summaryrefslogtreecommitdiffstats
path: root/src/dma/vendor/github.com/libvirt/libvirt-go/FAQ.md
blob: 0e731817a5fca3b35ce59d30c588737f46bdf904 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#libvirt-go

##FAQ - Frequently asked questions

If your question is a good one, please ask it as a well-formatted patch to this
repository, and we'll merge it along with the answer.

###Why does this fail when added to my project in travis?

This lib requires a newish version of the libvirt-dev library to compile. These
are only available in the newer travis environment. You can add:

```
sudo: true
dist: trusty
install: sudo apt-get install -y libvirt-dev
```

to your `.travis.yaml` file to avoid these errors.
d='n346' href='#n346'>346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
package toml

import (
	"fmt"
	"strings"
	"unicode"
	"unicode/utf8"
)

type itemType int

const (
	itemError itemType = iota
	itemNIL            // used in the parser to indicate no type
	itemEOF
	itemText
	itemString
	itemRawString
	itemMultilineString
	itemRawMultilineString
	itemBool
	itemInteger
	itemFloat
	itemDatetime
	itemArray // the start of an array
	itemArrayEnd
	itemTableStart
	itemTableEnd
	itemArrayTableStart
	itemArrayTableEnd
	itemKeyStart
	itemCommentStart
	itemInlineTableStart
	itemInlineTableEnd
)

const (
	eof              = 0
	comma            = ','
	tableStart       = '['
	tableEnd         = ']'
	arrayTableStart  = '['
	arrayTableEnd    = ']'
	tableSep         = '.'
	keySep           = '='
	arrayStart       = '['
	arrayEnd         = ']'
	commentStart     = '#'
	stringStart      = '"'
	stringEnd        = '"'
	rawStringStart   = '\''
	rawStringEnd     = '\''
	inlineTableStart = '{'
	inlineTableEnd   = '}'
)

type stateFn func(lx *lexer) stateFn

type lexer struct {
	input string
	start int
	pos   int
	line  int
	state stateFn
	items chan item

	// Allow for backing up up to three runes.
	// This is necessary because TOML contains 3-rune tokens (""" and ''').
	prevWidths [3]int
	nprev      int // how many of prevWidths are in use
	// If we emit an eof, we can still back up, but it is not OK to call
	// next again.
	atEOF bool

	// A stack of state functions used to maintain context.
	// The idea is to reuse parts of the state machine in various places.
	// For example, values can appear at the top level or within arbitrarily
	// nested arrays. The last state on the stack is used after a value has
	// been lexed. Similarly for comments.
	stack []stateFn
}

type item struct {
	typ  itemType
	val  string
	line int
}

func (lx *lexer) nextItem() item {
	for {
		select {
		case item := <-lx.items:
			return item
		default:
			lx.state = lx.state(lx)
		}
	}
}

func lex(input string) *lexer {
	lx := &lexer{
		input: input,
		state: lexTop,
		line:  1,
		items: make(chan item, 10),
		stack: make([]stateFn, 0, 10),
	}
	return lx
}

func (lx *lexer) push(state stateFn) {
	lx.stack = append(lx.stack, state)
}

func (lx *lexer) pop() stateFn {
	if len(lx.stack) == 0 {
		return lx.errorf("BUG in lexer: no states to pop")
	}
	last := lx.stack[len(lx.stack)-1]
	lx.stack = lx.stack[0 : len(lx.stack)-1]
	return last
}

func (lx *lexer) current() string {
	return lx.input[lx.start:lx.pos]
}

func (lx *lexer) emit(typ itemType) {
	lx.items <- item{typ, lx.current(), lx.line}
	lx.start = lx.pos
}

func (lx *lexer) emitTrim(typ itemType) {
	lx.items <- item{typ, strings.TrimSpace(lx.current()), lx.line}
	lx.start = lx.pos
}

func (lx *lexer) next() (r rune) {
	if lx.atEOF {
		panic("next called after EOF")
	}
	if lx.pos >= len(lx.input) {
		lx.atEOF = true
		return eof
	}

	if lx.input[lx.pos] == '\n' {
		lx.line++
	}
	lx.prevWidths[2] = lx.prevWidths[1]
	lx.prevWidths[1] = lx.prevWidths[0]
	if lx.nprev < 3 {
		lx.nprev++
	}
	r, w := utf8.DecodeRuneInString(lx.input[lx.pos:])
	lx.prevWidths[0] = w
	lx.pos += w
	return r
}

// ignore skips over the pending input before this point.
func (lx *lexer) ignore() {
	lx.start = lx.pos
}

// backup steps back one rune. Can be called only twice between calls to next.
func (lx *lexer) backup() {
	if lx.atEOF {
		lx.atEOF = false
		return
	}
	if lx.nprev < 1 {
		panic("backed up too far")
	}
	w := lx.prevWidths[0]
	lx.prevWidths[0] = lx.prevWidths[1]
	lx.prevWidths[1] = lx.prevWidths[2]
	lx.nprev--
	lx.pos -= w
	if lx.pos < len(lx.input) && lx.input[lx.pos] == '\n' {
		lx.line--
	}
}

// accept consumes the next rune if it's equal to `valid`.
func (lx *lexer) accept(valid rune) bool {
	if lx.next() == valid {
		return true
	}
	lx.backup()
	return false
}

// peek returns but does not consume the next rune in the input.
func (lx *lexer) peek() rune {
	r := lx.next()
	lx.backup()
	return r
}

// skip ignores all input that matches the given predicate.
func (lx *lexer) skip(pred func(rune) bool) {
	for {
		r := lx.next()
		if pred(r) {
			continue
		}
		lx.backup()
		lx.ignore()
		return
	}
}

// errorf stops all lexing by emitting an error and returning `nil`.
// Note that any value that is a character is escaped if it's a special
// character (newlines, tabs, etc.).
func (lx *lexer) errorf(format string, values ...interface{}) stateFn {
	lx.items <- item{
		itemError,
		fmt.Sprintf(format, values...),
		lx.line,
	}
	return nil
}

// lexTop consumes elements at the top level of TOML data.
func lexTop(lx *lexer) stateFn {
	r := lx.next()
	if isWhitespace(r) || isNL(r) {
		return lexSkip(lx, lexTop)
	}
	switch r {
	case commentStart:
		lx.push(lexTop)
		return lexCommentStart
	case tableStart:
		return lexTableStart
	case eof:
		if lx.pos > lx.start {
			return lx.errorf("unexpected EOF")
		}
		lx.emit(itemEOF)
		return nil
	}

	// At this point, the only valid item can be a key, so we back up
	// and let the key lexer do the rest.
	lx.backup()
	lx.push(lexTopEnd)
	return lexKeyStart
}

// lexTopEnd is entered whenever a top-level item has been consumed. (A value
// or a table.) It must see only whitespace, and will turn back to lexTop
// upon a newline. If it sees EOF, it will quit the lexer successfully.
func lexTopEnd(lx *lexer) stateFn {
	r := lx.next()
	switch {
	case r == commentStart:
		// a comment will read to a newline for us.
		lx.push(lexTop)
		return lexCommentStart
	case isWhitespace(r):
		return lexTopEnd
	case isNL(r):
		lx.ignore()
		return lexTop
	case r == eof:
		lx.emit(itemEOF)
		return nil
	}
	return lx.errorf("expected a top-level item to end with a newline, "+
		"comment, or EOF, but got %q instead", r)
}

// lexTable lexes the beginning of a table. Namely, it makes sure that
// it starts with a character other than '.' and ']'.
// It assumes that '[' has already been consumed.
// It also handles the case that this is an item in an array of tables.
// e.g., '[[name]]'.
func lexTableStart(lx *lexer) stateFn {
	if lx.peek() == arrayTableStart {
		lx.next()
		lx.emit(itemArrayTableStart)
		lx.push(lexArrayTableEnd)
	} else {
		lx.emit(itemTableStart)
		lx.push(lexTableEnd)
	}
	return lexTableNameStart
}

func lexTableEnd(lx *lexer) stateFn {
	lx.emit(itemTableEnd)
	return lexTopEnd
}

func lexArrayTableEnd(lx *lexer) stateFn {
	if r := lx.next(); r != arrayTableEnd {
		return lx.errorf("expected end of table array name delimiter %q, "+
			"but got %q instead", arrayTableEnd, r)
	}
	lx.emit(itemArrayTableEnd)
	return lexTopEnd
}

func lexTableNameStart(lx *lexer) stateFn {
	lx.skip(isWhitespace)
	switch r := lx.peek(); {
	case r == tableEnd || r == eof:
		return lx.errorf("unexpected end of table name " +
			"(table names cannot be empty)")
	case r == tableSep:
		return lx.errorf("unexpected table separator " +
			"(table names cannot be empty)")
	case r == stringStart || r == rawStringStart:
		lx.ignore()
		lx.push(lexTableNameEnd)
		return lexValue // reuse string lexing
	default:
		return lexBareTableName
	}
}

// lexBareTableName lexes the name of a table. It assumes that at least one
// valid character for the table has already been read.
func lexBareTableName(lx *lexer) stateFn {
	r := lx.next()
	if isBareKeyChar(r) {
		return lexBareTableName
	}
	lx.backup()
	lx.emit(itemText)
	return lexTableNameEnd
}

// lexTableNameEnd reads the end of a piece of a table name, optionally
// consuming whitespace.
func lexTableNameEnd(lx *lexer) stateFn {
	lx.skip(isWhitespace)
	switch r := lx.next(); {
	case isWhitespace(r):
		return lexTableNameEnd
	case r == tableSep:
		lx.ignore()
		return lexTableNameStart
	case r == tableEnd:
		return lx.pop()
	default:
		return lx.errorf("expected '.' or ']' to end table name, "+
			"but got %q instead", r)
	}
}

// lexKeyStart consumes a key name up until the first non-whitespace character.
// lexKeyStart will ignore whitespace.
func lexKeyStart(lx *lexer) stateFn {
	r := lx.peek()
	switch {
	case r == keySep:
		return lx.errorf("unexpected key separator %q", keySep)
	case isWhitespace(r) || isNL(r):
		lx.next()
		return lexSkip(lx, lexKeyStart)
	case r == stringStart || r == rawStringStart:
		lx.ignore()
		lx.emit(itemKeyStart)
		lx.push(lexKeyEnd)
		return lexValue // reuse string lexing
	default:
		lx.ignore()
		lx.emit(itemKeyStart)
		return lexBareKey
	}
}

// lexBareKey consumes the text of a bare key. Assumes that the first character
// (which is not whitespace) has not yet been consumed.
func lexBareKey(lx *lexer) stateFn {
	switch r := lx.next(); {
	case isBareKeyChar(r):
		return lexBareKey
	case isWhitespace(r):
		lx.backup()
		lx.emit(itemText)
		return lexKeyEnd
	case r == keySep:
		lx.backup()
		lx.emit(itemText)
		return lexKeyEnd
	default:
		return lx.errorf("bare keys cannot contain %q", r)
	}
}

// lexKeyEnd consumes the end of a key and trims whitespace (up to the key
// separator).
func lexKeyEnd(lx *lexer) stateFn {
	switch r := lx.next(); {
	case r == keySep:
		return lexSkip(lx, lexValue)
	case isWhitespace(r):
		return lexSkip(lx, lexKeyEnd)
	default:
		return lx.errorf("expected key separator %q, but got %q instead",
			keySep, r)
	}
}

// lexValue starts the consumption of a value anywhere a value is expected.
// lexValue will ignore whitespace.
// After a value is lexed, the last state on the next is popped and returned.
func lexValue(lx *lexer) stateFn {
	// We allow whitespace to precede a value, but NOT newlines.
	// In array syntax, the array states are responsible for ignoring newlines.
	r := lx.next()
	switch {
	case isWhitespace(r):
		return lexSkip(lx, lexValue)
	case isDigit(r):
		lx.backup() // avoid an extra state and use the same as above
		return lexNumberOrDateStart
	}
	switch r {
	case arrayStart:
		lx.ignore()
		lx.emit(itemArray)
		return lexArrayValue
	case inlineTableStart:
		lx.ignore()
		lx.emit(itemInlineTableStart)
		return lexInlineTableValue
	case stringStart:
		if lx.accept(stringStart) {
			if lx.accept(stringStart) {
				lx.ignore() // Ignore """
				return lexMultilineString
			}
			lx.backup()
		}
		lx.ignore() // ignore the '"'
		return lexString
	case rawStringStart:
		if lx.accept(rawStringStart) {
			if lx.accept(rawStringStart) {
				lx.ignore() // Ignore """
				return lexMultilineRawString
			}
			lx.backup()
		}
		lx.ignore() // ignore the "'"
		return lexRawString
	case '+', '-':
		return lexNumberStart
	case '.': // special error case, be kind to users
		return lx.errorf("floats must start with a digit, not '.'")
	}
	if unicode.IsLetter(r) {
		// Be permissive here; lexBool will give a nice error if the
		// user wrote something like
		//   x = foo
		// (i.e. not 'true' or 'false' but is something else word-like.)
		lx.backup()
		return lexBool
	}
	return lx.errorf("expected value but found %q instead", r)
}

// lexArrayValue consumes one value in an array. It assumes that '[' or ','
// have already been consumed. All whitespace and newlines are ignored.
func lexArrayValue(lx *lexer) stateFn {
	r := lx.next()
	switch {
	case isWhitespace(r) || isNL(r):
		return lexSkip(lx, lexArrayValue)
	case r == commentStart:
		lx.push(lexArrayValue)
		return lexCommentStart
	case r == comma:
		return lx.errorf("unexpected comma")
	case r == arrayEnd:
		// NOTE(caleb): The spec isn't clear about whether you can have
		// a trailing comma or not, so we'll allow it.
		return lexArrayEnd
	}

	lx.backup()
	lx.push(lexArrayValueEnd)
	return lexValue
}

// lexArrayValueEnd consumes everything between the end of an array value and
// the next value (or the end of the array): it ignores whitespace and newlines
// and expects either a ',' or a ']'.
func lexArrayValueEnd(lx *lexer) stateFn {
	r := lx.next()
	switch {
	case isWhitespace(r) || isNL(r):
		return lexSkip(lx, lexArrayValueEnd)
	case r == commentStart:
		lx.push(lexArrayValueEnd)
		return lexCommentStart
	case r == comma:
		lx.ignore()
		return lexArrayValue // move on to the next value
	case r == arrayEnd:
		return lexArrayEnd
	}
	return lx.errorf(
		"expected a comma or array terminator %q, but got %q instead",
		arrayEnd, r,
	)
}

// lexArrayEnd finishes the lexing of an array.
// It assumes that a ']' has just been consumed.
func lexArrayEnd(lx *lexer) stateFn {
	lx.ignore()
	lx.emit(itemArrayEnd)
	return lx.pop()
}

// lexInlineTableValue consumes one key/value pair in an inline table.
// It assumes that '{' or ',' have already been consumed. Whitespace is ignored.
func lexInlineTableValue(lx *lexer) stateFn {
	r := lx.next()
	switch {
	case isWhitespace(r):
		return lexSkip(lx, lexInlineTableValue)
	case isNL(r):
		return lx.errorf("newlines not allowed within inline tables")
	case r == commentStart:
		lx.push(lexInlineTableValue)
		return lexCommentStart
	case r == comma:
		return lx.errorf("unexpected comma")
	case r == inlineTableEnd:
		return lexInlineTableEnd
	}
	lx.backup()
	lx.push(lexInlineTableValueEnd)
	return lexKeyStart
}

// lexInlineTableValueEnd consumes everything between the end of an inline table
// key/value pair and the next pair (or the end of the table):
// it ignores whitespace and expects either a ',' or a '}'.
func lexInlineTableValueEnd(lx *lexer) stateFn {
	r := lx.next()
	switch {
	case isWhitespace(r):
		return lexSkip(lx, lexInlineTableValueEnd)
	case isNL(r):
		return lx.errorf("newlines not allowed within inline tables")
	case r == commentStart:
		lx.push(lexInlineTableValueEnd)
		return lexCommentStart
	case r == comma:
		lx.ignore()
		return lexInlineTableValue
	case r == inlineTableEnd:
		return lexInlineTableEnd
	}
	return lx.errorf("expected a comma or an inline table terminator %q, "+
		"but got %q instead", inlineTableEnd, r)
}

// lexInlineTableEnd finishes the lexing of an inline table.
// It assumes that a '}' has just been consumed.
func lexInlineTableEnd(lx *lexer) stateFn {
	lx.ignore()
	lx.emit(itemInlineTableEnd)
	return lx.pop()
}

// lexString consumes the inner contents of a string. It assumes that the
// beginning '"' has already been consumed and ignored.
func lexString(lx *lexer) stateFn {
	r := lx.next()
	switch {
	case r == eof:
		return lx.errorf("unexpected EOF")
	case isNL(r):
		return lx.errorf("strings cannot contain newlines")
	case r == '\\':
		lx.push(lexString)
		return lexStringEscape
	case r == stringEnd:
		lx.backup()
		lx.emit(itemString)
		lx.next()
		lx.ignore()
		return lx.pop()
	}
	return lexString
}

// lexMultilineString consumes the inner contents of a string. It assumes that
// the beginning '"""' has already been consumed and ignored.
func lexMultilineString(lx *lexer) stateFn {
	switch lx.next() {
	case eof:
		return lx.errorf("unexpected EOF")
	case '\\':
		return lexMultilineStringEscape
	case stringEnd:
		if lx.accept(stringEnd) {
			if lx.accept(stringEnd) {
				lx.backup()
				lx.backup()
				lx.backup()
				lx.emit(itemMultilineString)
				lx.next()
				lx.next()
				lx.next()
				lx.ignore()
				return lx.pop()
			}
			lx.backup()
		}
	}
	return lexMultilineString
}

// lexRawString consumes a raw string. Nothing can be escaped in such a string.
// It assumes that the beginning "'" has already been consumed and ignored.
func lexRawString(lx *lexer) stateFn {
	r := lx.next()
	switch {
	case r == eof:
		return lx.errorf("unexpected EOF")
	case isNL(r):
		return lx.errorf("strings cannot contain newlines")
	case r == rawStringEnd:
		lx.backup()
		lx.emit(itemRawString)
		lx.next()
		lx.ignore()
		return lx.pop()
	}
	return lexRawString
}

// lexMultilineRawString consumes a raw string. Nothing can be escaped in such
// a string. It assumes that the beginning "'''" has already been consumed and
// ignored.
func lexMultilineRawString(lx *lexer) stateFn {
	switch lx.next() {
	case eof:
		return lx.errorf("unexpected EOF")
	case rawStringEnd:
		if lx.accept(rawStringEnd) {
			if lx.accept(rawStringEnd) {
				lx.backup()
				lx.backup()
				lx.backup()
				lx.emit(itemRawMultilineString)
				lx.next()
				lx.next()
				lx.next()
				lx.ignore()
				return lx.pop()
			}
			lx.backup()
		}
	}
	return lexMultilineRawString
}

// lexMultilineStringEscape consumes an escaped character. It assumes that the
// preceding '\\' has already been consumed.
func lexMultilineStringEscape(lx *lexer) stateFn {
	// Handle the special case first:
	if isNL(lx.next()) {
		return lexMultilineString
	}
	lx.backup()
	lx.push(lexMultilineString)
	return lexStringEscape(lx)
}

func lexStringEscape(lx *lexer) stateFn {
	r := lx.next()
	switch r {
	case 'b':
		fallthrough
	case 't':
		fallthrough
	case 'n':
		fallthrough
	case 'f':
		fallthrough
	case 'r':
		fallthrough
	case '"':
		fallthrough
	case '\\':
		return lx.pop()
	case 'u':
		return lexShortUnicodeEscape
	case 'U':
		return lexLongUnicodeEscape
	}
	return lx.errorf("invalid escape character %q; only the following "+
		"escape characters are allowed: "+
		`\b, \t, \n, \f, \r, \", \\, \uXXXX, and \UXXXXXXXX`, r)
}

func lexShortUnicodeEscape(lx *lexer) stateFn {
	var r rune
	for i := 0; i < 4; i++ {
		r = lx.next()
		if !isHexadecimal(r) {
			return lx.errorf(`expected four hexadecimal digits after '\u', `+
				"but got %q instead", lx.current())
		}
	}
	return lx.pop()
}

func lexLongUnicodeEscape(lx *lexer) stateFn {
	var r rune
	for i := 0; i < 8; i++ {
		r = lx.next()
		if !isHexadecimal(r) {
			return lx.errorf(`expected eight hexadecimal digits after '\U', `+
				"but got %q instead", lx.current())
		}
	}
	return lx.pop()
}

// lexNumberOrDateStart consumes either an integer, a float, or datetime.
func lexNumberOrDateStart(lx *lexer) stateFn {
	r := lx.next()
	if isDigit(r) {
		return lexNumberOrDate
	}
	switch r {
	case '_':
		return lexNumber
	case 'e', 'E':
		return lexFloat
	case '.':
		return lx.errorf("floats must start with a digit, not '.'")
	}
	return lx.errorf("expected a digit but got %q", r)
}

// lexNumberOrDate consumes either an integer, float or datetime.
func lexNumberOrDate(lx *lexer) stateFn {
	r := lx.next()
	if isDigit(r) {
		return lexNumberOrDate
	}
	switch r {
	case '-':
		return lexDatetime
	case '_':
		return lexNumber
	case '.', 'e', 'E':
		return lexFloat
	}

	lx.backup()
	lx.emit(itemInteger)
	return lx.pop()
}

// lexDatetime consumes a Datetime, to a first approximation.
// The parser validates that it matches one of the accepted formats.
func lexDatetime(lx *lexer) stateFn {
	r := lx.next()
	if isDigit(r) {
		return lexDatetime
	}
	switch r {
	case '-', 'T', ':', '.', 'Z':
		return lexDatetime
	}

	lx.backup()
	lx.emit(itemDatetime)
	return lx.pop()
}

// lexNumberStart consumes either an integer or a float. It assumes that a sign
// has already been read, but that *no* digits have been consumed.
// lexNumberStart will move to the appropriate integer or float states.
func lexNumberStart(lx *lexer) stateFn {
	// We MUST see a digit. Even floats have to start with a digit.
	r := lx.next()
	if !isDigit(r) {
		if r == '.' {
			return lx.errorf("floats must start with a digit, not '.'")
		}
		return lx.errorf("expected a digit but got %q", r)
	}
	return lexNumber
}

// lexNumber consumes an integer or a float after seeing the first digit.
func lexNumber(lx *lexer) stateFn {
	r := lx.next()
	if isDigit(r) {
		return lexNumber
	}
	switch r {
	case '_':
		return lexNumber
	case '.', 'e', 'E':
		return lexFloat
	}

	lx.backup()
	lx.emit(itemInteger)
	return lx.pop()
}

// lexFloat consumes the elements of a float. It allows any sequence of
// float-like characters, so floats emitted by the lexer are only a first
// approximation and must be validated by the parser.
func lexFloat(lx *lexer) stateFn {
	r := lx.next()
	if isDigit(r) {
		return lexFloat
	}
	switch r {
	case '_', '.', '-', '+', 'e', 'E':
		return lexFloat
	}

	lx.backup()
	lx.emit(itemFloat)
	return lx.pop()
}

// lexBool consumes a bool string: 'true' or 'false.
func lexBool(lx *lexer) stateFn {
	var rs []rune
	for {
		r := lx.next()
		if !unicode.IsLetter(r) {
			lx.backup()
			break
		}
		rs = append(rs, r)
	}
	s := string(rs)
	switch s {
	case "true", "false":
		lx.emit(itemBool)
		return lx.pop()
	}
	return lx.errorf("expected value but found %q instead", s)
}

// lexCommentStart begins the lexing of a comment. It will emit
// itemCommentStart and consume no characters, passing control to lexComment.
func lexCommentStart(lx *lexer) stateFn {
	lx.ignore()
	lx.emit(itemCommentStart)
	return lexComment
}

// lexComment lexes an entire comment. It assumes that '#' has been consumed.
// It will consume *up to* the first newline character, and pass control
// back to the last state on the stack.
func lexComment(lx *lexer) stateFn {
	r := lx.peek()
	if isNL(r) || r == eof {
		lx.emit(itemText)
		return lx.pop()
	}
	lx.next()
	return lexComment
}

// lexSkip ignores all slurped input and moves on to the next state.
func lexSkip(lx *lexer, nextState stateFn) stateFn {
	return func(lx *lexer) stateFn {
		lx.ignore()
		return nextState
	}
}

// isWhitespace returns true if `r` is a whitespace character according
// to the spec.
func isWhitespace(r rune) bool {
	return r == '\t' || r == ' '
}

func isNL(r rune) bool {
	return r == '\n' || r == '\r'
}

func isDigit(r rune) bool {
	return r >= '0' && r <= '9'
}

func isHexadecimal(r rune) bool {
	return (r >= '0' && r <= '9') ||
		(r >= 'a' && r <= 'f') ||
		(r >= 'A' && r <= 'F')
}

func isBareKeyChar(r rune) bool {
	return (r >= 'A' && r <= 'Z') ||
		(r >= 'a' && r <= 'z') ||
		(r >= '0' && r <= '9') ||
		r == '_' ||
		r == '-'
}

func (itype itemType) String() string {
	switch itype {
	case itemError:
		return "Error"
	case itemNIL:
		return "NIL"
	case itemEOF:
		return "EOF"
	case itemText:
		return "Text"
	case itemString, itemRawString, itemMultilineString, itemRawMultilineString:
		return "String"
	case itemBool:
		return "Bool"
	case itemInteger:
		return "Integer"
	case itemFloat:
		return "Float"
	case itemDatetime:
		return "DateTime"
	case itemTableStart:
		return "TableStart"
	case itemTableEnd:
		return "TableEnd"
	case itemKeyStart:
		return "KeyStart"
	case itemArray:
		return "Array"
	case itemArrayEnd:
		return "ArrayEnd"
	case itemCommentStart:
		return "CommentStart"
	}
	panic(fmt.Sprintf("BUG: Unknown type '%d'.", int(itype)))
}

func (item item) String() string {
	return fmt.Sprintf("(%s, %s)", item.typ.String(), item.val)
}