summaryrefslogtreecommitdiffstats
path: root/docs/scenarios/os-odl_l2-fdio-ha/scenario.description.rst
diff options
context:
space:
mode:
Diffstat (limited to 'docs/scenarios/os-odl_l2-fdio-ha/scenario.description.rst')
-rwxr-xr-xdocs/scenarios/os-odl_l2-fdio-ha/scenario.description.rst299
1 files changed, 0 insertions, 299 deletions
diff --git a/docs/scenarios/os-odl_l2-fdio-ha/scenario.description.rst b/docs/scenarios/os-odl_l2-fdio-ha/scenario.description.rst
deleted file mode 100755
index a81e8ed..0000000
--- a/docs/scenarios/os-odl_l2-fdio-ha/scenario.description.rst
+++ /dev/null
@@ -1,299 +0,0 @@
-.. OPNFV - Open Platform for Network Function Virtualization
-.. This work is licensed under a Creative Commons Attribution 4.0 International License.
-.. http://creativecommons.org/licenses/by/4.0
-
-Scenario: "OpenStack - OpenDaylight (Layer 2) - FD.io"
-======================================================
-
-Scenario: apex-os-odl_l2-fdio-ha
-
-"apex-os-odl_l2-fdio-ha" is a scenario developed as part of the
-FastDataStacks OPNFV project. The main components of the
-"apex-os-odl_l2-fdio-ha" scenario are:
-
- - APEX (TripleO) installer (please also see APEX installer documentation)
- - Openstack (in HA configuration)
- - OpenDaylight controller in clustered mode controlling layer 2 networking
- - FD.io/VPP virtual forwarder for tenant networking
-
-Introduction
-============
-
-NFV and virtualized high performance applications, such as video processing,
-require a "fast data stack" solution that provides both carrier grade
-forwarding performance, scalability and open extensibility, along with
-functionality for realizing application policies and controlling a complex
-network topology.
-
-A solution stack is only as good as its foundation. Key foundational assets for
-NFV infrastructure are
- * The virtual forwarder: The virtual forwarder needs to be a feature rich,
- high performance, highly scale virtual switch-router. It needs to leverage
- hardware accelerators when available and run in user space.
- In addition, it should be modular and easily extensible.
- * Forwarder diversity: A solution stack should support a variety of
- forwarders, hardware forwarders (physical switches and routers)
- as well as software forwarders. This way virtual and physical
- forwarding domains can be seamlessly glued together.
- * Policy driven connectivity: Connectivity should respect and
- reflect different business
-
-In order to meet the desired qualities of an NFV infrastructure, the
-following components were chosen for the "Openstack - OpenDaylight - FD.io"
-scenario:
- * FD.io Vector Packet Processor (VPP) - a highly scalable,
- high performance, extensible virtual forwarder
- * OpenDaylight Controller - an extensible controller platform which
- offers the ability to separate business logic from networking
- constructs, supports a diverse set of network devices
- (virtual and physical) via the "group based policy (GBP)"
- component, and can be clustered to achieve a highly available
- deployment - as done in this scenario.
-
-The "Openstack - OpenDaylight - FD.io" scenario provides the capability to
-realize a set of use-cases relevant to the deployment of NFV nodes instantiated
-by means of an Openstack orchestration system on FD.io/VPP enabled compute
-nodes. The role of the Opendaylight network controller in this integration is
-twofold. It provides a network device configuration and topology abstraction
-via the Openstack Neutron interface, while providing the capability to realize
-more complex network policies by means of Group Based Policies. Furthermore it
-also provides the capabilities to monitor as well as visualize the operation of
-the virtual network devices and their topologies.
-In supporting the general use-case of instantiatiting an NFV instance, two
-specific types of network transport use cases are realized:
-
- * NFV instances with VPP data-plane forwarding using a VLAN provider network
- * NFV instances with VPP data-plane forwarding using a VXLAN overlay
- transport network
-
-A deployment of the "apex-os-odl_l2-fdio-ha" scenario consists of 4 or more
-servers:
-
- * 1 Jumphost hosting the APEX installer - running the Undercloud
- * 3 Controlhosts, which run the Overcloud as well as OpenDaylight
- as a network controller. OpenDaylight is deployed in clustered
- mode and runs on all 3 control nodes.
- * 2 or more Computehosts
-
-.. image:: FDS-odl_l2-ha-overview.png
-
-Tenant networking leverages FD.io/VPP. Open VSwitch (OVS) is used for all other
-connectivity, in particular the connectivity to public networking / the
-Internet (i.e. br-ext) is performed via OVS as in any standard OpenStack
-deployment. The OpenDaylight network controller is used to setup and manage
-layer 2 networking for the scenario. Tenant networking can either leverage
-VXLAN (in which case a full mesh of VXLAN tunnels is created) or VLANs. Layer 3
-connectivity for a tenant network is provided centrally via qrouter on the
-control node. As in a standard OpenStack deployment, the Layer3 agent
-configures the qrouter and associated rulesets for security (security groups)
-and NAT (floating IPs). Public IP network connectivity for a tenant network is
-provided by interconnecting the VPP-based bridge domain representing the tenant
-network to qrouter using a tap interface. The setup is depicted below:
-
-.. image:: FDS-L3-tenant-connectivity.png
-
-With high availability factored in the setup looks like the following.
-
-.. image:: os-odl_l2-fdio-ha-colorado2_1.png
-
-Note that the picture only shows two Controllernodes for reasons of
-simplicity. A HA deployment will always include 3 Controllernodes.
-
-
-Features of the scenario
-------------------------
-
-Main features of the "apex-os-odl_l2-fdio-ha" scenario:
-
- * Automated installation using the APEX installer
- * Fast and scalable tenant networking using FD.io/VPP as forwarder
- * Layer 2 networking using VLANs or VXLAN, managed and
- controlled through OpenDaylight
- * Layer 3 connectivitiy for tenant networks supplied centrally on
- the Control node through standard OpenStack mechanisms.
- All layer 3 features apply, including floating IPs (i.e. NAT)
- and security groups.
- * Manual and automatic (via DHCP) addressing on tenant networks
- * OpenDaylight controller high availability (clustering)
- * OpenStack high availability
-
-Scenario components and composition
-===================================
-
-The apex-os-odl_l2-fdio-ha scenario combines components from three key open
-source projects: OpenStack, OpenDaylight, and Fast Data (FD.io). The key
-components that realize the apex-os-odl_l2-fdio-ha scenario and which differ
-from a regular, OVS-based scenario, are the OpenStack ML2 OpenDaylight plugin,
-OpenDaylight Neutron Northbound, OpenDaylight Group Based Policy, OpenDaylight
-Virtual Bridge Domain Manager, FD.io Honeycomb management agent and FD.io
-Vector Packet Processor (VPP).
-
-Here's a more detailed list of the individual software components involved:
-
-**Openstack Neutron ML2 OpenDaylight Plugin**: Handles Neutron data base
-synchronization and interaction with the southbound controller using a REST
-interface.
-
-**ODL GBP Neutron Mapper**: Maps neutron elements like networks, subnets,
-security groups, etc. to GBP entities: Creates policy and configuration for
-tenants (endpoints, resolved policies, forwarding rules).
-
-**ODL GBP Neutron VPP Mapper**: Maps Neutron ports to VPP endpoints in GBP.
-
-**ODL GBP Location Manager**: Provides real location for endpoints (i.e. Which
-physical node an endpoint is connected to).
-
-**GBP Renderer Manager**: Creates configuration for Renderers (like e.g.
-VPP-Renderer or OVS-Renderer). The GBP Renderer Manager is the central point
-for dispatching of data to specific device renderers. It uses the information
-derived from the GBP end-point and its topology entries to dispatch the task
-of configuration to a specific device renderer by writing a renderer policy
-configuration into the registered renderer's policy store. The renderer
-manager also monitors, by being a data change listener on the VPP Renderer
-Policy States, for any errors in the application of a rendered configuration.
-
-**GBP VPP Renderer Interface Manager**: Listens to VPP endpoints in the
-Config DataStore and configures associated interfaces on VPP via HoneyComb.
-
-**GBP VPP Renderer Renderer Policy Manager**: Manages the creation of
-bridge domains using VBD and assigns interfaces to bridge domains.
-
-**Virtual Bridge Domain Manager (VBD)**: Creates bridge domains (i.e. in case
-of VXLAN creates full mesh of VXLAN tunnels, configures split horizon on
-tunnel endpoints etc.). VDB configures VXLAN tunnels always into a full-mesh
-with split-horizon group forwarding applied on any domain facing tunnel
-interface (i.e. forwarding behavior will be that used for VPLS).
-
-**Virtual Packet Processor (VPP) and Honeycomb server**: The VPP is the
-accelerated data plane forwarding engine relying on vhost user interfaces
-towards Virtual Machines created by the Nova Agent. The Honeycomb NETCONF
-configuration server is responsible for driving the configuration of the VPP,
-and collecting the operational data.
-
-**Nova Agent**: The Nova Agent, a sub-component of the overall Openstack
-architecture, is responsible for interacting with the compute node's host
-Libvirt API to drive the life-cycle of Virtual Machines. It, along with the
-compute node software, are assumed to be capable of supporting vhost user
-interfaces.
-
-The picture below shows the key components.
-
-.. image:: FDS-basic-components.jpg
-
-To provide a better understanding how the above mentioned components interact
-with each other, the following diagram shows how the example of creating a
-vhost-user port on VPP through Openstack Neutron:
-
-To create or update a port, Neutron will send a request to ODL Neutron
-Northbound which contains the UUID, along with the host-id as "vpp" and
-vif-type as "vhost-user". The GBP Neutron mapper turns the "Neutron speak" of
-"ports" into the generic connectivity model that GroupBasedPolicy uses.
-Neutron "ports" become generic "GBP Endpoints" which can be consumed by the
-GBP Renderer Manager. The GBP Renderer Manager resolves the policy for the
-endpoint, i.e. it determines which communication relationships apply to the
-specific endpoint, and hands the resolution to a device specific renderer,
-which is the VPP renderer in the given case here. VPP renderer turns the
-generic policy into VPP specific configuration. Note that in case the policy
-would need to be applied to a different device, e.g. an OpenVSwitch (OVS),
-then an "OVS Renderer" would be used. VPP Renderer and the topology manager
-("Virtual Bridge Domain" manager - i.e. VBD) cooperate to create the actual
-network configuration. VPP Renderer configures the interfaces to the virtual
-machines (VM), i.e. the vhost-user interface in the given case here and
-attaches them to a bridge domain on VPP. VBD handles the setup of connectivity
-between bridge domains on individual VPPs, i.e. it maintains the VXLAN tunnels
-in the given case here. Both VPP Renderer as well as VBD communicate with the
-device through Netconf/YANG. All compute and control nodes run an instance of
-VPP and the VPP-configuration agent "Honeycomb". Honeycomb serves as a
-Netconf/YANG server, receives the configuration commands from VBD and VPP
-Renderer and drives VPP configuration using VPP's local Java APIs.
-
-.. image:: FDS-simple-callflow.png
-
-
-Scenario Configuration
-======================
-
-To enable the "apex-os-odl_l2-fdio-ha" scenario check the appropriate
-settings in the APEX configuration files. Those are typically found in
-/etc/opnfv-apex.
-
-File "deploy_settings.yaml" choose opendaylight as controller with version
-"carbon" and enable vpp as forwarder. Also make sure that you set
-"ha_enabled" to "true" in the global_params section. "ha_enabled" is the
-only real difference from a configuration file perspective between the
-scenario with high availability when compared to the ODL-L2 scenario
-without high-availability support. "hugepages" need to set to a
-sufficiently large value for VPP to work. The default value for VPP is
-1024, but this only allows for a few VMs to be started. If feasible,
-choose a significantly larger number on the compute nodes::
-
- global_params:
- ha_enabled: true
-
- deploy_options:
- sdn_controller: opendaylight
- sdn_l3: false
- odl_version: carbon
- tacker: true
- congress: true
- sfc: false
- vpn: false
- vpp: true
- dataplane: fdio
- performance:
- Controller:
- kernel:
- hugepages: 1024
- hugepagesz: 2M
- intel_iommu: 'on'
- iommu: pt
- isolcpus: 1,2
- vpp:
- main-core: 1
- corelist-workers: 2
- uio-driver: uio_pci_generic
- Compute:
- kernel:
- hugepagesz: 2M
- hugepages: 2048
- intel_iommu: 'on'
- iommu: pt
- isolcpus: 1,2
- vpp:
- main-core: 1
- corelist-workers: 2
- uio-driver: uio_pci_generic
-
-
-Validated deployment environments
-=================================
-
-The "os-odl_l2-fdio-ha" scenario has been deployed and tested
-on the following sets of hardware:
- * Linux Foundation lab (Chassis: Cisco UCS-B-5108 blade server,
- NICs: 8 external / 32 internal 10GE ports,
- RAM: 32G (4 x 8GB DDR4-2133-MHz RDIMM/PC4-17000/single rank/x4/1.2v),
- CPU: 3.50 GHz E5-2637 v3/135W 4C/15MB Cache/DDR4 2133MHz
- Disk: 1.2 TB 6G SAS 10K rpm SFF HDD) see also:
- https://wiki.opnfv.org/display/pharos/Lflab+Hosting
- * OPNFV CENGN lab (https://wiki.opnfv.org/display/pharos/CENGN+Pharos+Lab)
- * Cisco internal development labs (UCS-B and UCS-C)
-
-Limitations, Issues and Workarounds
-===================================
-
-For specific information on limitations and issues, please refer to the APEX
-installer release notes. Note that this high availability scenario
-deploys OpenStack in HA mode *and* OpenDaylight in cluster mode.
-
-
-References
-==========
-
-
- * FastDataStacks OPNFV project wiki: https://wiki.opnfv.org/display/fds
- * Fast Data (FD.io): https://fd.io/
- * FD.io Vector Packet Processor (VPP): https://wiki.fd.io/view/VPP
- * OpenDaylight Controller: https://www.opendaylight.org/
- * OPNFV Danube release - more information: http://www.opnfv.org/danube
-