summaryrefslogtreecommitdiffstats
path: root/ansible/build_yardstick_image.yml
blob: 7f709873e5db01c2f88161077248a72621cfe58a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# Copyright (c) 2017 Intel Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
---
- hosts: jumphost

  vars:
    boot_modes:
      'amd64': disk1
      'arm64': uefi1
    boot_mode: "{{ boot_modes[YARD_IMG_ARCH] }}"
    image_filename: "{{ release }}-server-cloudimg-{{ YARD_IMG_ARCH }}-{{ boot_mode }}.img"
    image_path: "{{ release }}/current/{{ image_filename }}"
    host: "{{ lookup('env', 'HOST')|default('cloud-images.ubuntu.com', true)}}"
    image_url: "{{ lookup('env', 'IMAGE_URL')|default('https://' ~ host ~ '/' ~ image_path, true) }}"
    image_dest: "{{ workspace }}/{{ image_filename }}"
    sha256sums_path: "{{ release }}/current/SHA256SUMS"
    sha256sums_filename: "{{ sha256sums_path|basename }}"
    sha256sums_url: "{{ lookup('env', 'SHA256SUMS_URL')|default('https://' ~ host ~ '/' ~ sha256sums_path, true) }}"

    workspace: "{{ lookup('env', 'workspace')|default('/tmp/workspace/yardstick', true) }}"
    raw_imgfile_basename: "yardstick-{{ release }}-server.raw"
  environment:
    - PATH: /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/root/bin
    - "{{ proxy_env }}"

  tasks:
    - group_by:
        key: image_builder

    - package: name=parted state=present

    - set_fact:
        imgfile: "{{ normal_image_file }}"
      when: img_property == "normal"

    - set_fact:
        imgfile: "{{ nsb_image_file }}"
      when: img_property == "nsb"

    - set_fact:
        mountdir: "{{ lookup('env', 'mountdir')|default('/mnt/yardstick', true) }}"

    - set_fact:
        raw_imgfile: "{{ workspace }}/{{ raw_imgfile_basename }}"

  # cleanup non-lxd
    - name: unmount all old mount points
      mount:
        name: "{{ item }}"
        state: unmounted
      with_items:
        # order matters
        - "{{ mountdir }}/proc"
        - "{{ mountdir }}"
        - "/mnt/{{ release }}"

    - name: kpartx -dv to delete all image partition device nodes
      command: kpartx -dv "{{ raw_imgfile }}"
      ignore_errors: true

    - name: delete {{ raw_imgfile }}
      file:
        path: "{{ raw_imgfile }}"
        state: absent

    # common
    - name: remove {{ mountdir }}
      file:
        path: "{{ mountdir }}"
        state: absent

    # download-common
    - name: remove {{ workspace }}
      file:
        path: "{{ workspace }}"
        state: directory

    - name: "fetch {{ image_url }} and verify "
      fetch_url_and_verify:
        url: "{{ image_url }}"
        sha256url: "{{ sha256sums_url }}"
        dest: "{{ image_dest }}"

    - name: convert image to raw
      command: "qemu-img convert {{ image_dest }} {{ raw_imgfile }}"

    - name: resize image to allow for more VNFs
      command: "qemu-img resize -f raw {{ raw_imgfile }} +2G"

    - name: resize parition to allow for more VNFs
      command: "parted -s -a optimal {{ raw_imgfile }} resizepart 1 100%"

    - name: create mknod devices in chroot
      command: "mknod -m 0660 /dev/loop{{ item }} b 7 {{ item }}"
      args:
        creates: "/dev/loop{{ item }}"
      with_sequence: start=0 end=9
      tags: mknod_devices

    - name: find first partition device
#      command: kpartx -l "{{ loop_device }}"
      command: kpartx -l "{{ raw_imgfile }}"
      register: kpartx_res

    - set_fact:
        image_first_partition: "{{ kpartx_res.stdout_lines[0].split()[0] }}"

    - set_fact:
        # assume / is the first partition
        image_first_partition_device: "/dev/mapper/{{ image_first_partition }}"

    - name: use kpartx to create device nodes for the raw image loop device
      # operate on the loop device to avoid /dev namespace missing devices
      command: kpartx -avs "{{ raw_imgfile }}"

    - name: parted dump raw image
      command: parted "{{ raw_imgfile }}" print
      register: parted_res

    - debug:
        var: parted_res
        verbosity: 2

    - name: use blkid to find filesystem type of first partition device
      command: blkid -o value -s TYPE {{ image_first_partition_device }}
      register: blkid_res

    - set_fact:
        image_fs_type: "{{ blkid_res.stdout.strip() }}"
    - fail:
        msg: "We only support ext4 image filesystems because we have to resize"
      when: image_fs_type != "ext4"

    - name: fsck the image filesystem
      command: "e2fsck -y -f {{ image_first_partition_device  }}"

    - name: resize filesystem to full partition size
      command: resize2fs {{ image_first_partition_device }}

    - name: fsck the image filesystem
      command: "e2fsck -y -f {{ image_first_partition_device  }}"

    - name: make tmp disposable fstab
      command: mktemp --tmpdir fake_fstab.XXXXXXXXXX
      register: mktemp_res

    - set_fact:
        fake_fstab: "{{ mktemp_res.stdout.strip() }}"

    - name: mount first parition on image device
      mount:
        src: "{{ image_first_partition_device }}"
        name: "{{ mountdir }}"
        # fstype is required
        fstype: "{{ image_fs_type }}"
        # !!!!!!! this is required otherwise we add entries to /etc/fstab
        # and prevent the system from booting
        fstab: "{{ fake_fstab }}"
        state: mounted

    - name: mount chroot /proc
      mount:
        src: none
        name: "{{ mountdir }}/proc"
        fstype: proc
        # !!!!!!! this is required otherwise we add entries to /etc/fstab
        # and prevent the system from booting
        fstab: "{{ fake_fstab }}"
        state: mounted

    - name: if arm copy qemu-aarch64-static into chroot
      copy:
        src: /usr/bin/qemu-aarch64-static
        dest: "{{ mountdir }}/usr/bin"
      when: 'YARD_IMG_ARCH == "arm64"'

    - name: create ubuntu policy-rc.d workaround
      copy:
        content: "{{ '#!/bin/sh\nexit 101\n' }}"
        dest: "{{ mountdir }}/usr/sbin/policy-rc.d"
        mode: 0755
      when: "target_os == 'Ubuntu'"

    - name: add chroot as host
      add_host:
        name: "{{ mountdir }}"
        groups: chroot_image,image_builder
        connection: chroot
        ansible_python_interpreter: /usr/bin/python3
        # set this host variable here
        nameserver_ip: "{{ ansible_dns.nameservers[0] }}"
        image_type: vm

- name: include ubuntu_server_cloudimg_modify.yml
  include: ubuntu_server_cloudimg_modify.yml
  when: img_property == "normal"

- name: include ubuntu_server_cloudimg_modify_samplevnfs.yml
  include: ubuntu_server_cloudimg_modify_samplevnfs.yml
  when: img_property == "nsb"

- hosts: localhost
  tasks:
    - name: convert image to image file
      command: "qemu-img convert -c -o compat=0.10 -O qcow2 {{ raw_imgfile }} {{ imgfile }}"

- name: run post build tasks
  include: post_build_yardstick_image.yml

- hosts: localhost

  tasks:
    - debug:
        msg: "yardstick image = {{ imgfile }}"
ef='#n1416'>1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
/*
// Copyright (c) 2016-2017 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/

/*
Correlated traffic VNF :
------------------------
1. Receive UDP packet
2. Modify received packet
     a. exchange src mac and destination mac
     b. exchange src ip and destination IP for both IPv4 and IPv6 cases
     c. exchange UDP src port and UDP destination port
     d. change the len of the response according to the IMIX definition (
        option to make traffic more realistic to emulate some IoT payloads)
3. send modified packet to the port where it was received.

Such VNF does not need LPM and routing table implementations.
As the packet modification is very minimal  and there is no memory access as the packet is stored in L3 cache the
performance of the solution should be sufficient for testing the UDP NAT performance.
*/

#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <string.h>
#include <sys/queue.h>
#include <stdarg.h>
#include <errno.h>
#include <getopt.h>

#include <rte_common.h>
#include <rte_vect.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_memzone.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_launch.h>
#include <rte_atomic.h>
#include <rte_cycles.h>
#include <rte_prefetch.h>
#include <rte_lcore.h>
#include <rte_per_lcore.h>
#include <rte_branch_prediction.h>
#include <rte_interrupts.h>
#include <rte_pci.h>
#include <rte_random.h>
#include <rte_debug.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_ring.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_ip.h>
#include <rte_tcp.h>
#include <rte_udp.h>
#include <rte_string_fns.h>
#include <rte_version.h>

#include <cmdline_parse.h>
#include <cmdline_parse_etheraddr.h>
#include <cmdline_rdline.h>
#include <cmdline_socket.h>
#include <cmdline.h>
#include <cmdline_parse_num.h>
#include <cmdline_parse_string.h>
#include <cmdline_parse_ipaddr.h>
#include <rte_errno.h>
#include <rte_cfgfile.h>

#include "parse_obj_list.h"

#include <lib_arp.h>
#include "l2_proto.h"
#include "interface.h"
#include "version.h"
#include "l3fwd_common.h"
#include "l3fwd_lpm4.h"
#include "l3fwd_lpm6.h"
#include "lib_icmpv6.h"
#include "app.h"
#include "vnf_common.h"
#include "gateway.h"
#define IN6ADDRSZ 16
#define INADDRSZ 4
#define APP_LOOKUP_EXACT_MATCH          0
#define APP_LOOKUP_LPM                  1
#define DO_RFC_1812_CHECKS
#if 1
#ifndef APP_LOOKUP_METHOD
#define APP_LOOKUP_METHOD             APP_LOOKUP_EXACT_MATCH
#endif
#endif

#include <stdio.h>
#include <netinet/in.h>
#include <termios.h>

/*
 *  When set to zero, simple forwaring path is eanbled.
 *  When set to one, optimized forwarding path is enabled.
 *  Note that LPM optimisation path uses SSE4.1 instructions.
 */
#if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && !defined(__SSE4_1__))
#define ENABLE_MULTI_BUFFER_OPTIMIZE	0
#else
#define ENABLE_MULTI_BUFFER_OPTIMIZE	1
#endif

#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
#include <rte_hash.h>
#elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
#include <rte_lpm.h>
#include <rte_lpm6.h>
#else
#error "APP_LOOKUP_METHOD set to incorrect value"
#endif

#ifndef IPv6_BYTES
#define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
                       "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
#define IPv6_BYTES(addr) \
	addr[0],  addr[1], addr[2],  addr[3], \
	addr[4],  addr[5], addr[6],  addr[7], \
	addr[8],  addr[9], addr[10], addr[11],\
	addr[12], addr[13],addr[14], addr[15]
#endif


#define RTE_LOGTYPE_UDP_Replay RTE_LOGTYPE_USER1

#define MAX_JUMBO_PKT_LEN  9600

#define IPV6_ADDR_LEN 16

#define MEMPOOL_CACHE_SIZE 256

/*
 * This expression is used to calculate the number of mbufs needed depending on user input, taking
 *  into account memory for rx and tx hardware rings, cache per lcore and mtable per port per lcore.
 *  RTE_MAX is used to ensure that NB_MBUF never goes below a minimum value of 8192
 */

#define NB_MBUF RTE_MAX	(																	\
				(nb_ports*nb_rx_queue*RTE_TEST_RX_DESC_DEFAULT +							\
				nb_ports*nb_lcores*MAX_PKT_BURST +											\
				nb_ports*n_tx_queue*RTE_TEST_TX_DESC_DEFAULT +								\
				nb_lcores*MEMPOOL_CACHE_SIZE),												\
				(unsigned)8192)

#define MAX_PKT_BURST     32
#define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */

/*
 * Try to avoid TX buffering if we have at least MAX_TX_BURST packets to send.
 */
#define	MAX_TX_BURST	(MAX_PKT_BURST / 2)

#define NB_SOCKETS 8

/* Configure how many packets ahead to prefetch, when reading packets */
#define PREFETCH_OFFSET	3

/* Used to mark destination port as 'invalid'. */
#define	BAD_PORT	((uint16_t)-1)

#define FWDSTEP	4

/*
 * Configurable number of RX/TX ring descriptors
 */
#define RTE_TEST_RX_DESC_DEFAULT 128
#define RTE_TEST_TX_DESC_DEFAULT 512
static uint64_t rcv_pkt_count[32] = {0};
static uint64_t tx_pkt_count[32] = {0};
static uint32_t arp_support;

unsigned num_ports;
struct sockaddr_in ipaddr1, ipaddr2;
/* ethernet addresses of ports */
static uint64_t dest_eth_addr[RTE_MAX_ETHPORTS];

static __m128i val_eth[RTE_MAX_ETHPORTS];

cmdline_parse_ctx_t main_ctx[];

uint32_t timer_lcore;
uint32_t exit_loop = 1;
port_config_t *port_config;

#define MEMPOOL_SIZE	32 * 1024
#define BUFFER_SIZE		2048
#define CACHE_SIZE		256
/* replace first 12B of the ethernet header. */
#define	MASK_ETH	0x3f

#define IP_TYPE_IPV4	0
#define IP_TYPE_IPV6	1
#define MAX_IP		32
const char* ipv4[MAX_IP];
uint8_t link_ipv6[MAX_IP][16];
uint32_t	type, numports;
/* mask of enabled ports */
static uint32_t enabled_port_mask = 0;
static int promiscuous_on = 0; /**< Ports set in promiscuous mode off by default. */
static int numa_on = 1; /**< NUMA is enabled by default. */
static int csum_on = 1; /**< NUMA is enabled by default. */
struct pipeline_params def_pipeline_params = {
        .n_ports_in = 0,
        .n_ports_out = 0,
        .n_msgq = 0,
        .socket_id = 0,
        .n_args = 0,
        .log_level = 0,
};

#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
static int ipv6 = 0; /**< ipv6 is false by default. */
#endif

void convert_ipstr_to_numeric(void);

int print_l4stats(void);
int clear_stats(void);

struct mbuf_table {
	uint16_t len;
	struct rte_mbuf *m_table[MAX_PKT_BURST];
};

struct lcore_rx_queue {
	uint8_t port_id;
	uint8_t queue_id;
} __rte_cache_aligned;

#define MAX_RX_QUEUE_PER_LCORE 16
#define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS
#define MAX_RX_QUEUE_PER_PORT 128

#define MAX_LCORE_PARAMS 1024
struct lcore_params {
	uint8_t port_id;
	uint8_t queue_id;
	uint8_t lcore_id;
} __rte_cache_aligned;

static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
static struct lcore_params lcore_params_array_default[] = {
	{0, 0, 2},
	{0, 1, 2},
	{0, 2, 2},
	{1, 0, 2},
	{1, 1, 2},
	{1, 2, 2},
	{2, 0, 2},
	{3, 0, 3},
	{3, 1, 3},
};

static struct lcore_params * lcore_params = lcore_params_array_default;
static uint16_t nb_lcore_params = sizeof(lcore_params_array_default) /
				sizeof(lcore_params_array_default[0]);

static struct rte_eth_conf port_conf = {
	.rxmode = {
		.mq_mode = ETH_MQ_RX_RSS,
		.max_rx_pkt_len = ETHER_MAX_LEN,
		.split_hdr_size = 0,
		.header_split   = 0, /**< Header Split disabled */
		.hw_ip_checksum = 1, /**< IP checksum offload enabled */
		.hw_vlan_filter = 0, /**< VLAN filtering disabled */
		.jumbo_frame    = 0, /**< Jumbo Frame Support disabled */
		.hw_strip_crc   = 0, /**< CRC stripped by hardware */
	},
	.rx_adv_conf = {
		.rss_conf = {
			.rss_key = NULL,
			.rss_hf = ETH_RSS_IP,
		},
	},
	.txmode = {
		.mq_mode = ETH_MQ_TX_NONE,
	},
};

/* empty vmdq configuration structure. Filled in programatically */
static struct rte_eth_rxconf rx_conf = {
		.rx_thresh = {
			.pthresh = 8,
			.hthresh = 8,
			.wthresh = 4,
		},
		.rx_free_thresh = 64,
		.rx_drop_en = 0,
		.rx_deferred_start = 0,
};
static struct rte_eth_txconf tx_conf = {
		.tx_thresh = {
			.pthresh = 36,
			.hthresh = 0,
			.wthresh = 0,
		},
		.tx_rs_thresh = 0,
		.tx_free_thresh = 0,
		.txq_flags = ETH_TXQ_FLAGS_NOMULTSEGS |
			ETH_TXQ_FLAGS_NOOFFLOADS,
		.tx_deferred_start = 0,
};

#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)

#ifdef RTE_MACHINE_CPUFLAG_SSE4_2
#include <rte_hash_crc.h>
#define DEFAULT_HASH_FUNC       rte_hash_crc
#else
#include <rte_jhash.h>
#define DEFAULT_HASH_FUNC       rte_jhash
#endif

struct ipv4_5tuple {
        uint32_t ip_dst;
        uint32_t ip_src;
        uint16_t port_dst;
        uint16_t port_src;
        uint8_t  proto;
} __attribute__((__packed__));

union ipv4_5tuple_host {
	struct {
		uint8_t  pad0;
		uint8_t  proto;
		uint16_t pad1;
		uint32_t ip_src;
		uint32_t ip_dst;
		uint16_t port_src;
		uint16_t port_dst;
	};
	__m128i xmm;
};

#define XMM_NUM_IN_IPV6_5TUPLE 3

struct ipv6_5tuple {
        uint8_t  ip_dst[IPV6_ADDR_LEN];
        uint8_t  ip_src[IPV6_ADDR_LEN];
        uint16_t port_dst;
        uint16_t port_src;
        uint8_t  proto;
} __attribute__((__packed__));

union ipv6_5tuple_host {
	struct {
		uint16_t pad0;
		uint8_t  proto;
		uint8_t  pad1;
		uint8_t  ip_src[IPV6_ADDR_LEN];
		uint8_t  ip_dst[IPV6_ADDR_LEN];
		uint16_t port_src;
		uint16_t port_dst;
		uint64_t reserve;
	};
	__m128i xmm[XMM_NUM_IN_IPV6_5TUPLE];
};

struct ipv4_udp_replay_route {
	struct ipv4_5tuple key;
	uint8_t if_out;
};

struct ipv6_udp_replay_route {
	struct ipv6_5tuple key;
	uint8_t if_out;
};

static struct ipv4_udp_replay_route ipv4_udp_replay_route_array[] = {
	{{IPv4(101,0,0,0), IPv4(100,10,0,1),  101, 11, IPPROTO_TCP}, 0},
	{{IPv4(201,0,0,0), IPv4(200,20,0,1),  102, 12, IPPROTO_TCP}, 1},
	{{IPv4(111,0,0,0), IPv4(100,30,0,1),  101, 11, IPPROTO_TCP}, 2},
	{{IPv4(211,0,0,0), IPv4(200,40,0,1),  102, 12, IPPROTO_TCP}, 3},
};

static struct ipv6_udp_replay_route ipv6_udp_replay_route_array[] = {
	{{
	{0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
	{0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
	101, 11, IPPROTO_TCP}, 0},

	{{
	{0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
	{0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
	102, 12, IPPROTO_TCP}, 1},

	{{
	{0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
	{0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
	101, 11, IPPROTO_TCP}, 2},

	{{
	{0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
	{0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
	102, 12, IPPROTO_TCP}, 3},
};

typedef struct rte_hash lookup_struct_t;

#ifdef RTE_ARCH_X86_64
/* default to 4 million hash entries (approx) */
#define UDP_Replay_HASH_ENTRIES		1024*1024*4
#else
/* 32-bit has less address-space for hugepage memory, limit to 1M entries */
#define UDP_Replay_HASH_ENTRIES		1024*1024*1
#endif
#define HASH_ENTRY_NUMBER_DEFAULT	4

static uint32_t hash_entry_number = HASH_ENTRY_NUMBER_DEFAULT;
void
app_link_up_internal(__rte_unused struct app_params *app, struct app_link_params *cp)
{
	cp->state = 1;
}
void
app_link_down_internal(__rte_unused struct app_params *app, struct app_link_params *cp)
{
	cp->state = 0;
}

void convert_ipstr_to_numeric(void)
{
	uint32_t i;
	for (i = 0; i < numports; i++)
	{
		if (type == IP_TYPE_IPV4) {
        		memset(&ipaddr1, '\0', sizeof(struct sockaddr_in));
			ipaddr1.sin_addr.s_addr = inet_addr(ipv4[i]);
			ifm_add_ipv4_port(i, ipaddr1.sin_addr.s_addr, 24);
		} else if (type == IP_TYPE_IPV6) {
			ifm_add_ipv6_port(i, &link_ipv6[i][0], 128);
		}
	}
}

static inline uint32_t
ipv4_hash_crc(const void *data, __rte_unused uint32_t data_len,
	uint32_t init_val)
{
	const union ipv4_5tuple_host *k;
	uint32_t t;
	const uint32_t *p;

	k = data;
	t = k->proto;
	p = (const uint32_t *)&k->port_src;

#ifdef RTE_MACHINE_CPUFLAG_SSE4_2
	init_val = rte_hash_crc_4byte(t, init_val);
	init_val = rte_hash_crc_4byte(k->ip_src, init_val);
	init_val = rte_hash_crc_4byte(k->ip_dst, init_val);
	init_val = rte_hash_crc_4byte(*p, init_val);
#else /* RTE_MACHINE_CPUFLAG_SSE4_2 */
	init_val = rte_jhash_1word(t, init_val);
	init_val = rte_jhash_1word(k->ip_src, init_val);
	init_val = rte_jhash_1word(k->ip_dst, init_val);
	init_val = rte_jhash_1word(*p, init_val);
#endif /* RTE_MACHINE_CPUFLAG_SSE4_2 */
	return (init_val);
}
static int arp_pkts;
static inline int check_arpicmp(struct rte_mbuf *pkt)
{
	uint8_t in_port_id = pkt->port;
	uint32_t eth_proto_offset = MBUF_HDR_ROOM + 12;
	uint16_t *eth_proto =
			RTE_MBUF_METADATA_UINT16_PTR(pkt, eth_proto_offset);
	uint8_t *protocol;
	uint32_t prot_offset =
			MBUF_HDR_ROOM + ETH_HDR_SIZE + IP_HDR_PROTOCOL_OFST;
	protocol = RTE_MBUF_METADATA_UINT8_PTR(pkt, prot_offset);
	if ((rte_be_to_cpu_16(*eth_proto) == ETH_TYPE_ARP) ||
			((rte_be_to_cpu_16(*eth_proto) == ETH_TYPE_IPV4)
			&& (*protocol == IP_PROTOCOL_ICMP))) {
			process_arpicmp_pkt(pkt, ifm_get_port(in_port_id));
			arp_pkts++;
			return 0;
	}
	return 1;
}
static inline int check_arpicmpv6(struct rte_mbuf *pkt)
{
	struct ether_hdr *eth_h;
	struct ipv6_hdr *ipv6_h;
	uint8_t in_port_id = pkt->port;
	uint32_t eth_proto_offset = MBUF_HDR_ROOM + 12;
	uint16_t *eth_proto =
			RTE_MBUF_METADATA_UINT16_PTR(pkt, eth_proto_offset);
	eth_h = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
	ipv6_h = (struct ipv6_hdr *)((char *)eth_h + sizeof(struct ether_hdr));
	if ((rte_be_to_cpu_16(*eth_proto) == ETH_TYPE_IPV6)
					&& (ipv6_h->proto == ICMPV6_PROTOCOL_ID)) {
			process_icmpv6_pkt(pkt, ifm_get_port(in_port_id));
			return 0;
	}
	return 1;
}

static inline uint32_t
ipv6_hash_crc(const void *data, __rte_unused uint32_t data_len, uint32_t init_val)
{
	const union ipv6_5tuple_host *k;
	uint32_t t;
	const uint32_t *p;
#ifdef RTE_MACHINE_CPUFLAG_SSE4_2
	const uint32_t  *ip_src0, *ip_src1, *ip_src2, *ip_src3;
	const uint32_t  *ip_dst0, *ip_dst1, *ip_dst2, *ip_dst3;
#endif /* RTE_MACHINE_CPUFLAG_SSE4_2 */

	k = data;
	t = k->proto;
	p = (const uint32_t *)&k->port_src;

#ifdef RTE_MACHINE_CPUFLAG_SSE4_2
	ip_src0 = (const uint32_t *) k->ip_src;
	ip_src1 = (const uint32_t *)(k->ip_src+4);
	ip_src2 = (const uint32_t *)(k->ip_src+8);
	ip_src3 = (const uint32_t *)(k->ip_src+12);
	ip_dst0 = (const uint32_t *) k->ip_dst;
	ip_dst1 = (const uint32_t *)(k->ip_dst+4);
	ip_dst2 = (const uint32_t *)(k->ip_dst+8);
	ip_dst3 = (const uint32_t *)(k->ip_dst+12);
	init_val = rte_hash_crc_4byte(t, init_val);
	init_val = rte_hash_crc_4byte(*ip_src0, init_val);
	init_val = rte_hash_crc_4byte(*ip_src1, init_val);
	init_val = rte_hash_crc_4byte(*ip_src2, init_val);
	init_val = rte_hash_crc_4byte(*ip_src3, init_val);
	init_val = rte_hash_crc_4byte(*ip_dst0, init_val);
	init_val = rte_hash_crc_4byte(*ip_dst1, init_val);
	init_val = rte_hash_crc_4byte(*ip_dst2, init_val);
	init_val = rte_hash_crc_4byte(*ip_dst3, init_val);
	init_val = rte_hash_crc_4byte(*p, init_val);
#else /* RTE_MACHINE_CPUFLAG_SSE4_2 */
	init_val = rte_jhash_1word(t, init_val);
	init_val = rte_jhash(k->ip_src, sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
	init_val = rte_jhash(k->ip_dst, sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
	init_val = rte_jhash_1word(*p, init_val);
#endif /* RTE_MACHINE_CPUFLAG_SSE4_2 */
	return (init_val);
}

#define IPV4_UDP_Replay_NUM_ROUTES \
	(sizeof(ipv4_udp_replay_route_array) / sizeof(ipv4_udp_replay_route_array[0]))

#define IPV6_UDP_Replay_NUM_ROUTES \
	(sizeof(ipv6_udp_replay_route_array) / sizeof(ipv6_udp_replay_route_array[0]))

static uint8_t ipv4_udp_replay_out_if[UDP_Replay_HASH_ENTRIES] __rte_cache_aligned;
static uint8_t ipv6_udp_replay_out_if[UDP_Replay_HASH_ENTRIES] __rte_cache_aligned;

#endif

#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
struct ipv4_udp_replay_route {
	uint32_t ip;
	uint8_t  depth;
	uint8_t  if_out;
};

struct ipv6_udp_replay_route {
	uint8_t ip[16];
	uint8_t  depth;
	uint8_t  if_out;
};

static struct ipv4_udp_replay_route ipv4_udp_replay_route_array[] = {
	{IPv4(1,1,1,0), 24, 0},
	{IPv4(2,1,1,0), 24, 1},
	{IPv4(3,1,1,0), 24, 2},
	{IPv4(4,1,1,0), 24, 3},
	{IPv4(5,1,1,0), 24, 4},
	{IPv4(6,1,1,0), 24, 5},
	{IPv4(7,1,1,0), 24, 6},
	{IPv4(8,1,1,0), 24, 7},
};

static struct ipv6_udp_replay_route ipv6_udp_replay_route_array[] = {
	{{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0},
	{{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1},
	{{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2},
	{{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3},
	{{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4},
	{{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5},
	{{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6},
	{{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7},
};

#define IPV4_UDP_Replay_NUM_ROUTES \
	(sizeof(ipv4_udp_replay_route_array) / sizeof(ipv4_udp_replay_route_array[0]))
#define IPV6_UDP_Replay_NUM_ROUTES \
	(sizeof(ipv6_udp_replay_route_array) / sizeof(ipv6_udp_replay_route_array[0]))

#define IPV4_UDP_Replay_LPM_MAX_RULES         1024
#define IPV6_UDP_Replay_LPM_MAX_RULES         1024
#define IPV6_UDP_Replay_LPM_NUMBER_TBL8S (1 << 16)

typedef struct rte_lpm lookup_struct_t;
typedef struct rte_lpm6 lookup6_struct_t;
static lookup_struct_t *ipv4_udp_replay_lookup_struct[NB_SOCKETS];
static lookup6_struct_t *ipv6_udp_replay_lookup_struct[NB_SOCKETS];
#endif

struct lcore_conf {
	uint16_t n_rx_queue;
	struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
	uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
	struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];
	lookup_struct_t * ipv4_lookup_struct;
#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
	lookup6_struct_t * ipv6_lookup_struct;
#else
	lookup_struct_t * ipv6_lookup_struct;
#endif
} __rte_cache_aligned;

static struct lcore_conf lcore_conf[RTE_MAX_LCORE];

/* Send burst of packets on an output interface */
static inline int
send_burst(struct lcore_conf *qconf, uint16_t n, uint8_t port)
{
	struct rte_mbuf **m_table;
	int ret;
	uint16_t queueid;

	queueid = qconf->tx_queue_id[port];
	m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;

	ret = rte_eth_tx_burst(port, queueid, m_table, n);
	if (unlikely(ret < n)) {
		do {
			rte_pktmbuf_free(m_table[ret]);
		} while (++ret < n);
	}
	/*Tx Pkt count*/
	tx_pkt_count[port] += ret;
	return 0;
}

/* Enqueue a single packet, and send burst if queue is filled */
static inline int
send_single_packet(struct rte_mbuf *m, uint8_t port)
{
	uint32_t lcore_id;
	uint16_t len;
	struct lcore_conf *qconf;

	lcore_id = rte_lcore_id();

	qconf = &lcore_conf[lcore_id];
	len = qconf->tx_mbufs[port].len;
	qconf->tx_mbufs[port].m_table[len] = m;
	len++;

	/* enough pkts to be sent */
	if (unlikely(len == MAX_PKT_BURST)) {
		send_burst(qconf, MAX_PKT_BURST, port);
		len = 0;
	}

	qconf->tx_mbufs[port].len = len;
	return 0;
}

#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
static inline __attribute__((always_inline)) void
send_packetsx4(struct lcore_conf *qconf, uint8_t port,
	struct rte_mbuf *m[], uint32_t num)
{
	uint32_t len, j, n;

	len = qconf->tx_mbufs[port].len;

	/*
	 * If TX buffer for that queue is empty, and we have enough packets,
	 * then send them straightway.
	 */
	if (num >= MAX_TX_BURST && len == 0) {
		n = rte_eth_tx_burst(port, qconf->tx_queue_id[port], m, num);
		if (unlikely(n < num)) {
			do {
				rte_pktmbuf_free(m[n]);
			} while (++n < num);
		}
		return;
	}

	/*
	 * Put packets into TX buffer for that queue.
	 */

	n = len + num;
	n = (n > MAX_PKT_BURST) ? MAX_PKT_BURST - len : num;

	j = 0;
	switch (n % FWDSTEP) {
	while (j < n) {
	case 0:
		qconf->tx_mbufs[port].m_table[len + j] = m[j];
		j++;
	case 3:
		qconf->tx_mbufs[port].m_table[len + j] = m[j];
		j++;
	case 2:
		qconf->tx_mbufs[port].m_table[len + j] = m[j];
		j++;
	case 1:
		qconf->tx_mbufs[port].m_table[len + j] = m[j];
		j++;
	}
	}

	len += n;

	/* enough pkts to be sent */
	if (unlikely(len == MAX_PKT_BURST)) {

		send_burst(qconf, MAX_PKT_BURST, port);

		/* copy rest of the packets into the TX buffer. */
		len = num - n;
		j = 0;
		switch (len % FWDSTEP) {
		while (j < len) {
		case 0:
			qconf->tx_mbufs[port].m_table[j] = m[n + j];
			j++;
		case 3:
			qconf->tx_mbufs[port].m_table[j] = m[n + j];
			j++;
		case 2:
			qconf->tx_mbufs[port].m_table[j] = m[n + j];
			j++;
		case 1:
			qconf->tx_mbufs[port].m_table[j] = m[n + j];
			j++;
		}
		}
	}

	qconf->tx_mbufs[port].len = len;
}
#endif /* APP_LOOKUP_LPM */

#ifdef DO_RFC_1812_CHECKS
static inline int
is_valid_pkt_ipv4(struct ipv4_hdr *pkt, uint32_t link_len)
{
	/* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */
	/*
	 * 1. The packet length reported by the Link Layer must be large
	 * enough to hold the minimum length legal IP datagram (20 bytes).
	 */
	if (link_len < sizeof(struct ipv4_hdr))
		return -1;

	/* 2. The IP checksum must be correct. */
	/* this is checked in H/W */

	/*
	 * 3. The IP version number must be 4. If the version number is not 4
	 * then the packet may be another version of IP, such as IPng or
	 * ST-II.
	 */
	if (((pkt->version_ihl) >> 4) != 4)
		return -3;
	/*
	 * 4. The IP header length field must be large enough to hold the
	 * minimum length legal IP datagram (20 bytes = 5 words).
	 */
	if ((pkt->version_ihl & 0xf) < 5)
		return -4;

	/*
	 * 5. The IP total length field must be large enough to hold the IP
	 * datagram header, whose length is specified in the IP header length
	 * field.
	 */
	if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct ipv4_hdr))
		return -5;

	return 0;
}
#endif

#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)

static __m128i mask0;
static __m128i mask1;
static __m128i mask2;
static inline uint8_t
get_ipv4_dst_port(void *ipv4_hdr, uint8_t portid, lookup_struct_t * ipv4_udp_replay_lookup_struct)
{
	int ret = 0;
	union ipv4_5tuple_host key;

	ipv4_hdr = (uint8_t *)ipv4_hdr + offsetof(struct ipv4_hdr, time_to_live);
	__m128i data = _mm_loadu_si128((__m128i*)(ipv4_hdr));
	/* Get 5 tuple: dst port, src port, dst IP address, src IP address and protocol */
	key.xmm = _mm_and_si128(data, mask0);
	/* Find destination port */
	ret = rte_hash_lookup(ipv4_udp_replay_lookup_struct, (const void *)&key);
	return (uint8_t)((ret < 0)? portid : ipv4_udp_replay_out_if[ret]);
}

static inline uint8_t
get_ipv6_dst_port(void *ipv6_hdr,  uint8_t portid, lookup_struct_t * ipv6_udp_replay_lookup_struct)
{
	int ret = 0;
	union ipv6_5tuple_host key;

	ipv6_hdr = (uint8_t *)ipv6_hdr + offsetof(struct ipv6_hdr, payload_len);
	__m128i data0 = _mm_loadu_si128((__m128i*)(ipv6_hdr));
	__m128i data1 = _mm_loadu_si128((__m128i*)(((uint8_t*)ipv6_hdr)+sizeof(__m128i)));
	__m128i data2 = _mm_loadu_si128((__m128i*)(((uint8_t*)ipv6_hdr)+sizeof(__m128i)+sizeof(__m128i)));
	/* Get part of 5 tuple: src IP address lower 96 bits and protocol */
	key.xmm[0] = _mm_and_si128(data0, mask1);
	/* Get part of 5 tuple: dst IP address lower 96 bits and src IP address higher 32 bits */
	key.xmm[1] = data1;
	/* Get part of 5 tuple: dst port and src port and dst IP address higher 32 bits */
	key.xmm[2] = _mm_and_si128(data2, mask2);

	/* Find destination port */
	ret = rte_hash_lookup(ipv6_udp_replay_lookup_struct, (const void *)&key);
	return (uint8_t)((ret < 0)? portid : ipv6_udp_replay_out_if[ret]);
}
#endif

#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)

static inline uint8_t
get_ipv4_dst_port(void *ipv4_hdr,  uint8_t portid, lookup_struct_t * ipv4_udp_replay_lookup_struct)
{
	uint8_t next_hop;

	return (uint8_t) ((rte_lpm_lookup(ipv4_udp_replay_lookup_struct,
		rte_be_to_cpu_32(((struct ipv4_hdr *)ipv4_hdr)->dst_addr),
		&next_hop) == 0) ? next_hop : portid);
}

static inline uint8_t
get_ipv6_dst_port(void *ipv6_hdr,  uint8_t portid, lookup6_struct_t * ipv6_udp_replay_lookup_struct)
{
	uint8_t next_hop;
	return (uint8_t) ((rte_lpm6_lookup(ipv6_udp_replay_lookup_struct,
			((struct ipv6_hdr*)ipv6_hdr)->dst_addr, &next_hop) == 0)?
			next_hop : portid);
}
#endif

static inline void udp_replay_simple_replay(struct rte_mbuf *m, uint8_t portid,
	struct lcore_conf *qconf)  __attribute__((unused));

#if ((APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) && \
	(ENABLE_MULTI_BUFFER_OPTIMIZE == 1))

#define MASK_ALL_PKTS    0xff
#define EXCLUDE_1ST_PKT 0xfe
#define EXCLUDE_2ND_PKT 0xfd
#define EXCLUDE_3RD_PKT 0xfb
#define EXCLUDE_4TH_PKT 0xf7
#define EXCLUDE_5TH_PKT 0xef
#define EXCLUDE_6TH_PKT 0xdf
#define EXCLUDE_7TH_PKT 0xbf
#define EXCLUDE_8TH_PKT 0x7f

static inline void
simple_ipv4_replay_8pkts(struct rte_mbuf *m[8], uint8_t portid, struct lcore_conf *qconf)
{
	struct ether_hdr *eth_hdr[8];
	struct ether_hdr tmp;
	struct ipv4_hdr *ipv4_hdr[8];
	struct udp_hdr *udp_hdr[8];
	int i;
	l2_phy_interface_t *port = ifm_get_port(portid);
	if (port == NULL) {
		printf("port may be un initialized\n");
		return;
	}
	if (unlikely(arp_support)) {
		check_arpicmp(m[0]);
		check_arpicmp(m[1]);
		check_arpicmp(m[2]);
		check_arpicmp(m[3]);
		check_arpicmp(m[4]);
		check_arpicmp(m[5]);
		check_arpicmp(m[6]);
		check_arpicmp(m[7]);
	}

	eth_hdr[0] = rte_pktmbuf_mtod(m[0], struct ether_hdr *);
	eth_hdr[1] = rte_pktmbuf_mtod(m[1], struct ether_hdr *);
	eth_hdr[2] = rte_pktmbuf_mtod(m[2], struct ether_hdr *);
	eth_hdr[3] = rte_pktmbuf_mtod(m[3], struct ether_hdr *);
	eth_hdr[4] = rte_pktmbuf_mtod(m[4], struct ether_hdr *);
	eth_hdr[5] = rte_pktmbuf_mtod(m[5], struct ether_hdr *);
	eth_hdr[6] = rte_pktmbuf_mtod(m[6], struct ether_hdr *);
	eth_hdr[7] = rte_pktmbuf_mtod(m[7], struct ether_hdr *);


        memset(&tmp,0,sizeof (struct ether_hdr));

        for(i=0;i<8;i++)
        {

	ether_addr_copy(&eth_hdr[i]->s_addr, &tmp.s_addr);
	ether_addr_copy(&eth_hdr[i]->d_addr, &eth_hdr[i]->s_addr);
	ether_addr_copy(&tmp.s_addr, &eth_hdr[i]->d_addr);
        }

	/* Handle IPv4 headers.*/
	ipv4_hdr[0] = rte_pktmbuf_mtod_offset(m[0], struct ipv4_hdr *,
					      sizeof(struct ether_hdr));
	ipv4_hdr[1] = rte_pktmbuf_mtod_offset(m[1], struct ipv4_hdr *,
					      sizeof(struct ether_hdr));
	ipv4_hdr[2] = rte_pktmbuf_mtod_offset(m[2], struct ipv4_hdr *,
					      sizeof(struct ether_hdr));
	ipv4_hdr[3] = rte_pktmbuf_mtod_offset(m[3], struct ipv4_hdr *,
					      sizeof(struct ether_hdr));
	ipv4_hdr[4] = rte_pktmbuf_mtod_offset(m[4], struct ipv4_hdr *,
					      sizeof(struct ether_hdr));
	ipv4_hdr[5] = rte_pktmbuf_mtod_offset(m[5], struct ipv4_hdr *,
					      sizeof(struct ether_hdr));
	ipv4_hdr[6] = rte_pktmbuf_mtod_offset(m[6], struct ipv4_hdr *,
					      sizeof(struct ether_hdr));
	ipv4_hdr[7] = rte_pktmbuf_mtod_offset(m[7], struct ipv4_hdr *,
					      sizeof(struct ether_hdr));
        struct ipv4_hdr temp_ipv4;
	temp_ipv4.dst_addr = ipv4_hdr[0]->dst_addr;
	ipv4_hdr[0]->dst_addr = ipv4_hdr[0]->src_addr;
	ipv4_hdr[0]->src_addr = temp_ipv4.dst_addr;
	temp_ipv4.dst_addr = ipv4_hdr[1]->dst_addr;
	ipv4_hdr[1]->dst_addr = ipv4_hdr[1]->src_addr;
	ipv4_hdr[1]->src_addr = temp_ipv4.dst_addr;
	temp_ipv4.dst_addr = ipv4_hdr[2]->dst_addr;
	ipv4_hdr[2]->dst_addr = ipv4_hdr[2]->src_addr;
	ipv4_hdr[2]->src_addr = temp_ipv4.dst_addr;
	temp_ipv4.dst_addr = ipv4_hdr[3]->dst_addr;
	ipv4_hdr[3]->dst_addr = ipv4_hdr[3]->src_addr;
	ipv4_hdr[3]->src_addr = temp_ipv4.dst_addr;
	temp_ipv4.dst_addr = ipv4_hdr[4]->dst_addr;
	ipv4_hdr[4]->dst_addr = ipv4_hdr[4]->src_addr;
	ipv4_hdr[4]->src_addr = temp_ipv4.dst_addr;
	temp_ipv4.dst_addr = ipv4_hdr[5]->dst_addr;
	ipv4_hdr[5]->dst_addr = ipv4_hdr[5]->src_addr;
	ipv4_hdr[5]->src_addr = temp_ipv4.dst_addr;
	temp_ipv4.dst_addr = ipv4_hdr[6]->dst_addr;
	ipv4_hdr[6]->dst_addr = ipv4_hdr[6]->src_addr;
	ipv4_hdr[6]->src_addr = temp_ipv4.dst_addr;
	temp_ipv4.dst_addr = ipv4_hdr[7]->dst_addr;
	ipv4_hdr[7]->dst_addr = ipv4_hdr[7]->src_addr;
	ipv4_hdr[7]->src_addr = temp_ipv4.dst_addr;

	/* Handle UDP headers.*/
	udp_hdr[0] = rte_pktmbuf_mtod_offset(m[0], struct udp_hdr *,
			 sizeof(struct ether_hdr)+sizeof(struct ipv4_hdr));

	udp_hdr[1] = rte_pktmbuf_mtod_offset(m[1], struct udp_hdr *,
			 sizeof(struct ether_hdr)+sizeof(struct ipv4_hdr));
	udp_hdr[2] = rte_pktmbuf_mtod_offset(m[2], struct udp_hdr *,
			 sizeof(struct ether_hdr)+sizeof(struct ipv4_hdr));
	udp_hdr[3] = rte_pktmbuf_mtod_offset(m[3], struct udp_hdr *,
			 sizeof(struct ether_hdr)+sizeof(struct ipv4_hdr));
	udp_hdr[4] = rte_pktmbuf_mtod_offset(m[4], struct udp_hdr *,
			 sizeof(struct ether_hdr)+sizeof(struct ipv4_hdr));
	udp_hdr[5] = rte_pktmbuf_mtod_offset(m[5], struct udp_hdr *,
			 sizeof(struct ether_hdr)+sizeof(struct ipv4_hdr));
	udp_hdr[6] = rte_pktmbuf_mtod_offset(m[6], struct udp_hdr *,
			 sizeof(struct ether_hdr)+sizeof(struct ipv4_hdr));
	udp_hdr[7] = rte_pktmbuf_mtod_offset(m[7], struct udp_hdr *,
			 sizeof(struct ether_hdr)+sizeof(struct ipv4_hdr));
       /*1) memcpy or assignment.*/

        struct udp_hdr temp_udp;
	temp_udp.dst_port = udp_hdr[0]->dst_port;
	udp_hdr[0]->dst_port = udp_hdr[0]->src_port;
	udp_hdr[0]->src_port = temp_udp.dst_port;
	temp_udp.dst_port = udp_hdr[1]->dst_port;
	udp_hdr[1]->dst_port = udp_hdr[1]->src_port;
	udp_hdr[1]->src_port = temp_udp.dst_port;
	temp_udp.dst_port = udp_hdr[2]->dst_port;
	udp_hdr[2]->dst_port = udp_hdr[2]->src_port;
	udp_hdr[2]->src_port = temp_udp.dst_port;
	temp_udp.dst_port = udp_hdr[3]->dst_port;
	udp_hdr[3]->dst_port = udp_hdr[3]->src_port;
	udp_hdr[3]->src_port = temp_udp.dst_port;
	temp_udp.dst_port = udp_hdr[4]->dst_port;
	udp_hdr[4]->dst_port = udp_hdr[4]->src_port;
	udp_hdr[4]->src_port = temp_udp.dst_port;
	temp_udp.dst_port = udp_hdr[5]->dst_port;
	udp_hdr[5]->dst_port = udp_hdr[5]->src_port;
	udp_hdr[5]->src_port = temp_udp.dst_port;
	temp_udp.dst_port = udp_hdr[6]->dst_port;
	udp_hdr[6]->dst_port = udp_hdr[6]->src_port;
	udp_hdr[6]->src_port = temp_udp.dst_port;
	temp_udp.dst_port = udp_hdr[7]->dst_port;
	udp_hdr[7]->dst_port = udp_hdr[7]->src_port;
	udp_hdr[7]->src_port = temp_udp.dst_port;
#ifdef DO_RFC_1812_CHECKS
	/* Check to make sure the packet is valid (RFC1812) */
	uint8_t valid_mask = MASK_ALL_PKTS;
	if (is_valid_pkt_ipv4(ipv4_hdr[0], m[0]->pkt_len) < 0) {
		rte_pktmbuf_free(m[0]);
		valid_mask &= EXCLUDE_1ST_PKT;
	}
	if (is_valid_pkt_ipv4(ipv4_hdr[1], m[1]->pkt_len) < 0) {
		rte_pktmbuf_free(m[1]);
		valid_mask &= EXCLUDE_2ND_PKT;
	}
	if (is_valid_pkt_ipv4(ipv4_hdr[2], m[2]->pkt_len) < 0) {
		rte_pktmbuf_free(m[2]);
		valid_mask &= EXCLUDE_3RD_PKT;
	}
	if (is_valid_pkt_ipv4(ipv4_hdr[3], m[3]->pkt_len) < 0) {
		rte_pktmbuf_free(m[3]);
		valid_mask &= EXCLUDE_4TH_PKT;
	}
	if (is_valid_pkt_ipv4(ipv4_hdr[4], m[4]->pkt_len) < 0) {
		rte_pktmbuf_free(m[4]);
		valid_mask &= EXCLUDE_5TH_PKT;
	}
	if (is_valid_pkt_ipv4(ipv4_hdr[5], m[5]->pkt_len) < 0) {
		rte_pktmbuf_free(m[5]);
		valid_mask &= EXCLUDE_6TH_PKT;
	}
	if (is_valid_pkt_ipv4(ipv4_hdr[6], m[6]->pkt_len) < 0) {
		rte_pktmbuf_free(m[6]);
		valid_mask &= EXCLUDE_7TH_PKT;
	}
	if (is_valid_pkt_ipv4(ipv4_hdr[7], m[7]->pkt_len) < 0) {
		rte_pktmbuf_free(m[7]);
		valid_mask &= EXCLUDE_8TH_PKT;
	}
	if (unlikely(valid_mask != MASK_ALL_PKTS)) {
		if (valid_mask == 0){
			return;
		} else {
			uint8_t i = 0;
			for (i = 0; i < 8; i++) {
				if ((0x1 << i) & valid_mask) {
					udp_replay_simple_replay(m[i], portid, qconf);
				}
			}
			return;
		}
	}
#endif // End of #ifdef DO_RFC_1812_CHECKS

#ifdef DO_RFC_1812_CHECKS
	/* Update time to live and header checksum */
	--(ipv4_hdr[0]->time_to_live);
	--(ipv4_hdr[1]->time_to_live);
	--(ipv4_hdr[2]->time_to_live);
	--(ipv4_hdr[3]->time_to_live);
	++(ipv4_hdr[0]->hdr_checksum);
	++(ipv4_hdr[1]->hdr_checksum);
	++(ipv4_hdr[2]->hdr_checksum);
	++(ipv4_hdr[3]->hdr_checksum);
	--(ipv4_hdr[4]->time_to_live);
	--(ipv4_hdr[5]->time_to_live);
	--(ipv4_hdr[6]->time_to_live);
	--(ipv4_hdr[7]->time_to_live);
	++(ipv4_hdr[4]->hdr_checksum);
	++(ipv4_hdr[5]->hdr_checksum);
	++(ipv4_hdr[6]->hdr_checksum);
	++(ipv4_hdr[7]->hdr_checksum);
#endif

	send_single_packet(m[0],portid );
	send_single_packet(m[1],portid );
	send_single_packet(m[2],portid );
	send_single_packet(m[3],portid);
	send_single_packet(m[4],portid);
	send_single_packet(m[5],portid);
	send_single_packet(m[6],portid);
	send_single_packet(m[7],portid);

}

static inline void get_ipv6_5tuple(struct rte_mbuf* m0, __m128i mask0, __m128i mask1,
				 union ipv6_5tuple_host * key)
{
        __m128i tmpdata0 = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m0, __m128i *, sizeof(struct ether_hdr) + offsetof(struct ipv6_hdr, payload_len)));
        __m128i tmpdata1 = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m0, __m128i *, sizeof(struct ether_hdr) + offsetof(struct ipv6_hdr, payload_len) + sizeof(__m128i)));
        __m128i tmpdata2 = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m0, __m128i *, sizeof(struct ether_hdr) + offsetof(struct ipv6_hdr, payload_len) + sizeof(__m128i) + sizeof(__m128i)));
        key->xmm[0] = _mm_and_si128(tmpdata0, mask0);
        key->xmm[1] = tmpdata1;
        key->xmm[2] = _mm_and_si128(tmpdata2, mask1);
	return;
}

static inline void
simple_ipv6_replay_8pkts(struct rte_mbuf *m[8], uint8_t portid, struct lcore_conf *qconf)
{
	struct ether_hdr *eth_hdr[8],tmp;
	int i;
	__attribute__((unused)) struct ipv6_hdr *ipv6_hdr[8], temp_ipv6;
	int32_t ret[8];
	union ipv6_5tuple_host key[8];
	struct udp_hdr *udp_hdr[8];
	l2_phy_interface_t *port = ifm_get_port(portid);
	if (port == NULL) {
		printf("port may be un initialized\n");
		return;
	}

	if (unlikely(arp_support)) {
		check_arpicmpv6(m[0]);
		check_arpicmpv6(m[1]);
		check_arpicmpv6(m[2]);
		check_arpicmpv6(m[3]);
		check_arpicmpv6(m[4]);
		check_arpicmpv6(m[5]);
		check_arpicmpv6(m[6]);
		check_arpicmpv6(m[7]);
	}


	eth_hdr[0] = rte_pktmbuf_mtod(m[0], struct ether_hdr *);
	eth_hdr[1] = rte_pktmbuf_mtod(m[1], struct ether_hdr *);
	eth_hdr[2] = rte_pktmbuf_mtod(m[2], struct ether_hdr *);
	eth_hdr[3] = rte_pktmbuf_mtod(m[3], struct ether_hdr *);
	eth_hdr[4] = rte_pktmbuf_mtod(m[4], struct ether_hdr *);
	eth_hdr[5] = rte_pktmbuf_mtod(m[5], struct ether_hdr *);
	eth_hdr[6] = rte_pktmbuf_mtod(m[6], struct ether_hdr *);
	eth_hdr[7] = rte_pktmbuf_mtod(m[7], struct ether_hdr *);

        memset(&tmp,0,sizeof (struct ether_hdr));

        for(i=0;i<8;i++)
        {
	    ether_addr_copy(&eth_hdr[i]->s_addr, &tmp.s_addr);
	    ether_addr_copy(&eth_hdr[i]->d_addr, &eth_hdr[i]->s_addr);
	    ether_addr_copy(&tmp.s_addr, &eth_hdr[i]->d_addr);
        }
	/* Handle IPv6 headers.*/
	ipv6_hdr[0] = rte_pktmbuf_mtod_offset(m[0], struct ipv6_hdr *,
					      sizeof(struct ether_hdr));
	ipv6_hdr[1] = rte_pktmbuf_mtod_offset(m[1], struct ipv6_hdr *,
					      sizeof(struct ether_hdr));
	ipv6_hdr[2] = rte_pktmbuf_mtod_offset(m[2], struct ipv6_hdr *,
					      sizeof(struct ether_hdr));
	ipv6_hdr[3] = rte_pktmbuf_mtod_offset(m[3], struct ipv6_hdr *,
					      sizeof(struct ether_hdr));
	ipv6_hdr[4] = rte_pktmbuf_mtod_offset(m[4], struct ipv6_hdr *,
					      sizeof(struct ether_hdr));
	ipv6_hdr[5] = rte_pktmbuf_mtod_offset(m[5], struct ipv6_hdr *,
					      sizeof(struct ether_hdr));
	ipv6_hdr[6] = rte_pktmbuf_mtod_offset(m[6], struct ipv6_hdr *,
					      sizeof(struct ether_hdr));
	ipv6_hdr[7] = rte_pktmbuf_mtod_offset(m[7], struct ipv6_hdr *,
					      sizeof(struct ether_hdr));
        for(i=0;i<8;i++)
        {
           memcpy(temp_ipv6.dst_addr,ipv6_hdr[i]->dst_addr,16);
           memcpy(ipv6_hdr[i]->dst_addr,ipv6_hdr[i]->src_addr,16);
           memcpy(ipv6_hdr[i]->src_addr,temp_ipv6.dst_addr,16);
        }

	/* Handle UDP headers.*/
	udp_hdr[0] = rte_pktmbuf_mtod_offset(m[0], struct udp_hdr *,
			 sizeof(struct ether_hdr)+sizeof(struct ipv6_hdr));

	udp_hdr[1] = rte_pktmbuf_mtod_offset(m[1], struct udp_hdr *,
			 sizeof(struct ether_hdr)+sizeof(struct ipv6_hdr));
	udp_hdr[2] = rte_pktmbuf_mtod_offset(m[2], struct udp_hdr *,
			 sizeof(struct ether_hdr)+sizeof(struct ipv6_hdr));
	udp_hdr[3] = rte_pktmbuf_mtod_offset(m[3], struct udp_hdr *,
			 sizeof(struct ether_hdr)+sizeof(struct ipv6_hdr));
	udp_hdr[4] = rte_pktmbuf_mtod_offset(m[4], struct udp_hdr *,
			 sizeof(struct ether_hdr)+sizeof(struct ipv6_hdr));
	udp_hdr[5] = rte_pktmbuf_mtod_offset(m[5], struct udp_hdr *,
			 sizeof(struct ether_hdr)+sizeof(struct ipv6_hdr));
	udp_hdr[6] = rte_pktmbuf_mtod_offset(m[6], struct udp_hdr *,
			 sizeof(struct ether_hdr)+sizeof(struct ipv6_hdr));
	udp_hdr[7] = rte_pktmbuf_mtod_offset(m[7], struct udp_hdr *,
			 sizeof(struct ether_hdr)+sizeof(struct ipv6_hdr));
       /*1) memcpy or assignment.*/

        struct udp_hdr temp_udp;
        for(i=0;i<8;i++)
        {
	   temp_udp.dst_port = udp_hdr[i]->dst_port;
	   udp_hdr[i]->dst_port = udp_hdr[i]->src_port;
	   udp_hdr[i]->src_port = temp_udp.dst_port;
        }
	const void *key_array[8] = {&key[0], &key[1], &key[2], &key[3],
				&key[4], &key[5], &key[6], &key[7]};
#if RTE_VERSION < 0x100b0000
	rte_hash_lookup_multi(qconf->ipv6_lookup_struct, &key_array[0], 8, ret);
#else
	rte_hash_lookup_bulk(qconf->ipv6_lookup_struct, &key_array[0], 8, ret);
#endif
	send_single_packet(m[0],portid);
	send_single_packet(m[1],portid);
	send_single_packet(m[2],portid);
	send_single_packet(m[3],portid);
	send_single_packet(m[4],portid);
	send_single_packet(m[5],portid);
	send_single_packet(m[6],portid);
	send_single_packet(m[7],portid);

}
#endif /* APP_LOOKUP_METHOD */

static inline __attribute__((always_inline)) void
udp_replay_simple_replay(struct rte_mbuf *m, uint8_t portid, struct lcore_conf *qconf)
{
	struct ether_hdr *eth_hdr,tmp;
	struct ipv4_hdr *ipv4_hdr,temp_ipv4;
	struct udp_hdr *udp_hdr,temp_udp;
	l2_phy_interface_t *port = ifm_get_port(portid);

	if (port == NULL) {
		printf("port may be un initialized\n");
		return;
	}
	if (m == NULL) {
		printf("Null packet received\n");
		return;
	}
	if (unlikely(arp_support)) {
	if (!check_arpicmp(m))
		return;
	}
	if (qconf == NULL)
		printf("qconf configuration is NULL\n");
	eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
	ether_addr_copy(&eth_hdr->s_addr, &tmp.s_addr);
	ether_addr_copy(&eth_hdr->d_addr, &eth_hdr->s_addr);
	ether_addr_copy(&tmp.s_addr, &eth_hdr->d_addr);
        struct ether_hdr *eth_h = rte_pktmbuf_mtod(m, struct ether_hdr *);

	if ((rte_cpu_to_be_16(eth_h->ether_type)) == ETHER_TYPE_IPv4) {
		/* Handle IPv4 headers.*/
		ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *,
						   sizeof(struct ether_hdr));
	temp_ipv4.dst_addr = ipv4_hdr->dst_addr;
	ipv4_hdr->dst_addr = ipv4_hdr->src_addr;
	ipv4_hdr->src_addr = temp_ipv4.dst_addr;
#ifdef DO_RFC_1812_CHECKS
		/* Check to make sure the packet is valid (RFC1812) */
		if (is_valid_pkt_ipv4(ipv4_hdr, m->pkt_len) < 0) {
			rte_pktmbuf_free(m);
			return;
		}
#endif


#ifdef DO_RFC_1812_CHECKS
		/* Update time to live and header checksum */
		--(ipv4_hdr->time_to_live);
		++(ipv4_hdr->hdr_checksum);
#endif
	/* Handle UDP headers.*/
	udp_hdr = rte_pktmbuf_mtod_offset(m, struct udp_hdr *,
			 (sizeof(struct ether_hdr)+sizeof(struct ipv4_hdr)));

	/*Swapping Src and Dst Port*/
	temp_udp.dst_port = udp_hdr->dst_port;
	udp_hdr->dst_port = udp_hdr->src_port;
	udp_hdr->src_port = temp_udp.dst_port;

		send_single_packet(m, portid);
	} else if ((rte_cpu_to_be_16(eth_h->ether_type)) == ETHER_TYPE_IPv6) {
		/* Handle IPv6 headers.*/
		struct ipv6_hdr *ipv6_hdr,temp_ipv6;

		ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct ipv6_hdr *,
						   sizeof(struct ether_hdr));

        /*Swapping of Src and Dst IP address*/
        memcpy(temp_ipv6.dst_addr,ipv6_hdr->dst_addr,16);
        memcpy(ipv6_hdr->dst_addr,ipv6_hdr->src_addr,16);
        memcpy(ipv6_hdr->src_addr,temp_ipv6.dst_addr,16);

	/* Handle UDP headers.*/
	udp_hdr = rte_pktmbuf_mtod_offset(m, struct udp_hdr *,
			 (sizeof(struct ether_hdr)+sizeof(struct ipv6_hdr)));
	/*Swapping Src and Dst Port*/
	temp_udp.dst_port = udp_hdr->dst_port;
	udp_hdr->dst_port = udp_hdr->src_port;
	udp_hdr->src_port = temp_udp.dst_port;
		send_single_packet(m, portid);
	} else
		/* Free the mbuf that contains non-IPV4/IPV6 packet */
		rte_pktmbuf_free(m);
}

#if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \
	(ENABLE_MULTI_BUFFER_OPTIMIZE == 1))
#ifdef DO_RFC_1812_CHECKS

#define	IPV4_MIN_VER_IHL	0x45
#define	IPV4_MAX_VER_IHL	0x4f
#define	IPV4_MAX_VER_IHL_DIFF	(IPV4_MAX_VER_IHL - IPV4_MIN_VER_IHL)

/* Minimum value of IPV4 total length (20B) in network byte order. */
#define	IPV4_MIN_LEN_BE	(sizeof(struct ipv4_hdr) << 8)

/*
 * From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2:
 * - The IP version number must be 4.
 * - The IP header length field must be large enough to hold the
 *    minimum length legal IP datagram (20 bytes = 5 words).
 * - The IP total length field must be large enough to hold the IP
 *   datagram header, whose length is specified in the IP header length
 *   field.
 * If we encounter invalid IPV4 packet, then set destination port for it
 * to BAD_PORT value.
 */
static inline __attribute__((always_inline)) void
rfc1812_process(struct ipv4_hdr *ipv4_hdr, uint16_t *dp, uint32_t ptype)
{
	uint8_t ihl;

	if (RTE_ETH_IS_IPV4_HDR(ptype)) {
		ihl = ipv4_hdr->version_ihl - IPV4_MIN_VER_IHL;

		ipv4_hdr->time_to_live--;
		ipv4_hdr->hdr_checksum++;

		if (ihl > IPV4_MAX_VER_IHL_DIFF ||
				((uint8_t)ipv4_hdr->total_length == 0 &&
				ipv4_hdr->total_length < IPV4_MIN_LEN_BE)) {
			dp[0] = BAD_PORT;
		}
	}
}

#else
#define	rfc1812_process(mb, dp)	do { } while (0)
#endif /* DO_RFC_1812_CHECKS */
#endif /* APP_LOOKUP_LPM && ENABLE_MULTI_BUFFER_OPTIMIZE */


#if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \
	(ENABLE_MULTI_BUFFER_OPTIMIZE == 1))

static inline __attribute__((always_inline)) uint16_t
get_dst_port(const struct lcore_conf *qconf, struct rte_mbuf *pkt,
	uint32_t dst_ipv4, uint8_t portid)
{
	uint8_t next_hop;
	struct ipv6_hdr *ipv6_hdr;
	struct ether_hdr *eth_hdr;
        struct ether_hdr *eth_h = rte_pktmbuf_mtod(m, struct ether_hdr *);

	if ((rte_cpu_to_be_16(eth_h->ether_type)) == ETHER_TYPE_IPv4) {
		if (rte_lpm_lookup(qconf->ipv4_lookup_struct, dst_ipv4,
				&next_hop) != 0)
			next_hop = portid;
	} else if ((rte_cpu_to_be_16(eth_h->ether_type)) == ETHER_TYPE_IPv6) {
		eth_hdr = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
		ipv6_hdr = (struct ipv6_hdr *)(eth_hdr + 1);
		if (rte_lpm6_lookup(qconf->ipv6_lookup_struct,
				ipv6_hdr->dst_addr, &next_hop) != 0)
			next_hop = portid;
	} else {
		next_hop = portid;
	}

	return next_hop;
}

static inline void
process_packet(struct lcore_conf *qconf, struct rte_mbuf *pkt,
	uint16_t *dst_port, uint8_t portid)
{
	struct ether_hdr *eth_hdr;
	struct ipv4_hdr *ipv4_hdr;
	uint32_t dst_ipv4;
	uint16_t dp;
	__m128i te, ve;

	eth_hdr = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
	ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);

        /*Add swap*/
	dst_ipv4 = ipv4_hdr->dst_addr;
	dst_ipv4 = rte_be_to_cpu_32(dst_ipv4);

        /*Changing the dp to incoming port*/
	dp = get_dst_port(qconf, pkt, dst_ipv4, portid);
	dp = portid;

	te = _mm_loadu_si128((__m128i *)eth_hdr);
	ve = val_eth[dp];

	dst_port[0] = dp;
	rfc1812_process(ipv4_hdr, dst_port, pkt->packet_type);

	te =  _mm_blend_epi16(te, ve, MASK_ETH);
	_mm_storeu_si128((__m128i *)eth_hdr, te);
}
/* Wont be using the following fucntion*/

/*
 * Read packet_type and destination IPV4 addresses from 4 mbufs.
 */
static inline void
processx4_step1(struct rte_mbuf *pkt[FWDSTEP],
		__m128i *dip,
		uint32_t *ipv4_flag)
{
	struct ipv4_hdr *ipv4_hdr;
	struct ether_hdr *eth_hdr;
	uint32_t x0, x1, x2, x3;

	eth_hdr = rte_pktmbuf_mtod(pkt[0], struct ether_hdr *);
	ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
	x0 = ipv4_hdr->dst_addr;
	ipv4_flag[0] = pkt[0]->packet_type & RTE_PTYPE_L3_IPV4;

	eth_hdr = rte_pktmbuf_mtod(pkt[1], struct ether_hdr *);
	ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
	x1 = ipv4_hdr->dst_addr;
	ipv4_flag[0] &= pkt[1]->packet_type;

	eth_hdr = rte_pktmbuf_mtod(pkt[2], struct ether_hdr *);
	ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
	x2 = ipv4_hdr->dst_addr;
	ipv4_flag[0] &= pkt[2]->packet_type;

	eth_hdr = rte_pktmbuf_mtod(pkt[3], struct ether_hdr *);
	ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
	x3 = ipv4_hdr->dst_addr;
	ipv4_flag[0] &= pkt[3]->packet_type;

	dip[0] = _mm_set_epi32(x3, x2, x1, x0);
}

/*
 * Lookup into LPM for destination port.
 * If lookup fails, use incoming port (portid) as destination port.
 */
static inline void
processx4_step2(const struct lcore_conf *qconf,
		__m128i dip,
		uint32_t ipv4_flag,
		uint8_t portid,
		struct rte_mbuf *pkt[FWDSTEP],
		uint16_t dprt[FWDSTEP])
{
	rte_xmm_t dst;
	const  __m128i bswap_mask = _mm_set_epi8(12, 13, 14, 15, 8, 9, 10, 11,
						4, 5, 6, 7, 0, 1, 2, 3);

	/* Byte swap 4 IPV4 addresses. */
	dip = _mm_shuffle_epi8(dip, bswap_mask);

	/* if all 4 packets are IPV4. */
	if (likely(ipv4_flag)) {
		rte_lpm_lookupx4(qconf->ipv4_lookup_struct, dip, dprt, portid);
	} else {
		dst.x = dip;
		dprt[0] = get_dst_port(qconf, pkt[0], dst.u32[0], portid);
		dprt[1] = get_dst_port(qconf, pkt[1], dst.u32[1], portid);
		dprt[2] = get_dst_port(qconf, pkt[2], dst.u32[2], portid);
		dprt[3] = get_dst_port(qconf, pkt[3], dst.u32[3], portid);
	}
}

/*
 * Update source and destination MAC addresses in the ethernet header.
 * Perform RFC1812 checks and updates for IPV4 packets.
 */
static inline void
processx4_step3(struct rte_mbuf *pkt[FWDSTEP], uint16_t dst_port[FWDSTEP])
{
	__m128i te[FWDSTEP];
	__m128i ve[FWDSTEP];
	__m128i *p[FWDSTEP];

	p[0] = rte_pktmbuf_mtod(pkt[0], __m128i *);
	p[1] = rte_pktmbuf_mtod(pkt[1], __m128i *);
	p[2] = rte_pktmbuf_mtod(pkt[2], __m128i *);
	p[3] = rte_pktmbuf_mtod(pkt[3], __m128i *);

	ve[0] = val_eth[dst_port[0]];
	te[0] = _mm_loadu_si128(p[0]);

	ve[1] = val_eth[dst_port[1]];
	te[1] = _mm_loadu_si128(p[1]);

	ve[2] = val_eth[dst_port[2]];
	te[2] = _mm_loadu_si128(p[2]);

	ve[3] = val_eth[dst_port[3]];
	te[3] = _mm_loadu_si128(p[3]);

	/* Update first 12 bytes, keep rest bytes intact. */
	te[0] =  _mm_blend_epi16(te[0], ve[0], MASK_ETH);
	te[1] =  _mm_blend_epi16(te[1], ve[1], MASK_ETH);
	te[2] =  _mm_blend_epi16(te[2], ve[2], MASK_ETH);
	te[3] =  _mm_blend_epi16(te[3], ve[3], MASK_ETH);

	_mm_storeu_si128(p[0], te[0]);
	_mm_storeu_si128(p[1], te[1]);
	_mm_storeu_si128(p[2], te[2]);
	_mm_storeu_si128(p[3], te[3]);

	rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[0] + 1),
		&dst_port[0], pkt[0]->packet_type);
	rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[1] + 1),
		&dst_port[1], pkt[1]->packet_type);
	rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[2] + 1),
		&dst_port[2], pkt[2]->packet_type);
	rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[3] + 1),
		&dst_port[3], pkt[3]->packet_type);
}

/*
 * We group consecutive packets with the same destionation port into one burst.
 * To avoid extra latency this is done together with some other packet
 * processing, but after we made a final decision about packet's destination.
 * To do this we maintain:
 * pnum - array of number of consecutive packets with the same dest port for
 * each packet in the input burst.
 * lp - pointer to the last updated element in the pnum.
 * dlp - dest port value lp corresponds to.
 */

#define	GRPSZ	(1 << FWDSTEP)
#define	GRPMSK	(GRPSZ - 1)

#define GROUP_PORT_STEP(dlp, dcp, lp, pn, idx)	do { \
	if (likely((dlp) == (dcp)[(idx)])) {         \
		(lp)[0]++;                           \
	} else {                                     \
		(dlp) = (dcp)[idx];                  \
		(lp) = (pn) + (idx);                 \
		(lp)[0] = 1;                         \
	}                                            \
} while (0)

/*
 * Group consecutive packets with the same destination port in bursts of 4.
 * Suppose we have array of destionation ports:
 * dst_port[] = {a, b, c, d,, e, ... }
 * dp1 should contain: <a, b, c, d>, dp2: <b, c, d, e>.
 * We doing 4 comparisions at once and the result is 4 bit mask.
 * This mask is used as an index into prebuild array of pnum values.
 */
static inline uint16_t *
port_groupx4(uint16_t pn[FWDSTEP + 1], uint16_t *lp, __m128i dp1, __m128i dp2)
{
	static const struct {
		uint64_t pnum; /* prebuild 4 values for pnum[]. */
		int32_t  idx;  /* index for new last updated elemnet. */
		uint16_t lpv;  /* add value to the last updated element. */
	} gptbl[GRPSZ] = {
	{
		/* 0: a != b, b != c, c != d, d != e */
		.pnum = UINT64_C(0x0001000100010001),
		.idx = 4,
		.lpv = 0,
	},
	{
		/* 1: a == b, b != c, c != d, d != e */
		.pnum = UINT64_C(0x0001000100010002),
		.idx = 4,
		.lpv = 1,
	},
	{
		/* 2: a != b, b == c, c != d, d != e */
		.pnum = UINT64_C(0x0001000100020001),
		.idx = 4,
		.lpv = 0,
	},
	{
		/* 3: a == b, b == c, c != d, d != e */
		.pnum = UINT64_C(0x0001000100020003),
		.idx = 4,
		.lpv = 2,
	},
	{
		/* 4: a != b, b != c, c == d, d != e */
		.pnum = UINT64_C(0x0001000200010001),
		.idx = 4,
		.lpv = 0,
	},
	{
		/* 5: a == b, b != c, c == d, d != e */
		.pnum = UINT64_C(0x0001000200010002),
		.idx = 4,
		.lpv = 1,
	},
	{
		/* 6: a != b, b == c, c == d, d != e */
		.pnum = UINT64_C(0x0001000200030001),
		.idx = 4,
		.lpv = 0,
	},
	{
		/* 7: a == b, b == c, c == d, d != e */
		.pnum = UINT64_C(0x0001000200030004),
		.idx = 4,
		.lpv = 3,
	},
	{
		/* 8: a != b, b != c, c != d, d == e */
		.pnum = UINT64_C(0x0002000100010001),
		.idx = 3,
		.lpv = 0,
	},
	{
		/* 9: a == b, b != c, c != d, d == e */
		.pnum = UINT64_C(0x0002000100010002),
		.idx = 3,
		.lpv = 1,
	},
	{
		/* 0xa: a != b, b == c, c != d, d == e */
		.pnum = UINT64_C(0x0002000100020001),
		.idx = 3,
		.lpv = 0,
	},
	{
		/* 0xb: a == b, b == c, c != d, d == e */
		.pnum = UINT64_C(0x0002000100020003),
		.idx = 3,
		.lpv = 2,
	},
	{
		/* 0xc: a != b, b != c, c == d, d == e */
		.pnum = UINT64_C(0x0002000300010001),
		.idx = 2,
		.lpv = 0,
	},
	{
		/* 0xd: a == b, b != c, c == d, d == e */
		.pnum = UINT64_C(0x0002000300010002),
		.idx = 2,
		.lpv = 1,
	},
	{
		/* 0xe: a != b, b == c, c == d, d == e */
		.pnum = UINT64_C(0x0002000300040001),
		.idx = 1,
		.lpv = 0,
	},
	{
		/* 0xf: a == b, b == c, c == d, d == e */
		.pnum = UINT64_C(0x0002000300040005),
		.idx = 0,
		.lpv = 4,
	},
	};

	union {
		uint16_t u16[FWDSTEP + 1];
		uint64_t u64;
	} *pnum = (void *)pn;

	int32_t v;

	dp1 = _mm_cmpeq_epi16(dp1, dp2);
	dp1 = _mm_unpacklo_epi16(dp1, dp1);
	v = _mm_movemask_ps((__m128)dp1);

	/* update last port counter. */
	lp[0] += gptbl[v].lpv;

	/* if dest port value has changed. */
	if (v != GRPMSK) {
		lp = pnum->u16 + gptbl[v].idx;
		lp[0] = 1;
		pnum->u64 = gptbl[v].pnum;
	}

	return lp;
}

#endif /* APP_LOOKUP_METHOD */

/* main processing loop */
static int
main_loop(__attribute__((unused)) void *dummy)
{
	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
	unsigned lcore_id;
	uint64_t prev_tsc, diff_tsc, cur_tsc;
	int i, j, nb_rx;
	uint8_t portid, queueid;
	struct lcore_conf *qconf;
	l2_phy_interface_t *port;
	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
		US_PER_S * BURST_TX_DRAIN_US;

#if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \
	(ENABLE_MULTI_BUFFER_OPTIMIZE == 1))
	int32_t k;
	uint16_t dlp;
	uint16_t *lp;
	uint16_t dst_port[MAX_PKT_BURST];
	__m128i dip[MAX_PKT_BURST / FWDSTEP];
	uint32_t ipv4_flag[MAX_PKT_BURST / FWDSTEP];
	uint16_t pnum[MAX_PKT_BURST + 1];
#endif

	prev_tsc = 0;

	lcore_id = rte_lcore_id();
	qconf = &lcore_conf[lcore_id];

	if (qconf->n_rx_queue == 0) {
		RTE_LOG(INFO, UDP_Replay, "lcore %u has nothing to do\n", lcore_id);
		return 0;
	}

	RTE_LOG(INFO, UDP_Replay, "entering main loop on lcore %u\n", lcore_id);

	for (i = 0; i < qconf->n_rx_queue; i++) {

		portid = qconf->rx_queue_list[i].port_id;
		queueid = qconf->rx_queue_list[i].queue_id;
		RTE_LOG(INFO, UDP_Replay, " -- lcoreid=%u portid=%hhu rxqueueid=%hhu\n", lcore_id,
			portid, queueid);
	}

	while (exit_loop) {

		cur_tsc = rte_rdtsc();

		/*
		 * TX burst queue drain
		 */
		diff_tsc = cur_tsc - prev_tsc;
		if (unlikely(diff_tsc > drain_tsc)) {

			/*
			 * This could be optimized (use queueid instead of
			 * portid), but it is not called so often
			 */
			for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
				if (qconf->tx_mbufs[portid].len == 0)
					continue;
				send_burst(qconf,
					qconf->tx_mbufs[portid].len,
					portid);
				qconf->tx_mbufs[portid].len = 0;
			}

			prev_tsc = cur_tsc;
		}

		/*
		 * Read packet from RX queues
		 */
		for (i = 0; i < qconf->n_rx_queue; ++i) {
			portid = qconf->rx_queue_list[i].port_id;
			queueid = qconf->rx_queue_list[i].queue_id;
			port = ifm_get_port(portid);
			if (port != NULL) {
				nb_rx = port->retrieve_bulk_pkts(portid,
						 queueid, pkts_burst);
				port->n_rxpkts += nb_rx;
			} else {
				printf("port may be un initialized\n");
				return 0;
			}
			if(nb_rx)
			    rcv_pkt_count[portid] += nb_rx;
			if (nb_rx == 0)
				continue;

#if (ENABLE_MULTI_BUFFER_OPTIMIZE == 1)
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
			{
				/*
				 * Send nb_rx - nb_rx%8 packets
				 * in groups of 8.
				 */
				int32_t n = RTE_ALIGN_FLOOR(nb_rx, 8);
				for (j = 0; j < n; j += 8) {
					struct ether_hdr *eth_h0 =
					 rte_pktmbuf_mtod(pkts_burst[j], struct ether_hdr *);
					struct ether_hdr *eth_h1 =
					 rte_pktmbuf_mtod(pkts_burst[j+1], struct ether_hdr *);
					struct ether_hdr *eth_h2 =
					 rte_pktmbuf_mtod(pkts_burst[j+2], struct ether_hdr *);
					struct ether_hdr *eth_h3 =
					 rte_pktmbuf_mtod(pkts_burst[j+3], struct ether_hdr *);
					struct ether_hdr *eth_h4 =
					 rte_pktmbuf_mtod(pkts_burst[j+4], struct ether_hdr *);
					struct ether_hdr *eth_h5 =
					 rte_pktmbuf_mtod(pkts_burst[j+5], struct ether_hdr *);
					struct ether_hdr *eth_h6 =
					 rte_pktmbuf_mtod(pkts_burst[j+6], struct ether_hdr *);
					struct ether_hdr *eth_h7 =
					 rte_pktmbuf_mtod(pkts_burst[j+7], struct ether_hdr *);

					uint16_t ether_type;
					ether_type = 	(rte_cpu_to_be_16(eth_h0->ether_type) &
							 rte_cpu_to_be_16(eth_h1->ether_type) &
							 rte_cpu_to_be_16(eth_h2->ether_type) &
							 rte_cpu_to_be_16(eth_h3->ether_type) &
							 rte_cpu_to_be_16(eth_h4->ether_type) &
							 rte_cpu_to_be_16(eth_h5->ether_type) &
							 rte_cpu_to_be_16(eth_h6->ether_type) &
							 rte_cpu_to_be_16(eth_h7->ether_type));

					if (ether_type == ETHER_TYPE_IPv4) {
						simple_ipv4_replay_8pkts(
						&pkts_burst[j], portid, qconf);
					} else if (ether_type == ETHER_TYPE_IPv6) {
						simple_ipv6_replay_8pkts(&pkts_burst[j],
									portid, qconf);
					} else {
						udp_replay_simple_replay(pkts_burst[j],
									portid, qconf);
						udp_replay_simple_replay(pkts_burst[j+1],
									portid, qconf);
						udp_replay_simple_replay(pkts_burst[j+2],
									portid, qconf);
						udp_replay_simple_replay(pkts_burst[j+3],
									portid, qconf);
						udp_replay_simple_replay(pkts_burst[j+4],
									portid, qconf);
						udp_replay_simple_replay(pkts_burst[j+5],
									portid, qconf);
						udp_replay_simple_replay(pkts_burst[j+6],
									portid, qconf);
						udp_replay_simple_replay(pkts_burst[j+7],
									portid, qconf);
					}
				}

				for (; j < nb_rx ; j++) {
					udp_replay_simple_replay(pkts_burst[j],
								portid, qconf);
				}
			}
#elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)

			k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP);
			for (j = 0; j != k; j += FWDSTEP) {
				processx4_step1(&pkts_burst[j],
					&dip[j / FWDSTEP],
					&ipv4_flag[j / FWDSTEP]);
			}

			k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP);
			for (j = 0; j != k; j += FWDSTEP) {
				processx4_step2(qconf, dip[j / FWDSTEP],
					ipv4_flag[j / FWDSTEP], portid,
					&pkts_burst[j], &dst_port[j]);
			}

			/*
			 * Finish packet processing and group consecutive
			 * packets with the same destination port.
			 */
			k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP);
			if (k != 0) {
				__m128i dp1, dp2;

				lp = pnum;
				lp[0] = 1;

				processx4_step3(pkts_burst, dst_port);

				/* dp1: <d[0], d[1], d[2], d[3], ... > */
				dp1 = _mm_loadu_si128((__m128i *)dst_port);

				for (j = FWDSTEP; j != k; j += FWDSTEP) {
					processx4_step3(&pkts_burst[j],
						&dst_port[j]);

					/*
					 * dp2:
					 * <d[j-3], d[j-2], d[j-1], d[j], ... >
					 */
					dp2 = _mm_loadu_si128((__m128i *)
						&dst_port[j - FWDSTEP + 1]);
					lp  = port_groupx4(&pnum[j - FWDSTEP],
						lp, dp1, dp2);

					/*
					 * dp1:
					 * <d[j], d[j+1], d[j+2], d[j+3], ... >
					 */
					dp1 = _mm_srli_si128(dp2,
						(FWDSTEP - 1) *
						sizeof(dst_port[0]));
				}

				/*
				 * dp2: <d[j-3], d[j-2], d[j-1], d[j-1], ... >
				 */
				dp2 = _mm_shufflelo_epi16(dp1, 0xf9);
				lp  = port_groupx4(&pnum[j - FWDSTEP], lp,
					dp1, dp2);

				/*
				 * remove values added by the last repeated
				 * dst port.
				 */
				lp[0]--;
				dlp = dst_port[j - 1];
			} else {
				/* set dlp and lp to the never used values. */
				dlp = BAD_PORT - 1;
				lp = pnum + MAX_PKT_BURST;
			}

			/* Process up to last 3 packets one by one. */
			switch (nb_rx % FWDSTEP) {
			case 3:
				process_packet(qconf, pkts_burst[j],
					dst_port + j, portid);
				GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
				j++;
			case 2:
				process_packet(qconf, pkts_burst[j],
					dst_port + j, portid);
				GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
				j++;
			case 1:
				process_packet(qconf, pkts_burst[j],
					dst_port + j, portid);
				GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
				j++;
			}

			/*
			 * Send packets out, through destination port.
			 * Consecuteve pacekts with the same destination port
			 * are already grouped together.
			 * If destination port for the packet equals BAD_PORT,
			 * then free the packet without sending it out.
			 */
			for (j = 0; j < nb_rx; j += k) {

				int32_t m;
				uint16_t pn;

				pn = dst_port[j];
				k = pnum[j];

				if (likely(pn != BAD_PORT)) {
					send_packetsx4(qconf, pn,
						pkts_burst + j, k);
				} else {
					for (m = j; m != j + k; m++)
						rte_pktmbuf_free(pkts_burst[m]);
				}
			}

#endif /* APP_LOOKUP_METHOD */
#else /* ENABLE_MULTI_BUFFER_OPTIMIZE == 0 */

			/* Prefetch first packets */
			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
				rte_prefetch0(rte_pktmbuf_mtod(
						pkts_burst[j], void *));
			}

			/* Prefetch and forward already prefetched packets */
			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
						j + PREFETCH_OFFSET], void *));
				udp_replay_simple_replay(pkts_burst[j], portid,
					qconf);
			}

			/* Forward remaining prefetched packets */
			for (; j < nb_rx; j++) {
				udp_replay_simple_replay(pkts_burst[j], portid,
					qconf);
			}
#endif /* ENABLE_MULTI_BUFFER_OPTIMIZE */
		}
	}
	return 0;
}

/* display usage */
int
print_l4stats(void)
{
	unsigned portid;
	uint16_t i, j=0;
	printf ("\n");
	printf ("UDP_Replay stats:\n");
	printf ("--------------\n");
	printf (" Port      Rx Packet      Tx Packet      Rx Pkt Drop      Tx Pkt Drop      arp_pkts\n");
	for (i = 0; i < nb_lcore_params; ++i) {
		portid = lcore_params[i].port_id;
		printf ("%5u%15lu%15lu%17d%17d%14u",portid, rcv_pkt_count[portid], tx_pkt_count[portid],j,j, arp_pkts);
		printf ("\n");
	}
	printf ("\n");
	return 0;

}

int
clear_stats(void)
{
        uint64_t i;
        for (i = 0; i < 32; i++) {
            rcv_pkt_count[i] = 0;
            tx_pkt_count[i] = 0;
        }
	print_l4stats();
	return 0;
}

static int
check_lcore_params(void)
{
	uint8_t queue, lcore;
	uint16_t i;
	int socketid;

	for (i = 0; i < nb_lcore_params; ++i) {
		queue = lcore_params[i].queue_id;
		if (queue >= MAX_RX_QUEUE_PER_PORT) {
			printf("invalid queue number: %hhu\n", queue);
			return -1;
		}
		lcore = lcore_params[i].lcore_id;
		if (!rte_lcore_is_enabled(lcore)) {
			printf("error: lcore %hhu is not enabled in lcore mask\n", lcore);
			return -1;
		}
		if ((socketid = rte_lcore_to_socket_id(lcore) != 0) &&
			(numa_on == 0)) {
			printf("warning: lcore %hhu is on socket %d with numa off \n",
				lcore, socketid);
		}
	}
	return 0;
}

static int
check_port_config(const unsigned nb_ports)
{
	unsigned portid;
	uint16_t i;

	for (i = 0; i < nb_lcore_params; ++i) {
		portid = lcore_params[i].port_id;
		if ((enabled_port_mask & (1 << portid)) == 0) {
			printf("port %u is not enabled in port mask\n", portid);
			return -1;
		}
		if (portid >= nb_ports) {
			printf("port %u is not present on the board\n", portid);
			return -1;
		}
	}
	return 0;
}

static uint8_t
get_port_n_rx_queues(const uint8_t port)
{
	int queue = -1;
	uint16_t i;

	for (i = 0; i < nb_lcore_params; ++i) {
		if (lcore_params[i].port_id == port && lcore_params[i].queue_id > queue)
			queue = lcore_params[i].queue_id;
	}
	return (uint8_t)(++queue);
}

static int
init_lcore_rx_queues(void)
{
	uint16_t i, nb_rx_queue;
	uint8_t lcore;

	for (i = 0; i < nb_lcore_params; ++i) {
		lcore = lcore_params[i].lcore_id;
		nb_rx_queue = lcore_conf[lcore].n_rx_queue;
		if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
			printf("error: too many queues (%u) for lcore: %u\n",
				(unsigned)nb_rx_queue + 1, (unsigned)lcore);
			return -1;
		} else {
			lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
				lcore_params[i].port_id;
			lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
				lcore_params[i].queue_id;
			lcore_conf[lcore].n_rx_queue++;
		}
	}
	return 0;
}

/* display usage */
static void
print_usage(const char *prgname)
{
	printf ("%s [EAL options] -- -p PORTMASK -P"
		"  [--config (port,queue,lcore)[,(port,queue,lcore]]"
		"  [--enable-jumbo [--max-pkt-len PKTLEN]]\n"
		"  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
		"  -P : enable promiscuous mode\n"
		"  --version: display app version\n"
		"  --config (port,queue,lcore): rx queues configuration\n"
		"  --eth-dest=X,MM:MM:MM:MM:MM:MM: optional, ethernet destination for port X\n"
		"  --no-numa: optional, disable numa awareness\n"
		"  --no-hw-csum: optional, disable hw ip checksum\n"
		"  --ipv6: optional, specify it if running ipv6 packets\n"
		"  --enable-jumbo: enable jumbo frame"
		" which max packet len is PKTLEN in decimal (64-9600)\n"
		"  --hash-entry-num: specify the hash entry number in hexadecimal to be setup\n",
		prgname);
}

static int parse_max_pkt_len(const char *pktlen)
{
	char *end = NULL;
	unsigned long len;

	/* parse decimal string */
	len = strtoul(pktlen, &end, 10);
	if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0'))
		return -1;

	if (len == 0)
		return -1;

	return len;
}

static int
parse_link_ip(const char *file_name)
{
	uint32_t i, type;
	struct rte_cfgfile *file;
	const char *entry;
	char buf[256];
	file = rte_cfgfile_load(file_name, 0);
	entry = rte_cfgfile_get_entry(file, "linkip", "num_ports");
	numports = (uint32_t)atoi(entry);
	if (numports <= 0 || numports > 32)
		rte_panic("numports is not valid\n");
	entry = rte_cfgfile_get_entry(file, "linkip", "ip_type");
	type = (uint32_t)atoi(entry);
	for (i = 0;i < numports; i++) {
		sprintf(buf, "port%d", i);
		entry = rte_cfgfile_get_entry(file, "linkip", buf);
		if (entry == NULL)
			continue;
		if (!type)
			ipv4[i] = strdup(entry);
		else if (type)
			my_inet_pton_ipv6(AF_INET6, entry, &link_ipv6[i][0]);
	}
	return 0;
}
static int
parse_portmask(const char *portmask)
{
	char *end = NULL;
	unsigned long pm;

	/* parse hexadecimal string */
	pm = strtoul(portmask, &end, 16);
	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
		return -1;

	if (pm == 0)
		return -1;

	return pm;
}

#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
static int
parse_hash_entry_number(const char *hash_entry_num)
{
	char *end = NULL;
	unsigned long hash_en;
	/* parse hexadecimal string */
	hash_en = strtoul(hash_entry_num, &end, 16);
	if ((hash_entry_num[0] == '\0') || (end == NULL) || (*end != '\0'))
		return -1;

	if (hash_en == 0)
		return -1;

	return hash_en;
}
#endif

static int
parse_config(const char *q_arg)
{
	char s[256];
	const char *p, *p0 = q_arg;
	char *end;
	enum fieldnames {
		FLD_PORT = 0,
		FLD_QUEUE,
		FLD_LCORE,
		_NUM_FLD
	};
	unsigned long int_fld[_NUM_FLD];
	char *str_fld[_NUM_FLD];
	int i;
	unsigned size;

	nb_lcore_params = 0;

	while ((p = strchr(p0,'(')) != NULL) {
		++p;
		if((p0 = strchr(p,')')) == NULL)
			return -1;

		size = p0 - p;
		if(size >= sizeof(s))
			return -1;

		snprintf(s, sizeof(s), "%.*s", size, p);
		if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') != _NUM_FLD)
			return -1;
		for (i = 0; i < _NUM_FLD; i++){
			errno = 0;
			int_fld[i] = strtoul(str_fld[i], &end, 0);
			if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
				return -1;
		}
		if (nb_lcore_params >= MAX_LCORE_PARAMS) {
			printf("exceeded max number of lcore params: %hu\n",
				nb_lcore_params);
			return -1;
		}
		lcore_params_array[nb_lcore_params].port_id = (uint8_t)int_fld[FLD_PORT];
		lcore_params_array[nb_lcore_params].queue_id = (uint8_t)int_fld[FLD_QUEUE];
		lcore_params_array[nb_lcore_params].lcore_id = (uint8_t)int_fld[FLD_LCORE];
		++nb_lcore_params;
	}
	lcore_params = lcore_params_array;
	return 0;
}

static void
parse_eth_dest(const char *optarg)
{
	uint8_t portid;
	char *port_end;
	uint8_t c, *dest, peer_addr[6];

	errno = 0;
	portid = strtoul(optarg, &port_end, 10);
	if (errno != 0 || port_end == optarg || *port_end++ != ',')
		rte_exit(EXIT_FAILURE,
		"Invalid eth-dest: %s", optarg);
	if (portid >= RTE_MAX_ETHPORTS)
		rte_exit(EXIT_FAILURE,
		"eth-dest: port %d >= RTE_MAX_ETHPORTS(%d)\n",
		portid, RTE_MAX_ETHPORTS);

	if (cmdline_parse_etheraddr(NULL, port_end,
		&peer_addr, sizeof(peer_addr)) < 0)
		rte_exit(EXIT_FAILURE,
		"Invalid ethernet address: %s\n",
		port_end);
	dest = (uint8_t *)&dest_eth_addr[portid];
	for (c = 0; c < 6; c++)
		dest[c] = peer_addr[c];
	*(uint64_t *)(val_eth + portid) = dest_eth_addr[portid];
}

#define CMD_LINE_OPT_CONFIG "config"
#define CMD_LINE_OPT_ETH_DEST "eth-dest"
#define CMD_LINE_OPT_NO_NUMA "no-numa"
#define CMD_LINE_OPT_NO_HW_CSUM "no-hw-csum"
#define CMD_LINE_OPT_IPV6 "ipv6"
#define CMD_LINE_OPT_ENABLE_JUMBO "enable-jumbo"
#define CMD_LINE_OPT_VERSION "version"
#define CMD_LINE_OPT_HASH_ENTRY_NUM "hash-entry-num"

/* Parse the argument given in the command line of the application */
static int
parse_args(int argc, char **argv)
{
	int opt, ret;
	char **argvopt;
	int option_index, v_present = 0;
	char *prgname = argv[0];
	static struct option lgopts[] = {
		{CMD_LINE_OPT_CONFIG, 1, 0, 0},
		{CMD_LINE_OPT_ETH_DEST, 1, 0, 0},
		{CMD_LINE_OPT_NO_NUMA, 0, 0, 0},
		{CMD_LINE_OPT_NO_HW_CSUM, 0, 0, 0},
		{CMD_LINE_OPT_IPV6, 0, 0, 0},
		{CMD_LINE_OPT_ENABLE_JUMBO, 0, 0, 0},
		{CMD_LINE_OPT_VERSION, 0, 0, 0},
		{CMD_LINE_OPT_HASH_ENTRY_NUM, 1, 0, 0},
		{NULL, 0, 0, 0}
	};

	argvopt = argv;

	while ((opt = getopt_long(argc, argvopt, "s:p:P",
				lgopts, &option_index)) != EOF) {

		switch (opt) {
		case 's':
			parse_link_ip(optarg);
			arp_support = 1;
			break;
		/* portmask */
		case 'p':
			enabled_port_mask = parse_portmask(optarg);
			if (enabled_port_mask == 0) {
				printf("invalid portmask\n");
				print_usage(prgname);
				return -1;
			}
			break;
		case 'P':
			printf("Promiscuous mode selected\n");
			promiscuous_on = 1;
			break;

		/* long options */
		case 0:
			if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_CONFIG,
				sizeof (CMD_LINE_OPT_CONFIG))) {
				ret = parse_config(optarg);
				if (ret) {
					printf("invalid config\n");
					print_usage(prgname);
					return -1;
				}
			}

			if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_ETH_DEST,
				sizeof(CMD_LINE_OPT_ETH_DEST))) {
					parse_eth_dest(optarg);
			}

			if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_NO_NUMA,
				sizeof(CMD_LINE_OPT_NO_NUMA))) {
				printf("numa is disabled \n");
				numa_on = 0;
			}

			if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_NO_HW_CSUM,
				sizeof(CMD_LINE_OPT_NO_HW_CSUM))) {
				printf("numa is hw ip checksum \n");
				port_conf.rxmode.hw_ip_checksum = 0;
				rx_conf.rx_free_thresh = 30;
				csum_on = 0;
			}

#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
			if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_IPV6,
				sizeof(CMD_LINE_OPT_IPV6))) {
				printf("ipv6 is specified \n");
				ipv6 = 1;
			}
#endif

			if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_VERSION,
				sizeof (CMD_LINE_OPT_VERSION))) {
			  if (v_present)
				  rte_panic("Error: VERSION is provided more than once\n");
			  v_present = 1;
			  printf("Version: %s\n", VERSION_STR);
			  exit(0);
      }

			if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_ENABLE_JUMBO,
				sizeof (CMD_LINE_OPT_ENABLE_JUMBO))) {
				struct option lenopts = {"max-pkt-len", required_argument, 0, 0};

				printf("jumbo frame is enabled - disabling simple TX path\n");
				port_conf.rxmode.jumbo_frame = 1;

				/* if no max-pkt-len set, use the default value ETHER_MAX_LEN */
				if (0 == getopt_long(argc, argvopt, "", &lenopts, &option_index)) {
					ret = parse_max_pkt_len(optarg);
					if ((ret < 64) || (ret > MAX_JUMBO_PKT_LEN)){
						printf("invalid packet length\n");
						print_usage(prgname);
						return -1;
					}
					port_conf.rxmode.max_rx_pkt_len = ret;
				}
				printf("set jumbo frame max packet length to %u\n",
						(unsigned int)port_conf.rxmode.max_rx_pkt_len);
			}
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
			if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_HASH_ENTRY_NUM,
				sizeof(CMD_LINE_OPT_HASH_ENTRY_NUM))) {
				ret = parse_hash_entry_number(optarg);
				if ((ret > 0) && (ret <= UDP_Replay_HASH_ENTRIES)) {
					hash_entry_number = ret;
				} else {
					printf("invalid hash entry number\n");
					print_usage(prgname);
					return -1;
				}
			}
#endif
			break;

		default:
			print_usage(prgname);
			return -1;
		}
	}

	if (optind >= 0)
		argv[optind-1] = prgname;

	ret = optind-1;
	optind = 0; /* reset getopt lib */
	return ret;
}

#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)

static void convert_ipv4_5tuple(struct ipv4_5tuple* key1,
		union ipv4_5tuple_host* key2)
{
	key2->ip_dst = rte_cpu_to_be_32(key1->ip_dst);
	key2->ip_src = rte_cpu_to_be_32(key1->ip_src);
	key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
	key2->port_src = rte_cpu_to_be_16(key1->port_src);
	key2->proto = key1->proto;
	key2->pad0 = 0;
	key2->pad1 = 0;
	return;
}

static void convert_ipv6_5tuple(struct ipv6_5tuple* key1,
                union ipv6_5tuple_host* key2)
{
	uint32_t i;
	for (i = 0; i < 16; i++)
	{
		key2->ip_dst[i] = key1->ip_dst[i];
		key2->ip_src[i] = key1->ip_src[i];
	}
	key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
	key2->port_src = rte_cpu_to_be_16(key1->port_src);
	key2->proto = key1->proto;
	key2->pad0 = 0;
	key2->pad1 = 0;
	key2->reserve = 0;
	return;
}

#define BYTE_VALUE_MAX 256
#define ALL_32_BITS 0xffffffff
#define BIT_8_TO_15 0x0000ff00
static inline void
populate_ipv4_few_flow_into_table(const struct rte_hash* h)
{
	uint32_t i;
	int32_t ret;
	uint32_t array_len = sizeof(ipv4_udp_replay_route_array)/sizeof(ipv4_udp_replay_route_array[0]);

	mask0 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_8_TO_15);
	for (i = 0; i < array_len; i++) {
		struct ipv4_udp_replay_route  entry;
		union ipv4_5tuple_host newkey;
		entry = ipv4_udp_replay_route_array[i];
		convert_ipv4_5tuple(&entry.key, &newkey);
		ret = rte_hash_add_key (h,(void *) &newkey);
		if (ret < 0) {
			rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
				" to the udp_replay hash.\n", i);
		}
		ipv4_udp_replay_out_if[ret] = entry.if_out;
	}
	printf("Hash: Adding 0x%" PRIx32 " keys\n", array_len);
}

#define BIT_16_TO_23 0x00ff0000
static inline void
populate_ipv6_few_flow_into_table(const struct rte_hash* h)
{
	uint32_t i;
	int32_t ret;
	uint32_t array_len = sizeof(ipv6_udp_replay_route_array)/sizeof(ipv6_udp_replay_route_array[0]);

	mask1 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_16_TO_23);
	mask2 = _mm_set_epi32(0, 0, ALL_32_BITS, ALL_32_BITS);
	for (i = 0; i < array_len; i++) {
		struct ipv6_udp_replay_route entry;
		union ipv6_5tuple_host newkey;
		entry = ipv6_udp_replay_route_array[i];
		convert_ipv6_5tuple(&entry.key, &newkey);
		ret = rte_hash_add_key (h, (void *) &newkey);
		if (ret < 0) {
			rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
				" to the udp_replay hash.\n", i);
		}
		ipv6_udp_replay_out_if[ret] = entry.if_out;
	}
	printf("Hash: Adding 0x%" PRIx32 "keys\n", array_len);
}

#define NUMBER_PORT_USED 4
static inline void
populate_ipv4_many_flow_into_table(const struct rte_hash* h,
                unsigned int nr_flow)
{
	unsigned i;
	mask0 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_8_TO_15);
	for (i = 0; i < nr_flow; i++) {
		struct ipv4_udp_replay_route entry;
		union ipv4_5tuple_host newkey;
		uint8_t a = (uint8_t) ((i/NUMBER_PORT_USED)%BYTE_VALUE_MAX);
		uint8_t b = (uint8_t) (((i/NUMBER_PORT_USED)/BYTE_VALUE_MAX)%BYTE_VALUE_MAX);
		uint8_t c = (uint8_t) ((i/NUMBER_PORT_USED)/(BYTE_VALUE_MAX*BYTE_VALUE_MAX));
		/* Create the ipv4 exact match flow */
		memset(&entry, 0, sizeof(entry));
		switch (i & (NUMBER_PORT_USED -1)) {
		case 0:
			entry = ipv4_udp_replay_route_array[0];
			entry.key.ip_dst = IPv4(101,c,b,a);
			break;
		case 1:
			entry = ipv4_udp_replay_route_array[1];
			entry.key.ip_dst = IPv4(201,c,b,a);
			break;
		case 2:
			entry = ipv4_udp_replay_route_array[2];
			entry.key.ip_dst = IPv4(111,c,b,a);
			break;
		case 3:
			entry = ipv4_udp_replay_route_array[3];
			entry.key.ip_dst = IPv4(211,c,b,a);
			break;
		};
		convert_ipv4_5tuple(&entry.key, &newkey);
		int32_t ret = rte_hash_add_key(h,(void *) &newkey);
		if (ret < 0) {
			rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
		}
		ipv4_udp_replay_out_if[ret] = (uint8_t) entry.if_out;

	}
	printf("Hash: Adding 0x%x keys\n", nr_flow);
}

static inline void
populate_ipv6_many_flow_into_table(const struct rte_hash* h,
                unsigned int nr_flow)
{
	unsigned i;
	mask1 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_16_TO_23);
	mask2 = _mm_set_epi32(0, 0, ALL_32_BITS, ALL_32_BITS);
	for (i = 0; i < nr_flow; i++) {
		struct ipv6_udp_replay_route entry;
		union ipv6_5tuple_host newkey;
		uint8_t a = (uint8_t) ((i/NUMBER_PORT_USED)%BYTE_VALUE_MAX);
		uint8_t b = (uint8_t) (((i/NUMBER_PORT_USED)/BYTE_VALUE_MAX)%BYTE_VALUE_MAX);
		uint8_t c = (uint8_t) ((i/NUMBER_PORT_USED)/(BYTE_VALUE_MAX*BYTE_VALUE_MAX));
		/* Create the ipv6 exact match flow */
		memset(&entry, 0, sizeof(entry));
		switch (i & (NUMBER_PORT_USED - 1)) {
		case 0: entry = ipv6_udp_replay_route_array[0]; break;
		case 1: entry = ipv6_udp_replay_route_array[1]; break;
		case 2: entry = ipv6_udp_replay_route_array[2]; break;
		case 3: entry = ipv6_udp_replay_route_array[3]; break;
		};
		entry.key.ip_dst[13] = c;
		entry.key.ip_dst[14] = b;
		entry.key.ip_dst[15] = a;
		convert_ipv6_5tuple(&entry.key, &newkey);
		int32_t ret = rte_hash_add_key(h,(void *) &newkey);
		if (ret < 0) {
			rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
		}
		ipv6_udp_replay_out_if[ret] = (uint8_t) entry.if_out;

	}
	printf("Hash: Adding 0x%x keys\n", nr_flow);
}

#endif

#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
static void
setup_lpm(int socketid)
{
	struct rte_lpm6_config config;
	unsigned i;
	int ret;
	char s[64];

	/* create the LPM table */
	snprintf(s, sizeof(s), "IPV4_UDP_Replay_LPM_%d", socketid);
	ipv4_udp_replay_lookup_struct[socketid] = rte_lpm_create(s, socketid,
				IPV4_UDP_Replay_LPM_MAX_RULES, 0);
	if (ipv4_udp_replay_lookup_struct[socketid] == NULL)
		rte_exit(EXIT_FAILURE, "Unable to create the udp_replay LPM table"
				" on socket %d\n", socketid);

	/* populate the LPM table */
	for (i = 0; i < IPV4_UDP_Replay_NUM_ROUTES; i++) {

		/* skip unused ports */
		if ((1 << ipv4_udp_replay_route_array[i].if_out &
				enabled_port_mask) == 0)
			continue;

		ret = rte_lpm_add(ipv4_udp_replay_lookup_struct[socketid],
			ipv4_udp_replay_route_array[i].ip,
			ipv4_udp_replay_route_array[i].depth,
			ipv4_udp_replay_route_array[i].if_out);

		if (ret < 0) {
			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
				"udp_replay LPM table on socket %d\n",
				i, socketid);
		}

		printf("LPM: Adding route 0x%08x / %d (%d)\n",
			(unsigned)ipv4_udp_replay_route_array[i].ip,
			ipv4_udp_replay_route_array[i].depth,
			ipv4_udp_replay_route_array[i].if_out);
	}

	/* create the LPM6 table */
	snprintf(s, sizeof(s), "IPV6_UDP_Replay_LPM_%d", socketid);

	config.max_rules = IPV6_UDP_Replay_LPM_MAX_RULES;
	config.number_tbl8s = IPV6_UDP_Replay_LPM_NUMBER_TBL8S;
	config.flags = 0;
	ipv6_udp_replay_lookup_struct[socketid] = rte_lpm6_create(s, socketid,
				&config);
	if (ipv6_udp_replay_lookup_struct[socketid] == NULL)
		rte_exit(EXIT_FAILURE, "Unable to create the udp_replay LPM table"
				" on socket %d\n", socketid);

	/* populate the LPM table */
	for (i = 0; i < IPV6_UDP_Replay_NUM_ROUTES; i++) {

		/* skip unused ports */
		if ((1 << ipv6_udp_replay_route_array[i].if_out &
				enabled_port_mask) == 0)
			continue;

		ret = rte_lpm6_add(ipv6_udp_replay_lookup_struct[socketid],
			ipv6_udp_replay_route_array[i].ip,
			ipv6_udp_replay_route_array[i].depth,
			ipv6_udp_replay_route_array[i].if_out);

		if (ret < 0) {
			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
				"udp_replay LPM table on socket %d\n",
				i, socketid);
		}

		printf("LPM: Adding route %s / %d (%d)\n",
			"IPV6",
			ipv6_udp_replay_route_array[i].depth,
			ipv6_udp_replay_route_array[i].if_out);
	}
}
#endif






/* Check the link status of all ports in up to 9s, and print them finally */
static void
check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
{
#define CHECK_INTERVAL 100 /* 100ms */
#define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
	uint8_t portid, count, all_ports_up, print_flag = 0;
	struct rte_eth_link link;

	printf("\nChecking link status");
	fflush(stdout);
	for (count = 0; count <= MAX_CHECK_TIME; count++) {
		all_ports_up = 1;
		for (portid = 0; portid < port_num; portid++) {
			if ((port_mask & (1 << portid)) == 0)
				continue;
			memset(&link, 0, sizeof(link));
			rte_eth_link_get_nowait(portid, &link);
			/* print link status if flag set */
			if (print_flag == 1) {
				if (link.link_status)
					printf("Port %d Link Up - speed %u "
						"Mbps - %s\n", (uint8_t)portid,
						(unsigned)link.link_speed,
				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
					("full-duplex") : ("half-duplex\n"));
				else
					printf("Port %d Link Down\n",
						(uint8_t)portid);
				continue;
			}
			/* clear all_ports_up flag if any link down */
			if (link.link_status == 0) {
				all_ports_up = 0;
				break;
			}
		}
		/* after finally printing all link status, get out */
		if (print_flag == 1)
			break;

		if (all_ports_up == 0) {
			printf(".");
			fflush(stdout);
			rte_delay_ms(CHECK_INTERVAL);
		}

		/* set the print_flag if all ports up or timeout */
		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
			print_flag = 1;
			printf("done\n");
		}
	}
}

int
main(int argc, char **argv)
{
	int ret;
	unsigned nb_ports;
	unsigned lcore_id;
	uint32_t n_tx_queue;
	uint8_t portid, nb_rx_queue;
        struct cmdline *cl;
	uint32_t size;
	struct pipeline_params *params;

	/* parse application arguments (after the EAL ones) */
	/* init EAL */
	ret = rte_eal_init(argc, argv);
	if (ret < 0)
		rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
	argc -= ret;
	argv += ret;
	timer_lcore = rte_lcore_id();

	ret = parse_args(argc, argv);
	if (ret < 0)
		rte_exit(EXIT_FAILURE, "Invalid UDP_Replay parameters\n");

	if (check_lcore_params() < 0)
		rte_exit(EXIT_FAILURE, "check_lcore_params failed\n");

	ret = init_lcore_rx_queues();
	if (ret < 0)
		rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");

	params = rte_malloc(NULL, sizeof(*params), RTE_CACHE_LINE_SIZE);
	memcpy(params, &def_pipeline_params, sizeof(def_pipeline_params));
	lib_arp_init(params, NULL);
	ifm_init();
	nb_ports = rte_eth_dev_count();
	num_ports = nb_ports;
	gw_init(num_ports);
	if (nb_ports > RTE_MAX_ETHPORTS)
		nb_ports = RTE_MAX_ETHPORTS;

	if (check_port_config(nb_ports) < 0)
		rte_exit(EXIT_FAILURE, "check_port_config failed\n");

	/*
	 *Configuring port_config_t structure for interface manager initialization
	 */
	size = RTE_CACHE_LINE_ROUNDUP(sizeof(port_config_t));
	port_config = rte_zmalloc(NULL, (RTE_MAX_ETHPORTS * size), RTE_CACHE_LINE_SIZE);
	if (port_config == NULL)
		rte_panic("port_config is NULL: Memory Allocation failure\n");
	/* initialize all ports */
	for (portid = 0; portid < nb_ports; portid++) {
		/* skip ports that are not enabled */
		if ((enabled_port_mask & (1 << portid)) == 0) {
			printf("\nSkipping disabled port %d\n", portid);
			num_ports--;
			continue;
		}

		/* init port */
		printf("Initializing port %d ... ", portid );
		fflush(stdout);

		nb_rx_queue = get_port_n_rx_queues(portid);
		n_tx_queue = nb_rx_queue;
		if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
			n_tx_queue = MAX_TX_QUEUE_PER_PORT;

                port_config[portid].port_id = portid;
                port_config[portid].nrx_queue = nb_rx_queue;
                port_config[portid].ntx_queue = n_tx_queue;
                port_config[portid].state = 1;
                port_config[portid].promisc = promiscuous_on;
                port_config[portid].mempool.pool_size = MEMPOOL_SIZE;
                port_config[portid].mempool.buffer_size = BUFFER_SIZE + sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM;
                port_config[portid].mempool.cache_size = CACHE_SIZE;
                port_config[portid].mempool.cpu_socket_id = rte_socket_id();
                memcpy (&port_config[portid].port_conf, &port_conf, sizeof(struct rte_eth_conf));
                memcpy (&port_config[portid].rx_conf, &rx_conf, sizeof(struct rte_eth_rxconf));
                memcpy (&port_config[portid].tx_conf, &tx_conf, sizeof(struct rte_eth_txconf));

                /* Enable TCP and UDP HW Checksum , when required */
                //port_config[portid].tx_conf.txq_flags &=
                //    ~(ETH_TXQ_FLAGS_NOXSUMTCP|ETH_TXQ_FLAGS_NOXSUMUDP);

		if (ifm_port_setup (portid, &port_config[portid]))
                       rte_panic ("Port Setup Failed:  %"PRIu32"\n", portid);
	}

	check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask);

        l3fwd_init();
        create_arp_table();
        create_nd_table();
        populate_lpm_routes();
        convert_ipstr_to_numeric();
	/* launch per-lcore init on every lcore */
	rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
	cl = cmdline_stdin_new(main_ctx, "Replay>");
	if (cl == NULL)
		rte_panic("Cannot create cmdline instance\n");
	cmdline_interact(cl);
	cmdline_stdin_exit(cl);
	exit_loop = 0;
	rte_exit(0, "Bye!\n");
	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
		if (rte_eal_wait_lcore(lcore_id) < 0)
			return -1;
	}

	return 0;
}
/**********************************************************/

struct cmd_obj_clear_result {
	cmdline_fixed_string_t clear;
	cmdline_fixed_string_t udp_replay;
	cmdline_fixed_string_t stats;
};

static void cmd_clear_udp_replay_stats_parsed(
        __rte_unused void *parsed_result,
        __rte_unused struct cmdline *cl,
   __attribute__((unused)) void *data)
{

	clear_stats();
}

cmdline_parse_token_string_t cmd_clear_udp_replay_stats_udp_replay_string =
	TOKEN_STRING_INITIALIZER(struct cmd_obj_clear_result, udp_replay, "UDP_Replay");
cmdline_parse_token_string_t cmd_clear_udp_replay_stats_clear_string =
	TOKEN_STRING_INITIALIZER(struct cmd_obj_clear_result, clear, "clear");
cmdline_parse_token_string_t cmd_clear_udp_replay_stats_stats_string =
	TOKEN_STRING_INITIALIZER(struct cmd_obj_clear_result, stats, "stats");

cmdline_parse_inst_t cmd_clear_udp_replay_stats = {
	.f = cmd_clear_udp_replay_stats_parsed,  /* function to call */
	.data = NULL,      /* 2nd arg of func */
	.help_str = "clears UDP_Replay stats for rx/tx",
	.tokens = {        /* token list, NULL terminated */
		(void *)&cmd_clear_udp_replay_stats_udp_replay_string,
		(void *)&cmd_clear_udp_replay_stats_clear_string,
		(void *)&cmd_clear_udp_replay_stats_stats_string,
		NULL,
	},
};
/**********************************************************/
struct cmd_obj_add_result {
	cmdline_fixed_string_t action;
	cmdline_fixed_string_t name;
};

static void cmd_udp_replay_stats_parsed(
        __rte_unused void *parsed_result,
        __rte_unused struct cmdline *cl,
   __attribute__((unused)) void *data)
{
	print_l4stats();
}

cmdline_parse_token_string_t cmd_udp_replay_stats_udp_replay_string =
	TOKEN_STRING_INITIALIZER(struct cmd_obj_add_result, action, "UDP_Replay");
cmdline_parse_token_string_t cmd_udp_replay_stats_stats_string =
	TOKEN_STRING_INITIALIZER(struct cmd_obj_add_result, name, "stats");

cmdline_parse_inst_t cmd_udp_replay_stats = {
	.f = cmd_udp_replay_stats_parsed,  /* function to call */
	.data = NULL,      /* 2nd arg of func */
	.help_str = "UDP_Replay stats for rx/tx",
	.tokens = {        /* token list, NULL terminated */
		(void *)&cmd_udp_replay_stats_udp_replay_string,
		(void *)&cmd_udp_replay_stats_stats_string,
		NULL,
	},
};
/* quit*/
struct cmd_quit_result {
	cmdline_fixed_string_t quit;
};

static void
cmd_quit_parsed(
	__rte_unused void *parsed_result,
	struct cmdline *cl,
	__rte_unused void *data)
{
	cmdline_quit(cl);
}

static cmdline_parse_token_string_t cmd_quit_quit =
	TOKEN_STRING_INITIALIZER(struct cmd_quit_result, quit, "quit");

static cmdline_parse_inst_t cmd_quit = {
	.f = cmd_quit_parsed,
	.data = NULL,
	.help_str = "Quit",
	.tokens = {
		  (void *) &cmd_quit_quit,
		  NULL,
	},
};

/**********************************************************/
/****** CONTEXT (list of instruction) */
cmdline_parse_ctx_t main_ctx[] = {
	(cmdline_parse_inst_t *)&cmd_udp_replay_stats,
	(cmdline_parse_inst_t *)&cmd_clear_udp_replay_stats,
	(cmdline_parse_inst_t *)&cmd_quit,
	NULL,
};