.. This work is licensed under a Creative Commons Attribution 4.0 International .. License. .. http://creativecommons.org/licenses/by/4.0 .. (c) OPNFV, Huawei Technologies Co.,Ltd and others. ************************************* Yardstick Test Case Description TC005 ************************************* .. _fio: http://bluestop.org/files/fio/HOWTO.txt +-----------------------------------------------------------------------------+ |Storage Performance | | | +--------------+--------------------------------------------------------------+ |test case id | OPNFV_YARDSTICK_TC005_STORAGE PERFORMANCE | | | | +--------------+--------------------------------------------------------------+ |metric | IOPS (Average IOs performed per second), | | | Throughput (Average disk read/write bandwidth rate), | | | Latency (Average disk read/write latency) | | | | +--------------+--------------------------------------------------------------+ |test purpose | The purpose of TC005 is to evaluate the IaaS storage | | | performance with regards to IOPS, throughput and latency. | | | | | | The purpose is also to be able to spot the trends. | | | Test results, graphs and similar shall be stored for | | | comparison reasons and product evolution understanding | | | between different OPNFV versions and/or configurations. | | | | +--------------+--------------------------------------------------------------+ |test tool | fio | | | | | | fio is an I/O tool meant to be used both for benchmark and | | | stress/hardware verification. It has support for 19 | | | different types of I/O engines (sync, mmap, libaio, | | | posixaio, SG v3, splice, null, network, syslet, guasi, | | | solarisaio, and more), I/O priorities (for newer Linux | | | kernels), rate I/O, forked or threaded jobs, and much more. | | | | | | (fio is not always part of a Linux distribution, hence it | | | needs to be installed. As an example see the | | | /yardstick/tools/ directory for how to generate a Linux | | | image with fio included.) | | | | +--------------+--------------------------------------------------------------+ |test | fio test is invoked in a host VM on a compute blade, a job | |description | file as well as parameters are passed to fio and fio will | | | start doing what the job file tells it to do. | | | | +--------------+--------------------------------------------------------------+ |configuration | file: opnfv_yardstick_tc005.yaml | | | | | | IO types is set to read, write, randwrite, randread, rw. | | | IO block size is set to 4KB, 64KB, 1024KB. | | | fio is run for each IO type and IO block size scheme, | | | each iteration runs for 30 seconds (10 for ramp time, 20 for | | | runtime). | | | | | | For SLA, minimum read/write iops is set to 100, | | | minimum read/write throughput is set to 400 KB/s, | | | and maximum read/write latency is set to 20000 usec. | | | | +--------------+--------------------------------------------------------------+ |applicability | This test case can be configured with different: | | | | | | * IO types; | | | * IO block size; | | | * IO depth; | | | * ramp time; | | | * test duration. | | | | | | Default values exist. | | | | | | SLA is optional. The SLA in this test case serves as an | | | example. Considerably higher throughput and lower latency | | | are expected. However, to cover most configurations, both | | | baremetal and fully virtualized ones, this value should be | | | possible to achieve and acceptable for black box testing. | | | Many heavy IO applications start to suffer badly if the | | | read/write bandwidths are lower than this. | | | | +--------------+--------------------------------------------------------------+ |usability | This test case is one of Yardstick's generic test. Thus it | | | is runnable on most of the scenarios. | | | | +--------------+--------------------------------------------------------------+ |references | fio_ | | | | | | ETSI-NFV-TST001 | | | | +--------------+--------------------------------------------------------------+ |pre-test | The test case image needs to be installed into Glance | |conditions | with fio included in it. | | | | | | No POD specific requirements have been identified. | | | | +--------------+--------------------------------------------------------------+ |test sequence | description and expected result | | | | +--------------+--------------------------------------------------------------+ |step 1 | A host VM with fio installed is booted. | | | | +--------------+--------------------------------------------------------------+ |step 2 | Yardstick is connected with the host VM by using ssh. | | | 'fio_benchmark' bash script is copyied from Jump Host to | | | the host VM via the ssh tunnel. | | | | +--------------+--------------------------------------------------------------+ |step 3 | 'fio_benchmark' script is invoked. Simulated IO operations | | | are started. IOPS, disk read/write bandwidth and latency are | | | recorded and checked against the SLA. Logs are produced and | | | stored. | | | | | | Result: Logs are stored. | | | | +--------------+--------------------------------------------------------------+ |step 4 | The host VM is deleted. | | | | +--------------+--------------------------------------------------------------+ |test verdict | Fails only if SLA is not passed, or if there is a test case | | | execution problem. | | | | +--------------+--------------------------------------------------------------+