The main components of the +"apex-os-odl_l2-fdio-noha" scenario are: + + - APEX (TripleO) installer (please also see APEX installer documentation) + - Openstack (in non-HA configuration) + - OpenDaylight controller controlling layer 2 networking + - FD.io/VPP virtual forwarder for tenant networking + +Scenario Overview +================== + +Basics +------ + +The "Openstack - OpenDaylight - FD.io/VPP" scenario provides the capability to +realize a set of use-cases relevant to the deployment of NFV nodes instantiated +by means of an Openstack orchestration system on FD.io/VPP enabled compute +nodes. The role of the Opendaylight network controller in this integration is +twofold. It provides a network device configuration and topology abstraction +via the Openstack Neutron interface, while providing the capability to realize +more complex network policies by means of Group Based Policies. Furthermore it +also provides the capabilities to monitor as well as visualize the operation of +the virtual network devices and their topologies. +In supporting the general use-case of instantiatiting an NFV instance, two +specific types of network transport use cases are realized: + + * NFV instances with VPP data-plane forwarding using a VLAN provider network + * NFV instances with VPP data-plane forwarding using a VXLAN overlay + transport network + +A deployment of the "apex-os-odl_l2-fdio-noha" scenario consists of 4 or more +servers: + + * 1 Jumphost hosting the APEX installer - running the Undercloud + * 1 Controlhost, which runs the Overcloud as well as OpenDaylight + as a network controller + * 2 or more Computehosts + +.. image:: FDS-ODL_L2-overview.png + +Tenant networking leverages FD.io/VPP. Open VSwitch (OVS) is used for all other +connectivity, in particular the connectivity to public networking / the +Internet (i.e. br-ext) is performed via OVS as in any standard OpenStack +deployment. The OpenDaylight network controller is used to setup and manage +layer 2 networking for the scenario. Tenant networking can either leverage +VXLAN (in which case a full mesh of VXLAN tunnels is created) or VLANs. Layer 3 +connectivity for a tenant network is provided centrally via qrouter on the +control node. As in a standard OpenStack deployment, the Layer3 agent +configures the qrouter and associated rulesets for security (security groups) +and NAT (floating IPs). Public IP network connectivity for a tenant network is +provided by interconnecting the VPP-based bridge domain representing the tenant +network to qrouter using a tap interface. The setup is depicted below: + +.. image:: FDS-L3-tenant-connectivity.png + +Features of the scenario +------------------------ + +Main features of the "apex-os-odl_l2-fdio-noha" scenario: + + * Automated installation using the APEX installer + * Fast and scalable tenant networking using FD.io/VPP as forwarder + * Layer 2 networking using VLANs or VXLAN, managed and + controlled through OpenDaylight + * Layer 3 connectivitiy for tenant networks supplied centrally on + the Control node through standard OpenStack mechanisms. + All layer 3 features apply, including floating IPs (i.e. NAT) + and security groups. + * Manual and automatic (via DHCP) addressing on tenant networks + +Software components of the scenario +--------------------------------------- + +The apex-os-odl_l2-fdio-noha scenario combines components from three key open +source projects: OpenStack, OpenDaylight, and Fast Data (FD.io). The key +components that realize the apex-os-odl_l2-fdio-noha scenario and which differ +from a regular, OVS-based scenario, are the OpenStack ML2 OpenDaylight plugin, +OpenDaylight Neutron Northbound, OpenDaylight Group Based Policy, OpenDaylight +Virtual Bridge Domain Manager, FD.io Honeycomb management agent and FD.io +Vector Packet Processor (VPP). + +Here's a more detailed list of the individual software components involved: + +**Openstack Neutron ML2 ODL Plugin**: Handles Neutron data base synchronization +and interaction with the southbound Openstack controller using HTTP. + +**OpenDaylight Neutron Nothbound & Neutron MD-SAL Entry Store**: Presents a +Neutron (v2) extended HTTP API servlet for interaction with Openstack Neutron. +It validates and stores the received Neutron data in the MD-SAL data store +against the Neutron yang model driven. + +**OpenDaylight Neutron Mapper**: The Neutron Mapper listens to Neutron data +change events and is responsible for using Neutron data in creating Group Based +Policy Data objects, e.g. GBP End-Points, Flood-Domains. A GBP End Point +represents a specific NFV/VM port and its identity as derived from a Neutron +Port. The mapped data is stored using the GBP End Point yang model and an +association between the GBP End-Point and its Neutron object is maintained in +the Neutron-GBP map. + +**OpenDaylight Group Based Policy (GBP) Entities store**: Stores for the GBP +data artifacts against the GBP YANG schemas. + +**Neutron Group Based Policy Map store**: Stores the bi-lateral relation +between an End-Point and its corresponding Neutron object. Neutron-GBP map; +keyed by Neutron object type, port, and Neutron UUID, gives the GBP End-Point, +Flood domain respectively. GBP-Neutron map keyed by GBP object type, end-point. + +**Neutron VPP Renderer Mapper**: The Neutron VPP Renderer Mapper listens to +Neutron Store data change events, as well as being able to access directly the +store, and is responsible for converting Neutron data specifically required to +render a VPP node configuration with a given End Point, e.g. the virtual host +interface name assigned to a vhostuser socket.. The mapped data is stored in +the VPP info data store. + +**VPP Info Store**: Stores VPP specific information regarding End-Points, Flood +domains with VLAN, etc. + +**GBP Renderer Manager**: The GBP Renderer Manager is the central point for +dispatching of data to specific device renderers. It uses the information +derived from the GBP end-point and its topology entries to dispatch the task of +configuration to a specific device renderer by writing a renderer policy +configuration into the registered renderer's policy store. The renderer manager +also monitors, by being a data change listener on the VPP Renderer Policy +States, for any errors in the application of a rendered configuration. + +**Renderer Policy Config Store**: The store's schema serves as the API between +the Renderer Manager and specific Renderers like the VPP Renderer. The store +uses a a YANG modeled schema to represent all end-point and associated GBP +policy data. + +**Topology Entries Store**: The yang model based MD-SAL topology store serves +two fundamental roles: 1. It maintains a topological representation of the GBP +End Points, in the context of customer networks. 2. It maintains an association +of each (VPP) compute node's physical interfaces to their neutron provider +network (e.g. The association between an ethernet interface and a Neutron +provider network). + +**VPP Renderer**: The VPP Renderer registers an instance for VPP nodes with the +Renderer Manager by means of inserting operational data into the Renderer +Policy config store. It acts as a listener on the Renderer Policy consumes via +the GBP Policy API data + the specific VPP End Point data, to drive the +configuration of VPP devices using NETCONF Services. +More specifically, the renderer generates: + + * vhost user port configuration that corresponds to the VM port configuration + * VPP bridge instances corresponding to the GBP flood domain + * port or traffic filtering configuration, in accordance with the GBP policy. + +The VPP Renderer also interacts with the Virtual Bridge Domain Service, by +means of the VBD store, in order to establish connectivity between VPP nodes in +a bridge domain. For this it uses the VPP device name, and the flood domain +data derived from the VPP Info and End-Point data respectively. For the +executed configuration operations it updates state in the Renderer policy state +store. + +**Virtual Bridge Domain (VBD) Store and Manager**: The virtual bridge domain +manager is responsible for configuring the VxLAN overlay tunnel infrastructure +to arrive at a desired bridged topology between multiple (VPP) compute nodes. +VDB configures VXLAN tunnels always into a full-mesh with split-horizon group +forwarding applied on any domain facing tunnel interface (i.e. forwarding +behavior will be that used for VPLS). + +**NETCONF Mount Point Service & Connector**: Collectively referred to as +Netconf Services, provide the NETCONF interface for accessing VPP configuration +and operational data stores that are represented as NETCONF mounts. + +**Virtual Packet Processor (VPP) and Honeycomb server**: The VPP is the +accelerated data plane forwarding engine relying on vhost user interfaces +towards Virtual Machines created by the Nova Agent. The Honeycomb NETCONF +configuration server is responsible for driving the configuration of the VPP, +and collecting the operational data. + +**Rendered Policy State Store**: Stores data regarding the execution of +operations performed by a given renderer. + +**Nova Agent**: The Nova Agent, a sub-component of the overall Openstack +architecture, is responsible for interacting with the compute node's host +Libvirt API to drive the life-cycle of Virtual Machines. It, along with the +compute node software, are assumed to be capable of supporting vhost user +interfaces. + +The picture below show a basic end to end call flow for creating a Neutron +vhostuser port on VPP using a GBP renderer. It showcases how the different +component described above interact. + +.. image:: FDS-basic-callflow.jpg + +Scenario Configuration +====================== + +To enable the "apex-os-odl_l2-fdio-noha" scenario check the appropriate +settings in the APEX configuration files. Those are typically found in +/etc/opnfv-apex. + +File "deploy_settings.yaml" choose opendaylight as controller with version +"boron" and enable vpp as forwarder:: + + global_params: + ha_enabled: false + + deploy_options: + sdn_controller: opendaylight + sdn_l3: false + odl_version: boron + tacker: false + congress: false + sfc: false + vpn: false + vpp: true + +Notes and known issues +====================== |