summaryrefslogtreecommitdiffstats
path: root/environments/tls-endpoints-public-dns.yaml
blob: 1b666c5b3461fe983816841ae17c543f99028e69 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# Use this environment when deploying an SSL-enabled overcloud where the public
# endpoint is a DNS name.
parameter_defaults:
  EndpointMap:
    AodhAdmin: {protocol: 'http', port: '8042', host: 'IP_ADDRESS'}
    AodhInternal: {protocol: 'http', port: '8042', host: 'IP_ADDRESS'}
    AodhPublic: {protocol: 'https', port: '13042', host: 'CLOUDNAME'}
    BarbicanAdmin: {protocol: 'http', port: '9311', host: 'IP_ADDRESS'}
    BarbicanInternal: {protocol: 'http', port: '9311', host: 'IP_ADDRESS'}
    BarbicanPublic: {protocol: 'https', port: '13311', host: 'CLOUDNAME'}
    CeilometerAdmin: {protocol: 'http', port: '8777', host: 'IP_ADDRESS'}
    CeilometerInternal: {protocol: 'http', port: '8777', host: 'IP_ADDRESS'}
    CeilometerPublic: {protocol: 'https', port: '13777', host: 'CLOUDNAME'}
    CephRgwAdmin: {protocol: 'http', port: '8080', host: 'IP_ADDRESS'}
    CephRgwInternal: {protocol: 'http', port: '8080', host: 'IP_ADDRESS'}
    CephRgwPublic: {protocol: 'https', port: '13808', host: 'CLOUDNAME'}
    CinderAdmin: {protocol: 'http', port: '8776', host: 'IP_ADDRESS'}
    CinderInternal: {protocol: 'http', port: '8776', host: 'IP_ADDRESS'}
    CinderPublic: {protocol: 'https', port: '13776', host: 'CLOUDNAME'}
    CongressAdmin: {protocol: 'http', port: '1789', host: 'IP_ADDRESS'}
    CongressInternal: {protocol: 'http', port: '1789', host: 'IP_ADDRESS'}
    CongressPublic: {protocol: 'https', port: '13789', host: 'CLOUDNAME'}
    ContrailAnalyticsApiAdmin: {protocol: 'http', port: '8081', host: 'IP_ADDRESS'}
    ContrailAnalyticsApiInternal: {protocol: 'http', port: '8081', host: 'IP_ADDRESS'}
    ContrailAnalyticsApiPublic: {protocol: 'http', port: '8081', host: 'IP_ADDRESS'}
    ContrailAnalyticsCollectorHttpAdmin: {protocol: 'http', port: '8089',
      host: 'IP_ADDRESS'}
    ContrailAnalyticsCollectorHttpInternal: {protocol: 'http', port: '8089',
      host: 'IP_ADDRESS'}
    ContrailAnalyticsCollectorHttpPublic: {protocol: 'http', port: '8089',
      host: 'IP_ADDRESS'}
    ContrailAnalyticsCollectorSandeshAdmin: {protocol: 'http', port: '8086',
      host: 'IP_ADDRESS'}
    ContrailAnalyticsCollectorSandeshInternal: {protocol: 'http', port: '8086',
      host: 'IP_ADDRESS'}
    ContrailAnalyticsCollectorSandeshPublic: {protocol: 'http', port: '8086',
      host: 'IP_ADDRESS'}
    ContrailAnalyticsHttpAdmin: {protocol: 'http', port: '8090', host: 'IP_ADDRESS'}
    ContrailAnalyticsHttpInternal: {protocol: 'http', port: '8090', host: 'IP_ADDRESS'}
    ContrailAnalyticsHttpPublic: {protocol: 'http', port: '8090', host: 'IP_ADDRESS'}
    ContrailAnalyticsRedisAdmin: {protocol: 'http', port: '6379', host: 'IP_ADDRESS'}
    ContrailAnalyticsRedisInternal: {protocol: 'http', port: '6379', host: 'IP_ADDRESS'}
    ContrailAnalyticsRedisPublic: {protocol: 'http', port: '6379', host: 'IP_ADDRESS'}
    ContrailConfigAdmin: {protocol: 'http', port: '8082', host: 'IP_ADDRESS'}
    ContrailConfigInternal: {protocol: 'http', port: '8082', host: 'IP_ADDRESS'}
    ContrailConfigPublic: {protocol: 'http', port: '8082', host: 'IP_ADDRESS'}
    ContrailDiscoveryAdmin: {protocol: 'http', port: '5998', host: 'IP_ADDRESS'}
    ContrailDiscoveryInternal: {protocol: 'http', port: '5998', host: 'IP_ADDRESS'}
    ContrailDiscoveryPublic: {protocol: 'http', port: '5998', host: 'IP_ADDRESS'}
    ContrailWebuiHttpAdmin: {protocol: 'http', port: '8080', host: 'IP_ADDRESS'}
    ContrailWebuiHttpInternal: {protocol: 'http', port: '8080', host: 'IP_ADDRESS'}
    ContrailWebuiHttpPublic: {protocol: 'http', port: '8080', host: 'IP_ADDRESS'}
    ContrailWebuiHttpsAdmin: {protocol: 'http', port: '8143', host: 'IP_ADDRESS'}
    ContrailWebuiHttpsInternal: {protocol: 'http', port: '8143', host: 'IP_ADDRESS'}
    ContrailWebuiHttpsPublic: {protocol: 'http', port: '8143', host: 'IP_ADDRESS'}
    Ec2ApiAdmin: {protocol: 'http', port: '8788', host: 'IP_ADDRESS'}
    Ec2ApiInternal: {protocol: 'http', port: '8788', host: 'IP_ADDRESS'}
    Ec2ApiPublic: {protocol: 'https', port: '13788', host: 'CLOUDNAME'}
    GlanceAdmin: {protocol: 'http', port: '9292', host: 'IP_ADDRESS'}
    GlanceInternal: {protocol: 'http', port: '9292', host: 'IP_ADDRESS'}
    GlancePublic: {protocol: 'https', port: '13292', host: 'CLOUDNAME'}
    GnocchiAdmin: {protocol: 'http', port: '8041', host: 'IP_ADDRESS'}
    GnocchiInternal: {protocol: 'http', port: '8041', host: 'IP_ADDRESS'}
    GnocchiPublic: {protocol: 'https', port: '13041', host: 'CLOUDNAME'}
    HeatAdmin: {protocol: 'http', port: '8004', host: 'IP_ADDRESS'}
    HeatInternal: {protocol: 'http', port: '8004', host: 'IP_ADDRESS'}
    HeatPublic: {protocol: 'https', port: '13004', host: 'CLOUDNAME'}
    HeatCfnAdmin: {protocol: 'http', port: '8000', host: 'IP_ADDRESS'}
    HeatCfnInternal: {protocol: 'http', port: '8000', host: 'IP_ADDRESS'}
    HeatCfnPublic: {protocol: 'https', port: '13005', host: 'CLOUDNAME'}
    HorizonPublic: {protocol: 'https', port: '443', host: 'CLOUDNAME'}
    IronicAdmin: {protocol: 'http', port: '6385', host: 'IP_ADDRESS'}
    IronicInternal: {protocol: 'http', port: '6385', host: 'IP_ADDRESS'}
    IronicPublic: {protocol: 'https', port: '13385', host: 'CLOUDNAME'}
    KeystoneAdmin: {protocol: 'http', port: '35357', host: 'IP_ADDRESS'}
    KeystoneInternal: {protocol: 'http', port: '5000', host: 'IP_ADDRESS'}
    KeystonePublic: {protocol: 'https', port: '13000', host: 'CLOUDNAME'}
    ManilaAdmin: {protocol: 'http', port: '8786', host: 'IP_ADDRESS'}
    ManilaInternal: {protocol: 'http', port: '8786', host: 'IP_ADDRESS'}
    ManilaPublic: {protocol: 'https', port: '13786', host: 'CLOUDNAME'}
    MistralAdmin: {protocol: 'http', port: '8989', host: 'IP_ADDRESS'}
    MistralInternal: {protocol: 'http', port: '8989', host: 'IP_ADDRESS'}
    MistralPublic: {protocol: 'https', port: '13989', host: 'CLOUDNAME'}
    MysqlInternal: {protocol: 'mysql+pymysql', port: '3306', host: 'IP_ADDRESS'}
    NeutronAdmin: {protocol: 'http', port: '9696', host: 'IP_ADDRESS'}
    NeutronInternal: {protocol: 'http', port: '9696', host: 'IP_ADDRESS'}
    NeutronPublic: {protocol: 'https', port: '13696', host: 'CLOUDNAME'}
    NovaAdmin: {protocol: 'http', port: '8774', host: 'IP_ADDRESS'}
    NovaInternal: {protocol: 'http', port: '8774', host: 'IP_ADDRESS'}
    NovaPublic: {protocol: 'https', port: '13774', host: 'CLOUDNAME'}
    NovaPlacementAdmin: {protocol: 'http', port: '8778', host: 'IP_ADDRESS'}
    NovaPlacementInternal: {protocol: 'http', port: '8778', host: 'IP_ADDRESS'}
    NovaPlacementPublic: {protocol: 'https', port: '13778', host: 'CLOUDNAME'}
    NovaVNCProxyAdmin: {protocol: 'http', port: '6080', host: 'IP_ADDRESS'}
    NovaVNCProxyInternal: {protocol: 'http', port: '6080', host: 'IP_ADDRESS'}
    NovaVNCProxyPublic: {protocol: 'https', port: '13080', host: 'CLOUDNAME'}
    OctaviaAdmin: {protocol: 'http', port: '9876', host: 'IP_ADDRESS'}
    OctaviaInternal: {protocol: 'http', port: '9876', host: 'IP_ADDRESS'}
    OctaviaPublic: {protocol: 'https', port: '13876', host: 'CLOUDNAME'}
    PankoAdmin: {protocol: 'http', port: '8779', host: 'IP_ADDRESS'}
    PankoInternal: {protocol: 'http', port: '8779', host: 'IP_ADDRESS'}
    PankoPublic: {protocol: 'https', port: '13779', host: 'CLOUDNAME'}
    SaharaAdmin: {protocol: 'http', port: '8386', host: 'IP_ADDRESS'}
    SaharaInternal: {protocol: 'http', port: '8386', host: 'IP_ADDRESS'}
    SaharaPublic: {protocol: 'https', port: '13386', host: 'CLOUDNAME'}
    SwiftAdmin: {protocol: 'http', port: '8080', host: 'IP_ADDRESS'}
    SwiftInternal: {protocol: 'http', port: '8080', host: 'IP_ADDRESS'}
    SwiftPublic: {protocol: 'https', port: '13808', host: 'CLOUDNAME'}
    TackerAdmin: {protocol: 'http', port: '9890', host: 'IP_ADDRESS'}
    TackerInternal: {protocol: 'http', port: '9890', host: 'IP_ADDRESS'}
    TackerPublic: {protocol: 'https', port: '13989', host: 'CLOUDNAME'}
    ZaqarAdmin: {protocol: 'http', port: '8888', host: 'IP_ADDRESS'}
    ZaqarInternal: {protocol: 'http', port: '8888', host: 'IP_ADDRESS'}
    ZaqarPublic: {protocol: 'https', port: '13888', host: 'CLOUDNAME'}
    ZaqarWebSocketAdmin: {protocol: 'ws', port: '9000', host: 'IP_ADDRESS'}
    ZaqarWebSocketInternal: {protocol: 'ws', port: '9000', host: 'IP_ADDRESS'}
    ZaqarWebSocketPublic: {protocol: 'wss', port: '9000', host: 'CLOUDNAME'}
>buckets; for (i = 0; i < fl_cinfo->nbuckets; i++, bucket++) { if (list_empty(&bucket->committing)) continue; data = nfs_commitdata_alloc(); if (!data) break; data->ds_commit_index = i; list_add(&data->pages, list); nreq++; } /* Clean up on error */ pnfs_generic_retry_commit(cinfo, i); return nreq; } static inline void pnfs_fetch_commit_bucket_list(struct list_head *pages, struct nfs_commit_data *data, struct nfs_commit_info *cinfo) { struct pnfs_commit_bucket *bucket; bucket = &cinfo->ds->buckets[data->ds_commit_index]; spin_lock(cinfo->lock); list_splice_init(&bucket->committing, pages); data->lseg = bucket->clseg; bucket->clseg = NULL; spin_unlock(cinfo->lock); } /* This follows nfs_commit_list pretty closely */ int pnfs_generic_commit_pagelist(struct inode *inode, struct list_head *mds_pages, int how, struct nfs_commit_info *cinfo, int (*initiate_commit)(struct nfs_commit_data *data, int how)) { struct nfs_commit_data *data, *tmp; LIST_HEAD(list); unsigned int nreq = 0; if (!list_empty(mds_pages)) { data = nfs_commitdata_alloc(); if (data != NULL) { data->ds_commit_index = -1; list_add(&data->pages, &list); nreq++; } else { nfs_retry_commit(mds_pages, NULL, cinfo, 0); pnfs_generic_retry_commit(cinfo, 0); cinfo->completion_ops->error_cleanup(NFS_I(inode)); return -ENOMEM; } } nreq += pnfs_generic_alloc_ds_commits(cinfo, &list); if (nreq == 0) { cinfo->completion_ops->error_cleanup(NFS_I(inode)); goto out; } atomic_add(nreq, &cinfo->mds->rpcs_out); list_for_each_entry_safe(data, tmp, &list, pages) { list_del_init(&data->pages); if (data->ds_commit_index < 0) { nfs_init_commit(data, mds_pages, NULL, cinfo); nfs_initiate_commit(NFS_CLIENT(inode), data, NFS_PROTO(data->inode), data->mds_ops, how, 0); } else { LIST_HEAD(pages); pnfs_fetch_commit_bucket_list(&pages, data, cinfo); nfs_init_commit(data, &pages, data->lseg, cinfo); initiate_commit(data, how); } } out: cinfo->ds->ncommitting = 0; return PNFS_ATTEMPTED; } EXPORT_SYMBOL_GPL(pnfs_generic_commit_pagelist); /* * Data server cache * * Data servers can be mapped to different device ids. * nfs4_pnfs_ds reference counting * - set to 1 on allocation * - incremented when a device id maps a data server already in the cache. * - decremented when deviceid is removed from the cache. */ static DEFINE_SPINLOCK(nfs4_ds_cache_lock); static LIST_HEAD(nfs4_data_server_cache); /* Debug routines */ static void print_ds(struct nfs4_pnfs_ds *ds) { if (ds == NULL) { printk(KERN_WARNING "%s NULL device\n", __func__); return; } printk(KERN_WARNING " ds %s\n" " ref count %d\n" " client %p\n" " cl_exchange_flags %x\n", ds->ds_remotestr, atomic_read(&ds->ds_count), ds->ds_clp, ds->ds_clp ? ds->ds_clp->cl_exchange_flags : 0); } static bool same_sockaddr(struct sockaddr *addr1, struct sockaddr *addr2) { struct sockaddr_in *a, *b; struct sockaddr_in6 *a6, *b6; if (addr1->sa_family != addr2->sa_family) return false; switch (addr1->sa_family) { case AF_INET: a = (struct sockaddr_in *)addr1; b = (struct sockaddr_in *)addr2; if (a->sin_addr.s_addr == b->sin_addr.s_addr && a->sin_port == b->sin_port) return true; break; case AF_INET6: a6 = (struct sockaddr_in6 *)addr1; b6 = (struct sockaddr_in6 *)addr2; /* LINKLOCAL addresses must have matching scope_id */ if (ipv6_addr_src_scope(&a6->sin6_addr) == IPV6_ADDR_SCOPE_LINKLOCAL && a6->sin6_scope_id != b6->sin6_scope_id) return false; if (ipv6_addr_equal(&a6->sin6_addr, &b6->sin6_addr) && a6->sin6_port == b6->sin6_port) return true; break; default: dprintk("%s: unhandled address family: %u\n", __func__, addr1->sa_family); return false; } return false; } /* * Checks if 'dsaddrs1' contains a subset of 'dsaddrs2'. If it does, * declare a match. */ static bool _same_data_server_addrs_locked(const struct list_head *dsaddrs1, const struct list_head *dsaddrs2) { struct nfs4_pnfs_ds_addr *da1, *da2; struct sockaddr *sa1, *sa2; bool match = false; list_for_each_entry(da1, dsaddrs1, da_node) { sa1 = (struct sockaddr *)&da1->da_addr; match = false; list_for_each_entry(da2, dsaddrs2, da_node) { sa2 = (struct sockaddr *)&da2->da_addr; match = same_sockaddr(sa1, sa2); if (match) break; } if (!match) break; } return match; } /* * Lookup DS by addresses. nfs4_ds_cache_lock is held */ static struct nfs4_pnfs_ds * _data_server_lookup_locked(const struct list_head *dsaddrs) { struct nfs4_pnfs_ds *ds; list_for_each_entry(ds, &nfs4_data_server_cache, ds_node) if (_same_data_server_addrs_locked(&ds->ds_addrs, dsaddrs)) return ds; return NULL; } static void destroy_ds(struct nfs4_pnfs_ds *ds) { struct nfs4_pnfs_ds_addr *da; dprintk("--> %s\n", __func__); ifdebug(FACILITY) print_ds(ds); nfs_put_client(ds->ds_clp); while (!list_empty(&ds->ds_addrs)) { da = list_first_entry(&ds->ds_addrs, struct nfs4_pnfs_ds_addr, da_node); list_del_init(&da->da_node); kfree(da->da_remotestr); kfree(da); } kfree(ds->ds_remotestr); kfree(ds); } void nfs4_pnfs_ds_put(struct nfs4_pnfs_ds *ds) { if (atomic_dec_and_lock(&ds->ds_count, &nfs4_ds_cache_lock)) { list_del_init(&ds->ds_node); spin_unlock(&nfs4_ds_cache_lock); destroy_ds(ds); } } EXPORT_SYMBOL_GPL(nfs4_pnfs_ds_put); /* * Create a string with a human readable address and port to avoid * complicated setup around many dprinks. */ static char * nfs4_pnfs_remotestr(struct list_head *dsaddrs, gfp_t gfp_flags) { struct nfs4_pnfs_ds_addr *da; char *remotestr; size_t len; char *p; len = 3; /* '{', '}' and eol */ list_for_each_entry(da, dsaddrs, da_node) { len += strlen(da->da_remotestr) + 1; /* string plus comma */ } remotestr = kzalloc(len, gfp_flags); if (!remotestr) return NULL; p = remotestr; *(p++) = '{'; len--; list_for_each_entry(da, dsaddrs, da_node) { size_t ll = strlen(da->da_remotestr); if (ll > len) goto out_err; memcpy(p, da->da_remotestr, ll); p += ll; len -= ll; if (len < 1) goto out_err; (*p++) = ','; len--; } if (len < 2) goto out_err; *(p++) = '}'; *p = '\0'; return remotestr; out_err: kfree(remotestr); return NULL; } /* * Given a list of multipath struct nfs4_pnfs_ds_addr, add it to ds cache if * uncached and return cached struct nfs4_pnfs_ds. */ struct nfs4_pnfs_ds * nfs4_pnfs_ds_add(struct list_head *dsaddrs, gfp_t gfp_flags) { struct nfs4_pnfs_ds *tmp_ds, *ds = NULL; char *remotestr; if (list_empty(dsaddrs)) { dprintk("%s: no addresses defined\n", __func__); goto out; } ds = kzalloc(sizeof(*ds), gfp_flags); if (!ds) goto out; /* this is only used for debugging, so it's ok if its NULL */ remotestr = nfs4_pnfs_remotestr(dsaddrs, gfp_flags); spin_lock(&nfs4_ds_cache_lock); tmp_ds = _data_server_lookup_locked(dsaddrs); if (tmp_ds == NULL) { INIT_LIST_HEAD(&ds->ds_addrs); list_splice_init(dsaddrs, &ds->ds_addrs); ds->ds_remotestr = remotestr; atomic_set(&ds->ds_count, 1); INIT_LIST_HEAD(&ds->ds_node); ds->ds_clp = NULL; list_add(&ds->ds_node, &nfs4_data_server_cache); dprintk("%s add new data server %s\n", __func__, ds->ds_remotestr); } else { kfree(remotestr); kfree(ds); atomic_inc(&tmp_ds->ds_count); dprintk("%s data server %s found, inc'ed ds_count to %d\n", __func__, tmp_ds->ds_remotestr, atomic_read(&tmp_ds->ds_count)); ds = tmp_ds; } spin_unlock(&nfs4_ds_cache_lock); out: return ds; } EXPORT_SYMBOL_GPL(nfs4_pnfs_ds_add); static void nfs4_wait_ds_connect(struct nfs4_pnfs_ds *ds) { might_sleep(); wait_on_bit(&ds->ds_state, NFS4DS_CONNECTING, TASK_KILLABLE); } static void nfs4_clear_ds_conn_bit(struct nfs4_pnfs_ds *ds) { smp_mb__before_atomic(); clear_bit(NFS4DS_CONNECTING, &ds->ds_state); smp_mb__after_atomic(); wake_up_bit(&ds->ds_state, NFS4DS_CONNECTING); } static struct nfs_client *(*get_v3_ds_connect)( struct nfs_client *mds_clp, const struct sockaddr *ds_addr, int ds_addrlen, int ds_proto, unsigned int ds_timeo, unsigned int ds_retrans, rpc_authflavor_t au_flavor); static bool load_v3_ds_connect(void) { if (!get_v3_ds_connect) { get_v3_ds_connect = symbol_request(nfs3_set_ds_client); WARN_ON_ONCE(!get_v3_ds_connect); } return(get_v3_ds_connect != NULL); } void nfs4_pnfs_v3_ds_connect_unload(void) { if (get_v3_ds_connect) { symbol_put(nfs3_set_ds_client); get_v3_ds_connect = NULL; } } EXPORT_SYMBOL_GPL(nfs4_pnfs_v3_ds_connect_unload); static int _nfs4_pnfs_v3_ds_connect(struct nfs_server *mds_srv, struct nfs4_pnfs_ds *ds, unsigned int timeo, unsigned int retrans, rpc_authflavor_t au_flavor) { struct nfs_client *clp = ERR_PTR(-EIO); struct nfs4_pnfs_ds_addr *da; int status = 0; dprintk("--> %s DS %s au_flavor %d\n", __func__, ds->ds_remotestr, au_flavor); if (!load_v3_ds_connect()) goto out; list_for_each_entry(da, &ds->ds_addrs, da_node) { dprintk("%s: DS %s: trying address %s\n", __func__, ds->ds_remotestr, da->da_remotestr); clp = get_v3_ds_connect(mds_srv->nfs_client, (struct sockaddr *)&da->da_addr, da->da_addrlen, IPPROTO_TCP, timeo, retrans, au_flavor); if (!IS_ERR(clp)) break; } if (IS_ERR(clp)) { status = PTR_ERR(clp); goto out; } smp_wmb(); ds->ds_clp = clp; dprintk("%s [new] addr: %s\n", __func__, ds->ds_remotestr); out: return status; } static int _nfs4_pnfs_v4_ds_connect(struct nfs_server *mds_srv, struct nfs4_pnfs_ds *ds, unsigned int timeo, unsigned int retrans, u32 minor_version, rpc_authflavor_t au_flavor) { struct nfs_client *clp = ERR_PTR(-EIO); struct nfs4_pnfs_ds_addr *da; int status = 0; dprintk("--> %s DS %s au_flavor %d\n", __func__, ds->ds_remotestr, au_flavor); list_for_each_entry(da, &ds->ds_addrs, da_node) { dprintk("%s: DS %s: trying address %s\n", __func__, ds->ds_remotestr, da->da_remotestr); clp = nfs4_set_ds_client(mds_srv->nfs_client, (struct sockaddr *)&da->da_addr, da->da_addrlen, IPPROTO_TCP, timeo, retrans, minor_version, au_flavor); if (!IS_ERR(clp)) break; } if (IS_ERR(clp)) { status = PTR_ERR(clp); goto out; } status = nfs4_init_ds_session(clp, mds_srv->nfs_client->cl_lease_time); if (status) goto out_put; smp_wmb(); ds->ds_clp = clp; dprintk("%s [new] addr: %s\n", __func__, ds->ds_remotestr); out: return status; out_put: nfs_put_client(clp); goto out; } /* * Create an rpc connection to the nfs4_pnfs_ds data server. * Currently only supports IPv4 and IPv6 addresses. * If connection fails, make devid unavailable. */ void nfs4_pnfs_ds_connect(struct nfs_server *mds_srv, struct nfs4_pnfs_ds *ds, struct nfs4_deviceid_node *devid, unsigned int timeo, unsigned int retrans, u32 version, u32 minor_version, rpc_authflavor_t au_flavor) { if (test_and_set_bit(NFS4DS_CONNECTING, &ds->ds_state) == 0) { int err = 0; if (version == 3) { err = _nfs4_pnfs_v3_ds_connect(mds_srv, ds, timeo, retrans, au_flavor); } else if (version == 4) { err = _nfs4_pnfs_v4_ds_connect(mds_srv, ds, timeo, retrans, minor_version, au_flavor); } else { dprintk("%s: unsupported DS version %d\n", __func__, version); err = -EPROTONOSUPPORT; } if (err) nfs4_mark_deviceid_unavailable(devid); nfs4_clear_ds_conn_bit(ds); } else { nfs4_wait_ds_connect(ds); } } EXPORT_SYMBOL_GPL(nfs4_pnfs_ds_connect); /* * Currently only supports ipv4, ipv6 and one multi-path address. */ struct nfs4_pnfs_ds_addr * nfs4_decode_mp_ds_addr(struct net *net, struct xdr_stream *xdr, gfp_t gfp_flags) { struct nfs4_pnfs_ds_addr *da = NULL; char *buf, *portstr; __be16 port; int nlen, rlen; int tmp[2]; __be32 *p; char *netid, *match_netid; size_t len, match_netid_len; char *startsep = ""; char *endsep = ""; /* r_netid */ p = xdr_inline_decode(xdr, 4); if (unlikely(!p)) goto out_err; nlen = be32_to_cpup(p++); p = xdr_inline_decode(xdr, nlen); if (unlikely(!p)) goto out_err; netid = kmalloc(nlen+1, gfp_flags); if (unlikely(!netid)) goto out_err; netid[nlen] = '\0'; memcpy(netid, p, nlen); /* r_addr: ip/ip6addr with port in dec octets - see RFC 5665 */ p = xdr_inline_decode(xdr, 4); if (unlikely(!p)) goto out_free_netid; rlen = be32_to_cpup(p); p = xdr_inline_decode(xdr, rlen); if (unlikely(!p)) goto out_free_netid; /* port is ".ABC.DEF", 8 chars max */ if (rlen > INET6_ADDRSTRLEN + IPV6_SCOPE_ID_LEN + 8) { dprintk("%s: Invalid address, length %d\n", __func__, rlen); goto out_free_netid; } buf = kmalloc(rlen + 1, gfp_flags); if (!buf) { dprintk("%s: Not enough memory\n", __func__); goto out_free_netid; } buf[rlen] = '\0'; memcpy(buf, p, rlen); /* replace port '.' with '-' */ portstr = strrchr(buf, '.'); if (!portstr) { dprintk("%s: Failed finding expected dot in port\n", __func__); goto out_free_buf; } *portstr = '-'; /* find '.' between address and port */ portstr = strrchr(buf, '.'); if (!portstr) { dprintk("%s: Failed finding expected dot between address and " "port\n", __func__); goto out_free_buf; } *portstr = '\0'; da = kzalloc(sizeof(*da), gfp_flags); if (unlikely(!da)) goto out_free_buf; INIT_LIST_HEAD(&da->da_node); if (!rpc_pton(net, buf, portstr-buf, (struct sockaddr *)&da->da_addr, sizeof(da->da_addr))) { dprintk("%s: error parsing address %s\n", __func__, buf); goto out_free_da; } portstr++; sscanf(portstr, "%d-%d", &tmp[0], &tmp[1]); port = htons((tmp[0] << 8) | (tmp[1])); switch (da->da_addr.ss_family) { case AF_INET: ((struct sockaddr_in *)&da->da_addr)->sin_port = port; da->da_addrlen = sizeof(struct sockaddr_in); match_netid = "tcp"; match_netid_len = 3; break; case AF_INET6: ((struct sockaddr_in6 *)&da->da_addr)->sin6_port = port; da->da_addrlen = sizeof(struct sockaddr_in6); match_netid = "tcp6"; match_netid_len = 4; startsep = "["; endsep = "]"; break; default: dprintk("%s: unsupported address family: %u\n", __func__, da->da_addr.ss_family); goto out_free_da; } if (nlen != match_netid_len || strncmp(netid, match_netid, nlen)) { dprintk("%s: ERROR: r_netid \"%s\" != \"%s\"\n", __func__, netid, match_netid); goto out_free_da; } /* save human readable address */ len = strlen(startsep) + strlen(buf) + strlen(endsep) + 7; da->da_remotestr = kzalloc(len, gfp_flags); /* NULL is ok, only used for dprintk */ if (da->da_remotestr) snprintf(da->da_remotestr, len, "%s%s%s:%u", startsep, buf, endsep, ntohs(port)); dprintk("%s: Parsed DS addr %s\n", __func__, da->da_remotestr); kfree(buf); kfree(netid); return da; out_free_da: kfree(da); out_free_buf: dprintk("%s: Error parsing DS addr: %s\n", __func__, buf); kfree(buf); out_free_netid: kfree(netid); out_err: return NULL; } EXPORT_SYMBOL_GPL(nfs4_decode_mp_ds_addr); void pnfs_layout_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg, struct nfs_commit_info *cinfo, u32 ds_commit_idx) { struct list_head *list; struct pnfs_commit_bucket *buckets; spin_lock(cinfo->lock); buckets = cinfo->ds->buckets; list = &buckets[ds_commit_idx].written; if (list_empty(list)) { /* Non-empty buckets hold a reference on the lseg. That ref * is normally transferred to the COMMIT call and released * there. It could also be released if the last req is pulled * off due to a rewrite, in which case it will be done in * pnfs_common_clear_request_commit */ WARN_ON_ONCE(buckets[ds_commit_idx].wlseg != NULL); buckets[ds_commit_idx].wlseg = pnfs_get_lseg(lseg); } set_bit(PG_COMMIT_TO_DS, &req->wb_flags); cinfo->ds->nwritten++; nfs_request_add_commit_list_locked(req, list, cinfo); spin_unlock(cinfo->lock); nfs_mark_page_unstable(req->wb_page, cinfo); } EXPORT_SYMBOL_GPL(pnfs_layout_mark_request_commit); int pnfs_nfs_generic_sync(struct inode *inode, bool datasync) { if (datasync) return 0; return pnfs_layoutcommit_inode(inode, true); } EXPORT_SYMBOL_GPL(pnfs_nfs_generic_sync);