1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
|
#ifndef _LIBCRYPTO_H_
#define _LIBCRYPTO_H_
/** NT libcrypto API version 0.7
version 0.7
- Performance in 13Gbit/s range - potential limited by virtual channels.
- Multiple security contexts are now supported.
- Heavy memory usage, due to worst case return address storrage.
version 0.6
- ???
The library will encapsulate the Cipher Offload Engine running on the NT SmartNic.
The accelerated functionality can be utilized via the following types and calls:
*/
#include <stdint.h>
#define CRYPTODEV_NAME_QAT_SYM_PMD crypto_qat
#define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1
#define DEFAULT_NUM_OPS_INFLIGHT (128)
#define TEST_SUCCESS (0)
#define TEST_FAILED (-1)
#ifndef TEST_TRACE_FAILURE
# define TEST_TRACE_FAILURE(_file, _line, _func)
#endif
#define TEST_ASSERT(cond, msg, ...) do { \
if (!(cond)) { \
printf("TestCase %s() line %d failed: " \
msg "\n", __func__, __LINE__, ##__VA_ARGS__); \
TEST_TRACE_FAILURE(__FILE__, __LINE__, __func__); \
return TEST_FAILED; \
} \
} while (0)
#define TEST_ASSERT_EQUAL(a, b, msg, ...) do { \
if (!(a == b)) { \
printf("TestCase %s() line %d failed: " \
msg "\n", __func__, __LINE__, ##__VA_ARGS__); \
TEST_TRACE_FAILURE(__FILE__, __LINE__, __func__); \
return TEST_FAILED; \
} \
} while (0)
/* Compare two buffers (length in bytes) */
#define TEST_ASSERT_BUFFERS_ARE_EQUAL(a, b, len, msg, ...) do { \
if (memcmp(a, b, len)) { \
printf("TestCase %s() line %d failed: " \
msg "\n", __func__, __LINE__, ##__VA_ARGS__); \
TEST_TRACE_FAILURE(__FILE__, __LINE__, __func__); \
return TEST_FAILED; \
} \
} while (0)
/* Compare two buffers with offset (length and offset in bytes) */
#define TEST_ASSERT_BUFFERS_ARE_EQUAL_OFFSET(a, b, len, off, msg, ...) do { \
const uint8_t *_a_with_off = (const uint8_t *)a + off; \
const uint8_t *_b_with_off = (const uint8_t *)b + off; \
TEST_ASSERT_BUFFERS_ARE_EQUAL(_a_with_off, _b_with_off, len, msg); \
} while (0)
/* Compare two buffers (length in bits) */
#define TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT(a, b, len, msg, ...) do { \
uint8_t _last_byte_a, _last_byte_b; \
uint8_t _last_byte_mask, _last_byte_bits; \
TEST_ASSERT_BUFFERS_ARE_EQUAL(a, b, (len >> 3), msg); \
if (len % 8) { \
_last_byte_bits = len % 8; \
_last_byte_mask = ~((1 << (8 - _last_byte_bits)) - 1); \
_last_byte_a = ((const uint8_t *)a)[len >> 3]; \
_last_byte_b = ((const uint8_t *)b)[len >> 3]; \
_last_byte_a &= _last_byte_mask; \
_last_byte_b &= _last_byte_mask; \
if (_last_byte_a != _last_byte_b) { \
printf("TestCase %s() line %d failed: " \
msg "\n", __func__, __LINE__, ##__VA_ARGS__);\
TEST_TRACE_FAILURE(__FILE__, __LINE__, __func__); \
return TEST_FAILED; \
} \
} \
} while (0)
/* Compare two buffers with offset (length and offset in bits) */
#define TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT_OFFSET(a, b, len, off, msg, ...) do { \
uint8_t _first_byte_a, _first_byte_b; \
uint8_t _first_byte_mask, _first_byte_bits; \
uint32_t _len_without_first_byte = (off % 8) ? \
len - (8 - (off % 8)) : \
len; \
uint32_t _off_in_bytes = (off % 8) ? (off >> 3) + 1 : (off >> 3); \
const uint8_t *_a_with_off = (const uint8_t *)a + _off_in_bytes; \
const uint8_t *_b_with_off = (const uint8_t *)b + _off_in_bytes; \
TEST_ASSERT_BUFFERS_ARE_EQUAL_BIT(_a_with_off, _b_with_off, \
_len_without_first_byte, msg); \
if (off % 8) { \
_first_byte_bits = 8 - (off % 8); \
_first_byte_mask = (1 << _first_byte_bits) - 1; \
_first_byte_a = *(_a_with_off - 1); \
_first_byte_b = *(_b_with_off - 1); \
_first_byte_a &= _first_byte_mask; \
_first_byte_b &= _first_byte_mask; \
if (_first_byte_a != _first_byte_b) { \
printf("TestCase %s() line %d failed: " \
msg "\n", __func__, __LINE__, ##__VA_ARGS__); \
TEST_TRACE_FAILURE(__FILE__, __LINE__, __func__); \
return TEST_FAILED; \
} \
} \
} while (0)
#define TEST_ASSERT_NOT_EQUAL(a, b, msg, ...) do { \
if (!(a != b)) { \
printf("TestCase %s() line %d failed: " \
msg "\n", __func__, __LINE__, ##__VA_ARGS__); \
TEST_TRACE_FAILURE(__FILE__, __LINE__, __func__); \
return TEST_FAILED; \
} \
} while (0)
#define TEST_ASSERT_SUCCESS(val, msg, ...) do { \
typeof(val) _val = (val); \
if (!(_val == 0)) { \
printf("TestCase %s() line %d failed (err %d): " \
msg "\n", __func__, __LINE__, _val, \
##__VA_ARGS__); \
TEST_TRACE_FAILURE(__FILE__, __LINE__, __func__); \
return TEST_FAILED; \
} \
} while (0)
#define TEST_ASSERT_FAIL(val, msg, ...) do { \
if (!(val != 0)) { \
printf("TestCase %s() line %d failed: " \
msg "\n", __func__, __LINE__, ##__VA_ARGS__); \
TEST_TRACE_FAILURE(__FILE__, __LINE__, __func__); \
return TEST_FAILED; \
} \
} while (0)
#define TEST_ASSERT_NULL(val, msg, ...) do { \
if (!(val == NULL)) { \
printf("TestCase %s() line %d failed: " \
msg "\n", __func__, __LINE__, ##__VA_ARGS__); \
TEST_TRACE_FAILURE(__FILE__, __LINE__, __func__); \
return TEST_FAILED; \
} \
} while (0)
#define TEST_ASSERT_NOT_NULL(val, msg, ...) do { \
if (!(val != NULL)) { \
printf("TestCase %s() line %d failed: " \
msg "\n", __func__, __LINE__, ##__VA_ARGS__); \
TEST_TRACE_FAILURE(__FILE__, __LINE__, __func__); \
return TEST_FAILED; \
} \
} while (0)
typedef uint8_t *data_t;
typedef struct {
data_t data_in;
data_t data_out;
uint16_t length;
uint8_t pad[2];
}cipher_input;
#define KEY_SIZE (16)
#define MAX_BURST_SIZE (32)
#define MAX_SEC_CTX (8) /* The number of concurrently running security contexts. */
#define MAXIMUM_IV_LENGTH (16)
/* The plain- and cipher-text type. */
typedef struct {
data_t data;
uint16_t length;
} data_out_t;
/* The reference to a security context, which hold the internal state of an encryption tunnel. */
typedef void *sec_ctx_t;
/* The reference to the data context - will be given with each ciphering and returned with the callback. */
typedef void *data_ctx_t;
/* The symmetric encryption key. */
typedef uint8_t symmetric_key_t[KEY_SIZE];
/* The initialization vector. */
typedef struct __attribute__((packed)) {
uint32_t counter;
unsigned bearer : 5;
unsigned direction : 1;
uint8_t padding[3];
} iv_t;
/* Crypto algorithm selection. */
typedef enum { LOOPBACK = 0x0, ZUC = 0x3 } algo_type_t;
/*
The callback for data return.
When the callback returns, the data_out array will be destroyed.
Input:
- data_ctx : The reference to the data context in which the packet exist.
- data_out : An array of pointers to data that has been returned.
- count : The number of array elements in data_out.
Return:
- 0 : Operation successful
- non-zero : Operation failed
*/
typedef int (*callback_t)(data_ctx_t data_ctx, data_out_t data_out[MAX_BURST_SIZE], uint16_t count);
/*
Crypto library initializer
Input:
- callback : The callback for burst data return.
- core : The DPDK core used to run the library.
Return:
- 0 : Operation successful
- non-zero : Operation failed
*/
int nt_crypto_init(callback_t callback, uint8_t core);
/*
Setup and return a new security context.
Input:
- algo_type : Algorithm selection.
- key : The encryption key.
- data_ctx : A data context for each PDU encrypted within the security context.
Return:
- ptr : A void pointer to the security context.
- NULL : Operation failed.
*/
sec_ctx_t nt_crypto_new_security_context(algo_type_t algo_type, symmetric_key_t key, data_ctx_t data_ctx);
/*
Encryption and decryption of data:
Input:
- sec_ctx : The security context, thus key, used to cipher the data.
- iv : The initialization vector used to cipher the data.
- cipher_input : The pointer to the input buffer.
- nb_cipher The number of operations to process.
- Return : The number of packets which are ciphered/deciphered successfully.
*/
int nt_crypto_cipher(sec_ctx_t sec_ctx, iv_t *iv, cipher_input *crypto_input, uint16_t nb_cipher);
/*
End a given security context, all in-flight data is lost.
Will return when security context and all related resources has be closed and freed.
Input:
- sec_ctx : The security context to be closed.
Return:
- 0 : Operation successful
- non-zero : Operation failed
*/
int nt_crypto_end_security_context(sec_ctx_t);
/*
End all security context and stop the crypto library, all in-flight data is lost.
The function will return when all crypto resources has been closed and freed.
*/
int nt_crypto_end(void);
#endif /* _LIBCRYPTO_H_ */
|