summaryrefslogtreecommitdiffstats
path: root/VNFs/DPPD-PROX/packet_utils.c
blob: dcfd4f2ebef51c9fe4cd58bc32a3261a2215ddeb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
/*
// Copyright (c) 2010-2020 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/

#include <rte_lcore.h>
#include <rte_hash.h>
#include <rte_hash_crc.h>
#include <rte_lpm.h>

#include "task_base.h"
#include "lconf.h"
#include "prefetch.h"
#include "log.h"
#include "defines.h"
#include "handle_master.h"
#include "prox_port_cfg.h"
#include "packet_utils.h"
#include "prox_shared.h"
#include "prox_lua.h"
#include "hash_entry_types.h"
#include "prox_compat.h"
#include "prox_cfg.h"
#include "defines.h"
#include "prox_ipv6.h"
#include "tx_pkt.h"

static inline int find_ip(struct ether_hdr_arp *pkt, uint16_t len, uint32_t *ip_dst, uint16_t *vlan)
{
	prox_rte_vlan_hdr *vlan_hdr;
	prox_rte_ether_hdr *eth_hdr = (prox_rte_ether_hdr*)pkt;
	prox_rte_ipv4_hdr *ip;
	uint16_t ether_type = eth_hdr->ether_type;
	uint16_t l2_len = sizeof(prox_rte_ether_hdr);

	*vlan = 0;
	// Unstack VLAN tags
	while (((ether_type == ETYPE_VLAN) || (ether_type == ETYPE_8021ad)) && (l2_len + sizeof(prox_rte_vlan_hdr) < len)) {
		vlan_hdr = (prox_rte_vlan_hdr *)((uint8_t *)pkt + l2_len);
		l2_len +=4;
		ether_type = vlan_hdr->eth_proto;
		*vlan = rte_be_to_cpu_16(vlan_hdr->vlan_tci & 0xFF0F);	// Store VLAN, or CVLAN if QinQ
	}

	switch (ether_type) {
	case ETYPE_MPLSU:
	case ETYPE_MPLSM:
		// In case of MPLS, next hop MAC is based on MPLS, not destination IP
		l2_len = 0;
		break;
	case ETYPE_IPv4:
		break;
	case ETYPE_EoGRE:
	case ETYPE_ARP:
	case ETYPE_IPv6:
		l2_len = 0;
		break;
	default:
		l2_len = 0;
		plog_warn("Unsupported packet type %x - CRC might be wrong\n", ether_type);
		break;
	}

	if (l2_len && (l2_len + sizeof(prox_rte_ipv4_hdr) <= len)) {
		prox_rte_ipv4_hdr *ip = (prox_rte_ipv4_hdr *)((uint8_t *)pkt + l2_len);
		// TODO: implement LPM => replace ip_dst by next hop IP DST
		*ip_dst = ip->dst_addr;
		return 0;
	}
	return -1;
}

static inline void find_vlan(struct ether_hdr_arp *pkt, uint16_t len, uint16_t *vlan)
{
	prox_rte_vlan_hdr *vlan_hdr;
	prox_rte_ether_hdr *eth_hdr = (prox_rte_ether_hdr*)pkt;
	uint16_t ether_type = eth_hdr->ether_type;
	uint16_t l2_len = sizeof(prox_rte_ether_hdr);

	*vlan = 0;
	// Unstack VLAN tags
	while (((ether_type == ETYPE_8021ad) || (ether_type == ETYPE_VLAN)) && (l2_len + sizeof(prox_rte_vlan_hdr) < len)) {
		vlan_hdr = (prox_rte_vlan_hdr *)((uint8_t *)pkt + l2_len);
		l2_len +=4;
		ether_type = vlan_hdr->eth_proto;
		*vlan = rte_be_to_cpu_16(vlan_hdr->vlan_tci & 0xFF0F);  // Store VLAN, or CVLAN if QinQ
	}
}

static inline struct ipv6_addr *find_ip6(prox_rte_ether_hdr *pkt, uint16_t len, struct ipv6_addr *ip_dst, uint16_t *vlan)
{
	uint16_t ether_type = pkt->ether_type;
	uint16_t l2_len = sizeof(prox_rte_ether_hdr);
	*vlan = 0;

	if ((ether_type == ETYPE_VLAN) || (ether_type == ETYPE_8021ad)) {
		prox_rte_vlan_hdr *vlan_hdr = (prox_rte_vlan_hdr *)((uint8_t *)pkt + l2_len);
		ether_type = vlan_hdr->eth_proto;
		l2_len +=4;
		*vlan = rte_be_to_cpu_16(vlan_hdr->vlan_tci & 0xFF0F);
		if (ether_type == ETYPE_VLAN) {
			vlan_hdr = (prox_rte_vlan_hdr *)(vlan_hdr + 1);
			ether_type = vlan_hdr->eth_proto;
			l2_len +=4;
			*vlan = rte_be_to_cpu_16(vlan_hdr->vlan_tci & 0xFF0F);
		}
	}
	if ((ether_type == ETYPE_IPv6) && (l2_len + sizeof(prox_rte_ipv6_hdr) <= len)) {
		prox_rte_ipv6_hdr *ip = (prox_rte_ipv6_hdr *)((uint8_t *)pkt + l2_len);
		// TODO: implement LPM => replace ip_dst by next hop IP DST
		memcpy(ip_dst, &ip->dst_addr, sizeof(struct ipv6_addr));
		return (struct ipv6_addr *)&ip->src_addr;
	}
	return NULL;
}

void send_unsollicited_neighbour_advertisement(struct task_base *tbase)
{
	int ret;
	uint8_t out = 0, port_id = tbase->l3.reachable_port_id;
	struct rte_mbuf *mbuf = NULL;

	if (*(__int128 *)(&tbase->l3.local_ipv6) != 0) {
		ret = rte_mempool_get(tbase->l3.arp_nd_pool, (void **)&mbuf);
		if (likely(ret == 0)) {
			mbuf->port = port_id;
			build_neighbour_advertisement(tbase->l3.tmaster, mbuf, &prox_port_cfg[port_id].eth_addr, &tbase->l3.local_ipv6, PROX_UNSOLLICITED, prox_port_cfg[port_id].vlan_tags[0]);
			tbase->aux->tx_ctrlplane_pkt(tbase, &mbuf, 1, &out);
			TASK_STATS_ADD_TX_NON_DP(&tbase->aux->stats, 1);
		} else {
			plog_err("Failed to get a mbuf from arp/ndp mempool\n");
			return;
		}
	}
	if (*(__int128 *)(&tbase->l3.global_ipv6) != 0) {
		ret = rte_mempool_get(tbase->l3.arp_nd_pool, (void **)&mbuf);
		if (likely(ret == 0)) {
			mbuf->port = port_id;
			build_neighbour_advertisement(tbase->l3.tmaster, mbuf, &prox_port_cfg[port_id].eth_addr, &tbase->l3.global_ipv6, PROX_UNSOLLICITED, prox_port_cfg[port_id].vlan_tags[0]);
			tbase->aux->tx_ctrlplane_pkt(tbase, &mbuf, 1, &out);
			TASK_STATS_ADD_TX_NON_DP(&tbase->aux->stats, 1);
		} else {
			plog_err("Failed to get a mbuf from arp/ndp mempool\n");
			return;
		}
	}
	if (mbuf == NULL) {
		plog_err("No neighbor advertisement sent as no local or global ipv6\n");
	}
}

static void send_router_sollicitation(struct task_base *tbase, struct task_args *targ)
{
	int ret;
	uint8_t out = 0, port_id = tbase->l3.reachable_port_id;
	struct rte_mbuf *mbuf;

	ret = rte_mempool_get(tbase->l3.arp_nd_pool, (void **)&mbuf);
	if (likely(ret == 0)) {
		mbuf->port = port_id;
		build_router_sollicitation(mbuf, &prox_port_cfg[port_id].eth_addr, &targ->local_ipv6, prox_port_cfg[port_id].vlan_tags[0]);
		tbase->aux->tx_ctrlplane_pkt(tbase, &mbuf, 1, &out);
		TASK_STATS_ADD_TX_NON_DP(&tbase->aux->stats, 1);
	} else {
		plog_err("Failed to get a mbuf from arp/ndp mempool\n");
	}
}

/* This implementation could be improved: instead of checking each time we send a packet whether we need also
   to send an ARP, we should only check whether the MAC is valid.
   We should check arp_ndp_retransmit_timeout in the master process. This would also require the generating task to clear its arp ring
   to avoid sending many ARP while starting after a long stop.
   We could also check for reachable_timeout in the master so that dataplane has only to check whether MAC is available
   but this would require either thread safety, or the the exchange of information between master and generating core.
   */

static inline int add_key_and_send_arp(struct rte_hash *ip_hash, uint32_t *ip_dst, struct arp_table *entries,  uint64_t tsc, uint64_t hz, uint32_t arp_ndp_retransmit_timeout, prox_next_hop_index_type nh, uint64_t **time)
{
	int ret = rte_hash_add_key(ip_hash, (const void *)ip_dst);
	if (unlikely(ret < 0)) {
		// No reason to send ARP, as reply would be anyhow ignored
		plogx_err("Unable to add ip "IPv4_BYTES_FMT" in mac_hash\n", IP4(*ip_dst));
		return DROP_MBUF;
	} else {
		entries[ret].ip = *ip_dst;
		entries[ret].nh = nh;
		*time = &entries[ret].arp_ndp_retransmit_timeout;
	}
	return SEND_ARP_ND;
}

static inline int update_mac_and_send_mbuf(struct arp_table *entry, prox_rte_ether_addr *mac, uint64_t tsc, uint64_t hz, uint32_t arp_ndp_retransmit_timeout, uint64_t **time)
{
	if (likely((tsc < entry->arp_ndp_retransmit_timeout) && (tsc < entry->reachable_timeout))) {
		memcpy(mac, &entry->mac, sizeof(prox_rte_ether_addr));
		return SEND_MBUF;
	} else if (tsc > entry->arp_ndp_retransmit_timeout) {
		// long time since we have sent an arp, send arp
		*time = &entry->arp_ndp_retransmit_timeout;
		if (tsc < entry->reachable_timeout){
			// MAC is valid in the table => send also the mbuf
			memcpy(mac, &entry->mac, sizeof(prox_rte_ether_addr));
			return SEND_MBUF_AND_ARP_ND;
		} else {
			// MAC still unknown, or timed out => only send ARP
			return SEND_ARP_ND;
		}
	}
	// MAC is unknown and we already sent an ARP recently, drop mbuf and wait for ARP reply
	return DROP_MBUF;
}

int write_dst_mac(struct task_base *tbase, struct rte_mbuf *mbuf, uint32_t *ip_dst, uint16_t *vlan, uint64_t **time, uint64_t tsc)
{
	const uint64_t hz = rte_get_tsc_hz();
	struct ether_hdr_arp *packet = rte_pktmbuf_mtod(mbuf, struct ether_hdr_arp *);
	prox_rte_ether_addr *mac = &packet->ether_hdr.d_addr;
	prox_next_hop_index_type next_hop_index;
	static uint64_t last_tsc = 0, n_no_route = 0;

	struct l3_base *l3 = &(tbase->l3);

	// First find the next hop
	if (l3->ipv4_lpm) {
		// A routing table was configured
		// If a gw (gateway_ipv4) is also specified, it is used as default gw only i.e. lowest priority (shortest prefix)
		// This is implemented automatically through lpm
		uint16_t len = rte_pktmbuf_pkt_len(mbuf);
		if (find_ip(packet, len, ip_dst, vlan) != 0) {
			// Unable to find IP address => non IP packet => send it as it
			return SEND_MBUF;
		}
		if (unlikely(rte_lpm_lookup(l3->ipv4_lpm, rte_bswap32(*ip_dst), &next_hop_index) != 0)) {
			// Prevent printing too many messages
			n_no_route++;
			if (tsc > last_tsc + rte_get_tsc_hz()) {
				plogx_err("No route to IP "IPv4_BYTES_FMT" (%ld times)\n", IP4(*ip_dst), n_no_route);
				last_tsc = tsc;
				n_no_route = 0;
			}
			return DROP_MBUF;
		}
		struct arp_table *entry = &l3->next_hops[next_hop_index];

		if (entry->ip) {
			*ip_dst = entry->ip;
			return update_mac_and_send_mbuf(entry, mac, tsc, hz, l3->arp_ndp_retransmit_timeout, time);
		}

		// no next ip: this is a local route
		// Find IP in lookup table. Send ARP if not found
		int ret = rte_hash_lookup(l3->ip_hash, (const void *)ip_dst);
		if (unlikely(ret < 0)) {
			// IP not found, try to send an ARP
			return add_key_and_send_arp(l3->ip_hash, ip_dst, l3->arp_table, tsc, hz, l3->arp_ndp_retransmit_timeout, MAX_HOP_INDEX, time);
		} else {
			return update_mac_and_send_mbuf(&l3->arp_table[ret], mac, tsc, hz, l3->arp_ndp_retransmit_timeout, time);
		}
		return 0;
	}
	// No Routing table specified: only a local ip and maybe a gateway
	// Old default behavior: if a gw is specified, ALL packets go to this gateway (even those we could send w/o the gw

	uint16_t len = rte_pktmbuf_pkt_len(mbuf);
	if (l3->gw.ip) {
		find_vlan(packet, len, vlan);
		if (likely((l3->flags & FLAG_DST_MAC_KNOWN) && (tsc < l3->gw.arp_ndp_retransmit_timeout) && (tsc < l3->gw.reachable_timeout))) {
			memcpy(mac, &l3->gw.mac, sizeof(prox_rte_ether_addr));
			return SEND_MBUF;
		} else if (tsc > l3->gw.arp_ndp_retransmit_timeout) {
			// long time since we have successfully sent an arp, send arp
			// If sending ARP failed (ring full) then arp_ndp_retransmit_timeout is not updated to avoid having to wait 1 sec to send ARP REQ again
			*time = &l3->gw.arp_ndp_retransmit_timeout;
			l3->gw.arp_ndp_retransmit_timeout = tsc + l3->arp_ndp_retransmit_timeout * hz / 1000;

			*ip_dst = l3->gw.ip;
			if ((l3->flags & FLAG_DST_MAC_KNOWN) && (tsc < l3->gw.reachable_timeout)){
				// MAC is valid in the table => send also the mbuf
				memcpy(mac, &l3->gw.mac, sizeof(prox_rte_ether_addr));
				return SEND_MBUF_AND_ARP_ND;
			} else {
				// MAC still unknown, or timed out => only send ARP
				return SEND_ARP_ND;
			}
		} else {
			// MAC is unknown and we already sent an ARP recently, drop mbuf and wait for ARP reply
			return DROP_MBUF;
		}
	}

	if (find_ip(packet, len, ip_dst, vlan) != 0) {
		// Unable to find IP address => non IP packet => send it as it
		return SEND_MBUF;
	}
	if (likely(l3->n_pkts < 4)) {
		for (unsigned int idx = 0; idx < l3->n_pkts; idx++) {
			if (*ip_dst == l3->optimized_arp_table[idx].ip) {
				return update_mac_and_send_mbuf(&l3->optimized_arp_table[idx], mac, tsc, hz, l3->arp_ndp_retransmit_timeout, time);
			}
		}
		// IP address not found in table
		l3->optimized_arp_table[l3->n_pkts].ip = *ip_dst;
		*time = &l3->optimized_arp_table[l3->n_pkts].arp_ndp_retransmit_timeout;
		l3->n_pkts++;

		if (l3->n_pkts < 4) {
			return SEND_ARP_ND;
		}

		// We have too many IP addresses to search linearly; lets use hash table instead => copy all entries in hash table
		for (uint32_t idx = 0; idx < l3->n_pkts; idx++) {
			uint32_t ip = l3->optimized_arp_table[idx].ip;
			int ret = rte_hash_add_key(l3->ip_hash, (const void *)&ip);
			if (ret < 0) {
				// This should not happen as few entries so far.
				// If it happens, we still send the ARP as easier:
				//      If the ARP corresponds to this error, the ARP reply will be ignored
				//      If ARP does not correspond to this error/ip, then ARP reply will be handled.
				plogx_err("Unable add ip "IPv4_BYTES_FMT" in mac_hash (already %d entries)\n", IP4(ip), idx);
			} else {
				memcpy(&l3->arp_table[ret], &l3->optimized_arp_table[idx], sizeof(struct arp_table));
			}
		}
		return SEND_ARP_ND;
	} else {
		// Find IP in lookup table. Send ARP if not found
		int ret = rte_hash_lookup(l3->ip_hash, (const void *)ip_dst);
		if (unlikely(ret < 0)) {
			// IP not found, try to send an ARP
			return add_key_and_send_arp(l3->ip_hash, ip_dst, &l3->arp_table[ret], tsc, hz, l3->arp_ndp_retransmit_timeout, MAX_HOP_INDEX, time);
		} else {
			// IP has been found
			return update_mac_and_send_mbuf(&l3->arp_table[ret], mac, tsc, hz, l3->arp_ndp_retransmit_timeout, time);
		}
	}
	// Should not happen
	return DROP_MBUF;
}

int write_ip6_dst_mac(struct task_base *tbase, struct rte_mbuf *mbuf, struct ipv6_addr *ip_dst, uint16_t *vlan, uint64_t tsc)
{
	const uint64_t hz = rte_get_tsc_hz();
	prox_rte_ether_hdr *packet = rte_pktmbuf_mtod(mbuf, prox_rte_ether_hdr *);
	prox_rte_ether_addr *mac = &packet->d_addr;
	struct ipv6_addr *used_ip_src;

	uint16_t len = rte_pktmbuf_pkt_len(mbuf);

	struct ipv6_addr *pkt_src_ip6;
	if ((pkt_src_ip6 = find_ip6(packet, len, ip_dst, vlan)) == NULL) {
		// Unable to find IP address => non IP packet => send it as it
		return SEND_MBUF;
	}
	struct l3_base *l3 = &(tbase->l3);

	// Configure source IP
	if (*(uint64_t *)(&l3->local_ipv6) == *(uint64_t *)ip_dst) {
		// Same prefix as local -> use local
		used_ip_src = &l3->local_ipv6;
	} else if (*(uint64_t *)(&l3->global_ipv6) == *(uint64_t *)ip_dst) {
		// Same prefix as global -> use global
		used_ip_src = &l3->global_ipv6;
	} else if (*(__int128 *)(&l3->gw.ip6) != 0) {
		used_ip_src = &l3->global_ipv6;
		memcpy(ip_dst, &l3->gw.ip6, sizeof(struct ipv6_addr));
	} else if (*(__int128 *)(&l3->global_ipv6) != 0) {
		// Global IP is defined -> use it
		used_ip_src = &l3->global_ipv6;
	} else {
		plog_info("Error as trying to send a packet to "IPv6_BYTES_FMT" using "IPv6_BYTES_FMT" (local)\n", IPv6_BYTES(ip_dst->bytes), IPv6_BYTES(l3->local_ipv6.bytes));
		return DROP_MBUF;
	}
	rte_memcpy(pkt_src_ip6, used_ip_src, sizeof(struct ipv6_addr));

	// Configure dst mac
	if (likely(l3->n_pkts < 4)) {
		for (unsigned int idx = 0; idx < l3->n_pkts; idx++) {
			if (*(__int128 *)ip_dst == *(__int128 *)(&l3->optimized_arp_table[idx].ip6)) {
				 // IP address already in table
				if ((tsc < l3->optimized_arp_table[idx].arp_ndp_retransmit_timeout) && (tsc < l3->optimized_arp_table[idx].reachable_timeout)) {
					// MAC address was recently updated in table, use it
					// plog_dbg("Valid MAC address found => send packet\n");
					rte_memcpy(mac, &l3->optimized_arp_table[idx].mac, sizeof(prox_rte_ether_addr));
					return SEND_MBUF;
				} else if (tsc > l3->optimized_arp_table[idx].arp_ndp_retransmit_timeout) {
					// NDP not sent since a long time, send NDP
					l3->optimized_arp_table[idx].arp_ndp_retransmit_timeout = tsc + l3->arp_ndp_retransmit_timeout * hz / 1000;
					if (tsc < l3->optimized_arp_table[idx].reachable_timeout) {
						// MAC still valid => also send mbuf
						plog_dbg("Valid MAC found but NDP retransmit timeout => send packet and NDP\n");
						memcpy(mac, &l3->optimized_arp_table[idx].mac, sizeof(prox_rte_ether_addr));
						return SEND_MBUF_AND_ARP_ND;
					} else {
						plog_dbg("Unknown MAC => send NDP but cannot send packet\n");
						// MAC unvalid => only send NDP
						return SEND_ARP_ND;
					}
				} else {
					//  NDP timeout elapsed, MAC not valid anymore but waiting for NDP reply
					// plog_dbg("NDP reachable timeout elapsed - waiting for NDP reply\n");
					return DROP_MBUF;
				}
			}
		}
		// IP address not found in table
		memcpy(&l3->optimized_arp_table[l3->n_pkts].ip6, ip_dst, sizeof(struct ipv6_addr));
		l3->optimized_arp_table[l3->n_pkts].arp_ndp_retransmit_timeout = tsc + l3->arp_ndp_retransmit_timeout * hz / 1000;
		l3->n_pkts++;

		if (l3->n_pkts < 4) {
			return SEND_ARP_ND;
		}

		// We have too many IP addresses to search linearly; lets use hash table instead => copy all entries in hash table
		for (uint32_t idx = 0; idx < l3->n_pkts; idx++) {
			struct ipv6_addr *ip6 = &l3->optimized_arp_table[idx].ip6;
			int ret = rte_hash_add_key(l3->ip6_hash, (const void *)ip6);
			if (ret < 0) {
				// This should not happen as few entries so far.
				// If it happens, we still send the NDP as easier:
				//      If the NDP corresponds to this error, the NDP reply will be ignored
				//      If NDP does not correspond to this error/ip, then NDP reply will be handled.
				plogx_err("Unable add ip "IPv6_BYTES_FMT" in mac_hash (already %d entries)\n", IPv6_BYTES(ip6->bytes), idx);
			} else {
				memcpy(&l3->arp_table[ret], &l3->optimized_arp_table[idx], sizeof(struct arp_table));
			}
		}
		return SEND_ARP_ND;
	} else {
		// Find IP in lookup table. Send ND if not found
		int ret = rte_hash_lookup(l3->ip6_hash, (const void *)ip_dst);
		if (unlikely(ret < 0)) {
			// IP not found, try to send an ND
			int ret = rte_hash_add_key(l3->ip6_hash, (const void *)ip_dst);
			if (ret < 0) {
				// No reason to send NDP, as reply would be anyhow ignored
				plogx_err("Unable to add ip "IPv6_BYTES_FMT" in mac_hash\n", IPv6_BYTES(ip_dst->bytes));
				return DROP_MBUF;
			} else {
				memcpy(&l3->arp_table[ret].ip6, ip_dst, sizeof(struct ipv6_addr));
				l3->arp_table[ret].arp_ndp_retransmit_timeout = tsc + l3->arp_ndp_retransmit_timeout * hz / 1000;
			}
			return SEND_ARP_ND;
		} else {
			// IP has been found
			if (likely((tsc < l3->arp_table[ret].arp_ndp_retransmit_timeout) && (tsc < l3->arp_table[ret].reachable_timeout))) {
				// MAC still valid and NDP sent recently
				memcpy(mac, &l3->arp_table[ret].mac, sizeof(prox_rte_ether_addr));
				return SEND_MBUF;
			} else if (tsc > l3->arp_table[ret].arp_ndp_retransmit_timeout) {
				// NDP not sent since a long time, send NDP
				l3->arp_table[ret].arp_ndp_retransmit_timeout = tsc + l3->arp_ndp_retransmit_timeout * hz / 1000;
				if (tsc < l3->arp_table[ret].reachable_timeout) {
					// MAC still valid => send also MBUF
					memcpy(mac, &l3->arp_table[ret].mac, sizeof(prox_rte_ether_addr));
					return SEND_MBUF_AND_ARP_ND;
				} else {
					return SEND_ARP_ND;
				}
			} else {
				return DROP_MBUF;
			}
		}
	}
	// Should not happen
	return DROP_MBUF;
}

void task_init_l3(struct task_base *tbase, struct task_args *targ)
{
	static char hash_name[30];
	uint32_t n_entries = MAX_ARP_ENTRIES * 4;
	const int socket_id = rte_lcore_to_socket_id(targ->lconf->id);
	sprintf(hash_name, "A%03d_%03d_mac_table", targ->lconf->id, targ->id);

	hash_name[0]++;

	struct rte_hash_parameters hash_params = {
		.name = hash_name,
		.entries = n_entries,
		.key_len = sizeof(uint32_t),
		.hash_func = rte_hash_crc,
		.hash_func_init_val = 0,
	};
	if (targ->flags & TASK_ARG_L3) {
		plog_info("\t\tInitializing L3 (IPv4)\n");
		tbase->l3.ip_hash = rte_hash_create(&hash_params);
		PROX_PANIC(tbase->l3.ip_hash == NULL, "Failed to set up ip hash table\n");
		hash_name[0]++;
	}

	if (targ->flags & TASK_ARG_NDP) {
		plog_info("\t\tInitializing NDP (IPv6)\n");
		hash_params.key_len = sizeof(struct ipv6_addr);
		tbase->l3.ip6_hash = rte_hash_create(&hash_params);
		PROX_PANIC(tbase->l3.ip6_hash == NULL, "Failed to set up ip hash table\n");
	}
	tbase->l3.arp_table = (struct arp_table *)prox_zmalloc(n_entries * sizeof(struct arp_table), socket_id);
	PROX_PANIC(tbase->l3.arp_table == NULL, "Failed to allocate memory for %u entries in arp/ndp table\n", n_entries);
	plog_info("\t\tarp/ndp table, with %d entries of size %ld\n", n_entries, sizeof(struct l3_base));

	targ->lconf->ctrl_func_p[targ->task] = handle_ctrl_plane_pkts;
	targ->lconf->ctrl_timeout = freq_to_tsc(targ->ctrl_freq);
	tbase->l3.gw.ip = rte_cpu_to_be_32(targ->gateway_ipv4);
	memcpy(&tbase->l3.gw.ip6, &targ->gateway_ipv6, sizeof(struct ipv6_addr));
	tbase->flags |= TASK_L3;
	tbase->l3.core_id = targ->lconf->id;
	tbase->l3.task_id = targ->id;
	tbase->l3.tmaster = targ->tmaster;
	tbase->l3.seed = (uint)rte_rdtsc();
	if (targ->reachable_timeout != 0)
		tbase->l3.reachable_timeout = targ->reachable_timeout;
	else
		tbase->l3.reachable_timeout = DEFAULT_ARP_TIMEOUT;
	if (targ->arp_ndp_retransmit_timeout != 0)
		tbase->l3.arp_ndp_retransmit_timeout = targ->arp_ndp_retransmit_timeout;
	else
		tbase->l3.arp_ndp_retransmit_timeout = DEFAULT_ARP_UPDATE_TIME;
}

void task_start_l3(struct task_base *tbase, struct task_args *targ)
{
	const int socket_id = rte_lcore_to_socket_id(targ->lconf->id);
	const int NB_ARP_ND_MBUF = 1024;
	const int ARP_ND_MBUF_SIZE = 2048;
	const int NB_CACHE_ARP_ND_MBUF = 256;

	struct prox_port_cfg *port = find_reachable_port(targ);
        if (port && (tbase->l3.arp_nd_pool == NULL)) {
		static char name[] = "arp0_pool";
                tbase->l3.reachable_port_id = port - prox_port_cfg;
		if ((targ->local_ipv4 && port->ip_addr[0].ip) && (targ->local_ipv4 != port->ip_addr[0].ip)) {
			PROX_PANIC(1, "local_ipv4 in core section ("IPv4_BYTES_FMT") differs from port section ("IPv4_BYTES_FMT")\n", IP4(rte_be_to_cpu_32(targ->local_ipv4)), IP4(rte_be_to_cpu_32(port->ip_addr[0].ip)));
		}
		if ((targ->local_ipv4 && port->ip_addr[0].ip) && (targ->local_prefix != port->ip_addr[0].prefix)) {
			PROX_PANIC(1, "local_ipv4 prefix in core section (%d) differs from port section (%d)\n", targ->local_prefix, port->ip_addr[0].prefix);
		}
		if (!port->ip_addr[0].ip) {
			port->ip_addr[0].ip = targ->local_ipv4;
			port->ip_addr[0].prefix = targ->local_prefix;
			port->n_vlans = 1;
			port->vlan_tags[0] = 0;
			plog_info("Setting port local_ipv4 from core %d local_ipv4 to "IPv4_BYTES_FMT"\n", tbase->l3.reachable_port_id, IP4(rte_be_to_cpu_32(port->ip_addr[0].ip)));
		}
		for (int vlan_id = 0; vlan_id < port->n_vlans; vlan_id++) {
			register_ip_to_ctrl_plane(tbase->l3.tmaster, rte_be_to_cpu_32(port->ip_addr[vlan_id].ip), tbase->l3.reachable_port_id, targ->lconf->id, targ->id);
        	}
		if (strcmp(targ->route_table, "") != 0) {
			struct lpm4 *lpm;
			int ret;

			PROX_PANIC(port->n_vlans == 0, "missing local_ipv4 while route table is specified in L3 mode\n");

			// LPM might be modified runtime => do not share with other cores
			ret = lua_to_lpm4(prox_lua(), GLOBAL, targ->route_table, socket_id, &lpm);
			PROX_PANIC(ret, "Failed to load IPv4 LPM:\n%s\n", get_lua_to_errors());

			tbase->l3.ipv4_lpm = lpm->rte_lpm;
			tbase->l3.next_hops = prox_zmalloc(sizeof(*tbase->l3.next_hops) * MAX_HOP_INDEX, socket_id);
			PROX_PANIC(tbase->l3.next_hops == NULL, "Could not allocate memory for next hop\n");

			for (uint32_t i = 0; i < MAX_HOP_INDEX; i++) {
				if (!lpm->next_hops[i].ip_dst)
					continue;
				tbase->l3.nb_gws++;
				tbase->l3.next_hops[i].ip = rte_bswap32(lpm->next_hops[i].ip_dst);
				int tx_port = lpm->next_hops[i].mac_port.out_idx;
				// gen only supports one port right now .... hence port = 0
				if ((tx_port > targ->nb_txports - 1) && (tx_port > targ->nb_txrings - 1)) {
					PROX_PANIC(1, "Routing Table contains port %d but only %d tx port/ %d ring:\n", tx_port, targ->nb_txports, targ->nb_txrings);
				}
			}
			plog_info("Using routing table %s in l3 mode, with %d gateways\n", targ->route_table, tbase->l3.nb_gws);

			// Last but one (x n_vlans) "next_hop_index" is not a gateway but direct routes
			for (int vlan_id = 0; vlan_id < port->n_vlans; vlan_id++) {
				tbase->l3.next_hops[tbase->l3.nb_gws].ip = 0;
				ret = rte_lpm_add(tbase->l3.ipv4_lpm, port->ip_addr[vlan_id].ip, port->ip_addr[vlan_id].prefix, tbase->l3.nb_gws++);
				PROX_PANIC(ret, "Failed to add local_ipv4 "IPv4_BYTES_FMT"/%d to lpm\n", IP4(port->ip_addr[vlan_id].ip), port->ip_addr[vlan_id].prefix);
			}

			// Last "next_hop_index" is default gw
			tbase->l3.next_hops[tbase->l3.nb_gws].ip = rte_bswap32(targ->gateway_ipv4);
			if (targ->gateway_ipv4) {
				ret = rte_lpm_add(tbase->l3.ipv4_lpm, targ->gateway_ipv4, 0, tbase->l3.nb_gws++);
				PROX_PANIC(ret, "Failed to add gateway_ipv4 "IPv4_BYTES_FMT"/%d to lpm\n", IP4(tbase->l3.gw.ip), 0);
			}
		}

		master_init_vdev(tbase->l3.tmaster, tbase->l3.reachable_port_id, targ->lconf->id, targ->id);

		// Create IPv6 addr if none were configured
		if (targ->flags & TASK_ARG_NDP) {
			if (!memcmp(&targ->local_ipv6, &null_addr, sizeof(struct ipv6_addr))) {
				set_link_local(&targ->local_ipv6);
				set_EUI(&targ->local_ipv6, &port->eth_addr);
			}
			plog_info("\tCore %d, task %d, local IPv6 addr is "IPv6_BYTES_FMT" (%s)\n",
				targ->lconf->id, targ->id,
				IPv6_BYTES(targ->local_ipv6.bytes),
				IP6_Canonical(&targ->local_ipv6));
			memcpy(&tbase->l3.local_ipv6, &targ->local_ipv6, sizeof(struct ipv6_addr));

			if (memcmp(&targ->global_ipv6, &null_addr, sizeof(struct ipv6_addr))) {
				memcpy(&tbase->l3.global_ipv6, &targ->global_ipv6, sizeof(struct ipv6_addr));
				plog_info("\tCore %d, task %d, global IPv6 addr is "IPv6_BYTES_FMT" (%s)\n",
					targ->lconf->id, targ->id,
					IPv6_BYTES(targ->global_ipv6.bytes),
					IP6_Canonical(&targ->global_ipv6));
			}
			if (targ->ipv6_router)
				register_router_to_ctrl_plane(tbase->l3.tmaster, tbase->l3.reachable_port_id, targ->lconf->id, targ->id, &targ->local_ipv6, &targ->global_ipv6, &targ->router_prefix);
			else
				register_node_to_ctrl_plane(tbase->l3.tmaster, &targ->local_ipv6, &targ->global_ipv6, tbase->l3.reachable_port_id, targ->lconf->id, targ->id);
		}

		name[3]++;
		struct rte_mempool *ret = rte_mempool_create(name, NB_ARP_ND_MBUF, ARP_ND_MBUF_SIZE, NB_CACHE_ARP_ND_MBUF,
			sizeof(struct rte_pktmbuf_pool_private), rte_pktmbuf_pool_init, NULL, rte_pktmbuf_init, 0,
			rte_socket_id(), 0);
		PROX_PANIC(ret == NULL, "Failed to allocate ARP/ND memory pool on socket %u with %u elements\n",
			rte_socket_id(), NB_ARP_ND_MBUF);
		plog_info("\tMempool %p (%s) size = %u * %u cache %u, socket %d (for ARP/ND)\n", ret, name, NB_ARP_ND_MBUF,
			ARP_ND_MBUF_SIZE, NB_CACHE_ARP_ND_MBUF, rte_socket_id());
		tbase->l3.arp_nd_pool = ret;
		if ((targ->flags & TASK_ARG_NDP) && (!targ->ipv6_router)) {
			plog_info("Sending Router Sollicitation\n");
			send_router_sollicitation(tbase, targ);
		}
		if ((targ->flags & TASK_ARG_NDP) && (targ->flags & TASK_ARG_SEND_NA_AT_STARTUP)) {
			plog_info("Sending unsollicited Neighbour Advertisement\n");
			send_unsollicited_neighbour_advertisement(tbase);

		}
	}
}

void task_set_gateway_ip(struct task_base *tbase, uint32_t ip)
{
	tbase->l3.gw.ip = ip;
	tbase->flags &= ~FLAG_DST_MAC_KNOWN;
}

static void reset_arp_ndp_retransmit_timeout(struct l3_base *l3, uint32_t ip)
{
	uint32_t idx;
	plogx_dbg("MAC entry for IP "IPv4_BYTES_FMT" timeout in kernel\n", IP4(ip));

	if (l3->ipv4_lpm) {
		int ret = rte_hash_lookup(l3->ip_hash, (const void *)&ip);
		if (ret >= 0)
			l3->arp_table[ret].arp_ndp_retransmit_timeout = 0;
	} else if (ip == l3->gw.ip) {
		l3->gw.arp_ndp_retransmit_timeout = 0;
	} else if (l3->n_pkts < 4) {
		for (idx = 0; idx < l3->n_pkts; idx++) {
			uint32_t ip_dst = l3->optimized_arp_table[idx].ip;
			if (ip_dst == ip)
				break;
		}
		if (idx < l3->n_pkts) {
			l3->optimized_arp_table[idx].arp_ndp_retransmit_timeout = 0;
		}
	} else {
		int ret = rte_hash_lookup(l3->ip_hash, (const void *)&ip);
		if (ret >= 0)
			l3->arp_table[ret].arp_ndp_retransmit_timeout = 0;
	}
	return;
}

static prox_next_hop_index_type get_nh_index(struct task_base *tbase, uint32_t gw_ip)
{
	// Check if gateway already exists
	for (prox_next_hop_index_type i = 0; i < tbase->l3.nb_gws; i++) {
		if (tbase->l3.next_hops[i].ip == gw_ip) {
			return i;
		}
	}
	if (tbase->l3.nb_gws < MAX_HOP_INDEX) {
		tbase->l3.next_hops[tbase->l3.nb_gws].ip = gw_ip;
		tbase->l3.nb_gws++;
		return tbase->l3.nb_gws - 1;
	} else
		return MAX_HOP_INDEX;
}
void handle_ctrl_plane_pkts(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts)
{
	uint8_t out[1];
	const uint64_t hz = rte_get_tsc_hz();
	uint32_t ip, ip_dst, idx, gateway_ip, prefix;
	prox_next_hop_index_type gateway_index;
	int j, ret, modified_route;
	uint64_t addr;
	struct ipv6_addr *ip6, *ip6_dst;
	uint16_t command;
	prox_rte_ether_hdr *hdr;
	struct ether_hdr_arp *hdr_arp;
	struct l3_base *l3 = &tbase->l3;
	uint64_t tsc= rte_rdtsc();
	uint64_t reachable_timeout = l3->reachable_timeout * hz / 1000;
	uint32_t nh;
	prox_rte_ipv4_hdr *pip;
	prox_rte_udp_hdr *udp_hdr;
	uint8_t port = tbase->l3.reachable_port_id;

	for (j = 0; j < n_pkts; ++j) {
		PREFETCH0(mbufs[j]);
	}
	for (j = 0; j < n_pkts; ++j) {
		PREFETCH0(rte_pktmbuf_mtod(mbufs[j], void *));
	}

	for (j = 0; j < n_pkts; ++j) {
		pip = NULL;
		udp_hdr = NULL;
		out[0] = OUT_HANDLED;
		command = get_command(mbufs[j]);
		plogx_dbg("\tReceived %s mbuf %p\n", actions_string[command], mbufs[j]);
		switch(command) {
		case ROUTE_ADD_FROM_MASTER:
			ip = ctrl_ring_get_ip(mbufs[j]);
			gateway_ip = ctrl_ring_get_gateway_ip(mbufs[j]);
			prefix = ctrl_ring_get_prefix(mbufs[j]);
			gateway_index = get_nh_index(tbase, gateway_ip);
			if (gateway_index >= MAX_HOP_INDEX) {
				plog_err("Unable to find or define gateway index - too many\n");
				return;
			}
			modified_route = rte_lpm_is_rule_present(tbase->l3.ipv4_lpm, rte_bswap32(ip), prefix, &nh);
			ret = rte_lpm_add(tbase->l3.ipv4_lpm, rte_bswap32(ip), prefix, gateway_index);
			if (ret < 0) {
				plog_err("Failed to add route to "IPv4_BYTES_FMT"/%d using "IPv4_BYTES_FMT"(index = %d)\n", IP4(ip), prefix, IP4(gateway_ip), gateway_index);
			} else if (modified_route)
				plogx_dbg("Modified route to "IPv4_BYTES_FMT"/%d using "IPv4_BYTES_FMT"(index = %d) (was using "IPv4_BYTES_FMT"(index = %d)\n", IP4(ip), prefix, IP4(gateway_ip), gateway_index, IP4(tbase->l3.next_hops[nh].ip), nh);
			else {
				plogx_dbg("Added new route to "IPv4_BYTES_FMT"/%d using "IPv4_BYTES_FMT"(index = %d)\n", IP4(ip), prefix, IP4(gateway_ip), gateway_index);
			}
			tx_drop(mbufs[j]);
			break;
		case ROUTE_DEL_FROM_MASTER:
			ip = ctrl_ring_get_ip(mbufs[j]);
			prefix = ctrl_ring_get_prefix(mbufs[j]);

			ret = rte_lpm_is_rule_present(tbase->l3.ipv4_lpm, rte_bswap32(ip), prefix, &nh);
			if (ret > 0) {
				ret = rte_lpm_delete(tbase->l3.ipv4_lpm, rte_bswap32(ip), prefix);
				if (ret < 0) {
					plog_err("Failed to add rule\n");
				}
				plog_info("Deleting route to "IPv4_BYTES_FMT"/%d\n", IP4(ip), prefix);
			}
			tx_drop(mbufs[j]);
			break;
		case MAC_INFO_FROM_MASTER:
			hdr_arp = rte_pktmbuf_mtod(mbufs[j], struct ether_hdr_arp *);
			ip = get_ip(mbufs[j]);

			if (prox_rte_is_zero_ether_addr(&hdr_arp->arp.data.sha)) {
				// MAC timeout or deleted from kernel table => reset update_time
				// This will cause us to send new ARP request
				// However, as reachable_timeout not touched, we should continue sending our regular IP packets
				reset_arp_ndp_retransmit_timeout(l3, ip);
				return;
			} else
				plogx_dbg("\tUpdating MAC entry for IP "IPv4_BYTES_FMT" with MAC "MAC_BYTES_FMT"\n",
					IP4(ip), MAC_BYTES(hdr_arp->arp.data.sha.addr_bytes));

			if (l3->ipv4_lpm) {
				uint32_t nh;
				struct arp_table *entry;
				ret = rte_hash_add_key(l3->ip_hash, (const void *)&ip);
				if (ret < 0) {
					plogx_info("Unable add ip "IPv4_BYTES_FMT" in mac_hash\n", IP4(ip));
				} else if ((nh = l3->arp_table[ret].nh) != MAX_HOP_INDEX) {
					entry = &l3->next_hops[nh];
					memcpy(&entry->mac, &(hdr_arp->arp.data.sha), sizeof(prox_rte_ether_addr));
					entry->reachable_timeout = tsc + reachable_timeout;
					update_arp_ndp_retransmit_timeout(l3, &entry->arp_ndp_retransmit_timeout, l3->arp_ndp_retransmit_timeout);
				} else {
					memcpy(&l3->arp_table[ret].mac, &(hdr_arp->arp.data.sha), sizeof(prox_rte_ether_addr));
					l3->arp_table[ret].reachable_timeout = tsc + reachable_timeout;
					update_arp_ndp_retransmit_timeout(l3, &l3->arp_table[ret].arp_ndp_retransmit_timeout, l3->arp_ndp_retransmit_timeout);
				}
			}
			else if (ip == l3->gw.ip) {
				// MAC address of the gateway
				memcpy(&l3->gw.mac, &hdr_arp->arp.data.sha, 6);
				l3->flags |= FLAG_DST_MAC_KNOWN;
				l3->gw.reachable_timeout = tsc + reachable_timeout;
				update_arp_ndp_retransmit_timeout(l3, &l3->gw.arp_ndp_retransmit_timeout, l3->arp_ndp_retransmit_timeout);
			} else if (l3->n_pkts < 4) {
				// Few packets tracked - should be faster to loop through them thean using a hash table
				for (idx = 0; idx < l3->n_pkts; idx++) {
					ip_dst = l3->optimized_arp_table[idx].ip;
					if (ip_dst == ip)
						break;
				}
				if (idx < l3->n_pkts) {
					memcpy(&l3->optimized_arp_table[idx].mac, &(hdr_arp->arp.data.sha), sizeof(prox_rte_ether_addr));
					l3->optimized_arp_table[idx].reachable_timeout = tsc + reachable_timeout;
					update_arp_ndp_retransmit_timeout(l3, &l3->optimized_arp_table[idx].arp_ndp_retransmit_timeout, l3->arp_ndp_retransmit_timeout);
				}
			} else {
				ret = rte_hash_add_key(l3->ip_hash, (const void *)&ip);
				if (ret < 0) {
					plogx_info("Unable add ip "IPv4_BYTES_FMT" in mac_hash\n", IP4(ip));
				} else {
					memcpy(&l3->arp_table[ret].mac, &(hdr_arp->arp.data.sha), sizeof(prox_rte_ether_addr));
					l3->arp_table[ret].reachable_timeout = tsc + reachable_timeout;
					update_arp_ndp_retransmit_timeout(l3, &l3->arp_table[ret].arp_ndp_retransmit_timeout, l3->arp_ndp_retransmit_timeout);
				}
			}
			tx_drop(mbufs[j]);
			break;
		case MAC_INFO_FROM_MASTER_FOR_IPV6:
			ip6 = ctrl_ring_get_ipv6_addr(mbufs[j]);
			uint64_t data = ctrl_ring_get_data(mbufs[j]);

			if (l3->n_pkts < 4) {
				// Few packets tracked - should be faster to loop through them thean using a hash table
				for (idx = 0; idx < l3->n_pkts; idx++) {
					ip6_dst = &l3->optimized_arp_table[idx].ip6;
					if (memcmp(ip6_dst, ip6, sizeof(struct ipv6_addr)) == 0)
						break;
				}
				if (idx < l3->n_pkts) {
					// IP found; this is a reply for one of our requests!
					memcpy(&l3->optimized_arp_table[idx].mac, &data, sizeof(prox_rte_ether_addr));
					l3->optimized_arp_table[idx].reachable_timeout = tsc + l3->reachable_timeout * hz / 1000;
				}
			} else {
				int ret = rte_hash_add_key(l3->ip6_hash, (const void *)ip6);
				if (ret < 0) {
					plogx_info("Unable add ip "IPv6_BYTES_FMT" in mac_hash\n", IPv6_BYTES(ip6->bytes));
				} else {
					memcpy(&l3->arp_table[ret].mac, &data, sizeof(prox_rte_ether_addr));
					l3->arp_table[ret].reachable_timeout = tsc + l3->reachable_timeout * hz / 1000;
				}
			}
			tx_drop(mbufs[j]);
			break;
		case SEND_NDP_FROM_MASTER:
		case SEND_ARP_REQUEST_FROM_MASTER:
		case SEND_ARP_REPLY_FROM_MASTER:
			out[0] = 0;
			// tx_ctrlplane_pkt does not drop packets
			plogx_dbg("\tForwarding (ARP) packet from master\n");
			tbase->aux->tx_ctrlplane_pkt(tbase, &mbufs[j], 1, out);
			TASK_STATS_ADD_TX_NON_DP(&tbase->aux->stats, 1);
			break;
		case SEND_ICMP_FROM_MASTER:
			out[0] = 0;
			// tx_ctrlplane_pkt does not drop packets
			plogx_dbg("\tForwarding (PING) packet from master\n");
			tbase->aux->tx_ctrlplane_pkt(tbase, &mbufs[j], 1, out);
			TASK_STATS_ADD_TX_NON_DP(&tbase->aux->stats, 1);
			break;
		case PKT_FROM_TAP:
			// Drop Pseudo packets sent to generate ARP requests
			// There are other IPv4 packets sent from TAP which we cannot delete e.g. BGP packets
			out[0] = 0;
			hdr = rte_pktmbuf_mtod(mbufs[j], prox_rte_ether_hdr *);
			if (hdr->ether_type == ETYPE_IPv4) {
				pip = (prox_rte_ipv4_hdr *)(hdr + 1);
			} else if (hdr->ether_type == ETYPE_VLAN) {
				prox_rte_vlan_hdr *vlan = (prox_rte_vlan_hdr *)(hdr + 1);
				vlan = (prox_rte_vlan_hdr *)(hdr + 1);
				if (vlan->eth_proto == ETYPE_IPv4) {
					pip = (prox_rte_ipv4_hdr *)(vlan + 1);
				}
			}
			if (pip && (pip->next_proto_id == IPPROTO_UDP)) {
				udp_hdr = (prox_rte_udp_hdr *)(pip + 1);
				if ((udp_hdr->dst_port == rte_cpu_to_be_16(PROX_PSEUDO_PKT_PORT)) &&
					(udp_hdr->src_port == rte_cpu_to_be_16(PROX_PSEUDO_PKT_PORT)) &&
					(rte_be_to_cpu_16(udp_hdr->dgram_len) == 8)) {
					plogx_dbg("Dropping PROX packet\n");
					tx_drop(mbufs[j]);
					return;
				}
			}
/* Debugging ...
			uint16_t src_port = 0, dst_port = 0, len = 0;
			if (udp_hdr) {
				src_port = udp_hdr->src_port;
				dst_port = udp_hdr->dst_port;
				len = rte_be_to_cpu_16(udp_hdr->dgram_len);
			}
			plogx_dbg("tForwarding TAP packet from master. Type = %x, pip=%p, udp = %p, udp = {src = %x, dst = %x, len = %d}\n", hdr->ether_type, pip, udp_hdr, src_port, dst_port,len );
*/
			// tx_ctrlplane_pkt does not drop packets
			tbase->aux->tx_ctrlplane_pkt(tbase, &mbufs[j], 1, out);
			TASK_STATS_ADD_TX_NON_DP(&tbase->aux->stats, 1);
			break;
		case IPV6_INFO_FROM_MASTER:
			// addr = ctrl_ring_get_data(mbufs[j]);
			ip6 = ctrl_ring_get_ipv6_addr(mbufs[j]);
			if (memcmp(&l3->global_ipv6 , &null_addr, 16) == 0) {
				memcpy(&l3->global_ipv6, ip6, sizeof(struct ipv6_addr));
				plog_info("Core %d task %d received global IP "IPv6_BYTES_FMT"\n", l3->core_id, l3->task_id, IPv6_BYTES(ip6->bytes));
			} else if (memcmp(&l3->global_ipv6, ip6, 8) == 0) {
				if (l3->prefix_printed == 0) {
					plog_info("Core %d task %d received expected prefix "IPv6_PREFIX_FMT"\n", l3->core_id, l3->task_id, IPv6_PREFIX(ip6->bytes));
					l3->prefix_printed = 1;
				}
			} else {
				plog_warn("Core %d task %d received unexpected prefix "IPv6_PREFIX_FMT", IP = "IPv6_PREFIX_FMT"\n", l3->core_id, l3->task_id, IPv6_PREFIX(ip6->bytes), IPv6_PREFIX(l3->global_ipv6.bytes));
			}
			tx_drop(mbufs[j]);
			break;
		default:
			plog_err("Unexpected message received: %d\n", command);
			tx_drop(mbufs[j]);
			break;
		}
	}
}