/* // Copyright (c) 2016-2017 Intel Corporation // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. */ /* Correlated traffic VNF : ------------------------ 1. Receive UDP packet 2. Modify received packet a. exchange src mac and destination mac b. exchange src ip and destination IP for both IPv4 and IPv6 cases c. exchange UDP src port and UDP destination port d. change the len of the response according to the IMIX definition ( option to make traffic more realistic to emulate some IoT payloads) 3. send modified packet to the port where it was received. Such VNF does not need LPM and routing table implementations. As the packet modification is very minimal and there is no memory access as the packet is stored in L3 cache the performance of the solution should be sufficient for testing the UDP NAT performance. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "parse_obj_list.h" #include #include "l2_proto.h" #include "interface.h" #include "l3fwd_common.h" #include "l3fwd_lpm4.h" #include "l3fwd_lpm6.h" #include "lib_icmpv6.h" #include "app.h" #include "vnf_common.h" #define IN6ADDRSZ 16 #define INADDRSZ 4 #define APP_LOOKUP_EXACT_MATCH 0 #define APP_LOOKUP_LPM 1 #define DO_RFC_1812_CHECKS #if 1 #ifndef APP_LOOKUP_METHOD #define APP_LOOKUP_METHOD APP_LOOKUP_EXACT_MATCH #endif #endif #include #include #include /* * When set to zero, simple forwaring path is eanbled. * When set to one, optimized forwarding path is enabled. * Note that LPM optimisation path uses SSE4.1 instructions. */ #if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && !defined(__SSE4_1__)) #define ENABLE_MULTI_BUFFER_OPTIMIZE 0 #else #define ENABLE_MULTI_BUFFER_OPTIMIZE 1 #endif #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) #include #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) #include #include #else #error "APP_LOOKUP_METHOD set to incorrect value" #endif #ifndef IPv6_BYTES #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\ "%02x%02x:%02x%02x:%02x%02x:%02x%02x" #define IPv6_BYTES(addr) \ addr[0], addr[1], addr[2], addr[3], \ addr[4], addr[5], addr[6], addr[7], \ addr[8], addr[9], addr[10], addr[11],\ addr[12], addr[13],addr[14], addr[15] #endif #define RTE_LOGTYPE_UDP_Replay RTE_LOGTYPE_USER1 #define MAX_JUMBO_PKT_LEN 9600 #define IPV6_ADDR_LEN 16 #define MEMPOOL_CACHE_SIZE 256 /* * This expression is used to calculate the number of mbufs needed depending on user input, taking * into account memory for rx and tx hardware rings, cache per lcore and mtable per port per lcore. * RTE_MAX is used to ensure that NB_MBUF never goes below a minimum value of 8192 */ #define NB_MBUF RTE_MAX ( \ (nb_ports*nb_rx_queue*RTE_TEST_RX_DESC_DEFAULT + \ nb_ports*nb_lcores*MAX_PKT_BURST + \ nb_ports*n_tx_queue*RTE_TEST_TX_DESC_DEFAULT + \ nb_lcores*MEMPOOL_CACHE_SIZE), \ (unsigned)8192) #define MAX_PKT_BURST 32 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ /* * Try to avoid TX buffering if we have at least MAX_TX_BURST packets to send. */ #define MAX_TX_BURST (MAX_PKT_BURST / 2) #define NB_SOCKETS 8 /* Configure how many packets ahead to prefetch, when reading packets */ #define PREFETCH_OFFSET 3 /* Used to mark destination port as 'invalid'. */ #define BAD_PORT ((uint16_t)-1) #define FWDSTEP 4 /* * Configurable number of RX/TX ring descriptors */ #define RTE_TEST_RX_DESC_DEFAULT 128 #define RTE_TEST_TX_DESC_DEFAULT 512 static uint64_t rcv_pkt_count[32] = {0}; static uint64_t tx_pkt_count[32] = {0}; static uint32_t arp_support; unsigned num_ports; struct sockaddr_in ipaddr1, ipaddr2; /* ethernet addresses of ports */ static uint64_t dest_eth_addr[RTE_MAX_ETHPORTS]; static __m128i val_eth[RTE_MAX_ETHPORTS]; cmdline_parse_ctx_t main_ctx[]; uint32_t timer_lcore; uint32_t exit_loop = 1; port_config_t *port_config; #define MEMPOOL_SIZE 32 * 1024 #define BUFFER_SIZE 2048 #define CACHE_SIZE 256 /* replace first 12B of the ethernet header. */ #define MASK_ETH 0x3f #define IP_TYPE_IPV4 0 #define IP_TYPE_IPV6 1 #define MAX_IP 32 const char* ipv4[MAX_IP]; uint8_t link_ipv6[MAX_IP][16]; uint32_t type, numports; /* mask of enabled ports */ static uint32_t enabled_port_mask = 0; static int promiscuous_on = 0; /**< Ports set in promiscuous mode off by default. */ static int numa_on = 1; /**< NUMA is enabled by default. */ static int csum_on = 1; /**< NUMA is enabled by default. */ struct pipeline_params def_pipeline_params = { .n_ports_in = 0, .n_ports_out = 0, .n_msgq = 0, .socket_id = 0, .n_args = 0, .log_level = 0, }; #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) static int ipv6 = 0; /**< ipv6 is false by default. */ #endif void convert_ipstr_to_numeric(void); int print_l4stats(void); int clear_stats(void); struct mbuf_table { uint16_t len; struct rte_mbuf *m_table[MAX_PKT_BURST]; }; struct lcore_rx_queue { uint8_t port_id; uint8_t queue_id; } __rte_cache_aligned; #define MAX_RX_QUEUE_PER_LCORE 16 #define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS #define MAX_RX_QUEUE_PER_PORT 128 #define MAX_LCORE_PARAMS 1024 struct lcore_params { uint8_t port_id; uint8_t queue_id; uint8_t lcore_id; } __rte_cache_aligned; static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS]; static struct lcore_params lcore_params_array_default[] = { {0, 0, 2}, {0, 1, 2}, {0, 2, 2}, {1, 0, 2}, {1, 1, 2}, {1, 2, 2}, {2, 0, 2}, {3, 0, 3}, {3, 1, 3}, }; static struct lcore_params * lcore_params = lcore_params_array_default; static uint16_t nb_lcore_params = sizeof(lcore_params_array_default) / sizeof(lcore_params_array_default[0]); static struct rte_eth_conf port_conf = { .rxmode = { .mq_mode = ETH_MQ_RX_RSS, .max_rx_pkt_len = ETHER_MAX_LEN, .split_hdr_size = 0, .header_split = 0, /**< Header Split disabled */ .hw_ip_checksum = 1, /**< IP checksum offload enabled */ .hw_vlan_filter = 0, /**< VLAN filtering disabled */ .jumbo_frame = 0, /**< Jumbo Frame Support disabled */ .hw_strip_crc = 0, /**< CRC stripped by hardware */ }, .rx_adv_conf = { .rss_conf = { .rss_key = NULL, .rss_hf = ETH_RSS_IP, }, }, .txmode = { .mq_mode = ETH_MQ_TX_NONE, }, }; /* empty vmdq configuration structure. Filled in programatically */ static struct rte_eth_rxconf rx_conf = { .rx_thresh = { .pthresh = 8, .hthresh = 8, .wthresh = 4, }, .rx_free_thresh = 64, .rx_drop_en = 0, .rx_deferred_start = 0, }; static struct rte_eth_txconf tx_conf = { .tx_thresh = { .pthresh = 36, .hthresh = 0, .wthresh = 0, }, .tx_rs_thresh = 0, .tx_free_thresh = 0, .txq_flags = ETH_TXQ_FLAGS_NOMULTSEGS | ETH_TXQ_FLAGS_NOOFFLOADS, .tx_deferred_start = 0, }; #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) #ifdef RTE_MACHINE_CPUFLAG_SSE4_2 #include #define DEFAULT_HASH_FUNC rte_hash_crc #else #include #define DEFAULT_HASH_FUNC rte_jhash #endif struct ipv4_5tuple { uint32_t ip_dst; uint32_t ip_src; uint16_t port_dst; uint16_t port_src; uint8_t proto; } __attribute__((__packed__)); union ipv4_5tuple_host { struct { uint8_t pad0; uint8_t proto; uint16_t pad1; uint32_t ip_src; uint32_t ip_dst; uint16_t port_src; uint16_t port_dst; }; __m128i xmm; }; #define XMM_NUM_IN_IPV6_5TUPLE 3 struct ipv6_5tuple { uint8_t ip_dst[IPV6_ADDR_LEN]; uint8_t ip_src[IPV6_ADDR_LEN]; uint16_t port_dst; uint16_t port_src; uint8_t proto; } __attribute__((__packed__)); union ipv6_5tuple_host { struct { uint16_t pad0; uint8_t proto; uint8_t pad1; uint8_t ip_src[IPV6_ADDR_LEN]; uint8_t ip_dst[IPV6_ADDR_LEN]; uint16_t port_src; uint16_t port_dst; uint64_t reserve; }; __m128i xmm[XMM_NUM_IN_IPV6_5TUPLE]; }; struct ipv4_udp_replay_route { struct ipv4_5tuple key; uint8_t if_out; }; struct ipv6_udp_replay_route { struct ipv6_5tuple key; uint8_t if_out; }; static struct ipv4_udp_replay_route ipv4_udp_replay_route_array[] = { {{IPv4(101,0,0,0), IPv4(100,10,0,1), 101, 11, IPPROTO_TCP}, 0}, {{IPv4(201,0,0,0), IPv4(200,20,0,1), 102, 12, IPPROTO_TCP}, 1}, {{IPv4(111,0,0,0), IPv4(100,30,0,1), 101, 11, IPPROTO_TCP}, 2}, {{IPv4(211,0,0,0), IPv4(200,40,0,1), 102, 12, IPPROTO_TCP}, 3}, }; static struct ipv6_udp_replay_route ipv6_udp_replay_route_array[] = { {{ {0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0}, {0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05}, 101, 11, IPPROTO_TCP}, 0}, {{ {0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0}, {0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05}, 102, 12, IPPROTO_TCP}, 1}, {{ {0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0}, {0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05}, 101, 11, IPPROTO_TCP}, 2}, {{ {0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0}, {0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05}, 102, 12, IPPROTO_TCP}, 3}, }; typedef struct rte_hash lookup_struct_t; #ifdef RTE_ARCH_X86_64 /* default to 4 million hash entries (approx) */ #define UDP_Replay_HASH_ENTRIES 1024*1024*4 #else /* 32-bit has less address-space for hugepage memory, limit to 1M entries */ #define UDP_Replay_HASH_ENTRIES 1024*1024*1 #endif #define HASH_ENTRY_NUMBER_DEFAULT 4 static uint32_t hash_entry_number = HASH_ENTRY_NUMBER_DEFAULT; void app_link_up_internal(__rte_unused struct app_params *app, struct app_link_params *cp) { cp->state = 1; } void app_link_down_internal(__rte_unused struct app_params *app, struct app_link_params *cp) { cp->state = 0; } /* int * inet_pton_ipv4(src, dst) * like inet_aton() but without all the hexadecimal and shorthand. * return: * 1 if `src' is a valid dotted quad, else 0. * notice: * does not touch `dst' unless it's returning 1. * author: * Paul Vixie, 1996. */ static int inet_pton_ipv4(const char *src, unsigned char *dst) { static const char digits[] = "0123456789"; int saw_digit, octets, ch; unsigned char tmp[INADDRSZ], *tp; saw_digit = 0; octets = 0; *(tp = tmp) = 0; while ((ch = *src++) != '\0') { const char *pch; if ((pch = strchr(digits, ch)) != NULL) { unsigned int new = *tp * 10 + (pch - digits); if (new > 255) return 0; if (!saw_digit) { if (++octets > 4) return 0; saw_digit = 1; } *tp = (unsigned char)new; } else if (ch == '.' && saw_digit) { if (octets == 4) return 0; *++tp = 0; saw_digit = 0; } else return 0; } if (octets < 4) return 0; memcpy(dst, tmp, INADDRSZ); return 1; } /* int * inet_pton_ipv6(src, dst) * convert presentation level address to network order binary form. * return: * 1 if `src' is a valid [RFC1884 2.2] address, else 0. * notice: * (1) does not touch `dst' unless it's returning 1. * (2) :: in a full address is silently ignored. * credit: * inspired by Mark Andrews. * author: * Paul Vixie, 1996. */ static int inet_pton_ipv6(const char *src, unsigned char *dst) { static const char xdigits_l[] = "0123456789abcdef", xdigits_u[] = "0123456789ABCDEF"; unsigned char tmp[IN6ADDRSZ], *tp = 0, *endp = 0, *colonp = 0; const char *xdigits = 0, *curtok = 0; int ch = 0, saw_xdigit = 0, count_xdigit = 0; unsigned int val = 0; unsigned dbloct_count = 0; memset((tp = tmp), '\0', IN6ADDRSZ); endp = tp + IN6ADDRSZ; colonp = NULL; if (*src == ':') if (*++src != ':') return 0; curtok = src; saw_xdigit = count_xdigit = 0; val = 0; while ((ch = *src++) != '\0') { const char *pch; if ((pch = strchr((xdigits = xdigits_l), ch)) == NULL) pch = strchr((xdigits = xdigits_u), ch); if (pch != NULL) { if (count_xdigit >= 4) return 0; val <<= 4; val |= (pch - xdigits); if (val > 0xffff) return 0; saw_xdigit = 1; count_xdigit++; continue; } if (ch == ':') { curtok = src; if (!saw_xdigit) { if (colonp) return 0; colonp = tp; continue; } else if (*src == '\0') { return 0; } if (tp + sizeof(int16_t) > endp) return 0; *tp++ = (unsigned char)((val >> 8) & 0xff); *tp++ = (unsigned char)(val & 0xff); saw_xdigit = 0; count_xdigit = 0; val = 0; dbloct_count++; continue; } if (ch == '.' && ((tp + INADDRSZ) <= endp) && inet_pton_ipv4(curtok, tp) > 0) { tp += INADDRSZ; saw_xdigit = 0; dbloct_count += 2; break; /* '\0' was seen by inet_pton4(). */ } return 0; } if (saw_xdigit) { if (tp + sizeof(int16_t) > endp) return 0; *tp++ = (unsigned char)((val >> 8) & 0xff); *tp++ = (unsigned char)(val & 0xff); dbloct_count++; } if (colonp != NULL) { if (dbloct_count == 8) return 0; const int n = tp - colonp; int i; for (i = 1; i <= n; i++) { endp[-i] = colonp[n - i]; colonp[n - i] = 0; } tp = endp; } if (tp != endp) return 0; memcpy(dst, tmp, IN6ADDRSZ); return 1; } static int my_inet_pton_ipv6(int af, const char *src, void *dst) { switch (af) { case AF_INET: return inet_pton_ipv4(src, dst); case AF_INET6: return inet_pton_ipv6(src, dst); default: errno = EAFNOSUPPORT; return -1; } } void convert_ipstr_to_numeric(void) { uint32_t i; for (i = 0; i < numports; i++) { if (type == IP_TYPE_IPV4) { memset(&ipaddr1, '\0', sizeof(struct sockaddr_in)); ipaddr1.sin_addr.s_addr = inet_addr(ipv4[i]); ifm_add_ipv4_port(i, ipaddr1.sin_addr.s_addr, 24); } else if (type == IP_TYPE_IPV6) { ifm_add_ipv6_port(i, &link_ipv6[i][0], 128); } } } static inline uint32_t ipv4_hash_crc(const void *data, __rte_unused uint32_t data_len, uint32_t init_val) { const union ipv4_5tuple_host *k; uint32_t t; const uint32_t *p; k = data; t = k->proto; p = (const uint32_t *)&k->port_src; #ifdef RTE_MACHINE_CPUFLAG_SSE4_2 init_val = rte_hash_crc_4byte(t, init_val); init_val = rte_hash_crc_4byte(k->ip_src, init_val); init_val = rte_hash_crc_4byte(k->ip_dst, init_val); init_val = rte_hash_crc_4byte(*p, init_val); #else /* RTE_MACHINE_CPUFLAG_SSE4_2 */ init_val = rte_jhash_1word(t, init_val); init_val = rte_jhash_1word(k->ip_src, init_val); init_val = rte_jhash_1word(k->ip_dst, init_val); init_val = rte_jhash_1word(*p, init_val); #endif /* RTE_MACHINE_CPUFLAG_SSE4_2 */ return (init_val); } static int arp_pkts; static inline int check_arpicmp(struct rte_mbuf *pkt) { uint8_t in_port_id = pkt->port; uint32_t eth_proto_offset = MBUF_HDR_ROOM + 12; uint16_t *eth_proto = RTE_MBUF_METADATA_UINT16_PTR(pkt, eth_proto_offset); uint8_t *protocol; uint32_t prot_offset = MBUF_HDR_ROOM + ETH_HDR_SIZE + IP_HDR_PROTOCOL_OFST; protocol = RTE_MBUF_METADATA_UINT8_PTR(pkt, prot_offset); if ((rte_be_to_cpu_16(*eth_proto) == ETH_TYPE_ARP) || ((rte_be_to_cpu_16(*eth_proto) == ETH_TYPE_IPV4) && (*protocol == IP_PROTOCOL_ICMP))) { process_arpicmp_pkt(pkt, ifm_get_port(in_port_id)); arp_pkts++; return 0; } return 1; } static inline int check_arpicmpv6(struct rte_mbuf *pkt) { struct ether_hdr *eth_h; struct ipv6_hdr *ipv6_h; uint8_t in_port_id = pkt->port; uint32_t eth_proto_offset = MBUF_HDR_ROOM + 12; uint16_t *eth_proto = RTE_MBUF_METADATA_UINT16_PTR(pkt, eth_proto_offset); eth_h = rte_pktmbuf_mtod(pkt, struct ether_hdr *); ipv6_h = (struct ipv6_hdr *)((char *)eth_h + sizeof(struct ether_hdr)); if ((rte_be_to_cpu_16(*eth_proto) == ETH_TYPE_IPV6) && (ipv6_h->proto == ICMPV6_PROTOCOL_ID)) { process_icmpv6_pkt(pkt, ifm_get_port(in_port_id)); return 0; } return 1; } static inline uint32_t ipv6_hash_crc(const void *data, __rte_unused uint32_t data_len, uint32_t init_val) { const union ipv6_5tuple_host *k; uint32_t t; const uint32_t *p; #ifdef RTE_MACHINE_CPUFLAG_SSE4_2 const uint32_t *ip_src0, *ip_src1, *ip_src2, *ip_src3; const uint32_t *ip_dst0, *ip_dst1, *ip_dst2, *ip_dst3; #endif /* RTE_MACHINE_CPUFLAG_SSE4_2 */ k = data; t = k->proto; p = (const uint32_t *)&k->port_src; #ifdef RTE_MACHINE_CPUFLAG_SSE4_2 ip_src0 = (const uint32_t *) k->ip_src; ip_src1 = (const uint32_t *)(k->ip_src+4); ip_src2 = (const uint32_t *)(k->ip_src+8); ip_src3 = (const uint32_t *)(k->ip_src+12); ip_dst0 = (const uint32_t *) k->ip_dst; ip_dst1 = (const uint32_t *)(k->ip_dst+4); ip_dst2 = (const uint32_t *)(k->ip_dst+8); ip_dst3 = (const uint32_t *)(k->ip_dst+12); init_val = rte_hash_crc_4byte(t, init_val); init_val = rte_hash_crc_4byte(*ip_src0, init_val); init_val = rte_hash_crc_4byte(*ip_src1, init_val); init_val = rte_hash_crc_4byte(*ip_src2, init_val); init_val = rte_hash_crc_4byte(*ip_src3, init_val); init_val = rte_hash_crc_4byte(*ip_dst0, init_val); init_val = rte_hash_crc_4byte(*ip_dst1, init_val); init_val = rte_hash_crc_4byte(*ip_dst2, init_val); init_val = rte_hash_crc_4byte(*ip_dst3, init_val); init_val = rte_hash_crc_4byte(*p, init_val); #else /* RTE_MACHINE_CPUFLAG_SSE4_2 */ init_val = rte_jhash_1word(t, init_val); init_val = rte_jhash(k->ip_src, sizeof(uint8_t) * IPV6_ADDR_LEN, init_val); init_val = rte_jhash(k->ip_dst, sizeof(uint8_t) * IPV6_ADDR_LEN, init_val); init_val = rte_jhash_1word(*p, init_val); #endif /* RTE_MACHINE_CPUFLAG_SSE4_2 */ return (init_val); } #define IPV4_UDP_Replay_NUM_ROUTES \ (sizeof(ipv4_udp_replay_route_array) / sizeof(ipv4_udp_replay_route_array[0])) #define IPV6_UDP_Replay_NUM_ROUTES \ (sizeof(ipv6_udp_replay_route_array) / sizeof(ipv6_udp_replay_route_array[0])) static uint8_t ipv4_udp_replay_out_if[UDP_Replay_HASH_ENTRIES] __rte_cache_aligned; static uint8_t ipv6_udp_replay_out_if[UDP_Replay_HASH_ENTRIES] __rte_cache_aligned; #endif #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) struct ipv4_udp_replay_route { uint32_t ip; uint8_t depth; uint8_t if_out; }; struct ipv6_udp_replay_route { uint8_t ip[16]; uint8_t depth; uint8_t if_out; }; static struct ipv4_udp_replay_route ipv4_udp_replay_route_array[] = { {IPv4(1,1,1,0), 24, 0}, {IPv4(2,1,1,0), 24, 1}, {IPv4(3,1,1,0), 24, 2}, {IPv4(4,1,1,0), 24, 3}, {IPv4(5,1,1,0), 24, 4}, {IPv4(6,1,1,0), 24, 5}, {IPv4(7,1,1,0), 24, 6}, {IPv4(8,1,1,0), 24, 7}, }; static struct ipv6_udp_replay_route ipv6_udp_replay_route_array[] = { {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0}, {{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1}, {{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2}, {{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3}, {{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4}, {{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5}, {{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6}, {{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7}, }; #define IPV4_UDP_Replay_NUM_ROUTES \ (sizeof(ipv4_udp_replay_route_array) / sizeof(ipv4_udp_replay_route_array[0])) #define IPV6_UDP_Replay_NUM_ROUTES \ (sizeof(ipv6_udp_replay_route_array) / sizeof(ipv6_udp_replay_route_array[0])) #define IPV4_UDP_Replay_LPM_MAX_RULES 1024 #define IPV6_UDP_Replay_LPM_MAX_RULES 1024 #define IPV6_UDP_Replay_LPM_NUMBER_TBL8S (1 << 16) typedef struct rte_lpm lookup_struct_t; typedef struct rte_lpm6 lookup6_struct_t; static lookup_struct_t *ipv4_udp_replay_lookup_struct[NB_SOCKETS]; static lookup6_struct_t *ipv6_udp_replay_lookup_struct[NB_SOCKETS]; #endif struct lcore_conf { uint16_t n_rx_queue; struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS]; lookup_struct_t * ipv4_lookup_struct; #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) lookup6_struct_t * ipv6_lookup_struct; #else lookup_struct_t * ipv6_lookup_struct; #endif } __rte_cache_aligned; static struct lcore_conf lcore_conf[RTE_MAX_LCORE]; /* Send burst of packets on an output interface */ static inline int send_burst(struct lcore_conf *qconf, uint16_t n, uint8_t port) { struct rte_mbuf **m_table; int ret; uint16_t queueid; queueid = qconf->tx_queue_id[port]; m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; ret = rte_eth_tx_burst(port, queueid, m_table, n); if (unlikely(ret < n)) { do { rte_pktmbuf_free(m_table[ret]); } while (++ret < n); } /*Tx Pkt count*/ tx_pkt_count[port] += ret; return 0; } /* Enqueue a single packet, and send burst if queue is filled */ static inline int send_single_packet(struct rte_mbuf *m, uint8_t port) { uint32_t lcore_id; uint16_t len; struct lcore_conf *qconf; lcore_id = rte_lcore_id(); qconf = &lcore_conf[lcore_id]; len = qconf->tx_mbufs[port].len; qconf->tx_mbufs[port].m_table[len] = m; len++; /* enough pkts to be sent */ if (unlikely(len == MAX_PKT_BURST)) { send_burst(qconf, MAX_PKT_BURST, port); len = 0; } qconf->tx_mbufs[port].len = len; return 0; } #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) static inline __attribute__((always_inline)) void send_packetsx4(struct lcore_conf *qconf, uint8_t port, struct rte_mbuf *m[], uint32_t num) { uint32_t len, j, n; len = qconf->tx_mbufs[port].len; /* * If TX buffer for that queue is empty, and we have enough packets, * then send them straightway. */ if (num >= MAX_TX_BURST && len == 0) { n = rte_eth_tx_burst(port, qconf->tx_queue_id[port], m, num); if (unlikely(n < num)) { do { rte_pktmbuf_free(m[n]); } while (++n < num); } return; } /* * Put packets into TX buffer for that queue. */ n = len + num; n = (n > MAX_PKT_BURST) ? MAX_PKT_BURST - len : num; j = 0; switch (n % FWDSTEP) { while (j < n) { case 0: qconf->tx_mbufs[port].m_table[len + j] = m[j]; j++; case 3: qconf->tx_mbufs[port].m_table[len + j] = m[j]; j++; case 2: qconf->tx_mbufs[port].m_table[len + j] = m[j]; j++; case 1: qconf->tx_mbufs[port].m_table[len + j] = m[j]; j++; } } len += n; /* enough pkts to be sent */ if (unlikely(len == MAX_PKT_BURST)) { send_burst(qconf, MAX_PKT_BURST, port); /* copy rest of the packets into the TX buffer. */ len = num - n; j = 0; switch (len % FWDSTEP) { while (j < len) { case 0: qconf->tx_mbufs[port].m_table[j] = m[n + j]; j++; case 3: qconf->tx_mbufs[port].m_table[j] = m[n + j]; j++; case 2: qconf->tx_mbufs[port].m_table[j] = m[n + j]; j++; case 1: qconf->tx_mbufs[port].m_table[j] = m[n + j]; j++; } } } qconf->tx_mbufs[port].len = len; } #endif /* APP_LOOKUP_LPM */ #ifdef DO_RFC_1812_CHECKS static inline int is_valid_pkt_ipv4(struct ipv4_hdr *pkt, uint32_t link_len) { /* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */ /* * 1. The packet length reported by the Link Layer must be large * enough to hold the minimum length legal IP datagram (20 bytes). */ if (link_len < sizeof(struct ipv4_hdr)) return -1; /* 2. The IP checksum must be correct. */ /* this is checked in H/W */ /* * 3. The IP version number must be 4. If the version number is not 4 * then the packet may be another version of IP, such as IPng or * ST-II. */ if (((pkt->version_ihl) >> 4) != 4) return -3; /* * 4. The IP header length field must be large enough to hold the * minimum length legal IP datagram (20 bytes = 5 words). */ if ((pkt->version_ihl & 0xf) < 5) return -4; /* * 5. The IP total length field must be large enough to hold the IP * datagram header, whose length is specified in the IP header length * field. */ if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct ipv4_hdr)) return -5; return 0; } #endif #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) static __m128i mask0; static __m128i mask1; static __m128i mask2; static inline uint8_t get_ipv4_dst_port(void *ipv4_hdr, uint8_t portid, lookup_struct_t * ipv4_udp_replay_lookup_struct) { int ret = 0; union ipv4_5tuple_host key; ipv4_hdr = (uint8_t *)ipv4_hdr + offsetof(struct ipv4_hdr, time_to_live); __m128i data = _mm_loadu_si128((__m128i*)(ipv4_hdr)); /* Get 5 tuple: dst port, src port, dst IP address, src IP address and protocol */ key.xmm = _mm_and_si128(data, mask0); /* Find destination port */ ret = rte_hash_lookup(ipv4_udp_replay_lookup_struct, (const void *)&key); return (uint8_t)((ret < 0)? portid : ipv4_udp_replay_out_if[ret]); } static inline uint8_t get_ipv6_dst_port(void *ipv6_hdr, uint8_t portid, lookup_struct_t * ipv6_udp_replay_lookup_struct) { int ret = 0; union ipv6_5tuple_host key; ipv6_hdr = (uint8_t *)ipv6_hdr + offsetof(struct ipv6_hdr, payload_len); __m128i data0 = _mm_loadu_si128((__m128i*)(ipv6_hdr)); __m128i data1 = _mm_loadu_si128((__m128i*)(((uint8_t*)ipv6_hdr)+sizeof(__m128i))); __m128i data2 = _mm_loadu_si128((__m128i*)(((uint8_t*)ipv6_hdr)+sizeof(__m128i)+sizeof(__m128i))); /* Get part of 5 tuple: src IP address lower 96 bits and protocol */ key.xmm[0] = _mm_and_si128(data0, mask1); /* Get part of 5 tuple: dst IP address lower 96 bits and src IP address higher 32 bits */ key.xmm[1] = data1; /* Get part of 5 tuple: dst port and src port and dst IP address higher 32 bits */ key.xmm[2] = _mm_and_si128(data2, mask2); /* Find destination port */ ret = rte_hash_lookup(ipv6_udp_replay_lookup_struct, (const void *)&key); return (uint8_t)((ret < 0)? portid : ipv6_udp_replay_out_if[ret]); } #endif #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) static inline uint8_t get_ipv4_dst_port(void *ipv4_hdr, uint8_t portid, lookup_struct_t * ipv4_udp_replay_lookup_struct) { uint8_t next_hop; return (uint8_t) ((rte_lpm_lookup(ipv4_udp_replay_lookup_struct, rte_be_to_cpu_32(((struct ipv4_hdr *)ipv4_hdr)->dst_addr), &next_hop) == 0) ? next_hop : portid); } static inline uint8_t get_ipv6_dst_port(void *ipv6_hdr, uint8_t portid, lookup6_struct_t * ipv6_udp_replay_lookup_struct) { uint8_t next_hop; return (uint8_t) ((rte_lpm6_lookup(ipv6_udp_replay_lookup_struct, ((struct ipv6_hdr*)ipv6_hdr)->dst_addr, &next_hop) == 0)? next_hop : portid); } #endif static inline void udp_replay_simple_replay(struct rte_mbuf *m, uint8_t portid, struct lcore_conf *qconf) __attribute__((unused)); #if ((APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) && \ (ENABLE_MULTI_BUFFER_OPTIMIZE == 1)) #define MASK_ALL_PKTS 0xff #define EXCLUDE_1ST_PKT 0xfe #define EXCLUDE_2ND_PKT 0xfd #define EXCLUDE_3RD_PKT 0xfb #define EXCLUDE_4TH_PKT 0xf7 #define EXCLUDE_5TH_PKT 0xef #define EXCLUDE_6TH_PKT 0xdf #define EXCLUDE_7TH_PKT 0xbf #define EXCLUDE_8TH_PKT 0x7f static inline void simple_ipv4_replay_8pkts(struct rte_mbuf *m[8], uint8_t portid, struct lcore_conf *qconf) { struct ether_hdr *eth_hdr[8]; struct ether_hdr tmp; struct ipv4_hdr *ipv4_hdr[8]; struct udp_hdr *udp_hdr[8]; int i; l2_phy_interface_t *port = ifm_get_port(portid); if (port == NULL) { printf("port may be un initialized\n"); return; } if (unlikely(arp_support)) { check_arpicmp(m[0]); check_arpicmp(m[1]); check_arpicmp(m[2]); check_arpicmp(m[3]); check_arpicmp(m[4]); check_arpicmp(m[5]); check_arpicmp(m[6]); check_arpicmp(m[7]); } eth_hdr[0] = rte_pktmbuf_mtod(m[0], struct ether_hdr *); eth_hdr[1] = rte_pktmbuf_mtod(m[1], struct ether_hdr *); eth_hdr[2] = rte_pktmbuf_mtod(m[2], struct ether_hdr *); eth_hdr[3] = rte_pktmbuf_mtod(m[3], struct ether_hdr *); eth_hdr[4] = rte_pktmbuf_mtod(m[4], struct ether_hdr *); eth_hdr[5] = rte_pktmbuf_mtod(m[5], struct ether_hdr *); eth_hdr[6] = rte_pktmbuf_mtod(m[6], struct ether_hdr *); eth_hdr[7] = rte_pktmbuf_mtod(m[7], struct ether_hdr *); memset(&tmp,0,sizeof (struct ether_hdr)); for(i=0;i<8;i++) { ether_addr_copy(ð_hdr[i]->s_addr, &tmp.s_addr); ether_addr_copy(ð_hdr[i]->d_addr, ð_hdr[i]->s_addr); ether_addr_copy(&tmp.s_addr, ð_hdr[i]->d_addr); } /* Handle IPv4 headers.*/ ipv4_hdr[0] = rte_pktmbuf_mtod_offset(m[0], struct ipv4_hdr *, sizeof(struct ether_hdr)); ipv4_hdr[1] = rte_pktmbuf_mtod_offset(m[1], struct ipv4_hdr *, sizeof(struct ether_hdr)); ipv4_hdr[2] = rte_pktmbuf_mtod_offset(m[2], struct ipv4_hdr *, sizeof(struct ether_hdr)); ipv4_hdr[3] = rte_pktmbuf_mtod_offset(m[3], struct ipv4_hdr *, sizeof(struct ether_hdr)); ipv4_hdr[4] = rte_pktmbuf_mtod_offset(m[4], struct ipv4_hdr *, sizeof(struct ether_hdr)); ipv4_hdr[5] = rte_pktmbuf_mtod_offset(m[5], struct ipv4_hdr *, sizeof(struct ether_hdr)); ipv4_hdr[6] = rte_pktmbuf_mtod_offset(m[6], struct ipv4_hdr *, sizeof(struct ether_hdr)); ipv4_hdr[7] = rte_pktmbuf_mtod_offset(m[7], struct ipv4_hdr *, sizeof(struct ether_hdr)); struct ipv4_hdr temp_ipv4; temp_ipv4.dst_addr = ipv4_hdr[0]->dst_addr; ipv4_hdr[0]->dst_addr = ipv4_hdr[0]->src_addr; ipv4_hdr[0]->src_addr = temp_ipv4.dst_addr; temp_ipv4.dst_addr = ipv4_hdr[1]->dst_addr; ipv4_hdr[1]->dst_addr = ipv4_hdr[1]->src_addr; ipv4_hdr[1]->src_addr = temp_ipv4.dst_addr; temp_ipv4.dst_addr = ipv4_hdr[2]->dst_addr; ipv4_hdr[2]->dst_addr = ipv4_hdr[2]->src_addr; ipv4_hdr[2]->src_addr = temp_ipv4.dst_addr; temp_ipv4.dst_addr = ipv4_hdr[3]->dst_addr; ipv4_hdr[3]->dst_addr = ipv4_hdr[3]->src_addr; ipv4_hdr[3]->src_addr = temp_ipv4.dst_addr; temp_ipv4.dst_addr = ipv4_hdr[4]->dst_addr; ipv4_hdr[4]->dst_addr = ipv4_hdr[4]->src_addr; ipv4_hdr[4]->src_addr = temp_ipv4.dst_addr; temp_ipv4.dst_addr = ipv4_hdr[5]->dst_addr; ipv4_hdr[5]->dst_addr = ipv4_hdr[5]->src_addr; ipv4_hdr[5]->src_addr = temp_ipv4.dst_addr; temp_ipv4.dst_addr = ipv4_hdr[6]->dst_addr; ipv4_hdr[6]->dst_addr = ipv4_hdr[6]->src_addr; ipv4_hdr[6]->src_addr = temp_ipv4.dst_addr; temp_ipv4.dst_addr = ipv4_hdr[7]->dst_addr; ipv4_hdr[7]->dst_addr = ipv4_hdr[7]->src_addr; ipv4_hdr[7]->src_addr = temp_ipv4.dst_addr; /* Handle UDP headers.*/ udp_hdr[0] = rte_pktmbuf_mtod_offset(m[0], struct udp_hdr *, sizeof(struct ether_hdr)+sizeof(struct ipv4_hdr)); udp_hdr[1] = rte_pktmbuf_mtod_offset(m[1], struct udp_hdr *, sizeof(struct ether_hdr)+sizeof(struct ipv4_hdr)); udp_hdr[2] = rte_pktmbuf_mtod_offset(m[2], struct udp_hdr *, sizeof(struct ether_hdr)+sizeof(struct ipv4_hdr)); udp_hdr[3] = rte_pktmbuf_mtod_offset(m[3], struct udp_hdr *, sizeof(struct ether_hdr)+sizeof(struct ipv4_hdr)); udp_hdr[4] = rte_pktmbuf_mtod_offset(m[4], struct udp_hdr *, sizeof(struct ether_hdr)+sizeof(struct ipv4_hdr)); udp_hdr[5] = rte_pktmbuf_mtod_offset(m[5], struct udp_hdr *, sizeof(struct ether_hdr)+sizeof(struct ipv4_hdr)); udp_hdr[6] = rte_pktmbuf_mtod_offset(m[6], struct udp_hdr *, sizeof(struct ether_hdr)+sizeof(struct ipv4_hdr)); udp_hdr[7] = rte_pktmbuf_mtod_offset(m[7], struct udp_hdr *, sizeof(struct ether_hdr)+sizeof(struct ipv4_hdr)); /*1) memcpy or assignment.*/ struct udp_hdr temp_udp; temp_udp.dst_port = udp_hdr[0]->dst_port; udp_hdr[0]->dst_port = udp_hdr[0]->src_port; udp_hdr[0]->src_port = temp_udp.dst_port; temp_udp.dst_port = udp_hdr[1]->dst_port; udp_hdr[1]->dst_port = udp_hdr[1]->src_port; udp_hdr[1]->src_port = temp_udp.dst_port; temp_udp.dst_port = udp_hdr[2]->dst_port; udp_hdr[2]->dst_port = udp_hdr[2]->src_port; udp_hdr[2]->src_port = temp_udp.dst_port; temp_udp.dst_port = udp_hdr[3]->dst_port; udp_hdr[3]->dst_port = udp_hdr[3]->src_port; udp_hdr[3]->src_port = temp_udp.dst_port; temp_udp.dst_port = udp_hdr[4]->dst_port; udp_hdr[4]->dst_port = udp_hdr[4]->src_port; udp_hdr[4]->src_port = temp_udp.dst_port; temp_udp.dst_port = udp_hdr[5]->dst_port; udp_hdr[5]->dst_port = udp_hdr[5]->src_port; udp_hdr[5]->src_port = temp_udp.dst_port; temp_udp.dst_port = udp_hdr[6]->dst_port; udp_hdr[6]->dst_port = udp_hdr[6]->src_port; udp_hdr[6]->src_port = temp_udp.dst_port; temp_udp.dst_port = udp_hdr[7]->dst_port; udp_hdr[7]->dst_port = udp_hdr[7]->src_port; udp_hdr[7]->src_port = temp_udp.dst_port; #ifdef DO_RFC_1812_CHECKS /* Check to make sure the packet is valid (RFC1812) */ uint8_t valid_mask = MASK_ALL_PKTS; if (is_valid_pkt_ipv4(ipv4_hdr[0], m[0]->pkt_len) < 0) { rte_pktmbuf_free(m[0]); valid_mask &= EXCLUDE_1ST_PKT; } if (is_valid_pkt_ipv4(ipv4_hdr[1], m[1]->pkt_len) < 0) { rte_pktmbuf_free(m[1]); valid_mask &= EXCLUDE_2ND_PKT; } if (is_valid_pkt_ipv4(ipv4_hdr[2], m[2]->pkt_len) < 0) { rte_pktmbuf_free(m[2]); valid_mask &= EXCLUDE_3RD_PKT; } if (is_valid_pkt_ipv4(ipv4_hdr[3], m[3]->pkt_len) < 0) { rte_pktmbuf_free(m[3]); valid_mask &= EXCLUDE_4TH_PKT; } if (is_valid_pkt_ipv4(ipv4_hdr[4], m[4]->pkt_len) < 0) { rte_pktmbuf_free(m[4]); valid_mask &= EXCLUDE_5TH_PKT; } if (is_valid_pkt_ipv4(ipv4_hdr[5], m[5]->pkt_len) < 0) { rte_pktmbuf_free(m[5]); valid_mask &= EXCLUDE_6TH_PKT; } if (is_valid_pkt_ipv4(ipv4_hdr[6], m[6]->pkt_len) < 0) { rte_pktmbuf_free(m[6]); valid_mask &= EXCLUDE_7TH_PKT; } if (is_valid_pkt_ipv4(ipv4_hdr[7], m[7]->pkt_len) < 0) { rte_pktmbuf_free(m[7]); valid_mask &= EXCLUDE_8TH_PKT; } if (unlikely(valid_mask != MASK_ALL_PKTS)) { if (valid_mask == 0){ return; } else { uint8_t i = 0; for (i = 0; i < 8; i++) { if ((0x1 << i) & valid_mask) { udp_replay_simple_replay(m[i], portid, qconf); } } return; } } #endif // End of #ifdef DO_RFC_1812_CHECKS #ifdef DO_RFC_1812_CHECKS /* Update time to live and header checksum */ --(ipv4_hdr[0]->time_to_live); --(ipv4_hdr[1]->time_to_live); --(ipv4_hdr[2]->time_to_live); --(ipv4_hdr[3]->time_to_live); ++(ipv4_hdr[0]->hdr_checksum); ++(ipv4_hdr[1]->hdr_checksum); ++(ipv4_hdr[2]->hdr_checksum); ++(ipv4_hdr[3]->hdr_checksum); --(ipv4_hdr[4]->time_to_live); --(ipv4_hdr[5]->time_to_live); --(ipv4_hdr[6]->time_to_live); --(ipv4_hdr[7]->time_to_live); ++(ipv4_hdr[4]->hdr_checksum); ++(ipv4_hdr[5]->hdr_checksum); ++(ipv4_hdr[6]->hdr_checksum); ++(ipv4_hdr[7]->hdr_checksum); #endif send_single_packet(m[0],portid ); send_single_packet(m[1],portid ); send_single_packet(m[2],portid ); send_single_packet(m[3],portid); send_single_packet(m[4],portid); send_single_packet(m[5],portid); send_single_packet(m[6],portid); send_single_packet(m[7],portid); } static inline void get_ipv6_5tuple(struct rte_mbuf* m0, __m128i mask0, __m128i mask1, union ipv6_5tuple_host * key) { __m128i tmpdata0 = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m0, __m128i *, sizeof(struct ether_hdr) + offsetof(struct ipv6_hdr, payload_len))); __m128i tmpdata1 = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m0, __m128i *, sizeof(struct ether_hdr) + offsetof(struct ipv6_hdr, payload_len) + sizeof(__m128i))); __m128i tmpdata2 = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m0, __m128i *, sizeof(struct ether_hdr) + offsetof(struct ipv6_hdr, payload_len) + sizeof(__m128i) + sizeof(__m128i))); key->xmm[0] = _mm_and_si128(tmpdata0, mask0); key->xmm[1] = tmpdata1; key->xmm[2] = _mm_and_si128(tmpdata2, mask1); return; } static inline void simple_ipv6_replay_8pkts(struct rte_mbuf *m[8], uint8_t portid, struct lcore_conf *qconf) { struct ether_hdr *eth_hdr[8],tmp; int i; __attribute__((unused)) struct ipv6_hdr *ipv6_hdr[8], temp_ipv6; int32_t ret[8]; union ipv6_5tuple_host key[8]; struct udp_hdr *udp_hdr[8]; l2_phy_interface_t *port = ifm_get_port(portid); if (port == NULL) { printf("port may be un initialized\n"); return; } if (unlikely(arp_support)) { check_arpicmpv6(m[0]); check_arpicmpv6(m[1]); check_arpicmpv6(m[2]); check_arpicmpv6(m[3]); check_arpicmpv6(m[4]); check_arpicmpv6(m[5]); check_arpicmpv6(m[6]); check_arpicmpv6(m[7]); } eth_hdr[0] = rte_pktmbuf_mtod(m[0], struct ether_hdr *); eth_hdr[1] = rte_pktmbuf_mtod(m[1], struct ether_hdr *); eth_hdr[2] = rte_pktmbuf_mtod(m[2], struct ether_hdr *); eth_hdr[3] = rte_pktmbuf_mtod(m[3], struct ether_hdr *); eth_hdr[4] = rte_pktmbuf_mtod(m[4], struct ether_hdr *); eth_hdr[5] = rte_pktmbuf_mtod(m[5], struct ether_hdr *); eth_hdr[6] = rte_pktmbuf_mtod(m[6], struct ether_hdr *); eth_hdr[7] = rte_pktmbuf_mtod(m[7], struct ether_hdr *); memset(&tmp,0,sizeof (struct ether_hdr)); for(i=0;i<8;i++) { ether_addr_copy(ð_hdr[i]->s_addr, &tmp.s_addr); ether_addr_copy(ð_hdr[i]->d_addr, ð_hdr[i]->s_addr); ether_addr_copy(&tmp.s_addr, ð_hdr[i]->d_addr); } /* Handle IPv6 headers.*/ ipv6_hdr[0] = rte_pktmbuf_mtod_offset(m[0], struct ipv6_hdr *, sizeof(struct ether_hdr)); ipv6_hdr[1] = rte_pktmbuf_mtod_offset(m[1], struct ipv6_hdr *, sizeof(struct ether_hdr)); ipv6_hdr[2] = rte_pktmbuf_mtod_offset(m[2], struct ipv6_hdr *, sizeof(struct ether_hdr)); ipv6_hdr[3] = rte_pktmbuf_mtod_offset(m[3], struct ipv6_hdr *, sizeof(struct ether_hdr)); ipv6_hdr[4] = rte_pktmbuf_mtod_offset(m[4], struct ipv6_hdr *, sizeof(struct ether_hdr)); ipv6_hdr[5] = rte_pktmbuf_mtod_offset(m[5], struct ipv6_hdr *, sizeof(struct ether_hdr)); ipv6_hdr[6] = rte_pktmbuf_mtod_offset(m[6], struct ipv6_hdr *, sizeof(struct ether_hdr)); ipv6_hdr[7] = rte_pktmbuf_mtod_offset(m[7], struct ipv6_hdr *, sizeof(struct ether_hdr)); for(i=0;i<8;i++) { memcpy(temp_ipv6.dst_addr,ipv6_hdr[i]->dst_addr,16); memcpy(ipv6_hdr[i]->dst_addr,ipv6_hdr[i]->src_addr,16); memcpy(ipv6_hdr[i]->src_addr,temp_ipv6.dst_addr,16); } /* Handle UDP headers.*/ udp_hdr[0] = rte_pktmbuf_mtod_offset(m[0], struct udp_hdr *, sizeof(struct ether_hdr)+sizeof(struct ipv6_hdr)); udp_hdr[1] = rte_pktmbuf_mtod_offset(m[1], struct udp_hdr *, sizeof(struct ether_hdr)+sizeof(struct ipv6_hdr)); udp_hdr[2] = rte_pktmbuf_mtod_offset(m[2], struct udp_hdr *, sizeof(struct ether_hdr)+sizeof(struct ipv6_hdr)); udp_hdr[3] = rte_pktmbuf_mtod_offset(m[3], struct udp_hdr *, sizeof(struct ether_hdr)+sizeof(struct ipv6_hdr)); udp_hdr[4] = rte_pktmbuf_mtod_offset(m[4], struct udp_hdr *, sizeof(struct ether_hdr)+sizeof(struct ipv6_hdr)); udp_hdr[5] = rte_pktmbuf_mtod_offset(m[5], struct udp_hdr *, sizeof(struct ether_hdr)+sizeof(struct ipv6_hdr)); udp_hdr[6] = rte_pktmbuf_mtod_offset(m[6], struct udp_hdr *, sizeof(struct ether_hdr)+sizeof(struct ipv6_hdr)); udp_hdr[7] = rte_pktmbuf_mtod_offset(m[7], struct udp_hdr *, sizeof(struct ether_hdr)+sizeof(struct ipv6_hdr)); /*1) memcpy or assignment.*/ struct udp_hdr temp_udp; for(i=0;i<8;i++) { temp_udp.dst_port = udp_hdr[i]->dst_port; udp_hdr[i]->dst_port = udp_hdr[i]->src_port; udp_hdr[i]->src_port = temp_udp.dst_port; } const void *key_array[8] = {&key[0], &key[1], &key[2], &key[3], &key[4], &key[5], &key[6], &key[7]}; #if RTE_VERSION < 0x100b0000 rte_hash_lookup_multi(qconf->ipv6_lookup_struct, &key_array[0], 8, ret); #else rte_hash_lookup_bulk(qconf->ipv6_lookup_struct, &key_array[0], 8, ret); #endif send_single_packet(m[0],portid); send_single_packet(m[1],portid); send_single_packet(m[2],portid); send_single_packet(m[3],portid); send_single_packet(m[4],portid); send_single_packet(m[5],portid); send_single_packet(m[6],portid); send_single_packet(m[7],portid); } #endif /* APP_LOOKUP_METHOD */ static inline __attribute__((always_inline)) void udp_replay_simple_replay(struct rte_mbuf *m, uint8_t portid, struct lcore_conf *qconf) { struct ether_hdr *eth_hdr,tmp; struct ipv4_hdr *ipv4_hdr,temp_ipv4; struct udp_hdr *udp_hdr,temp_udp; l2_phy_interface_t *port = ifm_get_port(portid); if (port == NULL) { printf("port may be un initialized\n"); return; } if (m == NULL) { printf("Null packet received\n"); return; } if (unlikely(arp_support)) { if (!check_arpicmp(m)) return; } if (qconf == NULL) printf("qconf configuration is NULL\n"); eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); ether_addr_copy(ð_hdr->s_addr, &tmp.s_addr); ether_addr_copy(ð_hdr->d_addr, ð_hdr->s_addr); ether_addr_copy(&tmp.s_addr, ð_hdr->d_addr); struct ether_hdr *eth_h = rte_pktmbuf_mtod(m, struct ether_hdr *); if ((rte_cpu_to_be_16(eth_h->ether_type)) == ETHER_TYPE_IPv4) { /* Handle IPv4 headers.*/ ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *, sizeof(struct ether_hdr)); temp_ipv4.dst_addr = ipv4_hdr->dst_addr; ipv4_hdr->dst_addr = ipv4_hdr->src_addr; ipv4_hdr->src_addr = temp_ipv4.dst_addr; #ifdef DO_RFC_1812_CHECKS /* Check to make sure the packet is valid (RFC1812) */ if (is_valid_pkt_ipv4(ipv4_hdr, m->pkt_len) < 0) { rte_pktmbuf_free(m); return; } #endif #ifdef DO_RFC_1812_CHECKS /* Update time to live and header checksum */ --(ipv4_hdr->time_to_live); ++(ipv4_hdr->hdr_checksum); #endif /* Handle UDP headers.*/ udp_hdr = rte_pktmbuf_mtod_offset(m, struct udp_hdr *, (sizeof(struct ether_hdr)+sizeof(struct ipv4_hdr))); /*Swapping Src and Dst Port*/ temp_udp.dst_port = udp_hdr->dst_port; udp_hdr->dst_port = udp_hdr->src_port; udp_hdr->src_port = temp_udp.dst_port; send_single_packet(m, portid); } else if ((rte_cpu_to_be_16(eth_h->ether_type)) == ETHER_TYPE_IPv6) { /* Handle IPv6 headers.*/ struct ipv6_hdr *ipv6_hdr,temp_ipv6; ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct ipv6_hdr *, sizeof(struct ether_hdr)); /*Swapping of Src and Dst IP address*/ memcpy(temp_ipv6.dst_addr,ipv6_hdr->dst_addr,16); memcpy(ipv6_hdr->dst_addr,ipv6_hdr->src_addr,16); memcpy(ipv6_hdr->src_addr,temp_ipv6.dst_addr,16); /* Handle UDP headers.*/ udp_hdr = rte_pktmbuf_mtod_offset(m, struct udp_hdr *, (sizeof(struct ether_hdr)+sizeof(struct ipv6_hdr))); /*Swapping Src and Dst Port*/ temp_udp.dst_port = udp_hdr->dst_port; udp_hdr->dst_port = udp_hdr->src_port; udp_hdr->src_port = temp_udp.dst_port; send_single_packet(m, portid); } else /* Free the mbuf that contains non-IPV4/IPV6 packet */ rte_pktmbuf_free(m); } #if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \ (ENABLE_MULTI_BUFFER_OPTIMIZE == 1)) #ifdef DO_RFC_1812_CHECKS #define IPV4_MIN_VER_IHL 0x45 #define IPV4_MAX_VER_IHL 0x4f #define IPV4_MAX_VER_IHL_DIFF (IPV4_MAX_VER_IHL - IPV4_MIN_VER_IHL) /* Minimum value of IPV4 total length (20B) in network byte order. */ #define IPV4_MIN_LEN_BE (sizeof(struct ipv4_hdr) << 8) /* * From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2: * - The IP version number must be 4. * - The IP header length field must be large enough to hold the * minimum length legal IP datagram (20 bytes = 5 words). * - The IP total length field must be large enough to hold the IP * datagram header, whose length is specified in the IP header length * field. * If we encounter invalid IPV4 packet, then set destination port for it * to BAD_PORT value. */ static inline __attribute__((always_inline)) void rfc1812_process(struct ipv4_hdr *ipv4_hdr, uint16_t *dp, uint32_t ptype) { uint8_t ihl; if (RTE_ETH_IS_IPV4_HDR(ptype)) { ihl = ipv4_hdr->version_ihl - IPV4_MIN_VER_IHL; ipv4_hdr->time_to_live--; ipv4_hdr->hdr_checksum++; if (ihl > IPV4_MAX_VER_IHL_DIFF || ((uint8_t)ipv4_hdr->total_length == 0 && ipv4_hdr->total_length < IPV4_MIN_LEN_BE)) { dp[0] = BAD_PORT; } } } #else #define rfc1812_process(mb, dp) do { } while (0) #endif /* DO_RFC_1812_CHECKS */ #endif /* APP_LOOKUP_LPM && ENABLE_MULTI_BUFFER_OPTIMIZE */ #if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \ (ENABLE_MULTI_BUFFER_OPTIMIZE == 1)) static inline __attribute__((always_inline)) uint16_t get_dst_port(const struct lcore_conf *qconf, struct rte_mbuf *pkt, uint32_t dst_ipv4, uint8_t portid) { uint8_t next_hop; struct ipv6_hdr *ipv6_hdr; struct ether_hdr *eth_hdr; struct ether_hdr *eth_h = rte_pktmbuf_mtod(m, struct ether_hdr *); if ((rte_cpu_to_be_16(eth_h->ether_type)) == ETHER_TYPE_IPv4) { if (rte_lpm_lookup(qconf->ipv4_lookup_struct, dst_ipv4, &next_hop) != 0) next_hop = portid; } else if ((rte_cpu_to_be_16(eth_h->ether_type)) == ETHER_TYPE_IPv6) { eth_hdr = rte_pktmbuf_mtod(pkt, struct ether_hdr *); ipv6_hdr = (struct ipv6_hdr *)(eth_hdr + 1); if (rte_lpm6_lookup(qconf->ipv6_lookup_struct, ipv6_hdr->dst_addr, &next_hop) != 0) next_hop = portid; } else { next_hop = portid; } return next_hop; } static inline void process_packet(struct lcore_conf *qconf, struct rte_mbuf *pkt, uint16_t *dst_port, uint8_t portid) { struct ether_hdr *eth_hdr; struct ipv4_hdr *ipv4_hdr; uint32_t dst_ipv4; uint16_t dp; __m128i te, ve; eth_hdr = rte_pktmbuf_mtod(pkt, struct ether_hdr *); ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1); /*Add swap*/ dst_ipv4 = ipv4_hdr->dst_addr; dst_ipv4 = rte_be_to_cpu_32(dst_ipv4); /*Changing the dp to incoming port*/ dp = get_dst_port(qconf, pkt, dst_ipv4, portid); dp = portid; te = _mm_loadu_si128((__m128i *)eth_hdr); ve = val_eth[dp]; dst_port[0] = dp; rfc1812_process(ipv4_hdr, dst_port, pkt->packet_type); te = _mm_blend_epi16(te, ve, MASK_ETH); _mm_storeu_si128((__m128i *)eth_hdr, te); } /* Wont be using the following fucntion*/ /* * Read packet_type and destination IPV4 addresses from 4 mbufs. */ static inline void processx4_step1(struct rte_mbuf *pkt[FWDSTEP], __m128i *dip, uint32_t *ipv4_flag) { struct ipv4_hdr *ipv4_hdr; struct ether_hdr *eth_hdr; uint32_t x0, x1, x2, x3; eth_hdr = rte_pktmbuf_mtod(pkt[0], struct ether_hdr *); ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1); x0 = ipv4_hdr->dst_addr; ipv4_flag[0] = pkt[0]->packet_type & RTE_PTYPE_L3_IPV4; eth_hdr = rte_pktmbuf_mtod(pkt[1], struct ether_hdr *); ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1); x1 = ipv4_hdr->dst_addr; ipv4_flag[0] &= pkt[1]->packet_type; eth_hdr = rte_pktmbuf_mtod(pkt[2], struct ether_hdr *); ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1); x2 = ipv4_hdr->dst_addr; ipv4_flag[0] &= pkt[2]->packet_type; eth_hdr = rte_pktmbuf_mtod(pkt[3], struct ether_hdr *); ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1); x3 = ipv4_hdr->dst_addr; ipv4_flag[0] &= pkt[3]->packet_type; dip[0] = _mm_set_epi32(x3, x2, x1, x0); } /* * Lookup into LPM for destination port. * If lookup fails, use incoming port (portid) as destination port. */ static inline void processx4_step2(const struct lcore_conf *qconf, __m128i dip, uint32_t ipv4_flag, uint8_t portid, struct rte_mbuf *pkt[FWDSTEP], uint16_t dprt[FWDSTEP]) { rte_xmm_t dst; const __m128i bswap_mask = _mm_set_epi8(12, 13, 14, 15, 8, 9, 10, 11, 4, 5, 6, 7, 0, 1, 2, 3); /* Byte swap 4 IPV4 addresses. */ dip = _mm_shuffle_epi8(dip, bswap_mask); /* if all 4 packets are IPV4. */ if (likely(ipv4_flag)) { rte_lpm_lookupx4(qconf->ipv4_lookup_struct, dip, dprt, portid); } else { dst.x = dip; dprt[0] = get_dst_port(qconf, pkt[0], dst.u32[0], portid); dprt[1] = get_dst_port(qconf, pkt[1], dst.u32[1], portid); dprt[2] = get_dst_port(qconf, pkt[2], dst.u32[2], portid); dprt[3] = get_dst_port(qconf, pkt[3], dst.u32[3], portid); } } /* * Update source and destination MAC addresses in the ethernet header. * Perform RFC1812 checks and updates for IPV4 packets. */ static inline void processx4_step3(struct rte_mbuf *pkt[FWDSTEP], uint16_t dst_port[FWDSTEP]) { __m128i te[FWDSTEP]; __m128i ve[FWDSTEP]; __m128i *p[FWDSTEP]; p[0] = rte_pktmbuf_mtod(pkt[0], __m128i *); p[1] = rte_pktmbuf_mtod(pkt[1], __m128i *); p[2] = rte_pktmbuf_mtod(pkt[2], __m128i *); p[3] = rte_pktmbuf_mtod(pkt[3], __m128i *); ve[0] = val_eth[dst_port[0]]; te[0] = _mm_loadu_si128(p[0]); ve[1] = val_eth[dst_port[1]]; te[1] = _mm_loadu_si128(p[1]); ve[2] = val_eth[dst_port[2]]; te[2] = _mm_loadu_si128(p[2]); ve[3] = val_eth[dst_port[3]]; te[3] = _mm_loadu_si128(p[3]); /* Update first 12 bytes, keep rest bytes intact. */ te[0] = _mm_blend_epi16(te[0], ve[0], MASK_ETH); te[1] = _mm_blend_epi16(te[1], ve[1], MASK_ETH); te[2] = _mm_blend_epi16(te[2], ve[2], MASK_ETH); te[3] = _mm_blend_epi16(te[3], ve[3], MASK_ETH); _mm_storeu_si128(p[0], te[0]); _mm_storeu_si128(p[1], te[1]); _mm_storeu_si128(p[2], te[2]); _mm_storeu_si128(p[3], te[3]); rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[0] + 1), &dst_port[0], pkt[0]->packet_type); rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[1] + 1), &dst_port[1], pkt[1]->packet_type); rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[2] + 1), &dst_port[2], pkt[2]->packet_type); rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[3] + 1), &dst_port[3], pkt[3]->packet_type); } /* * We group consecutive packets with the same destionation port into one burst. * To avoid extra latency this is done together with some other packet * processing, but after we made a final decision about packet's destination. * To do this we maintain: * pnum - array of number of consecutive packets with the same dest port for * each packet in the input burst. * lp - pointer to the last updated element in the pnum. * dlp - dest port value lp corresponds to. */ #define GRPSZ (1 << FWDSTEP) #define GRPMSK (GRPSZ - 1) #define GROUP_PORT_STEP(dlp, dcp, lp, pn, idx) do { \ if (likely((dlp) == (dcp)[(idx)])) { \ (lp)[0]++; \ } else { \ (dlp) = (dcp)[idx]; \ (lp) = (pn) + (idx); \ (lp)[0] = 1; \ } \ } while (0) /* * Group consecutive packets with the same destination port in bursts of 4. * Suppose we have array of destionation ports: * dst_port[] = {a, b, c, d,, e, ... } * dp1 should contain: , dp2: . * We doing 4 comparisions at once and the result is 4 bit mask. * This mask is used as an index into prebuild array of pnum values. */ static inline uint16_t * port_groupx4(uint16_t pn[FWDSTEP + 1], uint16_t *lp, __m128i dp1, __m128i dp2) { static const struct { uint64_t pnum; /* prebuild 4 values for pnum[]. */ int32_t idx; /* index for new last updated elemnet. */ uint16_t lpv; /* add value to the last updated element. */ } gptbl[GRPSZ] = { { /* 0: a != b, b != c, c != d, d != e */ .pnum = UINT64_C(0x0001000100010001), .idx = 4, .lpv = 0, }, { /* 1: a == b, b != c, c != d, d != e */ .pnum = UINT64_C(0x0001000100010002), .idx = 4, .lpv = 1, }, { /* 2: a != b, b == c, c != d, d != e */ .pnum = UINT64_C(0x0001000100020001), .idx = 4, .lpv = 0, }, { /* 3: a == b, b == c, c != d, d != e */ .pnum = UINT64_C(0x0001000100020003), .idx = 4, .lpv = 2, }, { /* 4: a != b, b != c, c == d, d != e */ .pnum = UINT64_C(0x0001000200010001), .idx = 4, .lpv = 0, }, { /* 5: a == b, b != c, c == d, d != e */ .pnum = UINT64_C(0x0001000200010002), .idx = 4, .lpv = 1, }, { /* 6: a != b, b == c, c == d, d != e */ .pnum = UINT64_C(0x0001000200030001), .idx = 4, .lpv = 0, }, { /* 7: a == b, b == c, c == d, d != e */ .pnum = UINT64_C(0x0001000200030004), .idx = 4, .lpv = 3, }, { /* 8: a != b, b != c, c != d, d == e */ .pnum = UINT64_C(0x0002000100010001), .idx = 3, .lpv = 0, }, { /* 9: a == b, b != c, c != d, d == e */ .pnum = UINT64_C(0x0002000100010002), .idx = 3, .lpv = 1, }, { /* 0xa: a != b, b == c, c != d, d == e */ .pnum = UINT64_C(0x0002000100020001), .idx = 3, .lpv = 0, }, { /* 0xb: a == b, b == c, c != d, d == e */ .pnum = UINT64_C(0x0002000100020003), .idx = 3, .lpv = 2, }, { /* 0xc: a != b, b != c, c == d, d == e */ .pnum = UINT64_C(0x0002000300010001), .idx = 2, .lpv = 0, }, { /* 0xd: a == b, b != c, c == d, d == e */ .pnum = UINT64_C(0x0002000300010002), .idx = 2, .lpv = 1, }, { /* 0xe: a != b, b == c, c == d, d == e */ .pnum = UINT64_C(0x0002000300040001), .idx = 1, .lpv = 0, }, { /* 0xf: a == b, b == c, c == d, d == e */ .pnum = UINT64_C(0x0002000300040005), .idx = 0, .lpv = 4, }, }; union { uint16_t u16[FWDSTEP + 1]; uint64_t u64; } *pnum = (void *)pn; int32_t v; dp1 = _mm_cmpeq_epi16(dp1, dp2); dp1 = _mm_unpacklo_epi16(dp1, dp1); v = _mm_movemask_ps((__m128)dp1); /* update last port counter. */ lp[0] += gptbl[v].lpv; /* if dest port value has changed. */ if (v != GRPMSK) { lp = pnum->u16 + gptbl[v].idx; lp[0] = 1; pnum->u64 = gptbl[v].pnum; } return lp; } #endif /* APP_LOOKUP_METHOD */ /* main processing loop */ static int main_loop(__attribute__((unused)) void *dummy) { struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; unsigned lcore_id; uint64_t prev_tsc, diff_tsc, cur_tsc; int i, j, nb_rx; uint8_t portid, queueid; struct lcore_conf *qconf; l2_phy_interface_t *port; const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; #if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \ (ENABLE_MULTI_BUFFER_OPTIMIZE == 1)) int32_t k; uint16_t dlp; uint16_t *lp; uint16_t dst_port[MAX_PKT_BURST]; __m128i dip[MAX_PKT_BURST / FWDSTEP]; uint32_t ipv4_flag[MAX_PKT_BURST / FWDSTEP]; uint16_t pnum[MAX_PKT_BURST + 1]; #endif prev_tsc = 0; lcore_id = rte_lcore_id(); qconf = &lcore_conf[lcore_id]; if (qconf->n_rx_queue == 0) { RTE_LOG(INFO, UDP_Replay, "lcore %u has nothing to do\n", lcore_id); return 0; } RTE_LOG(INFO, UDP_Replay, "entering main loop on lcore %u\n", lcore_id); for (i = 0; i < qconf->n_rx_queue; i++) { portid = qconf->rx_queue_list[i].port_id; queueid = qconf->rx_queue_list[i].queue_id; RTE_LOG(INFO, UDP_Replay, " -- lcoreid=%u portid=%hhu rxqueueid=%hhu\n", lcore_id, portid, queueid); } while (exit_loop) { cur_tsc = rte_rdtsc(); /* * TX burst queue drain */ diff_tsc = cur_tsc - prev_tsc; if (unlikely(diff_tsc > drain_tsc)) { /* * This could be optimized (use queueid instead of * portid), but it is not called so often */ for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { if (qconf->tx_mbufs[portid].len == 0) continue; send_burst(qconf, qconf->tx_mbufs[portid].len, portid); qconf->tx_mbufs[portid].len = 0; } prev_tsc = cur_tsc; } /* * Read packet from RX queues */ for (i = 0; i < qconf->n_rx_queue; ++i) { portid = qconf->rx_queue_list[i].port_id; queueid = qconf->rx_queue_list[i].queue_id; port = ifm_get_port(portid); if (port != NULL) { nb_rx = port->retrieve_bulk_pkts(portid, queueid, pkts_burst); port->n_rxpkts += nb_rx; } else { printf("port may be un initialized\n"); return 0; } if(nb_rx) rcv_pkt_count[portid] += nb_rx; if (nb_rx == 0) continue; #if (ENABLE_MULTI_BUFFER_OPTIMIZE == 1) #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) { /* * Send nb_rx - nb_rx%8 packets * in groups of 8. */ int32_t n = RTE_ALIGN_FLOOR(nb_rx, 8); for (j = 0; j < n; j += 8) { struct ether_hdr *eth_h0 = rte_pktmbuf_mtod(pkts_burst[j], struct ether_hdr *); struct ether_hdr *eth_h1 = rte_pktmbuf_mtod(pkts_burst[j+1], struct ether_hdr *); struct ether_hdr *eth_h2 = rte_pktmbuf_mtod(pkts_burst[j+2], struct ether_hdr *); struct ether_hdr *eth_h3 = rte_pktmbuf_mtod(pkts_burst[j+3], struct ether_hdr *); struct ether_hdr *eth_h4 = rte_pktmbuf_mtod(pkts_burst[j+4], struct ether_hdr *); struct ether_hdr *eth_h5 = rte_pktmbuf_mtod(pkts_burst[j+5], struct ether_hdr *); struct ether_hdr *eth_h6 = rte_pktmbuf_mtod(pkts_burst[j+6], struct ether_hdr *); struct ether_hdr *eth_h7 = rte_pktmbuf_mtod(pkts_burst[j+7], struct ether_hdr *); uint16_t ether_type; ether_type = (rte_cpu_to_be_16(eth_h0->ether_type) & rte_cpu_to_be_16(eth_h1->ether_type) & rte_cpu_to_be_16(eth_h2->ether_type) & rte_cpu_to_be_16(eth_h3->ether_type) & rte_cpu_to_be_16(eth_h4->ether_type) & rte_cpu_to_be_16(eth_h5->ether_type) & rte_cpu_to_be_16(eth_h6->ether_type) & rte_cpu_to_be_16(eth_h7->ether_type)); if (ether_type == ETHER_TYPE_IPv4) { simple_ipv4_replay_8pkts( &pkts_burst[j], portid, qconf); } else if (ether_type == ETHER_TYPE_IPv6) { simple_ipv6_replay_8pkts(&pkts_burst[j], portid, qconf); } else { udp_replay_simple_replay(pkts_burst[j], portid, qconf); udp_replay_simple_replay(pkts_burst[j+1], portid, qconf); udp_replay_simple_replay(pkts_burst[j+2], portid, qconf); udp_replay_simple_replay(pkts_burst[j+3], portid, qconf); udp_replay_simple_replay(pkts_burst[j+4], portid, qconf); udp_replay_simple_replay(pkts_burst[j+5], portid, qconf); udp_replay_simple_replay(pkts_burst[j+6], portid, qconf); udp_replay_simple_replay(pkts_burst[j+7], portid, qconf); } } for (; j < nb_rx ; j++) { udp_replay_simple_replay(pkts_burst[j], portid, qconf); } } #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP); for (j = 0; j != k; j += FWDSTEP) { processx4_step1(&pkts_burst[j], &dip[j / FWDSTEP], &ipv4_flag[j / FWDSTEP]); } k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP); for (j = 0; j != k; j += FWDSTEP) { processx4_step2(qconf, dip[j / FWDSTEP], ipv4_flag[j / FWDSTEP], portid, &pkts_burst[j], &dst_port[j]); } /* * Finish packet processing and group consecutive * packets with the same destination port. */ k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP); if (k != 0) { __m128i dp1, dp2; lp = pnum; lp[0] = 1; processx4_step3(pkts_burst, dst_port); /* dp1: */ dp1 = _mm_loadu_si128((__m128i *)dst_port); for (j = FWDSTEP; j != k; j += FWDSTEP) { processx4_step3(&pkts_burst[j], &dst_port[j]); /* * dp2: * */ dp2 = _mm_loadu_si128((__m128i *) &dst_port[j - FWDSTEP + 1]); lp = port_groupx4(&pnum[j - FWDSTEP], lp, dp1, dp2); /* * dp1: * */ dp1 = _mm_srli_si128(dp2, (FWDSTEP - 1) * sizeof(dst_port[0])); } /* * dp2: */ dp2 = _mm_shufflelo_epi16(dp1, 0xf9); lp = port_groupx4(&pnum[j - FWDSTEP], lp, dp1, dp2); /* * remove values added by the last repeated * dst port. */ lp[0]--; dlp = dst_port[j - 1]; } else { /* set dlp and lp to the never used values. */ dlp = BAD_PORT - 1; lp = pnum + MAX_PKT_BURST; } /* Process up to last 3 packets one by one. */ switch (nb_rx % FWDSTEP) { case 3: process_packet(qconf, pkts_burst[j], dst_port + j, portid); GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j); j++; case 2: process_packet(qconf, pkts_burst[j], dst_port + j, portid); GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j); j++; case 1: process_packet(qconf, pkts_burst[j], dst_port + j, portid); GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j); j++; } /* * Send packets out, through destination port. * Consecuteve pacekts with the same destination port * are already grouped together. * If destination port for the packet equals BAD_PORT, * then free the packet without sending it out. */ for (j = 0; j < nb_rx; j += k) { int32_t m; uint16_t pn; pn = dst_port[j]; k = pnum[j]; if (likely(pn != BAD_PORT)) { send_packetsx4(qconf, pn, pkts_burst + j, k); } else { for (m = j; m != j + k; m++) rte_pktmbuf_free(pkts_burst[m]); } } #endif /* APP_LOOKUP_METHOD */ #else /* ENABLE_MULTI_BUFFER_OPTIMIZE == 0 */ /* Prefetch first packets */ for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { rte_prefetch0(rte_pktmbuf_mtod( pkts_burst[j], void *)); } /* Prefetch and forward already prefetched packets */ for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ j + PREFETCH_OFFSET], void *)); udp_replay_simple_replay(pkts_burst[j], portid, qconf); } /* Forward remaining prefetched packets */ for (; j < nb_rx; j++) { udp_replay_simple_replay(pkts_burst[j], portid, qconf); } #endif /* ENABLE_MULTI_BUFFER_OPTIMIZE */ } } } /* display usage */ int print_l4stats(void) { unsigned portid; uint16_t i, j=0; printf ("\n"); printf ("UDP_Replay stats:\n"); printf ("--------------\n"); printf (" Port Rx Packet Tx Packet Rx Pkt Drop Tx Pkt Drop arp_pkts\n"); for (i = 0; i < nb_lcore_params; ++i) { portid = lcore_params[i].port_id; printf ("%5u%15lu%15lu%17d%17d%14u",portid, rcv_pkt_count[portid], tx_pkt_count[portid],j,j, arp_pkts); printf ("\n"); } printf ("\n"); return 0; } int clear_stats(void) { uint64_t i; for (i = 0; i < 32; i++) { rcv_pkt_count[i] = 0; tx_pkt_count[i] = 0; } print_l4stats(); return 0; } static int check_lcore_params(void) { uint8_t queue, lcore; uint16_t i; int socketid; for (i = 0; i < nb_lcore_params; ++i) { queue = lcore_params[i].queue_id; if (queue >= MAX_RX_QUEUE_PER_PORT) { printf("invalid queue number: %hhu\n", queue); return -1; } lcore = lcore_params[i].lcore_id; if (!rte_lcore_is_enabled(lcore)) { printf("error: lcore %hhu is not enabled in lcore mask\n", lcore); return -1; } if ((socketid = rte_lcore_to_socket_id(lcore) != 0) && (numa_on == 0)) { printf("warning: lcore %hhu is on socket %d with numa off \n", lcore, socketid); } } return 0; } static int check_port_config(const unsigned nb_ports) { unsigned portid; uint16_t i; for (i = 0; i < nb_lcore_params; ++i) { portid = lcore_params[i].port_id; if ((enabled_port_mask & (1 << portid)) == 0) { printf("port %u is not enabled in port mask\n", portid); return -1; } if (portid >= nb_ports) { printf("port %u is not present on the board\n", portid); return -1; } } return 0; } static uint8_t get_port_n_rx_queues(const uint8_t port) { int queue = -1; uint16_t i; for (i = 0; i < nb_lcore_params; ++i) { if (lcore_params[i].port_id == port && lcore_params[i].queue_id > queue) queue = lcore_params[i].queue_id; } return (uint8_t)(++queue); } static int init_lcore_rx_queues(void) { uint16_t i, nb_rx_queue; uint8_t lcore; for (i = 0; i < nb_lcore_params; ++i) { lcore = lcore_params[i].lcore_id; nb_rx_queue = lcore_conf[lcore].n_rx_queue; if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) { printf("error: too many queues (%u) for lcore: %u\n", (unsigned)nb_rx_queue + 1, (unsigned)lcore); return -1; } else { lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id = lcore_params[i].port_id; lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id = lcore_params[i].queue_id; lcore_conf[lcore].n_rx_queue++; } } return 0; } /* display usage */ static void print_usage(const char *prgname) { printf ("%s [EAL options] -- -p PORTMASK -P" " [--config (port,queue,lcore)[,(port,queue,lcore]]" " [--enable-jumbo [--max-pkt-len PKTLEN]]\n" " -p PORTMASK: hexadecimal bitmask of ports to configure\n" " -P : enable promiscuous mode\n" " --config (port,queue,lcore): rx queues configuration\n" " --eth-dest=X,MM:MM:MM:MM:MM:MM: optional, ethernet destination for port X\n" " --no-numa: optional, disable numa awareness\n" " --no-hw-csum: optional, disable hw ip checksum\n" " --ipv6: optional, specify it if running ipv6 packets\n" " --enable-jumbo: enable jumbo frame" " which max packet len is PKTLEN in decimal (64-9600)\n" " --hash-entry-num: specify the hash entry number in hexadecimal to be setup\n", prgname); } static int parse_max_pkt_len(const char *pktlen) { char *end = NULL; unsigned long len; /* parse decimal string */ len = strtoul(pktlen, &end, 10); if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0')) return -1; if (len == 0) return -1; return len; } static int parse_link_ip(const char *file_name) { uint32_t i, type; struct rte_cfgfile *file; const char *entry; char buf[256]; file = rte_cfgfile_load(file_name, 0); entry = rte_cfgfile_get_entry(file, "linkip", "num_ports"); numports = (uint32_t)atoi(entry); if (numports <= 0 || numports > 32) rte_panic("numports is not valid\n"); entry = rte_cfgfile_get_entry(file, "linkip", "ip_type"); type = (uint32_t)atoi(entry); for (i = 0;i < numports; i++) { sprintf(buf, "port%d", i); entry = rte_cfgfile_get_entry(file, "linkip", buf); if (entry == NULL) continue; if (!type) ipv4[i] = strdup(entry); else if (type) my_inet_pton_ipv6(AF_INET6, entry, &link_ipv6[i][0]); } return 0; } static int parse_portmask(const char *portmask) { char *end = NULL; unsigned long pm; /* parse hexadecimal string */ pm = strtoul(portmask, &end, 16); if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) return -1; if (pm == 0) return -1; return pm; } #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) static int parse_hash_entry_number(const char *hash_entry_num) { char *end = NULL; unsigned long hash_en; /* parse hexadecimal string */ hash_en = strtoul(hash_entry_num, &end, 16); if ((hash_entry_num[0] == '\0') || (end == NULL) || (*end != '\0')) return -1; if (hash_en == 0) return -1; return hash_en; } #endif static int parse_config(const char *q_arg) { char s[256]; const char *p, *p0 = q_arg; char *end; enum fieldnames { FLD_PORT = 0, FLD_QUEUE, FLD_LCORE, _NUM_FLD }; unsigned long int_fld[_NUM_FLD]; char *str_fld[_NUM_FLD]; int i; unsigned size; nb_lcore_params = 0; while ((p = strchr(p0,'(')) != NULL) { ++p; if((p0 = strchr(p,')')) == NULL) return -1; size = p0 - p; if(size >= sizeof(s)) return -1; snprintf(s, sizeof(s), "%.*s", size, p); if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') != _NUM_FLD) return -1; for (i = 0; i < _NUM_FLD; i++){ errno = 0; int_fld[i] = strtoul(str_fld[i], &end, 0); if (errno != 0 || end == str_fld[i] || int_fld[i] > 255) return -1; } if (nb_lcore_params >= MAX_LCORE_PARAMS) { printf("exceeded max number of lcore params: %hu\n", nb_lcore_params); return -1; } lcore_params_array[nb_lcore_params].port_id = (uint8_t)int_fld[FLD_PORT]; lcore_params_array[nb_lcore_params].queue_id = (uint8_t)int_fld[FLD_QUEUE]; lcore_params_array[nb_lcore_params].lcore_id = (uint8_t)int_fld[FLD_LCORE]; ++nb_lcore_params; } lcore_params = lcore_params_array; return 0; } static void parse_eth_dest(const char *optarg) { uint8_t portid; char *port_end; uint8_t c, *dest, peer_addr[6]; errno = 0; portid = strtoul(optarg, &port_end, 10); if (errno != 0 || port_end == optarg || *port_end++ != ',') rte_exit(EXIT_FAILURE, "Invalid eth-dest: %s", optarg); if (portid >= RTE_MAX_ETHPORTS) rte_exit(EXIT_FAILURE, "eth-dest: port %d >= RTE_MAX_ETHPORTS(%d)\n", portid, RTE_MAX_ETHPORTS); if (cmdline_parse_etheraddr(NULL, port_end, &peer_addr, sizeof(peer_addr)) < 0) rte_exit(EXIT_FAILURE, "Invalid ethernet address: %s\n", port_end); dest = (uint8_t *)&dest_eth_addr[portid]; for (c = 0; c < 6; c++) dest[c] = peer_addr[c]; *(uint64_t *)(val_eth + portid) = dest_eth_addr[portid]; } #define CMD_LINE_OPT_CONFIG "config" #define CMD_LINE_OPT_ETH_DEST "eth-dest" #define CMD_LINE_OPT_NO_NUMA "no-numa" #define CMD_LINE_OPT_NO_HW_CSUM "no-hw-csum" #define CMD_LINE_OPT_IPV6 "ipv6" #define CMD_LINE_OPT_ENABLE_JUMBO "enable-jumbo" #define CMD_LINE_OPT_HASH_ENTRY_NUM "hash-entry-num" /* Parse the argument given in the command line of the application */ static int parse_args(int argc, char **argv) { int opt, ret; char **argvopt; int option_index; char *prgname = argv[0]; static struct option lgopts[] = { {CMD_LINE_OPT_CONFIG, 1, 0, 0}, {CMD_LINE_OPT_ETH_DEST, 1, 0, 0}, {CMD_LINE_OPT_NO_NUMA, 0, 0, 0}, {CMD_LINE_OPT_NO_HW_CSUM, 0, 0, 0}, {CMD_LINE_OPT_IPV6, 0, 0, 0}, {CMD_LINE_OPT_ENABLE_JUMBO, 0, 0, 0}, {CMD_LINE_OPT_HASH_ENTRY_NUM, 1, 0, 0}, {NULL, 0, 0, 0} }; argvopt = argv; while ((opt = getopt_long(argc, argvopt, "s:p:P", lgopts, &option_index)) != EOF) { switch (opt) { case 's': parse_link_ip(optarg); arp_support = 1; break; /* portmask */ case 'p': enabled_port_mask = parse_portmask(optarg); if (enabled_port_mask == 0) { printf("invalid portmask\n"); print_usage(prgname); return -1; } break; case 'P': printf("Promiscuous mode selected\n"); promiscuous_on = 1; break; /* long options */ case 0: if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_CONFIG, sizeof (CMD_LINE_OPT_CONFIG))) { ret = parse_config(optarg); if (ret) { printf("invalid config\n"); print_usage(prgname); return -1; } } if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_ETH_DEST, sizeof(CMD_LINE_OPT_ETH_DEST))) { parse_eth_dest(optarg); } if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_NO_NUMA, sizeof(CMD_LINE_OPT_NO_NUMA))) { printf("numa is disabled \n"); numa_on = 0; } if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_NO_HW_CSUM, sizeof(CMD_LINE_OPT_NO_HW_CSUM))) { printf("numa is hw ip checksum \n"); port_conf.rxmode.hw_ip_checksum = 0; rx_conf.rx_free_thresh = 30; csum_on = 0; } #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_IPV6, sizeof(CMD_LINE_OPT_IPV6))) { printf("ipv6 is specified \n"); ipv6 = 1; } #endif if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_ENABLE_JUMBO, sizeof (CMD_LINE_OPT_ENABLE_JUMBO))) { struct option lenopts = {"max-pkt-len", required_argument, 0, 0}; printf("jumbo frame is enabled - disabling simple TX path\n"); port_conf.rxmode.jumbo_frame = 1; /* if no max-pkt-len set, use the default value ETHER_MAX_LEN */ if (0 == getopt_long(argc, argvopt, "", &lenopts, &option_index)) { ret = parse_max_pkt_len(optarg); if ((ret < 64) || (ret > MAX_JUMBO_PKT_LEN)){ printf("invalid packet length\n"); print_usage(prgname); return -1; } port_conf.rxmode.max_rx_pkt_len = ret; } printf("set jumbo frame max packet length to %u\n", (unsigned int)port_conf.rxmode.max_rx_pkt_len); } #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) if (!strncmp(lgopts[option_index].name, CMD_LINE_OPT_HASH_ENTRY_NUM, sizeof(CMD_LINE_OPT_HASH_ENTRY_NUM))) { ret = parse_hash_entry_number(optarg); if ((ret > 0) && (ret <= UDP_Replay_HASH_ENTRIES)) { hash_entry_number = ret; } else { printf("invalid hash entry number\n"); print_usage(prgname); return -1; } } #endif break; default: print_usage(prgname); return -1; } } if (optind >= 0) argv[optind-1] = prgname; ret = optind-1; optind = 0; /* reset getopt lib */ return ret; } #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) static void convert_ipv4_5tuple(struct ipv4_5tuple* key1, union ipv4_5tuple_host* key2) { key2->ip_dst = rte_cpu_to_be_32(key1->ip_dst); key2->ip_src = rte_cpu_to_be_32(key1->ip_src); key2->port_dst = rte_cpu_to_be_16(key1->port_dst); key2->port_src = rte_cpu_to_be_16(key1->port_src); key2->proto = key1->proto; key2->pad0 = 0; key2->pad1 = 0; return; } static void convert_ipv6_5tuple(struct ipv6_5tuple* key1, union ipv6_5tuple_host* key2) { uint32_t i; for (i = 0; i < 16; i++) { key2->ip_dst[i] = key1->ip_dst[i]; key2->ip_src[i] = key1->ip_src[i]; } key2->port_dst = rte_cpu_to_be_16(key1->port_dst); key2->port_src = rte_cpu_to_be_16(key1->port_src); key2->proto = key1->proto; key2->pad0 = 0; key2->pad1 = 0; key2->reserve = 0; return; } #define BYTE_VALUE_MAX 256 #define ALL_32_BITS 0xffffffff #define BIT_8_TO_15 0x0000ff00 static inline void populate_ipv4_few_flow_into_table(const struct rte_hash* h) { uint32_t i; int32_t ret; uint32_t array_len = sizeof(ipv4_udp_replay_route_array)/sizeof(ipv4_udp_replay_route_array[0]); mask0 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_8_TO_15); for (i = 0; i < array_len; i++) { struct ipv4_udp_replay_route entry; union ipv4_5tuple_host newkey; entry = ipv4_udp_replay_route_array[i]; convert_ipv4_5tuple(&entry.key, &newkey); ret = rte_hash_add_key (h,(void *) &newkey); if (ret < 0) { rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32 " to the udp_replay hash.\n", i); } ipv4_udp_replay_out_if[ret] = entry.if_out; } printf("Hash: Adding 0x%" PRIx32 " keys\n", array_len); } #define BIT_16_TO_23 0x00ff0000 static inline void populate_ipv6_few_flow_into_table(const struct rte_hash* h) { uint32_t i; int32_t ret; uint32_t array_len = sizeof(ipv6_udp_replay_route_array)/sizeof(ipv6_udp_replay_route_array[0]); mask1 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_16_TO_23); mask2 = _mm_set_epi32(0, 0, ALL_32_BITS, ALL_32_BITS); for (i = 0; i < array_len; i++) { struct ipv6_udp_replay_route entry; union ipv6_5tuple_host newkey; entry = ipv6_udp_replay_route_array[i]; convert_ipv6_5tuple(&entry.key, &newkey); ret = rte_hash_add_key (h, (void *) &newkey); if (ret < 0) { rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32 " to the udp_replay hash.\n", i); } ipv6_udp_replay_out_if[ret] = entry.if_out; } printf("Hash: Adding 0x%" PRIx32 "keys\n", array_len); } #define NUMBER_PORT_USED 4 static inline void populate_ipv4_many_flow_into_table(const struct rte_hash* h, unsigned int nr_flow) { unsigned i; mask0 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_8_TO_15); for (i = 0; i < nr_flow; i++) { struct ipv4_udp_replay_route entry; union ipv4_5tuple_host newkey; uint8_t a = (uint8_t) ((i/NUMBER_PORT_USED)%BYTE_VALUE_MAX); uint8_t b = (uint8_t) (((i/NUMBER_PORT_USED)/BYTE_VALUE_MAX)%BYTE_VALUE_MAX); uint8_t c = (uint8_t) ((i/NUMBER_PORT_USED)/(BYTE_VALUE_MAX*BYTE_VALUE_MAX)); /* Create the ipv4 exact match flow */ memset(&entry, 0, sizeof(entry)); switch (i & (NUMBER_PORT_USED -1)) { case 0: entry = ipv4_udp_replay_route_array[0]; entry.key.ip_dst = IPv4(101,c,b,a); break; case 1: entry = ipv4_udp_replay_route_array[1]; entry.key.ip_dst = IPv4(201,c,b,a); break; case 2: entry = ipv4_udp_replay_route_array[2]; entry.key.ip_dst = IPv4(111,c,b,a); break; case 3: entry = ipv4_udp_replay_route_array[3]; entry.key.ip_dst = IPv4(211,c,b,a); break; }; convert_ipv4_5tuple(&entry.key, &newkey); int32_t ret = rte_hash_add_key(h,(void *) &newkey); if (ret < 0) { rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i); } ipv4_udp_replay_out_if[ret] = (uint8_t) entry.if_out; } printf("Hash: Adding 0x%x keys\n", nr_flow); } static inline void populate_ipv6_many_flow_into_table(const struct rte_hash* h, unsigned int nr_flow) { unsigned i; mask1 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS, ALL_32_BITS, BIT_16_TO_23); mask2 = _mm_set_epi32(0, 0, ALL_32_BITS, ALL_32_BITS); for (i = 0; i < nr_flow; i++) { struct ipv6_udp_replay_route entry; union ipv6_5tuple_host newkey; uint8_t a = (uint8_t) ((i/NUMBER_PORT_USED)%BYTE_VALUE_MAX); uint8_t b = (uint8_t) (((i/NUMBER_PORT_USED)/BYTE_VALUE_MAX)%BYTE_VALUE_MAX); uint8_t c = (uint8_t) ((i/NUMBER_PORT_USED)/(BYTE_VALUE_MAX*BYTE_VALUE_MAX)); /* Create the ipv6 exact match flow */ memset(&entry, 0, sizeof(entry)); switch (i & (NUMBER_PORT_USED - 1)) { case 0: entry = ipv6_udp_replay_route_array[0]; break; case 1: entry = ipv6_udp_replay_route_array[1]; break; case 2: entry = ipv6_udp_replay_route_array[2]; break; case 3: entry = ipv6_udp_replay_route_array[3]; break; }; entry.key.ip_dst[13] = c; entry.key.ip_dst[14] = b; entry.key.ip_dst[15] = a; convert_ipv6_5tuple(&entry.key, &newkey); int32_t ret = rte_hash_add_key(h,(void *) &newkey); if (ret < 0) { rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i); } ipv6_udp_replay_out_if[ret] = (uint8_t) entry.if_out; } printf("Hash: Adding 0x%x keys\n", nr_flow); } #endif #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM) static void setup_lpm(int socketid) { struct rte_lpm6_config config; unsigned i; int ret; char s[64]; /* create the LPM table */ snprintf(s, sizeof(s), "IPV4_UDP_Replay_LPM_%d", socketid); ipv4_udp_replay_lookup_struct[socketid] = rte_lpm_create(s, socketid, IPV4_UDP_Replay_LPM_MAX_RULES, 0); if (ipv4_udp_replay_lookup_struct[socketid] == NULL) rte_exit(EXIT_FAILURE, "Unable to create the udp_replay LPM table" " on socket %d\n", socketid); /* populate the LPM table */ for (i = 0; i < IPV4_UDP_Replay_NUM_ROUTES; i++) { /* skip unused ports */ if ((1 << ipv4_udp_replay_route_array[i].if_out & enabled_port_mask) == 0) continue; ret = rte_lpm_add(ipv4_udp_replay_lookup_struct[socketid], ipv4_udp_replay_route_array[i].ip, ipv4_udp_replay_route_array[i].depth, ipv4_udp_replay_route_array[i].if_out); if (ret < 0) { rte_exit(EXIT_FAILURE, "Unable to add entry %u to the " "udp_replay LPM table on socket %d\n", i, socketid); } printf("LPM: Adding route 0x%08x / %d (%d)\n", (unsigned)ipv4_udp_replay_route_array[i].ip, ipv4_udp_replay_route_array[i].depth, ipv4_udp_replay_route_array[i].if_out); } /* create the LPM6 table */ snprintf(s, sizeof(s), "IPV6_UDP_Replay_LPM_%d", socketid); config.max_rules = IPV6_UDP_Replay_LPM_MAX_RULES; config.number_tbl8s = IPV6_UDP_Replay_LPM_NUMBER_TBL8S; config.flags = 0; ipv6_udp_replay_lookup_struct[socketid] = rte_lpm6_create(s, socketid, &config); if (ipv6_udp_replay_lookup_struct[socketid] == NULL) rte_exit(EXIT_FAILURE, "Unable to create the udp_replay LPM table" " on socket %d\n", socketid); /* populate the LPM table */ for (i = 0; i < IPV6_UDP_Replay_NUM_ROUTES; i++) { /* skip unused ports */ if ((1 << ipv6_udp_replay_route_array[i].if_out & enabled_port_mask) == 0) continue; ret = rte_lpm6_add(ipv6_udp_replay_lookup_struct[socketid], ipv6_udp_replay_route_array[i].ip, ipv6_udp_replay_route_array[i].depth, ipv6_udp_replay_route_array[i].if_out); if (ret < 0) { rte_exit(EXIT_FAILURE, "Unable to add entry %u to the " "udp_replay LPM table on socket %d\n", i, socketid); } printf("LPM: Adding route %s / %d (%d)\n", "IPV6", ipv6_udp_replay_route_array[i].depth, ipv6_udp_replay_route_array[i].if_out); } } #endif /* Check the link status of all ports in up to 9s, and print them finally */ static void check_all_ports_link_status(uint8_t port_num, uint32_t port_mask) { #define CHECK_INTERVAL 100 /* 100ms */ #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ uint8_t portid, count, all_ports_up, print_flag = 0; struct rte_eth_link link; printf("\nChecking link status"); fflush(stdout); for (count = 0; count <= MAX_CHECK_TIME; count++) { all_ports_up = 1; for (portid = 0; portid < port_num; portid++) { if ((port_mask & (1 << portid)) == 0) continue; memset(&link, 0, sizeof(link)); rte_eth_link_get_nowait(portid, &link); /* print link status if flag set */ if (print_flag == 1) { if (link.link_status) printf("Port %d Link Up - speed %u " "Mbps - %s\n", (uint8_t)portid, (unsigned)link.link_speed, (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? ("full-duplex") : ("half-duplex\n")); else printf("Port %d Link Down\n", (uint8_t)portid); continue; } /* clear all_ports_up flag if any link down */ if (link.link_status == 0) { all_ports_up = 0; break; } } /* after finally printing all link status, get out */ if (print_flag == 1) break; if (all_ports_up == 0) { printf("."); fflush(stdout); rte_delay_ms(CHECK_INTERVAL); } /* set the print_flag if all ports up or timeout */ if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { print_flag = 1; printf("done\n"); } } } int main(int argc, char **argv) { int ret; unsigned nb_ports; unsigned lcore_id; uint32_t n_tx_queue, nb_lcores; uint8_t portid, nb_rx_queue; struct cmdline *cl; uint32_t size; struct pipeline_params *params; /* init EAL */ ret = rte_eal_init(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); argc -= ret; argv += ret; timer_lcore = rte_lcore_id(); /* parse application arguments (after the EAL ones) */ ret = parse_args(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Invalid UDP_Replay parameters\n"); if (check_lcore_params() < 0) rte_exit(EXIT_FAILURE, "check_lcore_params failed\n"); ret = init_lcore_rx_queues(); if (ret < 0) rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n"); params = rte_malloc(NULL, sizeof(*params), RTE_CACHE_LINE_SIZE); memcpy(params, &def_pipeline_params, sizeof(def_pipeline_params)); lib_arp_init(params, NULL); ifm_init(); nb_ports = rte_eth_dev_count(); num_ports = nb_ports; if (nb_ports > RTE_MAX_ETHPORTS) nb_ports = RTE_MAX_ETHPORTS; if (check_port_config(nb_ports) < 0) rte_exit(EXIT_FAILURE, "check_port_config failed\n"); nb_lcores = rte_lcore_count(); /* *Configuring port_config_t structure for interface manager initialization */ size = RTE_CACHE_LINE_ROUNDUP(sizeof(port_config_t)); port_config = rte_zmalloc(NULL, (RTE_MAX_ETHPORTS * size), RTE_CACHE_LINE_SIZE); if (port_config == NULL) rte_panic("port_config is NULL: Memory Allocation failure\n"); /* initialize all ports */ for (portid = 0; portid < nb_ports; portid++) { /* skip ports that are not enabled */ if ((enabled_port_mask & (1 << portid)) == 0) { printf("\nSkipping disabled port %d\n", portid); num_ports--; continue; } /* init port */ printf("Initializing port %d ... ", portid ); fflush(stdout); nb_rx_queue = get_port_n_rx_queues(portid); n_tx_queue = nb_rx_queue; if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) n_tx_queue = MAX_TX_QUEUE_PER_PORT; port_config[portid].port_id = portid; port_config[portid].nrx_queue = nb_rx_queue; port_config[portid].ntx_queue = n_tx_queue; port_config[portid].state = 1; port_config[portid].promisc = promiscuous_on; port_config[portid].mempool.pool_size = MEMPOOL_SIZE; port_config[portid].mempool.buffer_size = BUFFER_SIZE + sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM; port_config[portid].mempool.cache_size = CACHE_SIZE; port_config[portid].mempool.cpu_socket_id = rte_socket_id(); memcpy (&port_config[portid].port_conf, &port_conf, sizeof(struct rte_eth_conf)); memcpy (&port_config[portid].rx_conf, &rx_conf, sizeof(struct rte_eth_rxconf)); memcpy (&port_config[portid].tx_conf, &tx_conf, sizeof(struct rte_eth_txconf)); /* Enable TCP and UDP HW Checksum , when required */ //port_config[portid].tx_conf.txq_flags &= // ~(ETH_TXQ_FLAGS_NOXSUMTCP|ETH_TXQ_FLAGS_NOXSUMUDP); if (ifm_port_setup (portid, &port_config[portid])) rte_panic ("Port Setup Failed: %"PRIu32"\n", portid); } check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask); l3fwd_init(); create_arp_table(); create_nd_table(); populate_lpm_routes(); convert_ipstr_to_numeric(); /* launch per-lcore init on every lcore */ rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); cl = cmdline_stdin_new(main_ctx, "Replay>"); if (cl == NULL) rte_panic("Cannot create cmdline instance\n"); cmdline_interact(cl); cmdline_stdin_exit(cl); exit_loop = 0; rte_exit(0, "Bye!\n"); RTE_LCORE_FOREACH_SLAVE(lcore_id) { if (rte_eal_wait_lcore(lcore_id) < 0) return -1; } return 0; } /**********************************************************/ struct cmd_obj_clear_result { cmdline_fixed_string_t clear; cmdline_fixed_string_t udp_replay; cmdline_fixed_string_t stats; }; static void cmd_clear_udp_replay_stats_parsed( __rte_unused void *parsed_result, __rte_unused struct cmdline *cl, __attribute__((unused)) void *data) { clear_stats(); } cmdline_parse_token_string_t cmd_clear_udp_replay_stats_udp_replay_string = TOKEN_STRING_INITIALIZER(struct cmd_obj_clear_result, udp_replay, "UDP_Replay"); cmdline_parse_token_string_t cmd_clear_udp_replay_stats_clear_string = TOKEN_STRING_INITIALIZER(struct cmd_obj_clear_result, clear, "clear"); cmdline_parse_token_string_t cmd_clear_udp_replay_stats_stats_string = TOKEN_STRING_INITIALIZER(struct cmd_obj_clear_result, stats, "stats"); cmdline_parse_inst_t cmd_clear_udp_replay_stats = { .f = cmd_clear_udp_replay_stats_parsed, /* function to call */ .data = NULL, /* 2nd arg of func */ .help_str = "clears UDP_Replay stats for rx/tx", .tokens = { /* token list, NULL terminated */ (void *)&cmd_clear_udp_replay_stats_udp_replay_string, (void *)&cmd_clear_udp_replay_stats_clear_string, (void *)&cmd_clear_udp_replay_stats_stats_string, NULL, }, }; /**********************************************************/ struct cmd_obj_add_result { cmdline_fixed_string_t action; cmdline_fixed_string_t name; }; static void cmd_udp_replay_stats_parsed( __rte_unused void *parsed_result, __rte_unused struct cmdline *cl, __attribute__((unused)) void *data) { print_l4stats(); } cmdline_parse_token_string_t cmd_udp_replay_stats_udp_replay_string = TOKEN_STRING_INITIALIZER(struct cmd_obj_add_result, action, "UDP_Replay"); cmdline_parse_token_string_t cmd_udp_replay_stats_stats_string = TOKEN_STRING_INITIALIZER(struct cmd_obj_add_result, name, "stats"); cmdline_parse_inst_t cmd_udp_replay_stats = { .f = cmd_udp_replay_stats_parsed, /* function to call */ .data = NULL, /* 2nd arg of func */ .help_str = "UDP_Replay stats for rx/tx", .tokens = { /* token list, NULL terminated */ (void *)&cmd_udp_replay_stats_udp_replay_string, (void *)&cmd_udp_replay_stats_stats_string, NULL, }, }; /* quit*/ struct cmd_quit_result { cmdline_fixed_string_t quit; }; static void cmd_quit_parsed( __rte_unused void *parsed_result, struct cmdline *cl, __rte_unused void *data) { cmdline_quit(cl); } static cmdline_parse_token_string_t cmd_quit_quit = TOKEN_STRING_INITIALIZER(struct cmd_quit_result, quit, "quit"); static cmdline_parse_inst_t cmd_quit = { .f = cmd_quit_parsed, .data = NULL, .help_str = "Quit", .tokens = { (void *) &cmd_quit_quit, NULL, }, }; /**********************************************************/ /****** CONTEXT (list of instruction) */ cmdline_parse_ctx_t main_ctx[] = { (cmdline_parse_inst_t *)&cmd_udp_replay_stats, (cmdline_parse_inst_t *)&cmd_clear_udp_replay_stats, (cmdline_parse_inst_t *)&cmd_quit, NULL, };