summaryrefslogtreecommitdiffstats
path: root/config/deploy/os-ocl-nofeature-ha.yaml
blob: 4ad1ee2b2767534bdf5cba3491fde05171f54b24 (plain)
1
2
3
4
5
6
7
8
9
10
global_params:
  ha_enabled: true

deploy_options:
  sdn_controller: opencontrail
  sdn_l3: false
  tacker: true
  congress: true
  sfc: false
  vpn: false
9' href='#n349'>349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
/*
// Copyright (c) 2010-2017 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/

#include <string.h>
#include <rte_table_hash.h>
#include <rte_version.h>
#include <rte_malloc.h>
#if RTE_VERSION >= RTE_VERSION_NUM(18,5,0,0)
#include <rte_eal_memconfig.h>
#endif

#include "prox_malloc.h"
#include "display.h"
#include "commands.h"
#include "log.h"
#include "run.h"
#include "lconf.h"
#include "hash_utils.h"
#include "prox_cfg.h"
#include "prox_port_cfg.h"
#include "defines.h"
#include "handle_qos.h"
#include "handle_qinq_encap4.h"
#include "quit.h"
#include "input.h"
#include "rw_reg.h"
#include "cqm.h"
#include "stats_core.h"

void start_core_all(int task_id)
{
	uint32_t cores[RTE_MAX_LCORE];
	uint32_t lcore_id;
	char tmp[256];
	int cnt = 0;

	prox_core_to_str(tmp, sizeof(tmp), 0);
	plog_info("Starting cores: %s\n", tmp);

	lcore_id = -1;
	while (prox_core_next(&lcore_id, 0) == 0) {
		cores[cnt++] = lcore_id;
	}
	start_cores(cores, cnt, task_id);
}

void stop_core_all(int task_id)
{
	uint32_t cores[RTE_MAX_LCORE];
	uint32_t lcore_id;
	char tmp[256];
	int cnt = 0;

	prox_core_to_str(tmp, sizeof(tmp), 0);
	plog_info("Stopping cores: %s\n", tmp);

	lcore_id = -1;
	while (prox_core_next(&lcore_id, 0) == 0) {
		cores[cnt++] = lcore_id;
	}

	stop_cores(cores, cnt, task_id);
}

static void warn_inactive_cores(uint32_t *cores, int count, const char *prefix)
{
	for (int i = 0; i < count; ++i) {
		if (!prox_core_active(cores[i], 0)) {
			plog_warn("%s %u: core is not active\n", prefix, cores[i]);
		}
	}
}

static inline int wait_command_handled(struct lcore_cfg *lconf)
{
	uint64_t t1 = rte_rdtsc(), t2;
	int max_time = 5;

	if (lconf->msg.type == LCONF_MSG_STOP)
		max_time = 30;

	while (lconf_is_req(lconf)) {
		t2 = rte_rdtsc();
		if (t2 - t1 > max_time * rte_get_tsc_hz()) {
			// Failed to handle command ...
			for (uint8_t task_id = 0; task_id < lconf->n_tasks_all; ++task_id) {
				struct task_args *targs = &lconf->targs[task_id];
				if (!(targs->flags & TASK_ARG_DROP)) {
					plogx_err("Failed to handle command - task is in NO_DROP and might be stuck...\n");
					return - 1;
				}
			}
			plogx_err("Failed to handle command\n");
			return -1;
		}
	}
	return 0;
}

static inline void start_l3(struct task_args *targ)
{
	if (!task_is_master(targ)) {
		if ((targ->nb_txrings != 0) || (targ->nb_txports != 0)) {
			if (targ->flags & TASK_ARG_L3)
				task_start_l3(targ->tbase, targ);
		}
	}
}

void start_cores(uint32_t *cores, int count, int task_id)
{
	int n_started_cores = 0;
	uint32_t started_cores[RTE_MAX_LCORE];
	struct task_args *targ;

	warn_inactive_cores(cores, count, "Can't start core");

	for (int i = 0; i < count; ++i) {
		struct lcore_cfg *lconf = &lcore_cfg[cores[i]];

		if (lconf->n_tasks_run != lconf->n_tasks_all) {
			if (task_id == -1) {
				for (uint8_t tid = 0; tid < lconf->n_tasks_all; ++tid) {
					targ = &lconf->targs[tid];
					start_l3(targ);
				}
			} else {
				targ = &lconf->targs[task_id];
				start_l3(targ);
			}
			lconf->msg.type = LCONF_MSG_START;
			lconf->msg.task_id = task_id;
			lconf_set_req(lconf);
			if (task_id == -1)
				plog_info("Starting core %u (all tasks)\n", cores[i]);
			else
				plog_info("Starting core %u task %u\n", cores[i], task_id);
			started_cores[n_started_cores++] = cores[i];
			lconf->flags |= LCONF_FLAG_RUNNING;
			rte_eal_remote_launch(lconf_run, NULL, cores[i]);
		}
		else {
			plog_warn("Core %u is already running all its tasks\n", cores[i]);
		}
	}

	/* This function is blocking, so detect when each core has
	   consumed the message. */
	for (int i = 0; i < n_started_cores; ++i) {
		struct lcore_cfg *lconf = &lcore_cfg[started_cores[i]];
		plog_info("Waiting for core %u to start...", started_cores[i]);
		if (wait_command_handled(lconf) == -1) return;
		plog_info(" OK\n");
	}
}

void stop_cores(uint32_t *cores, int count, int task_id)
{
	int n_stopped_cores = 0;
	uint32_t stopped_cores[RTE_MAX_LCORE];
	uint32_t c;

	warn_inactive_cores(cores, count, "Can't stop core");

	for (int i = 0; i < count; ++i) {
		struct lcore_cfg *lconf = &lcore_cfg[cores[i]];
		if (lconf->n_tasks_run) {
			if (wait_command_handled(lconf) == -1) return;

			lconf->msg.type = LCONF_MSG_STOP;
			lconf->msg.task_id = task_id;
			lconf_set_req(lconf);
			stopped_cores[n_stopped_cores++] = cores[i];
		}
	}

	for (int i = 0; i < n_stopped_cores; ++i) {
		c = stopped_cores[i];
		struct lcore_cfg *lconf = &lcore_cfg[c];
		if (wait_command_handled(lconf) == -1) return;

		if (lconf->n_tasks_run == 0) {
			plog_info("All tasks stopped on core %u, waiting for core to stop...", c);
			rte_eal_wait_lcore(c);
			plog_info(" OK\n");
			lconf->flags &= ~LCONF_FLAG_RUNNING;
		}
		else {
			plog_info("Stopped task %u on core %u\n", task_id, c);
		}
	}
}

struct size_unit {
	uint64_t val;
	uint64_t frac;
	char     unit[8];
};

static struct size_unit to_size_unit(uint64_t bytes)
{
	struct size_unit ret;

	if (bytes > 1 << 30) {
		ret.val = bytes >> 30;
		ret.frac = ((bytes - (ret.val << 30)) * 1000) / (1 << 30);
		strcpy(ret.unit, "GB");
	}
	else if (bytes > 1 << 20) {
		ret.val = bytes >> 20;
		ret.frac = ((bytes - (ret.val << 20)) * 1000) / (1 << 20);
		strcpy(ret.unit, "MB");
	}
	else if (bytes > 1 << 10) {
		ret.val = bytes >> 10;
		ret.frac = (bytes - (ret.val << 10)) * 1000 / (1 << 10);
		strcpy(ret.unit, "KB");
	}
	else {
		ret.val = bytes;
		ret.frac = 0;
		strcpy(ret.unit, "B");
	}

	return ret;
}

void cmd_mem_stats(void)
{
	struct rte_malloc_socket_stats sock_stats;
	uint64_t v;
	struct size_unit su;

	for (uint32_t i = 0; i < RTE_MAX_NUMA_NODES; ++i) {
		if (rte_malloc_get_socket_stats(i, &sock_stats) < 0 || sock_stats.heap_totalsz_bytes == 0)
			continue;

		plogx_info("Socket %u memory stats:\n", i);
		su = to_size_unit(sock_stats.heap_totalsz_bytes);
		plogx_info("\tHeap_size: %zu.%03zu %s\n", su.val, su.frac, su.unit);
		su = to_size_unit(sock_stats.heap_freesz_bytes);
		plogx_info("\tFree_size: %zu.%03zu %s\n", su.val, su.frac, su.unit);
		su = to_size_unit(sock_stats.heap_allocsz_bytes);
		plogx_info("\tAlloc_size: %zu.%03zu %s\n", su.val, su.frac, su.unit);
		su = to_size_unit(sock_stats.greatest_free_size);
		plogx_info("\tGreatest_free_size: %zu %s\n", su.val, su.unit);
		plogx_info("\tAlloc_count: %u\n", sock_stats.alloc_count);
		plogx_info("\tFree_count: %u\n", sock_stats.free_count);
	}
}

static void get_hp_sz_string(char *sz_str, uint64_t hp_sz)
{
	switch (hp_sz >> 20) {
	case 0:
		strcpy(sz_str, " 0 ");
		break;
	case 2:
		strcpy(sz_str, "2MB");
		break;
	case 1024:
		strcpy(sz_str, "1GB");
		break;
	default:
		strcpy(sz_str, "??");
	}
}

#if RTE_VERSION >= RTE_VERSION_NUM(18,5,0,0)
// Print all segments, 1 by 1
// Unused for now, keep for reference
static int print_all_segments(const struct rte_memseg_list *memseg_list, const struct rte_memseg *memseg, void *arg)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	int memseg_list_idx, memseg_idx;
	int n = (*(int *)arg)++;

	memseg_list_idx = memseg_list - mcfg->memsegs;
	if ((memseg_list_idx < 0) || (memseg_list_idx >= RTE_MAX_MEMSEG_LISTS)) {
		plog_err("Invalid memseg_list_idx = %d; memseg_list = %p, mcfg->memsegs = %p\n", memseg_list_idx, memseg_list, mcfg->memsegs);
		return -1;
	}
	memseg_idx = rte_fbarray_find_idx(&memseg_list->memseg_arr, memseg);
	if (memseg_idx < 0) {
		plog_err("Invalid memseg_idx = %d; memseg_list = %p, memseg = %p\n", memseg_idx, memseg_list, memseg);
		return -1;
	}

	char sz_str[5];
	get_hp_sz_string(sz_str, memseg->hugepage_sz);
	plog_info("Segment %u (sock %d): [%i-%i] [%#lx-%#lx] at %p using %zu pages of %s\n",
		n,
		memseg->socket_id,
		memseg_list_idx,
		memseg_idx,
		memseg->iova,
		memseg->iova+memseg->len,
		memseg->addr,
		memseg->len/memseg->hugepage_sz, sz_str);

        return 0;
}

// Print memory segments
// Contiguous segments are shown as 1 big segment
static int print_segments(const struct rte_memseg_list *memseg_list, const struct rte_memseg *memseg, size_t len, void *arg)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	int memseg_list_idx, memseg_idx;
	static int n = 0;

	memseg_list_idx = memseg_list - mcfg->memsegs;
	if ((memseg_list_idx < 0) || (memseg_list_idx >= RTE_MAX_MEMSEG_LISTS)) {
		plog_err("Invalid memseg_list_idx = %d; memseg_list = %p, mcfg->memsegs = %p\n", memseg_list_idx, memseg_list, mcfg->memsegs);
		return -1;
	}
	memseg_idx = rte_fbarray_find_idx(&memseg_list->memseg_arr, memseg);
	if (memseg_idx < 0) {
		plog_err("Invalid memseg_idx = %d; memseg_list = %p, memseg = %p\n", memseg_idx, memseg_list, memseg);
		return -1;
	}

	char sz_str[5];
	get_hp_sz_string(sz_str, memseg->hugepage_sz);
	plog_info("Segment %u (sock %d): [%i-%i] [%#lx-%#lx] at %p using %zu pages of %s\n",
		n++,
		memseg->socket_id,
		memseg_list_idx,
		memseg_idx,
		memseg->iova,
		memseg->iova+len,
		memseg->addr,
		memseg->hugepage_sz?len/memseg->hugepage_sz:0, sz_str);

        return 0;
}

#endif
void cmd_mem_layout(void)
{
#if RTE_VERSION < RTE_VERSION_NUM(18,5,0,0)
	const struct rte_memseg* memseg = rte_eal_get_physmem_layout();

	plog_info("Memory layout:\n");
	for (uint32_t i = 0; i < RTE_MAX_MEMSEG; i++) {
		if (memseg[i].addr == NULL)
			break;

		char sz_str[5];
		get_hp_sz_string(sz_str, memseg[i].hugepage_sz);

		plog_info("Segment %u: [%#lx-%#lx] at %p using %zu pages of %s\n",
			  i,
			  memseg[i].phys_addr,
			  memseg[i].phys_addr + memseg[i].len,
			  memseg[i].addr,
			  memseg[i].len/memseg[i].hugepage_sz, sz_str);
	}
#else
	int segment_number = 0;
	//rte_memseg_walk(print_all_segments, &segment_number);
	rte_memseg_contig_walk(print_segments, &segment_number);
#endif
}

void cmd_dump(uint8_t lcore_id, uint8_t task_id, uint32_t nb_packets, struct input *input, int rx, int tx)
{
	plog_info("dump %u %u %u\n", lcore_id, task_id, nb_packets);
	if (lcore_id > RTE_MAX_LCORE) {
		plog_warn("core_id too high, maximum allowed is: %u\n", RTE_MAX_LCORE);
	}
	else if (task_id >= lcore_cfg[lcore_id].n_tasks_all) {
		plog_warn("task_id too high, should be in [0, %u]\n", lcore_cfg[lcore_id].n_tasks_all - 1);
	}
	else {
		struct lcore_cfg *lconf = &lcore_cfg[lcore_id];

		lconf->tasks_all[task_id]->aux->task_rt_dump.input = input;

		if (wait_command_handled(lconf) == -1) return;
		if (rx && tx)
			lconf->msg.type = LCONF_MSG_DUMP;
		else if (rx)
			lconf->msg.type = LCONF_MSG_DUMP_RX;
		else if (tx)
			lconf->msg.type = LCONF_MSG_DUMP_TX;

		if (rx || tx) {
			lconf->msg.task_id = task_id;
			lconf->msg.val  = nb_packets;
			lconf_set_req(lconf);
		}

		if (lconf->n_tasks_run == 0) {
			lconf_do_flags(lconf);
		}
	}
}

void cmd_trace(uint8_t lcore_id, uint8_t task_id, uint32_t nb_packets)
{
	plog_info("trace %u %u %u\n", lcore_id, task_id, nb_packets);
	if (lcore_id > RTE_MAX_LCORE) {
		plog_warn("core_id too high, maximum allowed is: %u\n", RTE_MAX_LCORE);
	}
	else if (task_id >= lcore_cfg[lcore_id].n_tasks_all) {
		plog_warn("task_id too high, should be in [0, %u]\n", lcore_cfg[lcore_id].n_tasks_all - 1);
	}
	else {
		struct lcore_cfg *lconf = &lcore_cfg[lcore_id];

		if (wait_command_handled(lconf) == -1) return;

		lconf->msg.type = LCONF_MSG_TRACE;
		lconf->msg.task_id = task_id;
		lconf->msg.val  = nb_packets;
		lconf_set_req(lconf);

		if (lconf->n_tasks_run == 0) {
			lconf_do_flags(lconf);
		}
	}
}

void cmd_rx_bw_start(uint32_t lcore_id)
{
	if (lcore_id > RTE_MAX_LCORE) {
		plog_warn("core_id too high, maximum allowed is: %u\n", RTE_MAX_LCORE);
	} else if (lcore_cfg[lcore_id].flags & LCONF_FLAG_RX_BW_ACTIVE) {
		plog_warn("rx bandwidt already on core %u\n", lcore_id);
	} else {

		struct lcore_cfg *lconf = &lcore_cfg[lcore_id];

		if (wait_command_handled(lconf) == -1) return;
		lconf->msg.type = LCONF_MSG_RX_BW_START;
		lconf_set_req(lconf);

		if (lconf->n_tasks_run == 0) {
			lconf_do_flags(lconf);
		}
	}
}

void cmd_tx_bw_start(uint32_t lcore_id)
{
	if (lcore_id > RTE_MAX_LCORE) {
		plog_warn("core_id too high, maximum allowed is: %u\n", RTE_MAX_LCORE);
	} else if (lcore_cfg[lcore_id].flags & LCONF_FLAG_TX_BW_ACTIVE) {
		plog_warn("tx bandwidth already running on core %u\n", lcore_id);
	} else {

		struct lcore_cfg *lconf = &lcore_cfg[lcore_id];

		if (wait_command_handled(lconf) == -1) return;
		lconf->msg.type = LCONF_MSG_TX_BW_START;
		lconf_set_req(lconf);

		if (lconf->n_tasks_run == 0) {
			lconf_do_flags(lconf);
		}
	}
}

void cmd_rx_bw_stop(uint32_t lcore_id)
{
	if (lcore_id > RTE_MAX_LCORE) {
		plog_warn("core_id too high, maximum allowed is: %u\n", RTE_MAX_LCORE);
	} else if (!(lcore_cfg[lcore_id].flags & LCONF_FLAG_RX_BW_ACTIVE)) {
		plog_warn("rx bandwidth not running on core %u\n", lcore_id);
	} else {

		struct lcore_cfg *lconf = &lcore_cfg[lcore_id];

		if (wait_command_handled(lconf) == -1) return;
		lconf->msg.type = LCONF_MSG_RX_BW_STOP;
		lconf_set_req(lconf);

		if (lconf->n_tasks_run == 0) {
			lconf_do_flags(lconf);
		}
	}
}

void cmd_tx_bw_stop(uint32_t lcore_id)
{
	if (lcore_id > RTE_MAX_LCORE) {
		plog_warn("core_id too high, maximum allowed is: %u\n", RTE_MAX_LCORE);
	} else if (!(lcore_cfg[lcore_id].flags & LCONF_FLAG_TX_BW_ACTIVE)) {
		plog_warn("tx bandwidth not running on core %u\n", lcore_id);
	} else {

		struct lcore_cfg *lconf = &lcore_cfg[lcore_id];

		if (wait_command_handled(lconf) == -1) return;
		lconf->msg.type = LCONF_MSG_TX_BW_STOP;
		lconf_set_req(lconf);

		if (lconf->n_tasks_run == 0) {
			lconf_do_flags(lconf);
		}
	}
}
void cmd_rx_distr_start(uint32_t lcore_id)
{
	if (lcore_id > RTE_MAX_LCORE) {
		plog_warn("core_id too high, maximum allowed is: %u\n", RTE_MAX_LCORE);
	} else if (lcore_cfg[lcore_id].flags & LCONF_FLAG_RX_DISTR_ACTIVE) {
		plog_warn("rx distribution already xrunning on core %u\n", lcore_id);
	} else {
		struct lcore_cfg *lconf = &lcore_cfg[lcore_id];

		if (wait_command_handled(lconf) == -1) return;
		lconf->msg.type = LCONF_MSG_RX_DISTR_START;
		lconf_set_req(lconf);

		if (lconf->n_tasks_run == 0) {
			lconf_do_flags(lconf);
		}
	}
}

void cmd_tx_distr_start(uint32_t lcore_id)
{
	if (lcore_id > RTE_MAX_LCORE) {
		plog_warn("core_id too high, maximum allowed is: %u\n", RTE_MAX_LCORE);
	} else if (lcore_cfg[lcore_id].flags & LCONF_FLAG_TX_DISTR_ACTIVE) {
		plog_warn("tx distribution already xrunning on core %u\n", lcore_id);
	} else {
		struct lcore_cfg *lconf = &lcore_cfg[lcore_id];

		if (wait_command_handled(lconf) == -1) return;
		lconf->msg.type = LCONF_MSG_TX_DISTR_START;
		lconf_set_req(lconf);

		if (lconf->n_tasks_run == 0) {
			lconf_do_flags(lconf);
		}
	}
}

void cmd_rx_distr_stop(uint32_t lcore_id)
{
	if (lcore_id > RTE_MAX_LCORE) {
		plog_warn("core_id too high, maximum allowed is: %u\n", RTE_MAX_LCORE);
	} else if ((lcore_cfg[lcore_id].flags & LCONF_FLAG_RX_DISTR_ACTIVE) == 0) {
		plog_warn("rx distribution not running on core %u\n", lcore_id);
	} else {
		struct lcore_cfg *lconf = &lcore_cfg[lcore_id];

		if (wait_command_handled(lconf) == -1) return;
		lconf->msg.type = LCONF_MSG_RX_DISTR_STOP;
		lconf_set_req(lconf);

		if (lconf->n_tasks_run == 0) {
			lconf_do_flags(lconf);
		}
	}
}

void cmd_tx_distr_stop(uint32_t lcore_id)
{
	if (lcore_id > RTE_MAX_LCORE) {
		plog_warn("core_id too high, maximum allowed is: %u\n", RTE_MAX_LCORE);
	} else if ((lcore_cfg[lcore_id].flags & LCONF_FLAG_TX_DISTR_ACTIVE) == 0) {
		plog_warn("tx distribution not running on core %u\n", lcore_id);
	} else {
		struct lcore_cfg *lconf = &lcore_cfg[lcore_id];

		if (wait_command_handled(lconf) == -1) return;
		lconf->msg.type = LCONF_MSG_TX_DISTR_STOP;
		lconf_set_req(lconf);

		if (lconf->n_tasks_run == 0) {
			lconf_do_flags(lconf);
		}
	}
}

void cmd_rx_distr_rst(uint32_t lcore_id)
{
	if (lcore_id > RTE_MAX_LCORE) {
		plog_warn("core_id too high, maximum allowed is: %u\n", RTE_MAX_LCORE);
	} else {
		struct lcore_cfg *lconf = &lcore_cfg[lcore_id];

		if (wait_command_handled(lconf) == -1) return;
		lconf->msg.type = LCONF_MSG_RX_DISTR_RESET;
		lconf_set_req(lconf);

		if (lconf->n_tasks_run == 0) {
			lconf_do_flags(lconf);
		}
	}
}

void cmd_tx_distr_rst(uint32_t lcore_id)
{
	if (lcore_id > RTE_MAX_LCORE) {
		plog_warn("core_id too high, maximum allowed is: %u\n", RTE_MAX_LCORE);
	} else {
		struct lcore_cfg *lconf = &lcore_cfg[lcore_id];

		if (wait_command_handled(lconf) == -1) return;
		lconf->msg.type = LCONF_MSG_TX_DISTR_RESET;
		lconf_set_req(lconf);

		if (lconf->n_tasks_run == 0) {
			lconf_do_flags(lconf);
		}
	}
}

void cmd_rx_distr_show(uint32_t lcore_id)
{
	if (lcore_id > RTE_MAX_LCORE) {
		plog_warn("core_id too high, maximum allowed is: %u\n", RTE_MAX_LCORE);
	} else {
		for (uint32_t i = 0; i < lcore_cfg[lcore_id].n_tasks_all; ++i) {
			struct task_base *t = lcore_cfg[lcore_id].tasks_all[i];
			plog_info("t[%u]: ", i);
			for (uint32_t j = 0; j < sizeof(t->aux->rx_bucket)/sizeof(t->aux->rx_bucket[0]); ++j) {
				plog_info("%u ", t->aux->rx_bucket[j]);
			}
			plog_info("\n");
		}
	}
}
void cmd_tx_distr_show(uint32_t lcore_id)
{
	if (lcore_id > RTE_MAX_LCORE) {
		plog_warn("core_id too high, maximum allowed is: %u\n", RTE_MAX_LCORE);
	} else {
		for (uint32_t i = 0; i < lcore_cfg[lcore_id].n_tasks_all; ++i) {
			struct task_base *t = lcore_cfg[lcore_id].tasks_all[i];
			uint64_t tot = 0, avg = 0;
			for (uint32_t j = 0; j < sizeof(t->aux->tx_bucket)/sizeof(t->aux->tx_bucket[0]); ++j) {
				tot += t->aux->tx_bucket[j];
				avg += j * t->aux->tx_bucket[j];
			}
			if (tot) {
				avg = avg / tot;
			}
			plog_info("t[%u]: %lu: ", i, avg);
			for (uint32_t j = 0; j < sizeof(t->aux->tx_bucket)/sizeof(t->aux->tx_bucket[0]); ++j) {
				plog_info("%u ", t->aux->tx_bucket[j]);
			}
			plog_info("\n");
		}
	}
}

void cmd_ringinfo_all(void)
{
	struct lcore_cfg *lconf;
	uint32_t lcore_id = -1;

	while(prox_core_next(&lcore_id, 0) == 0) {
		lconf = &lcore_cfg[lcore_id];
		for (uint8_t task_id = 0; task_id < lconf->n_tasks_all; ++task_id) {
			cmd_ringinfo(lcore_id, task_id);
		}
	}
}

void cmd_ringinfo(uint8_t lcore_id, uint8_t task_id)
{
	struct lcore_cfg *lconf;
	struct rte_ring *ring;
	struct task_args* targ;
	uint32_t count;

	if (!prox_core_active(lcore_id, 0)) {
		plog_info("lcore %u is not active\n", lcore_id);
		return;
	}
	lconf = &lcore_cfg[lcore_id];
	if (task_id >= lconf->n_tasks_all) {
		plog_warn("Invalid task index %u: lcore %u has %u tasks\n", task_id, lcore_id, lconf->n_tasks_all);
		return;
	}

	targ = &lconf->targs[task_id];
	plog_info("Core %u task %u: %u rings\n", lcore_id, task_id, targ->nb_rxrings);
	for (uint8_t i = 0; i < targ->nb_rxrings; ++i) {
		ring = targ->rx_rings[i];
#if RTE_VERSION < RTE_VERSION_NUM(17,5,0,1)
		count = ring->prod.mask + 1;
#else
		count = ring->mask + 1;
#endif
		plog_info("\tRing %u:\n", i);
		plog_info("\t\tFlags: %s,%s\n", ring->flags & RING_F_SP_ENQ? "sp":"mp", ring->flags & RING_F_SC_DEQ? "sc":"mc");
		plog_info("\t\tMemory size: %zu bytes\n", rte_ring_get_memsize(count));
		plog_info("\t\tOccupied: %u/%u\n", rte_ring_count(ring), count);
	}
}

void cmd_port_up(uint8_t port_id)
{
	int err;

	if (!port_is_active(port_id)) {
		return ;
	}

	if ((err = rte_eth_dev_set_link_up(port_id)) == 0) {
		plog_info("Bringing port %d up\n", port_id);
	}
	else {
		plog_warn("Failed to bring port %d up with error %d\n", port_id, err);
	}
}

void cmd_port_down(uint8_t port_id)
{
	int err;

	if (!port_is_active(port_id)) {
		return ;
	}

	if ((err = rte_eth_dev_set_link_down(port_id)) == 0) {
		plog_info("Bringing port %d down\n", port_id);
	}
	else {
		plog_warn("Failed to bring port %d down with error %d\n", port_id, err);
	}
}

void cmd_xstats(uint8_t port_id)
{
#if RTE_VERSION >= RTE_VERSION_NUM(16,7,0,0)
	int n_xstats;
	struct rte_eth_xstat *eth_xstat = NULL;	// id and value
	struct rte_eth_xstat_name *eth_xstat_name = NULL;	// only names
	struct prox_port_cfg* port_cfg = &prox_port_cfg[port_id];
	int rc;

	n_xstats = rte_eth_xstats_get(port_id, NULL, 0);
	eth_xstat_name = prox_zmalloc(n_xstats * sizeof(*eth_xstat_name), port_cfg->socket);
	PROX_ASSERT(eth_xstat_name);
	rc = rte_eth_xstats_get_names(port_id, eth_xstat_name, n_xstats);
	if ((rc < 0) || (rc > n_xstats)) {
		if (rc < 0) {
			plog_warn("Failed to get xstats_names on port %d with error %d\n", port_id, rc);
		} else if (rc > n_xstats) {
			plog_warn("Failed to get xstats_names on port %d: too many xstats (%d)\n", port_id, rc);
		}
	}

	eth_xstat = prox_zmalloc(n_xstats * sizeof(*eth_xstat), port_cfg->socket);
	PROX_ASSERT(eth_xstat);
	rc = rte_eth_xstats_get(port_id, eth_xstat, n_xstats);
	if ((rc < 0) || (rc > n_xstats)) {
		if (rc < 0) {
			plog_warn("Failed to get xstats on port %d with error %d\n", port_id, rc);
		} else if (rc > n_xstats) {
			plog_warn("Failed to get xstats on port %d: too many xstats (%d)\n", port_id, rc);
		}
	} else {
		for (int i=0;i<rc;i++) {
			plog_info("%s: %ld\n", eth_xstat_name[i].name, eth_xstat[i].value);
		}
	}
	if (eth_xstat_name)
		prox_free(eth_xstat_name);
	if (eth_xstat)
		prox_free(eth_xstat);
#else
#if RTE_VERSION >= RTE_VERSION_NUM(2,1,0,0)
	int n_xstats;
	struct rte_eth_xstats *eth_xstats;
	struct prox_port_cfg* port_cfg = &prox_port_cfg[port_id];
	int rc;

	n_xstats = rte_eth_xstats_get(port_id, NULL, 0);
	eth_xstats = prox_zmalloc(n_xstats * sizeof(*eth_xstats), port_cfg->socket);
	PROX_ASSERT(eth_xstats);
	rc = rte_eth_xstats_get(port_id, eth_xstats, n_xstats);
	if ((rc < 0) || (rc > n_xstats)) {
		if (rc < 0) {
			plog_warn("Failed to get xstats on port %d with error %d\n", port_id, rc);
		} else if (rc > n_xstats) {
			plog_warn("Failed to get xstats on port %d: too many xstats (%d)\n", port_id, rc);
		}
	} else {
		for (int i=0;i<rc;i++) {
			plog_info("%s: %ld\n", eth_xstats[i].name, eth_xstats[i].value);
		}
	}
	if (eth_xstats)
		prox_free(eth_xstats);
#else
	plog_warn("Failed to get xstats, xstats are not supported in this version of dpdk\n");
#endif
#endif
}

void cmd_portinfo(int port_id, char *dst, size_t max_len)
{
	char *end = dst + max_len;

	*dst = 0;
	if (port_id == -1) {
		uint8_t max_port_idx = prox_last_port_active() + 1;

		for (uint8_t port_id = 0; port_id < max_port_idx; ++port_id) {
			if (!prox_port_cfg[port_id].active) {
				continue;
			}
			struct prox_port_cfg* port_cfg = &prox_port_cfg[port_id];

			dst += snprintf(dst, end - dst,
					"%2d:%10s; "MAC_BYTES_FMT"; %s\n",
					port_id,
					port_cfg->name,
					MAC_BYTES(port_cfg->eth_addr.addr_bytes),
					port_cfg->pci_addr);
		}
		return;
	}

	if (!port_is_active(port_id)) {
		return ;
	}

	struct prox_port_cfg* port_cfg = &prox_port_cfg[port_id];

	dst += snprintf(dst, end - dst, "Port info for port %u\n", port_id);
	dst += snprintf(dst, end - dst, "\tName: %s\n", port_cfg->name);
	dst += snprintf(dst, end - dst, "\tDriver: %s\n", port_cfg->driver_name);
	dst += snprintf(dst, end - dst, "\tMac address: "MAC_BYTES_FMT"\n", MAC_BYTES(port_cfg->eth_addr.addr_bytes));
	dst += snprintf(dst, end - dst, "\tLink speed: %u Mbps\n", port_cfg->link_speed);
	dst += snprintf(dst, end - dst, "\tLink status: %s\n", port_cfg->link_up? "up" : "down");
	dst += snprintf(dst, end - dst, "\tSocket: %u\n", port_cfg->socket);
	dst += snprintf(dst, end - dst, "\tPCI address: %s\n", port_cfg->pci_addr);
	dst += snprintf(dst, end - dst, "\tPromiscuous: %s\n", port_cfg->promiscuous? "yes" : "no");
	dst += snprintf(dst, end - dst, "\tNumber of RX/TX descriptors: %u/%u\n", port_cfg->n_rxd, port_cfg->n_txd);
	dst += snprintf(dst, end - dst, "\tNumber of RX/TX queues: %u/%u (max: %u/%u)\n", port_cfg->n_rxq, port_cfg->n_txq, port_cfg->max_rxq, port_cfg->max_txq);
	dst += snprintf(dst, end - dst, "\tMemory pools:\n");

	for (uint8_t i = 0; i < 32; ++i) {
		if (port_cfg->pool[i]) {
			dst += snprintf(dst, end - dst, "\t\tname: %s (%p)\n",
					port_cfg->pool[i]->name, port_cfg->pool[i]);
		}
	}
}

void cmd_read_reg(uint8_t port_id, unsigned int id)
{
	unsigned int val, rc;
	if (!port_is_active(port_id)) {
		return ;
	}
	rc = read_reg(port_id, id, &val);
	if (rc) {
		plog_warn("Failed to read register %d on port %d\n", id, port_id);
	}
	else {
		plog_info("Register 0x%08X : %08X \n", id, val);
	}
}

void cmd_reset_port(uint8_t portid)
{
	unsigned int rc;
	if (!prox_port_cfg[portid].active) {
		plog_info("port not active \n");
		return;
	}
	rte_eth_dev_stop(portid);
	rc = rte_eth_dev_start(portid);
	if (rc) {
		plog_warn("Failed to restart port %d\n", portid);
	}
}
void cmd_write_reg(uint8_t port_id, unsigned int id, unsigned int val)
{
	if (!port_is_active(port_id)) {
		return ;
	}

	plog_info("writing 0x%08X %08X\n", id, val);
	write_reg(port_id, id, val);
}

void cmd_set_vlan_offload(uint8_t port_id, unsigned int val)
{
	if (!port_is_active(port_id)) {
		return ;
	}

	plog_info("setting vlan offload to %d\n", val);
	if (val & ~(ETH_VLAN_STRIP_OFFLOAD | ETH_VLAN_FILTER_OFFLOAD | ETH_VLAN_EXTEND_OFFLOAD)) {
		plog_info("wrong vlan offload value\n");
	}
	int ret = rte_eth_dev_set_vlan_offload(port_id, val);
	plog_info("rte_eth_dev_set_vlan_offload return %d\n", ret);
}

void cmd_set_vlan_filter(uint8_t port_id, unsigned int id, unsigned int val)
{
	if (!port_is_active(port_id)) {
		return ;
	}

	plog_info("setting vln filter for vlan %d to %d\n", id, val);
	int ret = rte_eth_dev_vlan_filter(port_id, id, val);
	plog_info("rte_eth_dev_vlan_filter return %d\n", ret);
}

void cmd_thread_info(uint8_t lcore_id, uint8_t task_id)
{
	plog_info("thread_info %u %u \n", lcore_id, task_id);
	if (lcore_id > RTE_MAX_LCORE) {
		plog_warn("core_id too high, maximum allowed is: %u\n", RTE_MAX_LCORE);
	}
	if (!prox_core_active(lcore_id, 0)) {
		plog_warn("lcore %u is not active\n", lcore_id);
		return;
	}
	if (task_id >= lcore_cfg[lcore_id].n_tasks_all) {
		plog_warn("task_id too high, should be in [0, %u]\n", lcore_cfg[lcore_id].n_tasks_all - 1);
		return;
	}
	if (strcmp(lcore_cfg[lcore_id].targs[task_id].task_init->mode_str, "qos") == 0) {
		struct task_base *task;

		task = lcore_cfg[lcore_id].tasks_all[task_id];
		plog_info("core %d, task %d: %d mbufs stored in QoS\n", lcore_id, task_id,
			  task_qos_n_pkts_buffered(task));

#ifdef ENABLE_EXTRA_USER_STATISTICS
	}
	else if (lcore_cfg[lcore_id].targs[task_id].mode == QINQ_ENCAP4) {
		struct task_qinq_encap4 *task;
		task = (struct task_qinq_encap4 *)(lcore_cfg[lcore_id].tasks_all[task_id]);
		for (int i=0;i<task->n_users;i++) {
			if (task->stats_per_user[i])
				plog_info("User %d: %d packets\n", i, task->stats_per_user[i]);
		}
#endif
	}
	else {
		// Only QoS thread info so far
		plog_err("core %d, task %d: not a qos core (%p)\n", lcore_id, task_id, lcore_cfg[lcore_id].thread_x);
	}
}

void cmd_rx_tx_info(void)
{
	uint32_t lcore_id = -1;
	while(prox_core_next(&lcore_id, 0) == 0) {
		for (uint8_t task_id = 0; task_id < lcore_cfg[lcore_id].n_tasks_all; ++task_id) {
			struct task_args *targ = &lcore_cfg[lcore_id].targs[task_id];

			plog_info("Core %u:", lcore_id);
			if (targ->rx_port_queue[0].port != OUT_DISCARD) {
				for (int i = 0; i < targ->nb_rxports; i++) {
					plog_info(" RX port %u (queue %u)", targ->rx_port_queue[i].port, targ->rx_port_queue[i].queue);
				}
			}
			else {
				for (uint8_t j = 0; j < targ->nb_rxrings; ++j) {
					plog_info(" RX ring[%u,%u] %p", task_id, j, targ->rx_rings[j]);
				}
			}
			plog_info(" ==>");
			for (uint8_t j = 0; j < targ->nb_txports; ++j) {
				plog_info(" TX port %u (queue %u)", targ->tx_port_queue[j].port,
					  targ->tx_port_queue[j].queue);
			}

			for (uint8_t j = 0; j < targ->nb_txrings; ++j) {
				plog_info(" TX ring %p", targ->tx_rings[j]);
			}

			plog_info("\n");
		}
	}
}
void cmd_get_cache_class(uint32_t lcore_id, uint32_t *set)
{
	uint64_t tmp_rmid = 0;
	cqm_assoc_read(lcore_id, &tmp_rmid);
	*set = (uint32_t)(tmp_rmid >> 32);
}

void cmd_get_cache_class_mask(uint32_t lcore_id, uint32_t set, uint32_t *val)
{
	cat_get_class_mask(lcore_id, set, val);
}

void cmd_set_cache_class_mask(uint32_t lcore_id, uint32_t set, uint32_t val)
{
	cat_set_class_mask(lcore_id, set, val);
	lcore_cfg[lcore_id].cache_set = set;
	uint32_t id = -1;
	while(prox_core_next(&id, 0) == 0) {
		if ((lcore_cfg[id].cache_set == set) && (rte_lcore_to_socket_id(id) == rte_lcore_to_socket_id(lcore_id))) {
			plog_info("Updating mask for core %d to %d\n", id, set);
			stats_update_cache_mask(id, val);
		}
	}
}

void cmd_set_cache_class(uint32_t lcore_id, uint32_t set)
{
	uint64_t tmp_rmid = 0;
	uint32_t val = 0;
	cqm_assoc_read(lcore_id, &tmp_rmid);
	cqm_assoc(lcore_id, (tmp_rmid & 0xffffffff) | ((set * 1L) << 32));
	cat_get_class_mask(lcore_id, set, &val);
	stats_update_cache_mask(lcore_id, val);
}

void cmd_cache_reset(void)
{
	uint8_t sockets[MAX_SOCKETS] = {0};
	uint8_t cores[MAX_SOCKETS] = {0};
	uint32_t mask = (1 << cat_get_num_ways()) - 1;
	uint32_t lcore_id = -1, socket_id;
	while(prox_core_next(&lcore_id, 0) == 0) {
		cqm_assoc(lcore_id, 0);
		socket_id = rte_lcore_to_socket_id(lcore_id);
		if (socket_id < MAX_SOCKETS) {
			sockets[socket_id] = 1;
			cores[socket_id] = lcore_id;
		}
		stats_update_cache_mask(lcore_id, mask);
		plog_info("Setting core %d to cache mask %x\n", lcore_id, mask);
		lcore_cfg[lcore_id].cache_set = 0;
	}
	for (uint32_t s = 0; s < MAX_SOCKETS; s++) {
		if (sockets[s])
			cat_reset_cache(cores[s]);
	}
	stats_lcore_assoc_rmid();
}

int bypass_task(uint32_t lcore_id, uint32_t task_id)
{
	struct lcore_cfg *lconf = &lcore_cfg[lcore_id];
	struct task_args *targ, *starg, *dtarg;
	struct rte_ring *ring = NULL;

	if (task_id >= lconf->n_tasks_all)
		return -1;

	targ = &lconf->targs[task_id];
	if (targ->nb_txrings == 1) {
		plog_info("Task has %d receive and 1 transmmit ring and can be bypassed, %d precedent tasks\n", targ->nb_rxrings, targ->n_prev_tasks);
		// Find source task
		for (unsigned int i = 0; i < targ->n_prev_tasks; i++) {
			starg = targ->prev_tasks[i];
			for (unsigned int j = 0; j < starg->nb_txrings; j++) {
				for (unsigned int k = 0; k < targ->nb_rxrings; k++) {
					if (starg->tx_rings[j] == targ->rx_rings[k]) {
						plog_info("bypassing ring %p and connecting it to %p\n", starg->tx_rings[j], targ->tx_rings[0]);
						starg->tx_rings[j] = targ->tx_rings[0];
						struct task_base *tbase = starg->tbase;
						tbase->tx_params_sw.tx_rings[j] = starg->tx_rings[j];
					}
				}
			}
		}
	} else {
		plog_info("Task has %d receive and %d transmit ring and cannot be bypassed\n", targ->nb_rxrings, targ->nb_txrings);
		return -1;
	}

	return 0;
}

int reconnect_task(uint32_t lcore_id, uint32_t task_id)
{
	struct lcore_cfg *lconf = &lcore_cfg[lcore_id];
	struct task_args *targ, *starg, *dtarg = NULL;
	struct rte_ring *ring = NULL;

	if (task_id >= lconf->n_tasks_all)
		return -1;

	targ = &lconf->targs[task_id];
	if (targ->nb_txrings == 1) {
		// Find source task
		for (unsigned int i = 0; i < targ->n_prev_tasks; i++) {
			starg = targ->prev_tasks[i];
			for (unsigned int j = 0; j < starg->nb_txrings; j++) {
				if (starg->tx_rings[j] == targ->tx_rings[0]) {
					if (targ->n_prev_tasks == targ->nb_rxrings) {
						starg->tx_rings[j] = targ->rx_rings[i];
						struct task_base *tbase = starg->tbase;
						tbase->tx_params_sw.tx_rings[j] = starg->tx_rings[j];
						plog_info("Task has %d receive and 1 transmmit ring and can be reconnected, %d precedent tasks\n", targ->nb_rxrings, targ->n_prev_tasks);
					} else if (targ->nb_rxrings == 1) {
						starg->tx_rings[j] = targ->rx_rings[0];
						struct task_base *tbase = starg->tbase;
						tbase->tx_params_sw.tx_rings[j] = starg->tx_rings[j];
						plog_info("Task has %d receive and 1 transmmit ring and ring %p can be reconnected, %d precedent tasks\n", targ->nb_rxrings, starg->tx_rings[j], targ->n_prev_tasks);
					} else {
						plog_err("Unexpected configuration: %d precedent tasks, %d rx rings\n", targ->n_prev_tasks, targ->nb_rxrings);
					}
				}
			}
		}
	} else {
		plog_info("Task has %d receive and %d transmit ring and cannot be bypassed\n", targ->nb_rxrings, targ->nb_txrings);
		return -1;
	}

	return 0;
}