.. This work is licensed under a Creative Commons Attribution 4.0 International License. .. http://creativecommons.org/licenses/by/4.0 .. (c) OPNFV, Intel Corporation, AT&T and others. .. _step-driven-tests: Step driven tests ================= In general, test scenarios are defined by a ``deployment`` used in the particular test case definition. The chosen deployment scenario will take care of the vSwitch configuration, deployment of VNFs and it can also affect configuration of a traffic generator. In order to allow a more flexible way of testcase scripting, VSPERF supports a detailed step driven testcase definition. It can be used to configure and program vSwitch, deploy and terminate VNFs, execute a traffic generator, modify a VSPERF configuration, execute external commands, etc. Execution of step driven tests is done on a step by step work flow starting with step 0 as defined inside the test case. Each step of the test increments the step number by one which is indicated in the log. .. code-block:: console (testcases.integration) - Step 0 'vswitch add_vport ['br0']' start Test steps are defined as a list of steps within a ``TestSteps`` item of test case definition. Each step is a list with following structure: .. code-block:: python '[' [ optional-alias ',' ] test-object ',' test-function [ ',' optional-function-params ] '],' Step driven tests can be used for both performance and integration testing. In case of integration test, each step in the test case is validated. If a step does not pass validation the test will fail and terminate. The test will continue until a failure is detected or all steps pass. A csv report file is generated after a test completes with an OK or FAIL result. **NOTE**: It is possible to suppress validation process of given step by prefixing it by ``!`` (exclamation mark). In following example test execution won't fail if all traffic is dropped: .. code-block:: python ['!trafficgen', 'send_traffic', {}] In case of performance test, the validation of steps is not performed and standard output files with results from traffic generator and underlying OS details are generated by vsperf. Step driven testcases can be used in two different ways: # description of full testcase - in this case ``clean`` deployment is used to indicate that vsperf should neither configure vSwitch nor deploy any VNF. Test shall perform all required vSwitch configuration and programming and deploy required number of VNFs. # modification of existing deployment - in this case, any of supported deployments can be used to perform initial vSwitch configuration and deployment of VNFs. Additional actions defined by TestSteps can be used to alter vSwitch configuration or deploy additional VNFs. After the last step is processed, the test execution will continue with traffic execution. Test objects and their functions -------------------------------- Every test step can call a function of one of the supported test objects. In general any existing function of supported test object can be called by test step. In case that step validation is required (valid for integration test steps, which are not suppressed), then appropriate ``validate_`` method must be implemented. The list of supported objects and their most common functions is listed below. Please check implementation of test objects for full list of implemented functions and their parameters. * ``vswitch`` - provides functions for vSwitch configuration List of supported functions: * ``add_switch br_name`` - creates a new switch (bridge) with given ``br_name`` * ``del_switch br_name`` - deletes switch (bridge) with given ``br_name`` * ``add_phy_port br_name`` - adds a physical port into bridge specified by ``br_name`` * ``add_vport br_name`` - adds a virtual port into bridge specified by ``br_name`` * ``del_port br_name port_name`` - removes physical or virtual port specified by ``port_name`` from bridge ``br_name`` * ``add_flow br_name flow`` - adds flow specified by ``flow`` dictionary into the bridge ``br_name``; Content of flow dictionary will be passed to the vSwitch. In case of Open vSwitch it will be passed to the ``ovs-ofctl add-flow`` command. Please see Open vSwitch documentation for the list of supported flow parameters. * ``del_flow br_name [flow]`` - deletes flow specified by ``flow`` dictionary from bridge ``br_name``; In case that optional parameter ``flow`` is not specified or set to an empty dictionary ``{}``, then all flows from bridge ``br_name`` will be deleted. * ``dump_flows br_name`` - dumps all flows from bridge specified by ``br_name`` * ``enable_stp br_name`` - enables Spanning Tree Protocol for bridge ``br_name`` * ``disable_stp br_name`` - disables Spanning Tree Protocol for bridge ``br_name`` * ``enable_rstp br_name`` - enables Rapid Spanning Tree Protocol for bridge ``br_name`` * ``disable_rstp br_name`` - disables Rapid Spanning Tree Protocol for bridge ``br_name`` * ``restart`` - restarts switch, which is useful for failover testcases Examples: .. code-block:: python ['vswitch', 'add_switch', 'int_br0'] ['vswitch', 'del_switch', 'int_br0'] ['vswitch', 'add_phy_port', 'int_br0'] ['vswitch', 'del_port', 'int_br0', '#STEP[2][0]'] ['vswitch', 'add_flow', 'int_br0', {'in_port': '1', 'actions': ['output:2'], 'idle_timeout': '0'}], ['vswitch', 'enable_rstp', 'int_br0'] * ``vnf[ID]`` - provides functions for deployment and termination of VNFs; Optional alfanumerical ``ID`` is used for VNF identification in case that testcase deploys multiple VNFs. List of supported functions: * ``start`` - starts a VNF based on VSPERF configuration * ``stop`` - gracefully terminates given VNF * ``execute command [delay]`` - executes command `cmd` inside VNF; Optional delay defines number of seconds to wait before next step is executed. Method returns command output as a string. * ``execute_and_wait command [timeout] [prompt]`` - executes command `cmd` inside VNF; Optional timeout defines number of seconds to wait until ``prompt`` is detected. Optional ``prompt`` defines a string, which is used as detection of successful command execution. In case that prompt is not defined, then content of ``GUEST_PROMPT_LOGIN`` parameter will be used. Method returns command output as a string. Examples: .. code-block:: python ['vnf1', 'start'], ['vnf2', 'start'], ['vnf1', 'execute_and_wait', 'ifconfig eth0 5.5.5.1/24 up'], ['vnf2', 'execute_and_wait', 'ifconfig eth0 5.5.5.2/24 up', 120, 'root.*#'], ['vnf2', 'execute_and_wait', 'ping -c1 5.5.5.1'], ['vnf2', 'stop'], ['vnf1', 'stop'], * ``VNF[ID]`` - provides access to VNFs deployed automatically by testcase deployment scenario. For Example ``pvvp`` deployment automatically starts two VNFs before any TestStep is executed. It is possible to access these VNFs by VNF0 and VNF1 labels. List of supported functions is identical to ``vnf[ID]`` option above except functions ``start`` and ``stop``. Examples: .. code-block:: python ['VNF0', 'execute_and_wait', 'ifconfig eth2 5.5.5.1/24 up'], ['VNF1', 'execute_and_wait', 'ifconfig eth2 5.5.5.2/24 up', 120, 'root.*#'], ['VNF2', 'execute_and_wait', 'ping -c1 5.5.5.1'], * ``trafficgen`` - triggers traffic generation List of supported functions: * ``send_traffic traffic`` - starts a traffic based on the vsperf configuration and given ``traffic`` dictionary. More details about ``traffic`` dictionary and its possible values are available at :ref:`Traffic Generator Integration Guide ` * ``get_results`` - returns dictionary with results collected from previous execution of ``send_traffic`` Examples: .. code-block:: python ['trafficgen', 'send_traffic', {'traffic_type' : 'rfc2544_throughput'}] ['trafficgen', 'send_traffic', {'traffic_type' : 'rfc2544_back2back', 'bidir' : 'True'}], ['trafficgen', 'get_results'], ['tools', 'assert', '#STEP[-1][0]["frame_loss_percent"] < 0.05'], .. _step-driven-tests-variable-usage: * ``settings`` - reads or modifies VSPERF configuration List of supported functions: * ``getValue param`` - returns value of given ``param`` * ``setValue param value`` - sets value of ``param`` to given ``value`` * ``resetValue param`` - if ``param`` was overridden by ``TEST_PARAMS`` (e.g. by "Parameters" section of the test case definition), then it will be set to its original value. Examples: .. code-block:: python ['settings', 'getValue', 'TOOLS'] ['settings', 'setValue', 'GUEST_USERNAME', ['root']] ['settings', 'resetValue', 'WHITELIST_NICS'], It is possible and more convenient to access any VSPERF configuration option directly via ``$NAME`` notation. Option evaluation is done during runtime and vsperf will automatically translate it to the appropriate call of ``settings.getValue``. If the referred parameter does not exist, then vsperf will keep ``$NAME`` string untouched and it will continue with testcase execution. The reason is to avoid test execution failure in case that ``$`` sign has been used from different reason than vsperf parameter evaluation. **NOTE:** It is recommended to use ``${NAME}`` notation for any shell parameters used within ``Exec_Shell`` call to avoid a clash with configuration parameter evaluation. **NOTE:** It is possible to refer to vsperf parameter value by ``#PARAM()`` macro (see :ref:`overriding-parameters-documentation`. However ``#PARAM()`` macro is evaluated at the beginning of vsperf execution and it will not reflect any changes made to the vsperf configuration during runtime. On the other hand ``$NAME`` notation is evaluated during test execution and thus it contains any modifications to the configuration parameter made by vsperf (e.g. ``TOOLS`` and ``NICS`` dictionaries) or by testcase definition (e.g. ``TRAFFIC`` dictionary). Examples: .. code-block:: python ['tools', 'exec_shell', "$TOOLS['ovs-vsctl'] show"] ['settings', 'setValue', 'TRAFFICGEN_IXIA_PORT2', '$TRAFFICGEN_IXIA_PORT1'], ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', 'dl_type': '0x800', 'nw_proto': '17', 'nw_dst': '$TRAFFIC["l3"]["dstip"]/8', 'actions': ['output:#STEP[2][1]'] } ] * ``namespace`` - creates or modifies network namespaces List of supported functions: * ``create_namespace name`` - creates new namespace with given ``name`` * ``delete_namespace name`` - deletes namespace specified by its ``name`` * ``assign_port_to_namespace port name [port_up]`` - assigns NIC specified by ``port`` into given namespace ``name``; If optional parameter ``port_up`` is set to ``True``, then port will be brought up. * ``add_ip_to_namespace_eth port name addr cidr`` - assigns an IP address ``addr``/``cidr`` to the NIC specified by ``port`` within namespace ``name`` * ``reset_port_to_root port name`` - returns given ``port`` from namespace ``name`` back to the root namespace Examples: .. code-block:: python ['namespace', 'create_namespace', 'testns'] ['namespace', 'assign_port_to_namespace', 'eth0', 'testns'] * ``veth`` - manipulates with eth and veth devices List of supported functions: * ``add_veth_port port peer_port`` - adds a pair of veth ports named ``port`` and ``peer_port`` * ``del_veth_port port peer_port`` - deletes a veth port pair specified by ``port`` and ``peer_port`` * ``bring_up_eth_port eth_port [namespace]`` - brings up ``eth_port`` in (optional) ``namespace`` Examples: .. code-block:: python ['veth', 'add_veth_port', 'veth', 'veth1'] ['veth', 'bring_up_eth_port', 'eth1'] * ``tools`` - provides a set of helper functions List of supported functions: * ``Assert condition`` - evaluates given ``condition`` and raises ``AssertionError`` in case that condition is not ``True`` * ``Eval expression`` - evaluates given expression as a python code and returns its result * ``Exec_Shell command`` - executes a shell command and wait until it finishes * ``Exec_Shell_Background command`` - executes a shell command at background; Command will be automatically terminated at the end of testcase execution. * ``Exec_Python code`` - executes a python code Examples: .. code-block:: python ['tools', 'exec_shell', 'numactl -H', 'available: ([0-9]+)'] ['tools', 'assert', '#STEP[-1][0]>1'] * ``wait`` - is used for test case interruption. This object doesn't have any functions. Once reached, vsperf will pause test execution and waits for press of ``Enter key``. It can be used during testcase design for debugging purposes. Examples: .. code-block:: python ['wait'] * ``sleep`` - is used to pause testcase execution for defined number of seconds. Examples: .. code-block:: python ['sleep', '60'] * ``log level message`` - is used to log ``message`` of given ``level`` into vsperf output. Level is one of info, debug, warning or error. Examples: .. code-block:: python ['log', 'error', 'tools $TOOLS'] * ``pdb`` - executes python debugger Examples: .. code-block:: python ['pdb'] Test Macros ----------- Test profiles can include macros as part of the test step. Each step in the profile may return a value such as a port name. Recall macros use #STEP to indicate the recalled value inside the return structure. If the method the test step calls returns a value it can be later recalled, for example: .. code-block:: python { "Name": "vswitch_add_del_vport", "Deployment": "clean", "Description": "vSwitch - add and delete virtual port", "TestSteps": [ ['vswitch', 'add_switch', 'int_br0'], # STEP 0 ['vswitch', 'add_vport', 'int_br0'], # STEP 1 ['vswitch', 'del_port', 'int_br0', '#STEP[1][0]'], # STEP 2 ['vswitch', 'del_switch', 'int_br0'], # STEP 3 ] } This test profile uses the vswitch add_vport method which returns a string value of the port added. This is later called by the del_port method using the name from step 1. It is also possible to use negative indexes in step macros. In that case ``#STEP[-1]`` will refer to the result from previous step, ``#STEP[-2]`` will refer to result of step called before previous step, etc. It means, that you could change ``STEP 2`` from previous example to achieve the same functionality: .. code-block:: python ['vswitch', 'del_port', 'int_br0', '#STEP[-1][0]'], # STEP 2 Another option to refer to previous values, is to define an alias for given step by its first argument with '#' prefix. Alias must be unique and it can't be a number. Example of step alias usage: .. code-block:: python ['#port1', 'vswitch', 'add_vport', 'int_br0'], ['vswitch', 'del_port', 'int_br0', '#STEP[port1][0]'], Also commonly used steps can be created as a separate profile. .. code-block:: python STEP_VSWITCH_PVP_INIT = [ ['vswitch', 'add_switch', 'int_br0'], # STEP 0 ['vswitch', 'add_phy_port', 'int_br0'], # STEP 1 ['vswitch', 'add_phy_port', 'int_br0'], # STEP 2 ['vswitch', 'add_vport', 'int_br0'], # STEP 3 ['vswitch', 'add_vport', 'int_br0'], # STEP 4 ] This profile can then be used inside other testcases .. code-block:: python { "Name": "vswitch_pvp", "Deployment": "clean", "Description": "vSwitch - configure switch and one vnf", "TestSteps": STEP_VSWITCH_PVP_INIT + [ ['vnf', 'start'], ['vnf', 'stop'], ] + STEP_VSWITCH_PVP_FINIT } It is possible to refer to vsperf configuration parameters within step macros. Please see :ref:`step-driven-tests-variable-usage` for more details. In case that step returns a string or list of strings, then it is possible to filter such output by regular expression. This optional filter can be specified as a last step parameter with prefix '|'. Output will be split into separate lines and only matching records will be returned. It is also possible to return a specified group of characters from the matching lines, e.g. by regex ``|ID (\d+)``. Examples: .. code-block:: python ['tools', 'exec_shell', "sudo $TOOLS['ovs-appctl'] dpif-netdev/pmd-rxq-show", '|dpdkvhostuser0\s+queue-id: \d'], ['tools', 'assert', 'len(#STEP[-1])==1'], ['vnf', 'execute_and_wait', 'ethtool -L eth0 combined 2'], ['vnf', 'execute_and_wait', 'ethtool -l eth0', '|Combined:\s+2'], ['tools', 'assert', 'len(#STEP[-1])==2'] HelloWorld and other basic Testcases ------------------------------------ The following examples are for demonstration purposes. You can run them by copying and pasting into the conf/integration/01_testcases.conf file. A command-line instruction is shown at the end of each example. HelloWorld ^^^^^^^^^^ The first example is a HelloWorld testcase. It simply creates a bridge with 2 physical ports, then sets up a flow to drop incoming packets from the port that was instantiated at the STEP #1. There's no interaction with the traffic generator. Then the flow, the 2 ports and the bridge are deleted. 'add_phy_port' method creates a 'dpdk' type interface that will manage the physical port. The string value returned is the port name that will be referred by 'del_port' later on. .. code-block:: python { "Name": "HelloWorld", "Description": "My first testcase", "Deployment": "clean", "TestSteps": [ ['vswitch', 'add_switch', 'int_br0'], # STEP 0 ['vswitch', 'add_phy_port', 'int_br0'], # STEP 1 ['vswitch', 'add_phy_port', 'int_br0'], # STEP 2 ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \ 'actions': ['drop'], 'idle_timeout': '0'}], ['vswitch', 'del_flow', 'int_br0'], ['vswitch', 'del_port', 'int_br0', '#STEP[1][0]'], ['vswitch', 'del_port', 'int_br0', '#STEP[2][0]'], ['vswitch', 'del_switch', 'int_br0'], ] }, To run HelloWorld test: .. code-block:: console ./vsperf --conf-file user_settings.py --integration HelloWorld Specify a Flow by the IP address ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The next example shows how to explicitly set up a flow by specifying a destination IP address. All packets received from the port created at STEP #1 that have a destination IP address = 90.90.90.90 will be forwarded to the port created at the STEP #2. .. code-block:: python { "Name": "p2p_rule_l3da", "Description": "Phy2Phy with rule on L3 Dest Addr", "Deployment": "clean", "biDirectional": "False", "TestSteps": [ ['vswitch', 'add_switch', 'int_br0'], # STEP 0 ['vswitch', 'add_phy_port', 'int_br0'], # STEP 1 ['vswitch', 'add_phy_port', 'int_br0'], # STEP 2 ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \ 'dl_type': '0x0800', 'nw_dst': '90.90.90.90', \ 'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}], ['trafficgen', 'send_traffic', \ {'traffic_type' : 'rfc2544_continuous'}], ['vswitch', 'dump_flows', 'int_br0'], # STEP 5 ['vswitch', 'del_flow', 'int_br0'], # STEP 7 == del-flows ['vswitch', 'del_port', 'int_br0', '#STEP[1][0]'], ['vswitch', 'del_port', 'int_br0', '#STEP[2][0]'], ['vswitch', 'del_switch', 'int_br0'], ] }, To run the test: .. code-block:: console ./vsperf --conf-file user_settings.py --integration p2p_rule_l3da Multistream feature ^^^^^^^^^^^^^^^^^^^ The next testcase uses the multistream feature. The traffic generator will send packets with different UDP ports. That is accomplished by using "Stream Type" and "MultiStream" keywords. 4 different flows are set to forward all incoming packets. .. code-block:: python { "Name": "multistream_l4", "Description": "Multistream on UDP ports", "Deployment": "clean", "Parameters": { 'TRAFFIC' : { "multistream": 4, "stream_type": "L4", }, }, "TestSteps": [ ['vswitch', 'add_switch', 'int_br0'], # STEP 0 ['vswitch', 'add_phy_port', 'int_br0'], # STEP 1 ['vswitch', 'add_phy_port', 'int_br0'], # STEP 2 # Setup Flows ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \ 'dl_type': '0x0800', 'nw_proto': '17', 'udp_dst': '0', \ 'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}], ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \ 'dl_type': '0x0800', 'nw_proto': '17', 'udp_dst': '1', \ 'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}], ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \ 'dl_type': '0x0800', 'nw_proto': '17', 'udp_dst': '2', \ 'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}], ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \ 'dl_type': '0x0800', 'nw_proto': '17', 'udp_dst': '3', \ 'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}], # Send mono-dir traffic ['trafficgen', 'send_traffic', \ {'traffic_type' : 'rfc2544_continuous', \ 'bidir' : 'False'}], # Clean up ['vswitch', 'del_flow', 'int_br0'], ['vswitch', 'del_port', 'int_br0', '#STEP[1][0]'], ['vswitch', 'del_port', 'int_br0', '#STEP[2][0]'], ['vswitch', 'del_switch', 'int_br0'], ] }, To run the test: .. code-block:: console ./vsperf --conf-file user_settings.py --integration multistream_l4 PVP with a VM Replacement ^^^^^^^^^^^^^^^^^^^^^^^^^ This example launches a 1st VM in a PVP topology, then the VM is replaced by another VM. When VNF setup parameter in ./conf/04_vnf.conf is "QemuDpdkVhostUser" 'add_vport' method creates a 'dpdkvhostuser' type port to connect a VM. .. code-block:: python { "Name": "ex_replace_vm", "Description": "PVP with VM replacement", "Deployment": "clean", "TestSteps": [ ['vswitch', 'add_switch', 'int_br0'], # STEP 0 ['vswitch', 'add_phy_port', 'int_br0'], # STEP 1 ['vswitch', 'add_phy_port', 'int_br0'], # STEP 2 ['vswitch', 'add_vport', 'int_br0'], # STEP 3 vm1 ['vswitch', 'add_vport', 'int_br0'], # STEP 4 # Setup Flows ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \ 'actions': ['output:#STEP[3][1]'], 'idle_timeout': '0'}], ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[4][1]', \ 'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}], ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[2][1]', \ 'actions': ['output:#STEP[4][1]'], 'idle_timeout': '0'}], ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[3][1]', \ 'actions': ['output:#STEP[1][1]'], 'idle_timeout': '0'}], # Start VM 1 ['vnf1', 'start'], # Now we want to replace VM 1 with another VM ['vnf1', 'stop'], ['vswitch', 'add_vport', 'int_br0'], # STEP 11 vm2 ['vswitch', 'add_vport', 'int_br0'], # STEP 12 ['vswitch', 'del_flow', 'int_br0'], ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \ 'actions': ['output:#STEP[11][1]'], 'idle_timeout': '0'}], ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[12][1]', \ 'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}], # Start VM 2 ['vnf2', 'start'], ['vnf2', 'stop'], ['vswitch', 'dump_flows', 'int_br0'], # Clean up ['vswitch', 'del_flow', 'int_br0'], ['vswitch', 'del_port', 'int_br0', '#STEP[1][0]'], ['vswitch', 'del_port', 'int_br0', '#STEP[2][0]'], ['vswitch', 'del_port', 'int_br0', '#STEP[3][0]'], # vm1 ['vswitch', 'del_port', 'int_br0', '#STEP[4][0]'], ['vswitch', 'del_port', 'int_br0', '#STEP[11][0]'], # vm2 ['vswitch', 'del_port', 'int_br0', '#STEP[12][0]'], ['vswitch', 'del_switch', 'int_br0'], ] }, To run the test: .. code-block:: console ./vsperf --conf-file user_settings.py --integration ex_replace_vm VM with a Linux bridge ^^^^^^^^^^^^^^^^^^^^^^ This example setups a PVP topology and routes traffic to the VM based on the destination IP address. A command-line parameter is used to select a Linux bridge as a guest loopback application. It is also possible to select a guest loopback application by a configuration option ``GUEST_LOOPBACK``. .. code-block:: python { "Name": "ex_pvp_rule_l3da", "Description": "PVP with flow on L3 Dest Addr", "Deployment": "clean", "TestSteps": [ ['vswitch', 'add_switch', 'int_br0'], # STEP 0 ['vswitch', 'add_phy_port', 'int_br0'], # STEP 1 ['vswitch', 'add_phy_port', 'int_br0'], # STEP 2 ['vswitch', 'add_vport', 'int_br0'], # STEP 3 vm1 ['vswitch', 'add_vport', 'int_br0'], # STEP 4 # Setup Flows ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \ 'dl_type': '0x0800', 'nw_dst': '90.90.90.90', \ 'actions': ['output:#STEP[3][1]'], 'idle_timeout': '0'}], # Each pkt from the VM is forwarded to the 2nd dpdk port ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[4][1]', \ 'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}], # Start VMs ['vnf1', 'start'], ['trafficgen', 'send_traffic', \ {'traffic_type' : 'rfc2544_continuous', \ 'bidir' : 'False'}], ['vnf1', 'stop'], # Clean up ['vswitch', 'dump_flows', 'int_br0'], # STEP 10 ['vswitch', 'del_flow', 'int_br0'], # STEP 11 ['vswitch', 'del_port', 'int_br0', '#STEP[1][0]'], ['vswitch', 'del_port', 'int_br0', '#STEP[2][0]'], ['vswitch', 'del_port', 'int_br0', '#STEP[3][0]'], # vm1 ports ['vswitch', 'del_port', 'int_br0', '#STEP[4][0]'], ['vswitch', 'del_switch', 'int_br0'], ] }, To run the test: .. code-block:: console ./vsperf --conf-file user_settings.py --test-params \ "GUEST_LOOPBACK=['linux_bridge']" --integration ex_pvp_rule_l3da Forward packets based on UDP port ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ This examples launches 2 VMs connected in parallel. Incoming packets will be forwarded to one specific VM depending on the destination UDP port. .. code-block:: python { "Name": "ex_2pvp_rule_l4dp", "Description": "2 PVP with flows on L4 Dest Port", "Deployment": "clean", "Parameters": { 'TRAFFIC' : { "multistream": 2, "stream_type": "L4", }, }, "TestSteps": [ ['vswitch', 'add_switch', 'int_br0'], # STEP 0 ['vswitch', 'add_phy_port', 'int_br0'], # STEP 1 ['vswitch', 'add_phy_port', 'int_br0'], # STEP 2 ['vswitch', 'add_vport', 'int_br0'], # STEP 3 vm1 ['vswitch', 'add_vport', 'int_br0'], # STEP 4 ['vswitch', 'add_vport', 'int_br0'], # STEP 5 vm2 ['vswitch', 'add_vport', 'int_br0'], # STEP 6 # Setup Flows to reply ICMPv6 and similar packets, so to # avoid flooding internal port with their re-transmissions ['vswitch', 'add_flow', 'int_br0', \ {'priority': '1', 'dl_src': '00:00:00:00:00:01', \ 'actions': ['output:#STEP[3][1]'], 'idle_timeout': '0'}], ['vswitch', 'add_flow', 'int_br0', \ {'priority': '1', 'dl_src': '00:00:00:00:00:02', \ 'actions': ['output:#STEP[4][1]'], 'idle_timeout': '0'}], ['vswitch', 'add_flow', 'int_br0', \ {'priority': '1', 'dl_src': '00:00:00:00:00:03', \ 'actions': ['output:#STEP[5][1]'], 'idle_timeout': '0'}], ['vswitch', 'add_flow', 'int_br0', \ {'priority': '1', 'dl_src': '00:00:00:00:00:04', \ 'actions': ['output:#STEP[6][1]'], 'idle_timeout': '0'}], # Forward UDP packets depending on dest port ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \ 'dl_type': '0x0800', 'nw_proto': '17', 'udp_dst': '0', \ 'actions': ['output:#STEP[3][1]'], 'idle_timeout': '0'}], ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \ 'dl_type': '0x0800', 'nw_proto': '17', 'udp_dst': '1', \ 'actions': ['output:#STEP[5][1]'], 'idle_timeout': '0'}], # Send VM output to phy port #2 ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[4][1]', \ 'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}], ['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[6][1]', \ 'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}], # Start VMs ['vnf1', 'start'], # STEP 16 ['vnf2', 'start'], # STEP 17 ['trafficgen', 'send_traffic', \ {'traffic_type' : 'rfc2544_continuous', \ 'bidir' : 'False'}], ['vnf1', 'stop'], ['vnf2', 'stop'], ['vswitch', 'dump_flows', 'int_br0'], # Clean up ['vswitch', 'del_flow', 'int_br0'], ['vswitch', 'del_port', 'int_br0', '#STEP[1][0]'], ['vswitch', 'del_port', 'int_br0', '#STEP[2][0]'], ['vswitch', 'del_port', 'int_br0', '#STEP[3][0]'], # vm1 ports ['vswitch', 'del_port', 'int_br0', '#STEP[4][0]'], ['vswitch', 'del_port', 'int_br0', '#STEP[5][0]'], # vm2 ports ['vswitch', 'del_port', 'int_br0', '#STEP[6][0]'], ['vswitch', 'del_switch', 'int_br0'], ] }, The same test can be written in a shorter form using "Deployment" : "pvpv". To run the test: .. code-block:: console ./vsperf --conf-file user_settings.py --integration ex_2pvp_rule_l4dp Modification of existing PVVP deployment ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ This is an example of modification of a standard deployment scenario with additional TestSteps. Standard PVVP scenario is used to configure a vSwitch and to deploy two VNFs connected in series. Additional TestSteps will deploy a 3rd VNF and connect it in parallel to already configured VNFs. Traffic generator is instructed (by Multistream feature) to send two separate traffic streams. One stream will be sent to the standalone VNF and second to two chained VNFs. In case, that test is defined as a performance test, then traffic results will be collected and available in both csv and rst report files. .. code-block:: python { "Name": "pvvp_pvp_cont", "Deployment": "pvvp", "Description": "PVVP and PVP in parallel with Continuous Stream", "Parameters" : { "TRAFFIC" : { "traffic_type" : "rfc2544_continuous", "multistream": 2, }, }, "TestSteps": [ ['vswitch', 'add_vport', '$VSWITCH_BRIDGE_NAME'], ['vswitch', 'add_vport', '$VSWITCH_BRIDGE_NAME'], # priority must be higher than default 32768, otherwise flows won't match ['vswitch', 'add_flow', '$VSWITCH_BRIDGE_NAME', {'in_port': '1', 'actions': ['output:#STEP[-2][1]'], 'idle_timeout': '0', 'dl_type':'0x0800', 'nw_proto':'17', 'tp_dst':'0', 'priority': '33000'}], ['vswitch', 'add_flow', '$VSWITCH_BRIDGE_NAME', {'in_port': '2', 'actions': ['output:#STEP[-2][1]'], 'idle_timeout': '0', 'dl_type':'0x0800', 'nw_proto':'17', 'tp_dst':'0', 'priority': '33000'}], ['vswitch', 'add_flow', '$VSWITCH_BRIDGE_NAME', {'in_port': '#STEP[-4][1]', 'actions': ['output:1'], 'idle_timeout': '0'}], ['vswitch', 'add_flow', '$VSWITCH_BRIDGE_NAME', {'in_port': '#STEP[-4][1]', 'actions': ['output:2'], 'idle_timeout': '0'}], ['vswitch', 'dump_flows', '$VSWITCH_BRIDGE_NAME'], ['vnf1', 'start'], ] }, To run the test: .. code-block:: console ./vsperf --conf-file user_settings.py pvvp_pvp_cont