summaryrefslogtreecommitdiffstats
path: root/docs/release/scenarios
diff options
context:
space:
mode:
Diffstat (limited to 'docs/release/scenarios')
-rw-r--r--docs/release/scenarios/fault_management/fault_management.rst90
-rw-r--r--docs/release/scenarios/maintenance/images/Fault-management-design.pngbin0 -> 237110 bytes
-rw-r--r--docs/release/scenarios/maintenance/images/LICENSE14
-rw-r--r--docs/release/scenarios/maintenance/images/Maintenance-design.pngbin0 -> 316640 bytes
-rw-r--r--docs/release/scenarios/maintenance/images/Maintenance-workflow.pngbin0 -> 81286 bytes
-rw-r--r--docs/release/scenarios/maintenance/maintenance.rst120
6 files changed, 224 insertions, 0 deletions
diff --git a/docs/release/scenarios/fault_management/fault_management.rst b/docs/release/scenarios/fault_management/fault_management.rst
new file mode 100644
index 00000000..99371201
--- /dev/null
+++ b/docs/release/scenarios/fault_management/fault_management.rst
@@ -0,0 +1,90 @@
+.. This work is licensed under a Creative Commons Attribution 4.0 International License.
+.. http://creativecommons.org/licenses/by/4.0
+
+
+Running test cases
+""""""""""""""""""
+
+Functest will call the "doctor_tests/main.py" in Doctor to run the test job.
+Doctor testing can also be triggered by tox on OPNFV installer jumphost. Tox
+is normally used for functional, module and coding style testing in Python
+project.
+
+Currently 'MCP' and 'devstack' installer are supported.
+
+
+Fault management use case
+"""""""""""""""""""""""""
+
+* A consumer of the NFVI wants to receive immediate notifications about faults
+ in the NFVI affecting the proper functioning of the virtual resources.
+ Therefore, such faults have to be detected as quickly as possible, and, when
+ a critical error is observed, the affected consumer is immediately informed
+ about the fault and can switch over to the STBY configuration.
+
+The faults to be monitored (and at which detection rate) will be configured by
+the consumer. Once a fault is detected, the Inspector in the Doctor
+architecture will check the resource map maintained by the Controller, to find
+out which virtual resources are affected and then update the resources state.
+The Notifier will receive the failure event requests sent from the Controller,
+and notify the consumer(s) of the affected resources according to the alarm
+configuration.
+
+Detailed workflow information is as follows:
+
+* Consumer(VNFM): (step 0) creates resources (network, server/instance) and an
+ event alarm on state down notification of that server/instance or Neutron
+ port.
+
+* Monitor: (step 1) periodically checks nodes, such as ping from/to each
+ dplane nic to/from gw of node, (step 2) once it fails to send out event
+ with "raw" fault event information to Inspector
+
+* Inspector: when it receives an event, it will (step 3) mark the host down
+ ("mark-host-down"), (step 4) map the PM to VM, and change the VM status to
+ down. In network failure case, also Neutron port is changed to down.
+
+* Controller: (step 5) sends out instance update event to Ceilometer. In network
+ failure case, also Neutron port is changed to down and corresponding event is
+ sent to Ceilometer.
+
+* Notifier: (step 6) Ceilometer transforms and passes the events to AODH,
+ (step 7) AODH will evaluate events with the registered alarm definitions,
+ then (step 8) it will fire the alarm to the "consumer" who owns the
+ instance
+
+* Consumer(VNFM): (step 9) receives the event and (step 10) recreates a new
+ instance
+
+Fault management test case
+""""""""""""""""""""""""""
+
+Functest will call the 'doctor-test' command in Doctor to run the test job.
+
+The following steps are executed:
+
+Firstly, get the installer ip according to the installer type. Then ssh to
+the installer node to get the private key for accessing to the cloud. As
+'fuel' installer, ssh to the controller node to modify nova and ceilometer
+configurations.
+
+Secondly, prepare image for booting VM, then create a test project and test
+user (both default to doctor) for the Doctor tests.
+
+Thirdly, boot a VM under the doctor project and check the VM status to verify
+that the VM is launched completely. Then get the compute host info where the VM
+is launched to verify connectivity to the target compute host. Get the consumer
+ip according to the route to compute ip and create an alarm event in Ceilometer
+using the consumer ip.
+
+Fourthly, the Doctor components are started, and, based on the above preparation,
+a failure is injected to the system, i.e. the network of compute host is
+disabled for 3 minutes. To ensure the host is down, the status of the host
+will be checked.
+
+Finally, the notification time, i.e. the time between the execution of step 2
+(Monitor detects failure) and step 9 (Consumer receives failure notification)
+is calculated.
+
+According to the Doctor requirements, the Doctor test is successful if the
+notification time is below 1 second.
diff --git a/docs/release/scenarios/maintenance/images/Fault-management-design.png b/docs/release/scenarios/maintenance/images/Fault-management-design.png
new file mode 100644
index 00000000..6d98cdec
--- /dev/null
+++ b/docs/release/scenarios/maintenance/images/Fault-management-design.png
Binary files differ
diff --git a/docs/release/scenarios/maintenance/images/LICENSE b/docs/release/scenarios/maintenance/images/LICENSE
new file mode 100644
index 00000000..21a2d03d
--- /dev/null
+++ b/docs/release/scenarios/maintenance/images/LICENSE
@@ -0,0 +1,14 @@
+Copyright 2017 Open Platform for NFV Project, Inc. and its contributors
+
+Open Platform for NFV Project Documentation License
+===================================================
+Any documentation developed by the "Open Platform for NFV Project"
+is licensed under a Creative Commons Attribution 4.0 International License.
+You should have received a copy of the license along with this. If not,
+see <http://creativecommons.org/licenses/by/4.0/>.
+
+Unless required by applicable law or agreed to in writing, documentation
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
diff --git a/docs/release/scenarios/maintenance/images/Maintenance-design.png b/docs/release/scenarios/maintenance/images/Maintenance-design.png
new file mode 100644
index 00000000..8f21db6a
--- /dev/null
+++ b/docs/release/scenarios/maintenance/images/Maintenance-design.png
Binary files differ
diff --git a/docs/release/scenarios/maintenance/images/Maintenance-workflow.png b/docs/release/scenarios/maintenance/images/Maintenance-workflow.png
new file mode 100644
index 00000000..9b65fd59
--- /dev/null
+++ b/docs/release/scenarios/maintenance/images/Maintenance-workflow.png
Binary files differ
diff --git a/docs/release/scenarios/maintenance/maintenance.rst b/docs/release/scenarios/maintenance/maintenance.rst
new file mode 100644
index 00000000..ecfe76b1
--- /dev/null
+++ b/docs/release/scenarios/maintenance/maintenance.rst
@@ -0,0 +1,120 @@
+.. This work is licensed under a Creative Commons Attribution 4.0 International License.
+.. http://creativecommons.org/licenses/by/4.0
+
+
+Maintenance use case
+""""""""""""""""""""
+
+* A consumer of the NFVI wants to interact with NFVI maintenance, upgrade,
+ scaling and to have graceful retirement. Receiving notifications over these
+ NFVI events and responding to those within given time window, consumer can
+ guarantee zero downtime to his service.
+
+The maintenance use case adds the Doctor platform an `admin tool` and an
+`app manager` component. Overview of maintenance components can be seen in
+:numref:`figure-p2`.
+
+.. figure:: ./images/Maintenance-design.png
+ :name: figure-p2
+ :width: 100%
+
+ Doctor platform components in maintenance use case
+
+In maintenance use case, `app manager` (VNFM) will subscribe to maintenance
+notifications triggered by project specific alarms through AODH. This is the way
+it gets to know different NFVI maintenance, upgrade and scaling operations that
+effect to its instances. The `app manager` can do actions depicted in `green
+color` or tell `admin tool` to do admin actions depicted in `orange color`
+
+Any infrastructure component like `Inspector` can subscribe to maintenance
+notifications triggered by host specific alarms through AODH. Subscribing to the
+notifications needs admin privileges and can tell when a host is out of use as
+in maintenance and when it is taken back to production.
+
+Maintenance test case
+"""""""""""""""""""""
+
+Maintenance test case is currently running in our Apex CI and executed by tox.
+This is because the special limitation mentioned below and also the fact we
+currently have only sample implementation as a proof of concept and we also
+support unofficial OpenStack project Fenix. Environment variable
+TEST_CASE='maintenance' needs to be used when executing "doctor_tests/main.py"
+and ADMIN_TOOL_TYPE='fenix' if want to test with Fenix instead of sample
+implementation. Test case workflow can be seen in :numref:`figure-p3`.
+
+.. figure:: ./images/Maintenance-workflow.png
+ :name: figure-p3
+ :width: 100%
+
+ Maintenance test case workflow
+
+In test case all compute capacity will be consumed with project (VNF) instances.
+For redundant services on instances and an empty compute needed for maintenance,
+test case will need at least 3 compute nodes in system. There will be 2
+instances on each compute, so minimum number of VCPUs is also 2. Depending on
+how many compute nodes there is application will always have 2 redundant
+instances (ACT-STDBY) on different compute nodes and rest of the compute
+capacity will be filled with non-redundant instances.
+
+For each project specific maintenance message there is a time window for
+`app manager` to make any needed action. This will guarantee zero
+down time for his service. All replies back are done by calling `admin tool` API
+given in the message.
+
+The following steps are executed:
+
+Infrastructure admin will call `admin tool` API to trigger maintenance for
+compute hosts having instances belonging to a VNF.
+
+Project specific `MAINTENANCE` notification is triggered to tell `app manager`
+that his instances are going to hit by infrastructure maintenance at a specific
+point in time. `app manager` will call `admin tool` API to answer back
+`ACK_MAINTENANCE`.
+
+When the time comes to start the actual maintenance workflow in `admin tool`,
+a `DOWN_SCALE` notification is triggered as there is no empty compute node for
+maintenance (or compute upgrade). Project receives corresponding alarm and scales
+down instances and call `admin tool` API to answer back `ACK_DOWN_SCALE`.
+
+As it might happen instances are not scaled down (removed) from a single
+compute node, `admin tool` might need to figure out what compute node should be
+made empty first and send `PREPARE_MAINTENANCE` to project telling which instance
+needs to be migrated to have the needed empty compute. `app manager` makes sure
+he is ready to migrate instance and call `admin tool` API to answer back
+`ACK_PREPARE_MAINTENANCE`. `admin tool` will make the migration and answer
+`ADMIN_ACTION_DONE`, so `app manager` knows instance can be again used.
+
+:numref:`figure-p3` has next a light blue section of actions to be done for each
+compute. However as we now have one empty compute, we will maintain/upgrade that
+first. So on first round, we can straight put compute in maintenance and send
+admin level host specific `IN_MAINTENANCE` message. This is caught by `Inspector`
+to know host is down for maintenance. `Inspector` can now disable any automatic
+fault management actions for the host as it can be down for a purpose. After
+`admin tool` has completed maintenance/upgrade `MAINTENANCE_COMPLETE` message
+is sent to tell host is back in production.
+
+Next rounds we always have instances on compute, so we need to have
+`PLANNED_MAINTANANCE` message to tell that those instances are now going to hit
+by maintenance. When `app manager` now receives this message, he knows instances
+to be moved away from compute will now move to already maintained/upgraded host.
+In test case no upgrade is done on application side to upgrade instances
+according to new infrastructure capabilities, but this could be done here as
+this information is also passed in the message. This might be just upgrading
+some RPMs, but also totally re-instantiating instance with a new flavor. Now if
+application runs an active side of a redundant instance on this compute,
+a switch over will be done. After `app manager` is ready he will call
+`admin tool` API to answer back `ACK_PLANNED_MAINTENANCE`. In test case the
+answer is `migrate`, so `admin tool` will migrate instances and reply
+`ADMIN_ACTION_DONE` and then `app manager` knows instances can be again used.
+Then we are ready to make the actual maintenance as previously trough
+`IN_MAINTENANCE` and `MAINTENANCE_COMPLETE` steps.
+
+After all computes are maintained, `admin tool` can send `MAINTENANCE_COMPLETE`
+to tell maintenance/upgrade is now complete. For `app manager` this means he
+can scale back to full capacity.
+
+There is currently sample implementation on VNFM and test case. In
+infrastructure side there is sample implementation of 'admin_tool' and
+there is also support for the OpenStack Fenix that extends the use case to
+support 'ETSI FEAT03' for VNFM interaction and to optimize the whole
+infrastructure mainteannce and upgrade.