summaryrefslogtreecommitdiffstats
path: root/docs/userguide
diff options
context:
space:
mode:
Diffstat (limited to 'docs/userguide')
-rw-r--r--docs/userguide/collectd.userguide.rst202
-rw-r--r--docs/userguide/dpdk_ka.pngbin0 -> 100808 bytes
-rw-r--r--docs/userguide/index.rst19
-rw-r--r--docs/userguide/keepalive.userguide.rst128
-rw-r--r--docs/userguide/monitoring_interfaces.pngbin0 -> 94097 bytes
-rw-r--r--docs/userguide/stats_and_timestamps.pngbin0 -> 52193 bytes
6 files changed, 349 insertions, 0 deletions
diff --git a/docs/userguide/collectd.userguide.rst b/docs/userguide/collectd.userguide.rst
new file mode 100644
index 0000000..0755fdf
--- /dev/null
+++ b/docs/userguide/collectd.userguide.rst
@@ -0,0 +1,202 @@
+.. This work is licensed under a Creative Commons Attribution 4.0 International License.
+.. http://creativecommons.org/licenses/by/4.0
+.. (c) OPNFV, Intel Corporation and others.
+
+collectd plugins description
+============================
+The SFQM collectd plugins enable the ability to monitor DPDK interfaces by
+exposing stats and the relevant events to higher level telemetry and fault
+management applications. The following sections will discuss the SFQM features
+in detail.
+
+Measuring Telco Traffic and Performance KPIs
+--------------------------------------------
+This section will discuss the SFQM features that enable Measuring Telco Traffic
+and Performance KPIs.
+
+.. Figure:: stats_and_timestamps.png
+
+ Measuring Telco Traffic and Performance KPIs
+
+* The very first thing SFQM enabled was a call-back API in DPDK and an
+ associated application that used the API to demonstrate how to timestamp
+ packets and measure packet latency in DPDK (the sample app is called
+ rxtx_callbacks). This was upstreamed to DPDK 2.0 and is represented by
+ the interfaces 1 and 2 in Figure 1.2.
+
+* The second thing SFQM implemented in DPDK is the extended NIC statistics API,
+ which exposes NIC stats including error stats to the DPDK user by reading the
+ registers on the NIC. This is represented by interface 3 in Figure 1.2.
+
+ * For DPDK 2.1 this API was only implemented for the ixgbe (10Gb) NIC driver,
+ in association with a sample application that runs as a DPDK secondary
+ process and retrieves the extended NIC stats.
+
+ * For DPDK 2.2 the API was implemented for igb, i40e and all the Virtual
+ Functions (VFs) for all drivers.
+
+ * For DPDK 16.07 the API migrated from using string value pairs to using id
+ value pairs, improving the overall performance of the API.
+
+Monitoring DPDK interfaces
+--------------------------
+With the features SFQM enabled in DPDK to enable measuring Telco traffic and
+performance KPIs, we can now retrieve NIC statistics including error stats and
+relay them to a DPDK user. The next step is to enable monitoring of the DPDK
+interfaces based on the stats that we are retrieving from the NICs, by relaying
+the information to a higher level Fault Management entity. To enable this SFQM
+has been enabling a number of plugins for collectd.
+
+collectd
+~~~~~~~~
+collectd is a daemon which collects system performance statistics periodically
+and provides a variety of mechanisms to publish the collected metrics. It
+supports more than 90 different input and output plugins. Input plugins retrieve
+metrics and publish them to the collectd deamon, while output plugins publish
+the data they receive to an end point. collectd also has infrastructure to
+support thresholding and notification.
+
+collectd statistics and Notifications
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Within collectd notifications and performance data are dispatched in the same
+way. There are producer plugins (plugins that create notifications/metrics),
+and consumer plugins (plugins that receive notifications/metrics and do
+something with them).
+
+Statistics in collectd consist of a value list. A value list includes:
+
+* Values, can be one of:
+
+ * Derive: used for values where a change in the value since it's last been
+ read is of interest. Can be used to calculate and store a rate.
+
+ * Counter: similar to derive values, but take the possibility of a counter
+ wrap around into consideration.
+
+ * Gauge: used for values that are stored as is.
+
+ * Absolute: used for counters that are reset after reading.
+
+* Value length: the number of values in the data set.
+
+* Time: timestamp at which the value was collected.
+
+* Interval: interval at which to expect a new value.
+
+* Host: used to identify the host.
+
+* Plugin: used to identify the plugin.
+
+* Plugin instance (optional): used to group a set of values together. For e.g.
+ values belonging to a DPDK interface.
+
+* Type: unit used to measure a value. In other words used to refer to a data
+ set.
+
+* Type instance (optional): used to distinguish between values that have an
+ identical type.
+
+* meta data: an opaque data structure that enables the passing of additional
+ information about a value list. "Meta data in the global cache can be used to
+ store arbitrary information about an identifier" [7].
+
+Host, plugin, plugin instance, type and type instance uniquely identify a
+collectd value.
+
+Values lists are often accompanied by data sets that describe the values in more
+detail. Data sets consist of:
+
+* A type: a name which uniquely identifies a data set.
+
+* One or more data sources (entries in a data set) which include:
+
+ * The name of the data source. If there is only a single data source this is
+ set to "value".
+
+ * The type of the data source, one of: counter, gauge, absolute or derive.
+
+ * A min and a max value.
+
+Types in collectd are defined in types.db. Examples of types in types.db:
+
+.. code-block:: console
+
+ bitrate value:GAUGE:0:4294967295
+ counter value:COUNTER:U:U
+ if_octets rx:COUNTER:0:4294967295, tx:COUNTER:0:4294967295
+
+In the example above if_octets has two data sources: tx and rx.
+
+Notifications in collectd are generic messages containing:
+
+* An associated severity, which can be one of OKAY, WARNING, and FAILURE.
+
+* A time.
+
+* A Message
+
+* A host.
+
+* A plugin.
+
+* A plugin instance (optional).
+
+* A type.
+
+* A types instance (optional).
+
+* Meta-data.
+
+collectd plugins
+----------------
+SFQM has enabled three collectd plugins to date:
+
+* `dpdkstat plugin`_: A read plugin that retrieve stats from the DPDK extended
+ NIC stats API.
+
+* `ceilometer plugin`_: A write plugin that pushes the retrieved stats to
+ Ceilometer. It's capable of pushing any stats read through collectd to
+ Ceilometer, not just the DPDK stats.
+
+* `hugepages plugin`_: A read plugin that retrieves the number of available
+ and free hugepages on a platform as well as what is available in terms of
+ hugepages per socket.
+
+Other plugins in progress:
+
+* dpdkevents: A read plugin that retrieves DPDK link status and DPDK
+ forwarding cores liveliness status (DPDK Keep Alive).
+
+* Open vSwitch stats Plugin: A read plugin that retrieve flow and interface
+ stats from OVS.
+
+* Open vSwitch events Plugin: A read plugin that retrieves events from OVS.
+
+
+Monitoring Interfaces and Openstack Support
+-------------------------------------------
+.. Figure:: monitoring_interfaces.png
+
+ Monitoring Interfaces and Openstack Support
+
+The figure above shows the DPDK L2 forwarding application running on a compute
+node, sending and receiving traffic. collectd is also running on this compute
+node retrieving the stats periodically from DPDK through the dpdkstat plugin
+and publishing the retrieved stats to Ceilometer through the ceilometer plugin.
+
+To see this demo in action please checkout: `SFQM OPNFV Summit demo`_
+
+References
+----------
+[1] https://collectd.org/wiki/index.php/Naming_schema
+[2] https://github.com/collectd/collectd/blob/master/src/daemon/plugin.h
+[3] https://collectd.org/wiki/index.php/Value_list_t
+[4] https://collectd.org/wiki/index.php/Data_set
+[5] https://collectd.org/documentation/manpages/types.db.5.shtml
+[6] https://collectd.org/wiki/index.php/Data_source
+[7] https://collectd.org/wiki/index.php/Meta_Data_Interface
+
+.. _SFQM OPNFV Summit demo: https://prezi.com/kjv6o8ixs6se/software-fastpath-service-quality-metrics-demo/
+.. _dpdkstat plugin: https://github.com/maryamtahhan/collectd-with-DPDK/tree/dpdkstat
+.. _ceilometer plugin: https://github.com/openstack/collectd-ceilometer-plugin/tree/stable/mitaka
+.. _hugepages plugin: https://github.com/maryamtahhan/collectd-with-DPDK/tree/hugepages
diff --git a/docs/userguide/dpdk_ka.png b/docs/userguide/dpdk_ka.png
new file mode 100644
index 0000000..4a45e10
--- /dev/null
+++ b/docs/userguide/dpdk_ka.png
Binary files differ
diff --git a/docs/userguide/index.rst b/docs/userguide/index.rst
new file mode 100644
index 0000000..994f63c
--- /dev/null
+++ b/docs/userguide/index.rst
@@ -0,0 +1,19 @@
+.. This work is licensed under a Creative Commons Attribution 4.0 International License.
+ .. http://creativecommons.org/licenses/by/4.0
+ .. (c) <optionally add copywriters name>
+
+====================
+SFQM user guide
+====================
+
+.. The feature user guide should provide an OPNFV user with enough information to
+ .. use the features provided by the feature project in the supported scenarios.
+ .. This guide should walk a user through the usage of the features once a scenario
+ .. has been deployed and is active according to the installation guide provided
+ .. by the installer project.
+
+.. toctree::
+ :maxdepth: 3
+
+ collectd.userguide.rst
+ keepalive.userguide.rst
diff --git a/docs/userguide/keepalive.userguide.rst b/docs/userguide/keepalive.userguide.rst
new file mode 100644
index 0000000..4b6e990
--- /dev/null
+++ b/docs/userguide/keepalive.userguide.rst
@@ -0,0 +1,128 @@
+.. This work is licensed under a Creative Commons Attribution 4.0 International License.
+.. http://creativecommons.org/licenses/by/4.0
+.. (c) OPNFV, Intel Corporation and others.
+
+DPDK Keep Alive description
+===========================
+SFQM aims to enable fault detection within DPDK, the very first feature to
+meet this goal is the DPDK Keep Alive Sample app that is part of DPDK 2.2.
+
+DPDK Keep Alive or KA is a sample application that acts as a heartbeat/watchdog
+for DPDK packet processing cores, to detect application thread failure. The
+application supports the detection of ‘failed’ DPDK cores and notification to a
+HA/SA middleware. The purpose is to detect Packet Processing Core fails (e.g.
+infinite loop) and ensure the failure of the core does not result in a fault
+that is not detectable by a management entity.
+
+.. Figure:: dpdk_ka.png
+
+ DPDK Keep Alive Sample Application
+
+Essentially the app demonstrates how to detect 'silent outages' on DPDK packet
+processing cores. The application can be decomposed into two specific parts:
+detection and notification.
+
+* The detection period is programmable/configurable but defaults to 5ms if no
+ timeout is specified.
+* The Notification support is enabled by simply having a hook function that where this
+ can be 'call back support' for a fault management application with a compliant
+ heartbeat mechanism.
+
+DPDK Keep Alive Sample App Internals
+------------------------------------
+This section provides some explanation of the The Keep-Alive/'Liveliness'
+conceptual scheme as well as the DPDK Keep Alive App. The initialization and
+run-time paths are very similar to those of the L2 forwarding application (see
+`L2 Forwarding Sample Application (in Real and Virtualized Environments)`_ for more
+information).
+
+There are two types of cores: a Keep Alive Monitor Agent Core (master DPDK core)
+and Worker cores (Tx/Rx/Forwarding cores). The Keep Alive Monitor Agent Core
+will supervise worker cores and report any failure (2 successive missed pings).
+The Keep-Alive/'Liveliness' conceptual scheme is:
+
+* DPDK worker cores mark their liveliness as they forward traffic.
+* A Keep Alive Monitor Agent Core runs a function every N Milliseconds to
+ inspect worker core liveliness.
+* If keep-alive agent detects time-outs, it notifies the fault management
+ entity through a call-back function.
+
+**Note:** Only the worker cores state is monitored. There is no mechanism or agent
+to monitor the Keep Alive Monitor Agent Core.
+
+DPDK Keep Alive Sample App Code Internals
+-----------------------------------------
+The following section provides some explanation of the code aspects that are
+specific to the Keep Alive sample application.
+
+The heartbeat functionality is initialized with a struct rte_heartbeat and the
+callback function to invoke in the case of a timeout.
+
+.. code:: c
+
+ rte_global_keepalive_info = rte_keepalive_create(&dead_core, NULL);
+ if (rte_global_hbeat_info == NULL)
+ rte_exit(EXIT_FAILURE, "keepalive_create() failed");
+
+The function that issues the pings hbeat_dispatch_pings() is configured to run
+every check_period milliseconds.
+
+.. code:: c
+
+ if (rte_timer_reset(&hb_timer,
+ (check_period * rte_get_timer_hz()) / 1000,
+ PERIODICAL,
+ rte_lcore_id(),
+ &hbeat_dispatch_pings, rte_global_keepalive_info
+ ) != 0 )
+ rte_exit(EXIT_FAILURE, "Keepalive setup failure.\n");
+
+The rest of the initialization and run-time path follows the same paths as the
+the L2 forwarding application. The only addition to the main processing loop is
+the mark alive functionality and the example random failures.
+
+.. code:: c
+
+ rte_keepalive_mark_alive(&rte_global_hbeat_info);
+ cur_tsc = rte_rdtsc();
+
+ /* Die randomly within 7 secs for demo purposes.. */
+ if (cur_tsc - tsc_initial > tsc_lifetime)
+ break;
+
+The rte_keepalive_mark_alive() function simply sets the core state to alive.
+
+.. code:: c
+
+ static inline void
+ rte_keepalive_mark_alive(struct rte_heartbeat *keepcfg)
+ {
+ keepcfg->state_flags[rte_lcore_id()] = 1;
+ }
+
+Keep Alive Monitor Agent Core Monitoring Options
+The application can run on either a host or a guest. As such there are a number
+of options for monitoring the Keep Alive Monitor Agent Core through a Local
+Agent on the compute node:
+
+ ====================== ========== =============
+ Application Location DPDK KA LOCAL AGENT
+ ====================== ========== =============
+ HOST X HOST/GUEST
+ GUEST X HOST/GUEST
+ ====================== ========== =============
+
+
+For the first implementation of a Local Agent SFQM will enable:
+
+ ====================== ========== =============
+ Application Location DPDK KA LOCAL AGENT
+ ====================== ========== =============
+ HOST X HOST
+ ====================== ========== =============
+
+Through extending the dpdkstat plugin for collectd with KA functionality, and
+integrating the extended plugin with Monasca for high performing, resilient,
+and scalable fault detection.
+
+.. _L2 Forwarding Sample Application (in Real and Virtualized Environments): http://dpdk.org/doc/guides/sample_app_ug/l2_forward_real_virtual.html
diff --git a/docs/userguide/monitoring_interfaces.png b/docs/userguide/monitoring_interfaces.png
new file mode 100644
index 0000000..e57c4aa
--- /dev/null
+++ b/docs/userguide/monitoring_interfaces.png
Binary files differ
diff --git a/docs/userguide/stats_and_timestamps.png b/docs/userguide/stats_and_timestamps.png
new file mode 100644
index 0000000..84aef72
--- /dev/null
+++ b/docs/userguide/stats_and_timestamps.png
Binary files differ