From 6f5cfeb4f0853d156d15f8c541ef6b6fd80dcdfc Mon Sep 17 00:00:00 2001 From: Brady Johnson Date: Thu, 16 Feb 2017 14:59:02 +0100 Subject: Moving installation docs to configguide - After talking to Sofia Wallin, we agreed that this is a better approach for the documentation. Change-Id: Ie3edcb11e4d7823b0d3362395a15bf73aeaaaf4b Signed-off-by: Brady Johnson --- docs/release/configguide/feature.configuration.rst | 256 +++++++++++++++++++++ docs/release/configguide/featureconfig.rst | 24 -- docs/release/configguide/index.rst | 13 ++ docs/release/configguide/postinstall.rst | 26 --- .../release/installation/feature.configuration.rst | 256 --------------------- docs/release/installation/index.rst | 13 -- 6 files changed, 269 insertions(+), 319 deletions(-) create mode 100644 docs/release/configguide/feature.configuration.rst delete mode 100644 docs/release/configguide/featureconfig.rst create mode 100644 docs/release/configguide/index.rst delete mode 100644 docs/release/configguide/postinstall.rst delete mode 100644 docs/release/installation/feature.configuration.rst delete mode 100644 docs/release/installation/index.rst (limited to 'docs') diff --git a/docs/release/configguide/feature.configuration.rst b/docs/release/configguide/feature.configuration.rst new file mode 100644 index 00000000..e2fcbbb0 --- /dev/null +++ b/docs/release/configguide/feature.configuration.rst @@ -0,0 +1,256 @@ +.. This work is licensed under a Creative Commons Attribution 4.0 International License. +.. http://creativecommons.org/licenses/by/4.0 +.. (c) Ferenc Cserepkei, Brady Allen Johnson, Manuel Buil and others + +Abstract +======== +This document provides information on how to install the OpenDayLigh SFC +features in OPNFV with the use of os_odl-l2_sfc-(no)ha scenario. + +SFC feature desciription +======================== +For details of the scenarios and their provided capabilities refer to +the scenario description documents: + +- http://artifacts.opnfv.org/sfc/colorado/docs/scenarios_os-odl_l2-sfc-ha/index.html + +- http://artifacts.opnfv.org/sfc/colorado/docs/scenarios_os-odl_l2-sfc-noha/index.html + + +The SFC feature enables creation of Service Fuction Chains - an ordered list +of chained network funcions (e.g. firewalls, NAT, QoS) + +The SFC feature in OPNFV is implemented by 3 major components: + +- OpenDayLight SDN controller + +- Tacker: Generic VNF Manager (VNFM) and a NFV Orchestrator (NFVO) + +- OpenvSwitch: The Service Function Forwarder(s) + +Hardware requirements +===================== + +The SFC scenarios can be deployed on a bare-metal OPNFV cluster or on a +virtual environment on a single host. + +Bare metal deployment on (OPNFV) Pharos lab +------------------------------------------- +Hardware requirements for bare-metal deployments of the OPNFV infrastructure +are given by the Pharos project. The Pharos project provides an OPNFV +hardware specification for configuring your hardware: +http://artifacts.opnfv.org/pharos/docs/pharos-spec.html + + +Virtual deployment +------------------ +To perform a virtual deployment of an OPNFV SFC scenario on a single host, +that host has to meet the following hardware requirements: + +- SandyBridge compatible CPU with virtualization support + +- capable to host 5 virtual cores (5 physical ones at least) + +- 8-12 GBytes RAM for virtual hosts (controller, compute), 48GByte at least + +- 128 GiBiBytes room on disk for each virtual host (controller, compute) + + 64GiBiBytes for fuel master, 576 GiBiBytes at least + +- Ubuntu Trusty Tahr - 14.04(.5) server operating system with at least ssh + service selected at installation. + +- Internet Connection (preferably http proxyless) + + +Pre-configuration activites - Preparing the host to install Fuel by script +========================================================================== +.. Not all of these options are relevant for all scenario's. I advise following the +.. instructions applicable to the deploy tool used in the scenario. + +Before starting the installation of the SFC scenarios some preparation of the +machine that will host the Colorado Fuel cluster must be done. + +Installation of required packages +--------------------------------- +To be able to run the installation of the basic OPNFV fuel installation the +Jumphost (or the host which serves the VMs for the virtual deployment) needs to +install the following packages: +:: + + sudo apt-get install -y git make curl libvirt-bin libpq-dev qemu-kvm \ + qemu-system tightvncserver virt-manager sshpass \ + fuseiso genisoimage blackbox xterm python-pip \ + python-git python-dev python-oslo.config \ + python-pip python-dev libffi-dev libxml2-dev \ + libxslt1-dev libffi-dev libxml2-dev libxslt1-dev \ + expect curl python-netaddr p7zip-full + + sudo pip install GitPython pyyaml netaddr paramiko lxml scp \ + scp pycrypto ecdsa debtcollector netifaces enum + +During libvirt install the user is added to the libvirtd group, so you have to +logout then login back again + + +Download the installer source code and artifact +----------------------------------------------- +To be able to install the scenario os_odl-l2_sfc-(no)ha one can follow the way +CI is deploying the scenario. +First of all the opnfv-fuel repository needs to be cloned: +:: + + git clone -b 'stable/colorado' ssh://@gerrit.opnfv.org:29418/fuel + +This command copies the whole colorado branch of repository fuel. + +Now download the appropriate OPNFV Fuel ISO into an appropriate folder: +:: + + wget http://artifacts.opnfv.org/fuel/colorado/opnfv-colorado.1.0.iso + +The exact name of the ISO image may change. +Check https://www.opnfv.org/opnfv-colorado-fuel-users to get the latest ISO. + +Simplified scenario deployment procedure using Fuel +=================================================== + +This section describes the installation of the os-odl-l2_sfc or +os-odl-l2_sfc-noha OPNFV reference platform stack across a server cluster +or a single host as a virtual deployment. + +Scenario Preparation +-------------------- +dea.yaml and dha.yaml need to be copied and changed according to the +lab-name/host where you deploy. +Copy the full lab config from: +:: + + cp -r /deploy/config/labs/devel-pipeline/elx \ + /deploy/config/labs/devel-pipeline/ + +Add at the bottom of dha.yaml +:: + + disks: + fuel: 64G + controller: 128G + compute: 128G + + define_vms: + controller: + vcpu: + value: 2 + memory: + attribute_equlas: + unit: KiB + value: 12521472 + currentMemory: + attribute_equlas: + unit: KiB + value: 12521472 + compute: + vcpu: + value: 2 + memory: + attribute_equlas: + unit: KiB + value: 8388608 + currentMemory: + attribute_equlas: + unit: KiB + value: 8388608 + fuel: + vcpu: + value: 2 + memory: + attribute_equlas: + unit: KiB + value: 2097152 + currentMemory: + attribute_equlas: + unit: KiB + value: 2097152 + +Check if the default settings in dea.yaml are in line with your intentions +and make changes as required. + +Installation procedures +----------------------- + +We state here several alternatives. +First, we describe methods that are based on the use of the deploy.sh script, +what is used by the OPNFV CI system and can be found in the Fuel repository. + +In addition, the SFC feature can also be configured manually in the Fuel GUI +what we will show in the last subsection. + +Before starting any of the following procedures, go to +:: + + cd /ci + +Full automatic virtual deployment, High Availablity mode +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +This example will deploy the high-availability flavor of SFC scenario +os_odl-l2_sfc-ha in a fully automatic way, i.e. all installation steps +(Fuel server installation, configuration, node discovery and platform +deployment) will take place without any further prompt for user input. +:: + + sudo bash ./deploy.sh -b file:///config/ -l devel-pipeline -p + -s os_odl-l2_sfc-ha -i file:// + +Full automatic virtual deployment, non HIGH Availablity mode +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +The following command will deploy the SFC scenario with non-high-availability +flavor (note the different scenario name for the -s switch). Otherwise it +does the same as described above. +:: + + sudo bash ./deploy.sh -b file:///config/ -l devel-pipeline -p + -s os_odl-l2_sfc-noha -i file:// + +Automatic Fuel installation and manual scenario deployment +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +A useful alternative to the full automatic procedure is to only deploy the Fuel host and to run host selection, role assignment and SFC scenario configuration manually. +:: + + sudo bash ./deploy.sh -b file:///config/ -l devel-pipeline -p -s os_odl-l2_sfc-ha -i file:// -e + +With -e option the installer will skip environment deployment, so an user +can do some modification before the scenario is really deployed. Another +useful option is the -f option which deploys the scenario using an existing +Fuel host. + +The result of this installation is a well configured Fuel sever. The use of +the deploy button on Fuel dashboard can initiate the deployment. A user may +perform manual post-configuration as well. + +Feature configuration on existing Fuel +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +If a Fuel server is already provisioned but the fuel plugins for Opendaylight, +Openvswitch are not provided install them by: +:: + + cd /opt/opnfv/ + fuel plugins --install fuel-plugin-ovs-*.noarch.rpm + fuel plugins --install opendaylight-*.noarch.rpm + +If plugins are installed and you want to update them use --force flag. + +Note that One may inject other - Colorado compatible - plugins to the Fuel +Master host using the command scp: + +scp .rpm root@10.20.0.2:.rpm + +Now the feature can be configured. Create a new environment with +Networking Setup:"OpenDayLight with tunneling segmentation". Then go to +settings/other and check "OpenDaylight plugin, SFC enabled", +"Install Openvswitch with NSH/DPDK, with NSH enabled". During node provision +remember assign the OpenDayLight role to the (primary)controller + +Now the deploy button on fuel dashboard can be used to deploy the environment. diff --git a/docs/release/configguide/featureconfig.rst b/docs/release/configguide/featureconfig.rst deleted file mode 100644 index 9189902c..00000000 --- a/docs/release/configguide/featureconfig.rst +++ /dev/null @@ -1,24 +0,0 @@ - configuration -======================= -Add a brief introduction to configure OPNFV with this specific feature including -dependancies on platform components, this description should be at a level that -will apply to any installer providing the pre-requisite components. - -Pre-configuration activities ----------------------------- -Describe specific pre-configuration activities. This should include ensuring the -right components are installed by the installation tools as required for your -feature to function. Refer to the previous installer configuration chapters, -installations guide and release notes - -Hardware configuration ----------------------- -Describe the hardware configuration needed for this specific feature - -Feature configuration ---------------------- -Describe the procedures to configure your feature on the platform in order -that it is ready to use according to the feature instructions in the platform -user guide. Where applicable you should add content in the postinstall.rst -to validate the feature is configured for use. -(checking components are installed correctly etc...) diff --git a/docs/release/configguide/index.rst b/docs/release/configguide/index.rst new file mode 100644 index 00000000..53279035 --- /dev/null +++ b/docs/release/configguide/index.rst @@ -0,0 +1,13 @@ +.. This work is licensed under a Creative Commons Attribution 4.0 International License. +.. http://creativecommons.org/licenses/by/4.0 + .. (c) + +********************************************** +SFC installation and configuration instruction +********************************************** + +.. toctree:: + :numbered: + :maxdepth: 2 + + feature.configuration.rst diff --git a/docs/release/configguide/postinstall.rst b/docs/release/configguide/postinstall.rst deleted file mode 100644 index 1702cea5..00000000 --- a/docs/release/configguide/postinstall.rst +++ /dev/null @@ -1,26 +0,0 @@ - post installation procedures -====================================== -Add a brief introduction to the methods of validating the installation -according to this specific installer or feature. - -Automated post installation activities --------------------------------------- -Describe specific post installation activities performed by the OPNFV -deployment pipeline including testing activities and reports. Refer to -the relevant testing guides, results, and release notes. - -note: this section should be singular and derived from the test projects -once we have one test suite to run for all deploy tools. This is not the -case yet so each deploy tool will need to provide (hopefully very simillar) -documentation of this. - - post configuration procedures --------------------------------------- -Describe any deploy tool or feature specific scripts, tests or procedures -that should be carried out on the deployment post install and configuration -in this section. - -Platform components validation ---------------------------------- -Describe any component specific validation procedures necessary for your -deployment tool in this section. diff --git a/docs/release/installation/feature.configuration.rst b/docs/release/installation/feature.configuration.rst deleted file mode 100644 index e2fcbbb0..00000000 --- a/docs/release/installation/feature.configuration.rst +++ /dev/null @@ -1,256 +0,0 @@ -.. This work is licensed under a Creative Commons Attribution 4.0 International License. -.. http://creativecommons.org/licenses/by/4.0 -.. (c) Ferenc Cserepkei, Brady Allen Johnson, Manuel Buil and others - -Abstract -======== -This document provides information on how to install the OpenDayLigh SFC -features in OPNFV with the use of os_odl-l2_sfc-(no)ha scenario. - -SFC feature desciription -======================== -For details of the scenarios and their provided capabilities refer to -the scenario description documents: - -- http://artifacts.opnfv.org/sfc/colorado/docs/scenarios_os-odl_l2-sfc-ha/index.html - -- http://artifacts.opnfv.org/sfc/colorado/docs/scenarios_os-odl_l2-sfc-noha/index.html - - -The SFC feature enables creation of Service Fuction Chains - an ordered list -of chained network funcions (e.g. firewalls, NAT, QoS) - -The SFC feature in OPNFV is implemented by 3 major components: - -- OpenDayLight SDN controller - -- Tacker: Generic VNF Manager (VNFM) and a NFV Orchestrator (NFVO) - -- OpenvSwitch: The Service Function Forwarder(s) - -Hardware requirements -===================== - -The SFC scenarios can be deployed on a bare-metal OPNFV cluster or on a -virtual environment on a single host. - -Bare metal deployment on (OPNFV) Pharos lab -------------------------------------------- -Hardware requirements for bare-metal deployments of the OPNFV infrastructure -are given by the Pharos project. The Pharos project provides an OPNFV -hardware specification for configuring your hardware: -http://artifacts.opnfv.org/pharos/docs/pharos-spec.html - - -Virtual deployment ------------------- -To perform a virtual deployment of an OPNFV SFC scenario on a single host, -that host has to meet the following hardware requirements: - -- SandyBridge compatible CPU with virtualization support - -- capable to host 5 virtual cores (5 physical ones at least) - -- 8-12 GBytes RAM for virtual hosts (controller, compute), 48GByte at least - -- 128 GiBiBytes room on disk for each virtual host (controller, compute) + - 64GiBiBytes for fuel master, 576 GiBiBytes at least - -- Ubuntu Trusty Tahr - 14.04(.5) server operating system with at least ssh - service selected at installation. - -- Internet Connection (preferably http proxyless) - - -Pre-configuration activites - Preparing the host to install Fuel by script -========================================================================== -.. Not all of these options are relevant for all scenario's. I advise following the -.. instructions applicable to the deploy tool used in the scenario. - -Before starting the installation of the SFC scenarios some preparation of the -machine that will host the Colorado Fuel cluster must be done. - -Installation of required packages ---------------------------------- -To be able to run the installation of the basic OPNFV fuel installation the -Jumphost (or the host which serves the VMs for the virtual deployment) needs to -install the following packages: -:: - - sudo apt-get install -y git make curl libvirt-bin libpq-dev qemu-kvm \ - qemu-system tightvncserver virt-manager sshpass \ - fuseiso genisoimage blackbox xterm python-pip \ - python-git python-dev python-oslo.config \ - python-pip python-dev libffi-dev libxml2-dev \ - libxslt1-dev libffi-dev libxml2-dev libxslt1-dev \ - expect curl python-netaddr p7zip-full - - sudo pip install GitPython pyyaml netaddr paramiko lxml scp \ - scp pycrypto ecdsa debtcollector netifaces enum - -During libvirt install the user is added to the libvirtd group, so you have to -logout then login back again - - -Download the installer source code and artifact ------------------------------------------------ -To be able to install the scenario os_odl-l2_sfc-(no)ha one can follow the way -CI is deploying the scenario. -First of all the opnfv-fuel repository needs to be cloned: -:: - - git clone -b 'stable/colorado' ssh://@gerrit.opnfv.org:29418/fuel - -This command copies the whole colorado branch of repository fuel. - -Now download the appropriate OPNFV Fuel ISO into an appropriate folder: -:: - - wget http://artifacts.opnfv.org/fuel/colorado/opnfv-colorado.1.0.iso - -The exact name of the ISO image may change. -Check https://www.opnfv.org/opnfv-colorado-fuel-users to get the latest ISO. - -Simplified scenario deployment procedure using Fuel -=================================================== - -This section describes the installation of the os-odl-l2_sfc or -os-odl-l2_sfc-noha OPNFV reference platform stack across a server cluster -or a single host as a virtual deployment. - -Scenario Preparation --------------------- -dea.yaml and dha.yaml need to be copied and changed according to the -lab-name/host where you deploy. -Copy the full lab config from: -:: - - cp -r /deploy/config/labs/devel-pipeline/elx \ - /deploy/config/labs/devel-pipeline/ - -Add at the bottom of dha.yaml -:: - - disks: - fuel: 64G - controller: 128G - compute: 128G - - define_vms: - controller: - vcpu: - value: 2 - memory: - attribute_equlas: - unit: KiB - value: 12521472 - currentMemory: - attribute_equlas: - unit: KiB - value: 12521472 - compute: - vcpu: - value: 2 - memory: - attribute_equlas: - unit: KiB - value: 8388608 - currentMemory: - attribute_equlas: - unit: KiB - value: 8388608 - fuel: - vcpu: - value: 2 - memory: - attribute_equlas: - unit: KiB - value: 2097152 - currentMemory: - attribute_equlas: - unit: KiB - value: 2097152 - -Check if the default settings in dea.yaml are in line with your intentions -and make changes as required. - -Installation procedures ------------------------ - -We state here several alternatives. -First, we describe methods that are based on the use of the deploy.sh script, -what is used by the OPNFV CI system and can be found in the Fuel repository. - -In addition, the SFC feature can also be configured manually in the Fuel GUI -what we will show in the last subsection. - -Before starting any of the following procedures, go to -:: - - cd /ci - -Full automatic virtual deployment, High Availablity mode -^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - -This example will deploy the high-availability flavor of SFC scenario -os_odl-l2_sfc-ha in a fully automatic way, i.e. all installation steps -(Fuel server installation, configuration, node discovery and platform -deployment) will take place without any further prompt for user input. -:: - - sudo bash ./deploy.sh -b file:///config/ -l devel-pipeline -p - -s os_odl-l2_sfc-ha -i file:// - -Full automatic virtual deployment, non HIGH Availablity mode -^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - -The following command will deploy the SFC scenario with non-high-availability -flavor (note the different scenario name for the -s switch). Otherwise it -does the same as described above. -:: - - sudo bash ./deploy.sh -b file:///config/ -l devel-pipeline -p - -s os_odl-l2_sfc-noha -i file:// - -Automatic Fuel installation and manual scenario deployment -^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - -A useful alternative to the full automatic procedure is to only deploy the Fuel host and to run host selection, role assignment and SFC scenario configuration manually. -:: - - sudo bash ./deploy.sh -b file:///config/ -l devel-pipeline -p -s os_odl-l2_sfc-ha -i file:// -e - -With -e option the installer will skip environment deployment, so an user -can do some modification before the scenario is really deployed. Another -useful option is the -f option which deploys the scenario using an existing -Fuel host. - -The result of this installation is a well configured Fuel sever. The use of -the deploy button on Fuel dashboard can initiate the deployment. A user may -perform manual post-configuration as well. - -Feature configuration on existing Fuel -^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - -If a Fuel server is already provisioned but the fuel plugins for Opendaylight, -Openvswitch are not provided install them by: -:: - - cd /opt/opnfv/ - fuel plugins --install fuel-plugin-ovs-*.noarch.rpm - fuel plugins --install opendaylight-*.noarch.rpm - -If plugins are installed and you want to update them use --force flag. - -Note that One may inject other - Colorado compatible - plugins to the Fuel -Master host using the command scp: - -scp .rpm root@10.20.0.2:.rpm - -Now the feature can be configured. Create a new environment with -Networking Setup:"OpenDayLight with tunneling segmentation". Then go to -settings/other and check "OpenDaylight plugin, SFC enabled", -"Install Openvswitch with NSH/DPDK, with NSH enabled". During node provision -remember assign the OpenDayLight role to the (primary)controller - -Now the deploy button on fuel dashboard can be used to deploy the environment. diff --git a/docs/release/installation/index.rst b/docs/release/installation/index.rst deleted file mode 100644 index 53279035..00000000 --- a/docs/release/installation/index.rst +++ /dev/null @@ -1,13 +0,0 @@ -.. This work is licensed under a Creative Commons Attribution 4.0 International License. -.. http://creativecommons.org/licenses/by/4.0 - .. (c) - -********************************************** -SFC installation and configuration instruction -********************************************** - -.. toctree:: - :numbered: - :maxdepth: 2 - - feature.configuration.rst -- cgit 1.2.3-korg