summaryrefslogtreecommitdiffstats
path: root/docs/testing/user/userguide/05-How_to_run_SampleVNFs.rst
blob: 3835a43963815f7652af31c1488d0090b28aed58 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
.. This work is licensed under a Creative Commons Attribution 4.0 International
.. License.
.. http://creativecommons.org/licenses/by/4.0
.. (c) OPNFV, Intel Corporation and others.

SampleVNF - How to run
======================

Prerequisites
-------------

Supported Test setup
^^^^^^^^^^^^^^^^^^^^
The device under test (DUT) consists of a system following;
  * A single or dual processor and PCH chip, except for System on Chip (SoC) cases
  * DRAM memory size and frequency (normally single DIMM per channel)
  * Specific Intel Network Interface Cards (NICs)
  * BIOS settings noting those that updated from the basic settings
  * DPDK build configuration settings, and commands used for tests
Connected to the DUT is an IXIA* or Software Traffic generator like pktgen or TRex,
simulation platform to generate packet traffic to the DUT ports and
determine the throughput/latency at the tester side.

Below are the supported/tested (:term:`VNF`) deployment type.

.. image:: images/deploy_type.png
   :width: 800px
   :alt: SampleVNF supported topology

Hardware & Software Ingredients
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

SUT requirements:


   +-----------+------------------+
   | Item      | Description      |
   +-----------+------------------+
   | Memory    | Min 20GB         |
   +-----------+------------------+
   | NICs      | 2 x 10G          |
   +-----------+------------------+
   | OS        | Ubuntu 16.04 LTS |
   +-----------+------------------+
   | kernel    | 4.4.0-34-generic |
   +-----------+------------------+
   | DPDK      | 17.02            |
   +-----------+------------------+

Boot and BIOS settings:


   +------------------+---------------------------------------------------+
   | Boot settings    | default_hugepagesz=1G hugepagesz=1G hugepages=16  |
   |                  | hugepagesz=2M hugepages=2048 isolcpus=1-11,22-33  |
   |                  | nohz_full=1-11,22-33 rcu_nocbs=1-11,22-33         |
   |                  | Note: nohz_full and rcu_nocbs is to disable Linux*|
   |                  | kernel interrupts, and it’s import                |
   +------------------+---------------------------------------------------+
   |BIOS              | CPU Power and Performance Policy <Performance>    |
   |                  | CPU C-state Disabled                              |
   |                  | CPU P-state Disabled                              |
   |                  | Enhanced Intel® Speedstep® Tech Disabled          |
   |                  | Hyper-Threading Technology (If supported) Enable  |
   |                  | Virtualization Techology Enable                   |
   |                  | Coherency Enable                                  |
   |                  | Turbo Boost Disabled                              |
   +------------------+---------------------------------------------------+

Network Topology for testing VNFs
---------------------------------
The ethernet cables should be connected between traffic generator and the VNF server (BM,
SRIOV or OVS) setup based on the test profile.

The connectivity could be

1) Single port pair : One pair ports used for traffic

   ::
     e.g. Single port pair link0 and link1 of VNF are used
     TG:port 0 <------> VNF:Port 0
     TG:port 1 <------> VNF:Port 1

     For correalted traffic, use below configuration
     TG_1:port 0 <------> VNF:Port 0
                          VNF:Port 1 <------> TG_2:port 0 (UDP Replay)
     (TG_2(UDP_Replay) reflects all the traffic on the given port)

2) Multi port pair :  More than one pair of traffic

   ::
     e.g. Two port pair link 0, link1, link2 and link3 of VNF are used
     TG:port 0 <------> VNF:Port 0
     TG:port 1 <------> VNF:Port 1
     TG:port 2 <------> VNF:Port 2
     TG:port 3 <------> VNF:Port 3

     For correalted traffic, use below configuration
     TG_1:port 0 <------> VNF:Port 0
                          VNF:Port 1 <------> TG_2:port 0 (UDP Replay)
     TG_1:port 1 <------> VNF:Port 2
                          VNF:Port 3 <------> TG_2:port 1 (UDP Replay)
     (TG_2(UDP_Replay) reflects all the traffic on the given port)

 * Bare-Metal
   Refer: http://fast.dpdk.org/doc/pdf-guides/ to setup the DUT for VNF to run

 * Standalone Virtualization - PHY-VM-PHY
   * SRIOV
     Refer below link to setup sriov
     https://software.intel.com/en-us/articles/using-sr-iov-to-share-an-ethernet-port-among-multiple-vms

   * OVS_DPDK
     Refer below link to setup ovs-dpdk
     http://docs.openvswitch.org/en/latest/intro/install/general/
     http://docs.openvswitch.org/en/latest/intro/install/dpdk/

 * Openstack
     Use any OPNFV installer to deploy the openstack.

Setup Traffic generator
-----------------------

Step 0: Preparing hardware connection

    Connect Traffic generator and VNF system back to back as shown in previous section

    ::
        TRex port 0 ↔ (VNF Port 0) ↔ (VNF Port 1) ↔ TRex port 1

Step 1: Setting up Traffic generator (TRex)

    TRex Software preparations
    **************************
     * Install the OS (Bare metal Linux, not VM!)
     * Obtain the latest TRex package: wget https://trex-tgn.cisco.com/trex/release/latest
     * Untar the package: tar -xzf latest
     * Change dir to unzipped TRex
     * Create config file using command: sudo python dpdk_setup_ports.py -i
       In case of Ubuntu 16 need python3
       See paragraph config creation for detailed step-by-step
    (Refer: https://trex-tgn.cisco.com/trex/doc/trex_stateless_bench.html)


Build SampleVNFs
-----------------

Step 2: Procedure to build SampleVNFs

   a) Clone sampleVNF project repository  - git clone https://git.opnfv.org/samplevnf
   b) Build VNFs

Auto Build
^^^^^^^^^^
* Interactive options:

::
   ./tools/vnf_build.sh -i
   Follow the steps in the screen from option [1] –> [9] and select option [8] to build the vnfs.
   It will automatically download selected DPDK version and any required patches and will setup everything and build VNFs.
   Following are the options for setup:
   ----------------------------------------------------------
   Step 1: Environment setup.
   ----------------------------------------------------------
   [1] Check OS and network connection
   [2] Select DPDK RTE version

   ----------------------------------------------------------
   Step 2: Download and Install
   ----------------------------------------------------------
   [3] Agree to download
   [4] Download packages
   [5] Download DPDK zip
   [6] Build and Install DPDK
   [7] Setup hugepages
   [8] Download civetweb

   ----------------------------------------------------------
   Step 3: Build VNFs
   ----------------------------------------------------------
   [9] Build all VNFs (vACL, vCGNAPT, vFW, UDP_Replay, DPPD-PROX)

   [10] Exit Script


* Non-Interactive options:

::
   ./tools/vnf_build.sh -s -d=<dpdk version eg 17.02>
   if system is behind the proxy
   ./tools/vnf_build.sh -s -d=<dpdk version eg 17.02> -p=<proxy>

Manual Build
^^^^^^^^^^^^

::
   1) Download DPDK supported version from dpdk.org
      http://dpdk.org/browse/dpdk/snapshot/dpdk-$DPDK_RTE_VER.zip
      unzip dpdk-$DPDK_RTE_VER.zip and apply dpdk patches only in case of 16.04 (Not required for other DPDK versions)
      cd dpdk
      make config T=x86_64-native-linuxapp-gcc O=x86_64-native-linuxapp-gcc
      cd x86_64-native-linuxapp-gcc
      make

   2) Download civetweb 1.9 version from the following link
      https://sourceforge.net/projects/civetweb/files/1.9/CivetWeb_V1.9.zip
      unzip CivetWeb_V1.9.zip
      mv civetweb-master civetweb
      cd civetweb
      make lib

   3) Setup huge pages
      For 1G/2M hugepage sizes, for example 1G pages, the size must be
      specified explicitly and can also be optionally set as the
      default hugepage size for the system. For example, to reserve 8G
      of hugepage memory in the form of eight 1G pages, the following
      options should be passed to the kernel: * default_hugepagesz=1G
      hugepagesz=1G hugepages=8 hugepagesz=2M hugepages=2048
   4) Add this to Go to /etc/default/grub configuration file.
      Append “default_hugepagesz=1G hugepagesz=1G hugepages=8 hugepagesz=2M hugepages=2048”
      to the GRUB_CMDLINE_LINUX entry.
   5) Setup Environment Variable
      export RTE_SDK=<samplevnf>/dpdk
      export RTE_TARGET=x86_64-native-linuxapp-gcc
      export VNF_CORE=<samplevnf>
      or using ./tools/setenv.sh
   6) Build VNFs
      cd <samplevnf>
      make
      or to build individual VNFs
        cd <samplevnf>/VNFs/
        make clean
        make
        The vFW executable will be created at the following location
        <samplevnf>/VNFs/vFW/build/vFW


Virtual Firewall - How to run
-----------------------------

Step 3: Bind the datapath ports to DPDK

a) Bind ports to DPDK

  ::

    For DPDK versions 17.xx
    1) cd <samplevnf>/dpdk
    2) ./usertools/dpdk-devbind.py --status <--- List the network device
    3) ./usertools/dpdk-devbind.py -b igb_uio <PCI Port 0> <PCI Port 1>
    .. _More details: http://dpdk.org/doc/guides-17.05/linux_gsg/build_dpdk.html#binding-and-unbinding-network-ports-to-from-the-kernel-modules


b) Prepare script to enalble VNF to route the packets

  ::

    cd <samplevnf>/VNFs/vFW/config
    Open -> VFW_SWLB_SinglePortPair_script.tc. Replace the bold items based on your setting.

    link 0 config <VNF port 0 IP eg 202.16.100.10> 8
    link 0 up
    link 1 down
    link 1 config <VNF port 0 IP eg 172.16.40.10> 8
    link 1 up

    ; routeadd <net/host> <port #> <ipv4 nhip address in decimal> <Mask>
    routeadd net 0 <traffic generator port 0 IP eg 202.16.100.20> 0xff000000
    routeadd net 1 <traffic generator port 1 IP eg 172.16.40.20> 0xff000000

    ; IPv4 static ARP; disable if dynamic arp is enabled.
    p 1 arpadd 0 <traffic generator port 0 IP eg 202.16.100.20> <traffic generator port 0 MAC>
    p 1 arpadd 1  <traffic generator port 1 IP eg 172.16.40.20> <traffic generator port 1 MAC>
    p action add 0 accept
    p action add 0 fwd 0
    p action add 0 count
    p action add 1 accept
    p action add 1 fwd 1
    p action add 1 count
    p action add 2 drop
    p action add 2 count
    p action add 0 conntrack
    p action add 1 conntrack
    p action add 2 conntrack
    p action add 3 conntrack
    ; IPv4 rules
    p vfw add 1 <traffic generator port 0 IP eg 202.16.100.20> 8 <traffic generator port 1 IP eg 172.16.40.20> 8 0 65535 67 69 0 0 2
    p vfw add 2 <traffic generator port 0 IP eg 202.16.100.20> 8 <traffic generator port 1 IP eg 172.16.40.20> 8 0 65535 0 65535 0 0 1
    p vfw add 2 <traffic generator port 1 IP eg 172.16.40.20> 8 <traffic generator port 0 IP eg 202.16.100.20> 8 0 65535 0 65535 0 0 0
    p vfw applyruleset

c) Run below cmd to launch the VNF. Please make sure both hugepages and ports to be used are bind to dpdk.

  ::

    cd <samplevnf>/VNFs/vFW/
    ./build/vFW -p 0x3 -f ./config/VFW_SWLB_SinglePortPair_4Thread.cfg  -s ./config/VFW_SWLB_SinglePortPair_script.tc


step 4: Run Test using traffic geneator

  ::

    On traffic generator system:
    cd <trex eg v2.28/stl>
    Update the bench.py to generate the traffic.

    class STLBench(object):
    ip_range = {}
    ip_range['src'] = {'start': '<traffic generator port 0 IP eg 202.16.100.20>', 'end': '<traffic generator port 0 IP eg 202.16.100.20>'}
    ip_range['dst'] = {'start': '<traffic generator port 1 IP eg 172.16.40.20>', 'end': '<traffic generator port 1 IP eg 172.16.40.20>'}
    cd <trex eg v2.28>
    Run the TRex server: sudo ./t-rex-64 -i -c 7
    In another shell run TRex console: trex-console
    The console can be run from another computer with -s argument, --help for more info.
    Other options for TRex client are automation or GUI
    In the console, run "tui" command, and then send the traffic with commands like:
    start -f stl/bench.py -m 50% --port 0 3 -t size=590,vm=var1
    For more details refer: https://trex-tgn.cisco.com/trex/doc/trex_stateless_bench.html


Virtual Access Control list - How to run
----------------------------------------

Step 3: Bind the datapath ports to DPDK

a) Bind ports to DPDK

  ::

    For DPDK versions 17.xx
    1) cd <samplevnf>/dpdk
    2) ./usertools/dpdk-devbind.py --status <--- List the network device
    3) ./usertools/dpdk-devbind.py -b igb_uio <PCI Port 0> <PCI Port 1>
    .. _More details: http://dpdk.org/doc/guides-17.05/linux_gsg/build_dpdk.html#binding-and-unbinding-network-ports-to-from-the-kernel-modules


b) Prepare script to enalble VNF to route the packets

  ::

    cd <samplevnf>/VNFs/vACL/config
    Open -> IPv4_swlb_acl.tc. Replace the bold items based on your setting.

    link 0 config <VNF port 0 IP eg 202.16.100.10> 8
    link 0 up
    link 1 down
    link 1 config <VNF port 0 IP eg 172.16.40.10> 8
    link 1 up

    ; routeadd <port #> <ipv4 nhip address in decimal> <Mask>
    routeadd net 0 <traffic generator port 0 IP eg 202.16.100.20> 0xff000000
    routeadd net 1 <traffic generator port 1 IP eg 172.16.40.20> 0xff000000

    ; IPv4 static ARP; disable if dynamic arp is enabled.
    p 1 arpadd 0 <traffic generator port 0 IP eg 202.16.100.20> <traffic generator port 0 MAC>
    p 1 arpadd 1  <traffic generator port 1 IP eg 172.16.40.20> <traffic generator port 1 MAC>
    p action add 0 accept
    p action add 0 fwd 0
    p action add 0 count
    p action add 1 accept
    p action add 1 fwd 1
    p action add 1 count
    p action add 2 drop
    p action add 2 count
    p action add 0 conntrack
    p action add 1 conntrack
    p action add 2 conntrack
    p action add 3 conntrack
    ; IPv4 rules
    p acl add 1 <traffic generator port 0 IP eg 202.16.100.20> 8 <traffic generator port 1 IP eg 172.16.40.20> 8 0 65535 67 69 0 0 2
    p acl add 2 <traffic generator port 0 IP eg 202.16.100.20> 8 <traffic generator port 1 IP eg 172.16.40.20> 8 0 65535 0 65535 0 0 1
    p acl add 2 <traffic generator port 1 IP eg 172.16.40.20> 8 <traffic generator port 0 IP eg 202.16.100.20> 8 0 65535 0 65535 0 0 0
    p acl applyruleset


c) Run below cmd to launch the VNF. Please make sure both hugepages and ports to be used are bind to dpdk.

  ::

    cd <samplevnf>/VNFs/vFW/
    ./build/vFW -p 0x3 -f ./config/IPv4_swlb_acl_1LB_1t.cfg  -s ./config/IPv4_swlb_acl.tc.


step 4: Run Test using traffic geneator

  ::

    On traffic generator system:
    cd <trex eg v2.28/stl>
    Update the bench.py to generate the traffic.

    class STLBench(object):
    ip_range = {}
    ip_range['src'] = {'start': '<traffic generator port 0 IP eg 202.16.100.20>', 'end': '<traffic generator port 0 IP eg 202.16.100.20>'}
    ip_range['dst'] = {'start': '<traffic generator port 1 IP eg 172.16.40.20>', 'end': '<traffic generator port 1 IP eg 172.16.40.20>'}
    cd <trex eg v2.28>
    Run the TRex server: sudo ./t-rex-64 -i -c 7
    In another shell run TRex console: trex-console
    The console can be run from another computer with -s argument, --help for more info.
    Other options for TRex client are automation or GUI
    In the console, run "tui" command, and then send the traffic with commands like:
    start -f stl/bench.py -m 50% --port 0 3 -t size=590,vm=var1
    For more details refer: https://trex-tgn.cisco.com/trex/doc/trex_stateless_bench.html


vCGNAPT - How to run
--------------------

Step 3: Bind the datapath ports to DPDK

 a) Bind ports to DPDK

  ::

    For DPDK versions 17.xx
    1) cd <samplevnf>/dpdk
    2) ./usertools/dpdk-devbind.py --status <--- List the network device
    3) ./usertools/dpdk-devbind.py -b igb_uio <PCI Port 0> <PCI Port 1>
    .. _More details: http://dpdk.org/doc/guides-17.05/linux_gsg/build_dpdk.html#binding-and-unbinding-network-ports-to-from-the-kernel-modules


 b) Prepare script to enalble VNF to route the packets

  ::

    cd <samplevnf>/VNFs/vCGNAPT/config
    Open -> sample_swlb_2port_2WT.tc Replace the bold items based on your setting.

    link 0 config <VNF port 0 IP eg 202.16.100.10> 8
    link 0 up
    link 1 down
    link 1 config <VNF port 0 IP eg 172.16.40.10> 8
    link 1 up

    ; uncomment to enable static NAPT
    ;p <cgnapt pipeline id> entry addm <prv_ipv4/6> prvport> <pub_ip> <pub_port> <phy_port> <ttl> <no_of_entries> <end_prv_port> <end_pub_port>
    ;p 5 entry addm 202.16.100.20 1234 152.16.40.10 1 0 500 65535 1234 65535

    ; routeadd <net/host> <port #> <ipv4 nhip address in decimal> <Mask>
    routeadd net 0 <traffic generator port 0 IP eg 202.16.100.20> 0xff000000
    routeadd net 1 <traffic generator port 1 IP eg 172.16.40.20> 0xff000000

    ; IPv4 static ARP; disable if dynamic arp is enabled.
    p 1 arpadd 0 <traffic generator port 0 IP eg 202.16.100.20> <traffic generator port 0 MAC>
    p 1 arpadd 1  <traffic generator port 1 IP eg 172.16.40.20> <traffic generator port 1 MAC>

    For dynamic cgnapt. Please use UDP_Replay as one of the traffic generator
       (TG1) (port 0) --> (port 0) VNF (CGNAPT) (Port 1) --> (port0)(UDPReplay)

 c) Run below cmd to launch the VNF. Please make sure both hugepages and ports to be used are bind to dpdk.

  ::

    cd <samplevnf>/VNFs/vCGNAPT/
    ./build/vCGNAPT -p 0x3 -f ./config/sample_swlb_2port_2WT.cfg  -s ./config/sample_swlb_2port_2WT.tc

 d) Run UDP_replay to reflect the traffic on public side.
    cmd: ./build/UDP_Replay -c 0x7 -n 4 -w <pci> -w <pci> -- --no-hw-csum -p <portmask> --config='(port, queue, cpucore)'
    e.g ./build/UDP_Replay -c 0x7 -n 4 -w 0000:07:00.0 -w 0000:07:00.1 -- --no-hw-csum -p 0x3 --config='(0, 0, 1)(1, 0, 2)'

step 4: Run Test using traffic geneator

    On traffic generator system:

 ::
    cd <trex eg v2.28/stl>
    Update the bench.py to generate the traffic.

    class STLBench(object):
    ip_range = {}
    ip_range['src'] = {'start': '<traffic generator port 0 IP eg 202.16.100.20>', 'end': '<traffic generator port 0 IP eg 202.16.100.20>'}
    ip_range['dst'] = {'start': '<traffic generator port 1 IP eg 172.16.40.20>', 'end': '<public ip e.g 152.16.40.10>'}
    cd <trex eg v2.28>
    Run the TRex server: sudo ./t-rex-64 -i -c 7
    In another shell run TRex console: trex-console
    The console can be run from another computer with -s argument, --help for more info.
    Other options for TRex client are automation or GUI
    In the console, run "tui" command, and then send the traffic with commands like:
    start -f stl/bench.py -m 50% --port 0 3 -t size=590,vm=var1
    For more details refer: https://trex-tgn.cisco.com/trex/doc/trex_stateless_bench.html


UDP_Replay - How to run
----------------------------------------

Step 3: Bind the datapath ports to DPDK

 a) Bind ports to DPDK

  ::

    For DPDK versions 17.xx
    1) cd <samplevnf>/dpdk
    2) ./usertools/dpdk-devbind.py --status <--- List the network device
    3) ./usertools/dpdk-devbind.py -b igb_uio <PCI Port 0> <PCI Port 1>
    .. _More details: http://dpdk.org/doc/guides-17.05/linux_gsg/build_dpdk.html#binding-and-unbinding-network-ports-to-from-the-kernel-modules

 b) Run below cmd to launch the VNF. Please make sure both hugepages and ports to be used are bind to dpdk.

  ::

    cd <samplevnf>/VNFs/UDP_Replay/
    cmd: ./build/UDP_Replay -c 0x7 -n 4 -w <pci> -w <pci> -- --no-hw-csum -p <portmask> --config='(port, queue, cpucore)'
    e.g ./build/UDP_Replay -c 0x7 -n 4 -w 0000:07:00.0 -w 0000:07:00.1 -- --no-hw-csum -p 0x3 --config='(0, 0, 1)(1, 0, 2)'


step 4: Run Test using traffic geneator

 ::

    On traffic generator system:
    cd <trex eg v2.28/stl>
    Update the bench.py to generate the traffic.

    class STLBench(object):
    ip_range = {}
    ip_range['src'] = {'start': '<traffic generator port 0 IP eg 202.16.100.20>', 'end': '<traffic generator port 0 IP eg 202.16.100.20>'}
    ip_range['dst'] = {'start': '<traffic generator port 1 IP eg 172.16.40.20>', 'end': '<public ip e.g 152.16.40.10>'}
    cd <trex eg v2.28>
    Run the TRex server: sudo ./t-rex-64 -i -c 7
    In another shell run TRex console: trex-console
    The console can be run from another computer with -s argument, --help for more info.
    Other options for TRex client are automation or GUI
    In the console, run "tui" command, and then send the traffic with commands like:
    start -f stl/bench.py -m 50% --port 0 3 -t size=590,vm=var1
    For more details refer: https://trex-tgn.cisco.com/trex/doc/trex_stateless_bench.html

PROX - How to run
------------------

Description
^^^^^^^^^^^

This is PROX, the Packet pROcessing eXecution engine, part of Intel(R)
Data Plane Performance Demonstrators, and formerly known as DPPD-BNG.
PROX is a DPDK-based application implementing Telco use-cases such as
a simplified BRAS/BNG, light-weight AFTR... It also allows configuring
finer grained network functions like QoS, Routing, load-balancing...

Compiling and running this application
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This application supports DPDK 16.04, 16.11, 17.02 and 17.05.
The following commands assume that the following variables have been set:

export RTE_SDK=/path/to/dpdk
export RTE_TARGET=x86_64-native-linuxapp-gcc

Example: DPDK 17.05 installation
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

* git clone http://dpdk.org/git/dpdk
* cd dpdk
* git checkout v17.05
* make install T=$RTE_TARGET

PROX compilation
^^^^^^^^^^^^^^^^

The Makefile with this application expects RTE_SDK to point to the
root directory of DPDK (e.g. export RTE_SDK=/root/dpdk). If RTE_TARGET
has not been set, x86_64-native-linuxapp-gcc will be assumed.

Running PROX
^^^^^^^^^^^^

After DPDK has been set up, run make from the directory where you have
extracted this application. A build directory will be created
containing the PROX executable. The usage of the application is shown
below. Note that this application assumes that all required ports have
been bound to the DPDK provided igb_uio driver. Refer to the "Getting
Started Guide - DPDK" document for more details.

::

  Usage: ./build/prox [-f CONFIG_FILE] [-l LOG_FILE] [-p] [-o DISPLAY] [-v] [-a|-e] [-m|-s|-i] [-n] [-w DEF] [-q] [-k] [-d] [-z] [-r VAL] [-u] [-t]
        -f CONFIG_FILE : configuration file to load, ./prox.cfg by default
        -l LOG_FILE : log file name, ./prox.log by default
        -p : include PID in log file name if default log file is used
        -o DISPLAY: Set display to use, can be 'curses' (default), 'cli' or 'none'
        -v verbosity : initial logging verbosity
        -a : autostart all cores (by default)
        -e : don't autostart
        -n : Create NULL devices instead of using PCI devices, useful together with -i
        -m : list supported task modes and exit
        -s : check configuration file syntax and exit
        -i : check initialization sequence and exit
        -u : Listen on UDS /tmp/prox.sock
        -t : Listen on TCP port 8474
        -q : Pass argument to Lua interpreter, useful to define variables
        -w : define variable using syntax varname=value
             takes precedence over variables defined in CONFIG_FILE
        -k : Log statistics to file "stats_dump" in current directory
        -d : Run as daemon, the parent process will block until PROX is not initialized
        -z : Ignore CPU topology, implies -i
        -r : Change initial screen refresh rate. If set to a lower than 0.001 seconds,
                  screen refreshing will be disabled

While applications using DPDK typically rely on the core mask and the
number of channels to be specified on the command line, this
application is configured using a .cfg file. The core mask and number
of channels is derived from this config. For example, to run the
application from the source directory execute:

::
  user@target:~$ ./build/prox -f ./config/nop.cfg

Provided example configurations
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
PROX can be configured either as the SUT (System Under Test) or as the
Traffic Generator. Some example configuration files are provided, both
in the config directory to run PROX as a SUT, and in the gen directory
to run it as a Traffic Generator.
A quick description of these example configurations is provided below.
Additional details are provided in the example configuration files.

Basic configurations, mostly used as sanity check:

::
  - config/nop.cfg
  - config/nop-rings.cfg
  - gen/nop-gen.cfg

Simplified BNG (Border Network Gateway) configurations, using different
number of ports, with and without QoS, running on the host or in a VM:

::
  - config/bng-4ports.cfg
  - config/bng-8ports.cfg
  - config/bng-qos-4ports.cfg
  - config/bng-qos-8ports.cfg
  - config/bng-1q-4ports.cfg
  - config/bng-ovs-usv-4ports.cfg
  - config/bng-no-cpu-topology-4ports.cfg
  - gen/bng-4ports-gen.cfg
  - gen/bng-8ports-gen.cfg
  - gen/bng-ovs-usv-4ports-gen.cfg

Light-weight AFTR configurations:

::
  - config/lw_aftr.cfg
  - gen/lw_aftr-gen.cfg