/* // Copyright (c) 2010-2017 Intel Corporation // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. */ #include #include #include "rx_pkt.h" #include "tx_pkt.h" #include "task_base.h" #include "stats.h" #include "prefetch.h" #include "prox_assert.h" #include "log.h" #include "mbuf_utils.h" static void buf_pkt_single(struct task_base *tbase, struct rte_mbuf *mbuf, const uint8_t out) { const uint16_t prod = tbase->ws_mbuf->idx[out].prod++; tbase->ws_mbuf->mbuf[out][prod & WS_MBUF_MASK] = mbuf; } static inline void buf_pkt_all(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts, uint8_t *out) { for (uint16_t j = 0; j < n_pkts; ++j) { if (unlikely(out[j] >= OUT_HANDLED)) { rte_pktmbuf_free(mbufs[j]); if (out[j] == OUT_HANDLED) TASK_STATS_ADD_DROP_HANDLED(&tbase->aux->stats, 1); else TASK_STATS_ADD_DROP_DISCARD(&tbase->aux->stats, 1); } else { buf_pkt_single(tbase, mbufs[j], out[j]); } } } #define MAX_PMD_TX 32 /* The following help functions also report stats. Therefore we need to pass the task_base struct. */ static inline int txhw_drop(const struct port_queue *port_queue, struct rte_mbuf **mbufs, uint16_t n_pkts, __attribute__((unused)) struct task_base *tbase) { uint16_t ntx; int ret; /* TX vector mode can't transmit more than 32 packets */ if (n_pkts > MAX_PMD_TX) { ntx = rte_eth_tx_burst(port_queue->port, port_queue->queue, mbufs, MAX_PMD_TX); ntx += rte_eth_tx_burst(port_queue->port, port_queue->queue, mbufs + ntx, n_pkts - ntx); } else { ntx = rte_eth_tx_burst(port_queue->port, port_queue->queue, mbufs, n_pkts); } TASK_STATS_ADD_TX(&tbase->aux->stats, ntx); ret = n_pkts - ntx; if (ntx < n_pkts) { TASK_STATS_ADD_DROP_TX_FAIL(&tbase->aux->stats, n_pkts - ntx); if (tbase->tx_pkt == tx_pkt_bw) { uint32_t drop_bytes = 0; do { drop_bytes += mbuf_wire_size(mbufs[ntx]); rte_pktmbuf_free(mbufs[ntx++]); } while (ntx < n_pkts); TASK_STATS_ADD_DROP_BYTES(&tbase->aux->stats, drop_bytes); } else { do { rte_pktmbuf_free(mbufs[ntx++]); } while (ntx < n_pkts); } } return ret; } static inline int txhw_no_drop(const struct port_queue *port_queue, struct rte_mbuf **mbufs, uint16_t n_pkts, __attribute__((unused)) struct task_base *tbase) { uint16_t ret; uint16_t n = n_pkts; TASK_STATS_ADD_TX(&tbase->aux->stats, n_pkts); do { ret = rte_eth_tx_burst(port_queue->port, port_queue->queue, mbufs, n_pkts); mbufs += ret; n_pkts -= ret; } while (n_pkts); return (n != ret); } static inline int ring_enq_drop(struct rte_ring *ring, struct rte_mbuf *const *mbufs, uint16_t n_pkts, __attribute__((unused)) struct task_base *tbase) { int ret = 0; /* return 0 on succes, -ENOBUFS on failure */ // Rings can be single or multiproducer (ctrl rings are multi producer) #if RTE_VERSION < RTE_VERSION_NUM(17,5,0,1) if (unlikely(rte_ring_enqueue_bulk(ring, (void *const *)mbufs, n_pkts))) { #else if (unlikely(rte_ring_enqueue_bulk(ring, (void *const *)mbufs, n_pkts, NULL) == 0)) { #endif ret = n_pkts; if (tbase->tx_pkt == tx_pkt_bw) { uint32_t drop_bytes = 0; for (uint16_t i = 0; i < n_pkts; ++i) { drop_bytes += mbuf_wire_size(mbufs[i]); rte_pktmbuf_free(mbufs[i]); } TASK_STATS_ADD_DROP_BYTES(&tbase->aux->stats, drop_bytes); TASK_STATS_ADD_DROP_TX_FAIL(&tbase->aux->stats, n_pkts); } else { for (uint16_t i = 0; i < n_pkts; ++i) rte_pktmbuf_free(mbufs[i]); TASK_STATS_ADD_DROP_TX_FAIL(&tbase->aux->stats, n_pkts); } } else { TASK_STATS_ADD_TX(&tbase->aux->stats, n_pkts); } return ret; } static inline int ring_enq_no_drop(struct rte_ring *ring, struct rte_mbuf *const *mbufs, uint16_t n_pkts, __attribute__((unused)) struct task_base *tbase) { int i = 0; #if RTE_VERSION < RTE_VERSION_NUM(17,5,0,1) while (rte_ring_enqueue_bulk(ring, (void *const *)mbufs, n_pkts)) { #else while (rte_ring_enqueue_bulk(ring, (void *const *)mbufs, n_pkts, NULL) == 0) { #endif i++; }; TASK_STATS_ADD_TX(&tbase->aux->stats, n_pkts); return (i != 0); } void flush_queues_hw(struct task_base *tbase) { uint16_t prod, cons; for (uint8_t i = 0; i < tbase->tx_params_hw.nb_txports; ++i) { prod = tbase->ws_mbuf->idx[i].prod; cons = tbase->ws_mbuf->idx[i].cons; if (prod != cons) { tbase->ws_mbuf->idx[i].prod = 0; tbase->ws_mbuf->idx[i].cons = 0; txhw_drop(&tbase->tx_params_hw.tx_port_queue[i], tbase->ws_mbuf->mbuf[i] + (cons & WS_MBUF_MASK), prod - cons, tbase); } } tbase->flags &= ~FLAG_TX_FLUSH; } void flush_queues_sw(struct task_base *tbase) { uint16_t prod, cons; for (uint8_t i = 0; i < tbase->tx_params_sw.nb_txrings; ++i) { prod = tbase->ws_mbuf->idx[i].prod; cons = tbase->ws_mbuf->idx[i].cons; if (prod != cons) { tbase->ws_mbuf->idx[i].prod = 0; tbase->ws_mbuf->idx[i].cons = 0; ring_enq_drop(tbase->tx_params_sw.tx_rings[i], tbase->ws_mbuf->mbuf[i] + (cons & WS_MBUF_MASK), prod - cons, tbase); } } tbase->flags &= ~FLAG_TX_FLUSH; } void flush_queues_no_drop_hw(struct task_base *tbase) { uint16_t prod, cons; for (uint8_t i = 0; i < tbase->tx_params_hw.nb_txports; ++i) { prod = tbase->ws_mbuf->idx[i].prod; cons = tbase->ws_mbuf->idx[i].cons; if (prod != cons) { tbase->ws_mbuf->idx[i].prod = 0; tbase->ws_mbuf->idx[i].cons = 0; txhw_no_drop(&tbase->tx_params_hw.tx_port_queue[i], tbase->ws_mbuf->mbuf[i] + (cons & WS_MBUF_MASK), prod - cons, tbase); } } tbase->flags &= ~FLAG_TX_FLUSH; } void flush_queues_no_drop_sw(struct task_base *tbase) { uint16_t prod, cons; for (uint8_t i = 0; i < tbase->tx_params_sw.nb_txrings; ++i) { prod = tbase->ws_mbuf->idx[i].prod; cons = tbase->ws_mbuf->idx[i].cons; if (prod != cons) { tbase->ws_mbuf->idx[i].prod = 0; tbase->ws_mbuf->idx[i].cons = 0; ring_enq_no_drop(tbase->tx_params_sw.tx_rings[i], tbase->ws_mbuf->mbuf[i] + (cons & WS_MBUF_MASK), prod - cons, tbase); } } tbase->flags &= ~FLAG_TX_FLUSH; } /* "try" functions try to send packets to sw/hw w/o failing or blocking; They return if ring/queue is full and are used by aggregators. "try" functions do not have drop/no drop flavors They are only implemented in never_discard mode (as by default they use only one outgoing ring. */ uint16_t tx_try_self(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts) { if (n_pkts < 64) { tx_pkt_never_discard_self(tbase, mbufs, n_pkts, NULL); return n_pkts; } else { tx_pkt_never_discard_self(tbase, mbufs, 64, NULL); return 64; } } uint16_t tx_try_sw1(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts) { const int bulk_size = 64; uint16_t ret = bulk_size, sent = 0, n_bulks; n_bulks = n_pkts >> __builtin_ctz(bulk_size); for (int i = 0; i < n_bulks; i++) { #if RTE_VERSION < RTE_VERSION_NUM(17,5,0,1) ret = rte_ring_enqueue_burst(tbase->tx_params_sw.tx_rings[0], (void *const *)mbufs, bulk_size); #else ret = rte_ring_enqueue_burst(tbase->tx_params_sw.tx_rings[0], (void *const *)mbufs, bulk_size, NULL); #endif mbufs += ret; sent += ret; if (ret != bulk_size) break; } if ((ret == bulk_size) && (n_pkts & (bulk_size - 1))) { #if RTE_VERSION < RTE_VERSION_NUM(17,5,0,1) ret = rte_ring_enqueue_burst(tbase->tx_params_sw.tx_rings[0], (void *const *)mbufs, (n_pkts & (bulk_size - 1))); #else ret = rte_ring_enqueue_burst(tbase->tx_params_sw.tx_rings[0], (void *const *)mbufs, (n_pkts & (bulk_size - 1)), NULL); #endif mbufs += ret; sent += ret; } TASK_STATS_ADD_TX(&tbase->aux->stats, sent); return sent; } uint16_t tx_try_hw1(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts) { const struct port_queue *port_queue = &tbase->tx_params_hw.tx_port_queue[0]; const int bulk_size = 64; uint16_t ret = bulk_size, n_bulks, sent = 0; n_bulks = n_pkts >> __builtin_ctz(bulk_size); for (int i = 0; i < n_bulks; i++) { ret = rte_eth_tx_burst(port_queue->port, port_queue->queue, mbufs, bulk_size); mbufs += ret; sent += ret; if (ret != bulk_size) break; } if ((ret == bulk_size) && (n_pkts & (bulk_size - 1))) { ret = rte_eth_tx_burst(port_queue->port, port_queue->queue, mbufs, (n_pkts & (bulk_size - 1))); mbufs += ret; sent += ret; } TASK_STATS_ADD_TX(&tbase->aux->stats, sent); return sent; } int tx_pkt_no_drop_never_discard_hw1_lat_opt(struct task_base *tbase, struct rte_mbuf **mbufs, const uint16_t n_pkts, __attribute__((unused)) uint8_t *out) { return txhw_no_drop(&tbase->tx_params_hw.tx_port_queue[0], mbufs, n_pkts, tbase); } int tx_pkt_no_drop_never_discard_hw1_thrpt_opt(struct task_base *tbase, struct rte_mbuf **mbufs, const uint16_t n_pkts, __attribute__((unused)) uint8_t *out) { static uint8_t fake_out[MAX_PKT_BURST] = {0}; int ret = 0; if (n_pkts == MAX_PKT_BURST) { // First xmit what was queued uint16_t prod, cons; prod = tbase->ws_mbuf->idx[0].prod; cons = tbase->ws_mbuf->idx[0].cons; if ((uint16_t)(prod - cons)){ tbase->flags &= ~FLAG_TX_FLUSH; tbase->ws_mbuf->idx[0].prod = 0; tbase->ws_mbuf->idx[0].cons = 0; ret+= txhw_no_drop(&tbase->tx_params_hw.tx_port_queue[0], tbase->ws_mbuf->mbuf[0] + (cons & WS_MBUF_MASK), (uint16_t)(prod - cons), tbase); } ret+= txhw_no_drop(&tbase->tx_params_hw.tx_port_queue[0], mbufs, n_pkts, tbase); } else { ret+= tx_pkt_no_drop_hw(tbase, mbufs, n_pkts, fake_out); } return ret; } int tx_pkt_never_discard_hw1_lat_opt(struct task_base *tbase, struct rte_mbuf **mbufs, const uint16_t n_pkts, __attribute__((unused)) uint8_t *out) { return txhw_drop(&tbase->tx_params_hw.tx_port_queue[0], mbufs, n_pkts, tbase); } int tx_pkt_never_discard_hw1_thrpt_opt(struct task_base *tbase, struct rte_mbuf **mbufs, const uint16_t n_pkts, __attribute__((unused)) uint8_t *out) { static uint8_t fake_out[MAX_PKT_BURST] = {0}; int ret = 0; if (n_pkts == MAX_PKT_BURST) { // First xmit what was queued uint16_t prod, cons; prod = tbase->ws_mbuf->idx[0].prod; cons = tbase->ws_mbuf->idx[0].cons; if ((uint16_t)(prod - cons)){ tbase->flags &= ~FLAG_TX_FLUSH; tbase->ws_mbuf->idx[0].prod = 0; tbase->ws_mbuf->idx[0].cons = 0; ret+= txhw_drop(&tbase->tx_params_hw.tx_port_queue[0], tbase->ws_mbuf->mbuf[0] + (cons & WS_MBUF_MASK), (uint16_t)(prod - cons), tbase); } ret+= txhw_drop(&tbase->tx_params_hw.tx_port_queue[0], mbufs, n_pkts, tbase); } else { ret+= tx_pkt_hw(tbase, mbufs, n_pkts, fake_out); } return ret; } /* Transmit to hw using tx_params_hw_sw structure This function is used to transmit to hw when tx_params_hw_sw should be used i.e. when the task needs to transmit both to hw and sw */ int tx_pkt_no_drop_never_discard_hw1_no_pointer(struct task_base *tbase, struct rte_mbuf **mbufs, const uint16_t n_pkts, __attribute__((unused)) uint8_t *out) { txhw_no_drop(&tbase->tx_params_hw_sw.tx_port_queue, mbufs, n_pkts, tbase); return 0; } int tx_pkt_no_drop_never_discard_sw1(struct task_base *tbase, struct rte_mbuf **mbufs, const uint16_t n_pkts, __attribute__((unused)) uint8_t *out) { return ring_enq_no_drop(tbase->tx_params_sw.tx_rings[0], mbufs, n_pkts, tbase); } int tx_pkt_never_discard_sw1(struct task_base *tbase, struct rte_mbuf **mbufs, const uint16_t n_pkts, __attribute__((unused)) uint8_t *out) { return ring_enq_drop(tbase->tx_params_sw.tx_rings[0], mbufs, n_pkts, tbase); } static uint16_t tx_pkt_free_dropped(__attribute__((unused)) struct task_base *tbase, struct rte_mbuf **mbufs, const uint16_t n_pkts, uint8_t *out) { uint64_t v = 0; uint16_t i; /* The most probable and most important optimize case is if the no packets should be dropped. */ for (i = 0; i + 8 < n_pkts; i += 8) { v |= *((uint64_t*)(&out[i])); } for (; i < n_pkts; ++i) { v |= out[i]; } if (unlikely(v)) { /* At least some packets need to be dropped, so the mbufs array needs to be updated. */ uint16_t n_kept = 0; uint16_t n_discard = 0; for (uint16_t i = 0; i < n_pkts; ++i) { if (unlikely(out[i] >= OUT_HANDLED)) { rte_pktmbuf_free(mbufs[i]); n_discard += out[i] == OUT_DISCARD; continue; } mbufs[n_kept++] = mbufs[i]; } TASK_STATS_ADD_DROP_DISCARD(&tbase->aux->stats, n_discard); TASK_STATS_ADD_DROP_HANDLED(&tbase->aux->stats, n_pkts - n_kept - n_discard); return n_kept; } return n_pkts; } int tx_pkt_no_drop_hw1(struct task_base *tbase, struct rte_mbuf **mbufs, const uint16_t n_pkts, uint8_t *out) { const uint16_t n_kept = tx_pkt_free_dropped(tbase, mbufs, n_pkts, out); int ret = 0; if (likely(n_kept)) ret = txhw_no_drop(&tbase->tx_params_hw.tx_port_queue[0], mbufs, n_kept, tbase); return ret; } int tx_pkt_no_drop_sw1(struct task_base *tbase, struct rte_mbuf **mbufs, const uint16_t n_pkts, uint8_t *out) { const uint16_t n_kept = tx_pkt_free_dropped(tbase, mbufs, n_pkts, out); int ret = 0; if (likely(n_kept)) ret = ring_enq_no_drop(tbase->tx_params_sw.tx_rings[0], mbufs, n_kept, tbase); return ret; } int tx_pkt_hw1(struct task_base *tbase, struct rte_mbuf **mbufs, const uint16_t n_pkts, uint8_t *out) { const uint16_t n_kept = tx_pkt_free_dropped(tbase, mbufs, n_pkts, out); if (likely(n_kept)) return txhw_drop(&tbase->tx_params_hw.tx_port_queue[0], mbufs, n_kept, tbase); return n_pkts; } int tx_pkt_sw1(struct task_base *tbase, struct rte_mbuf **mbufs, const uint16_t n_pkts, uint8_t *out) { const uint16_t n_kept = tx_pkt_free_dropped(tbase, mbufs, n_pkts, out); if (likely(n_kept)) return ring_enq_drop(tbase->tx_params_sw.tx_rings[0], mbufs, n_kept, tbase); return 0; } int tx_pkt_self(struct task_base *tbase, struct rte_mbuf **mbufs, const uint16_t n_pkts, uint8_t *out) { const uint16_t n_kept = tx_pkt_free_dropped(tbase, mbufs, n_pkts, out); TASK_STATS_ADD_TX(&tbase->aux->stats, n_kept); tbase->ws_mbuf->idx[0].nb_rx = n_kept; struct rte_mbuf **tx_mbuf = tbase->ws_mbuf->mbuf[0] + (tbase->ws_mbuf->idx[0].prod & WS_MBUF_MASK); for (uint16_t i = 0; i < n_kept; ++i) { tx_mbuf[i] = mbufs[i]; } return 0; } int tx_pkt_never_discard_self(struct task_base *tbase, struct rte_mbuf **mbufs, const uint16_t n_pkts, __attribute__((unused)) uint8_t *out) { TASK_STATS_ADD_TX(&tbase->aux->stats, n_pkts); tbase->ws_mbuf->idx[0].nb_rx = n_pkts; struct rte_mbuf **tx_mbuf = tbase->ws_mbuf->mbuf[0] + (tbase->ws_mbuf->idx[0].prod & WS_MBUF_MASK); for (uint16_t i = 0; i < n_pkts; ++i) { tx_mbuf[i] = mbufs[i]; } return 0; } int tx_pkt_no_drop_hw(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts, uint8_t *out) { int ret = 0; buf_pkt_all(tbase, mbufs, n_pkts, out); const uint8_t nb_bufs = tbase->tx_params_hw.nb_txports; uint16_t prod, cons; for (uint8_t i = 0; i < nb_bufs; ++i) { prod = tbase->ws_mbuf->idx[i].prod; cons = tbase->ws_mbuf->idx[i].cons; if (((uint16_t)(prod - cons)) >= MAX_PKT_BURST) { tbase->flags &= ~FLAG_TX_FLUSH; tbase->ws_mbuf->idx[i].cons = cons + MAX_PKT_BURST; ret+= txhw_no_drop(&tbase->tx_params_hw.tx_port_queue[i], tbase->ws_mbuf->mbuf[i] + (cons & WS_MBUF_MASK), MAX_PKT_BURST, tbase); } } return ret; } int tx_pkt_no_drop_sw(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts, uint8_t *out) { int ret = 0; buf_pkt_all(tbase, mbufs, n_pkts, out); const uint8_t nb_bufs = tbase->tx_params_sw.nb_txrings; uint16_t prod, cons; for (uint8_t i = 0; i < nb_bufs; ++i) { prod = tbase->ws_mbuf->idx[i].prod; cons = tbase->ws_mbuf->idx[i].cons; if (((uint16_t)(prod - cons)) >= MAX_PKT_BURST) { tbase->flags &= ~FLAG_TX_FLUSH; tbase->ws_mbuf->idx[i].cons = cons + MAX_PKT_BURST; ret += ring_enq_no_drop(tbase->tx_params_sw.tx_rings[i], tbase->ws_mbuf->mbuf[i] + (cons & WS_MBUF_MASK), MAX_PKT_BURST, tbase); } } return ret; } int tx_pkt_hw(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts, uint8_t *out) { int ret = 0; buf_pkt_all(tbase, mbufs, n_pkts, out); const uint8_t nb_bufs = tbase->tx_params_hw.nb_txports; uint16_t prod, cons; for (uint8_t i = 0; i < nb_bufs; ++i) { prod = tbase->ws_mbuf->idx[i].prod; cons = tbase->ws_mbuf->idx[i].cons; if (((uint16_t)(prod - cons)) >= MAX_PKT_BURST) { tbase->flags &= ~FLAG_TX_FLUSH; tbase->ws_mbuf->idx[i].cons = cons + MAX_PKT_BURST; ret += txhw_drop(&tbase->tx_params_hw.tx_port_queue[i], tbase->ws_mbuf->mbuf[i] + (cons & WS_MBUF_MASK), MAX_PKT_BURST, tbase); } } return ret; } int tx_pkt_sw(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts, uint8_t *out) { int ret = 0; buf_pkt_all(tbase, mbufs, n_pkts, out); const uint8_t nb_bufs = tbase->tx_params_sw.nb_txrings; uint16_t prod, cons; for (uint8_t i = 0; i < nb_bufs; ++i) { prod = tbase->ws_mbuf->idx[i].prod; cons = tbase->ws_mbuf->idx[i].cons; if (((uint16_t)(prod - cons)) >= MAX_PKT_BURST) { tbase->flags &= ~FLAG_TX_FLUSH; tbase->ws_mbuf->idx[i].cons = cons + MAX_PKT_BURST; ret+= ring_enq_drop(tbase->tx_params_sw.tx_rings[i], tbase->ws_mbuf->mbuf[i] + (cons & WS_MBUF_MASK), MAX_PKT_BURST, tbase); } } return ret; } int tx_pkt_trace(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts, uint8_t *out) { int ret = 0; if (tbase->aux->task_rt_dump.cur_trace == 0) { // No packet received since dumping... // So the transmitted packets should not be linked to received packets tbase->aux->task_rt_dump.n_print_tx = tbase->aux->task_rt_dump.n_trace; tbase->aux->task_rt_dump.n_trace = 0; task_base_del_rx_pkt_function(tbase, rx_pkt_trace); return tx_pkt_dump(tbase, mbufs, n_pkts, out); } plog_info("Tracing %d pkts\n", tbase->aux->task_rt_dump.cur_trace); for (uint32_t i = 0; i < tbase->aux->task_rt_dump.cur_trace; ++i) { struct rte_mbuf tmp; /* For each packet being transmitted, find which buffer represent the packet as it was before processing. */ uint32_t j = 0; uint32_t len = sizeof(tbase->aux->task_rt_dump.pkt_mbuf_addr)/sizeof(tbase->aux->task_rt_dump.pkt_mbuf_addr[0]); for (;j < len; ++j) { if (tbase->aux->task_rt_dump.pkt_mbuf_addr[j] == mbufs[i]) break; } if (j == len) { plog_info("Trace RX: missing!\n"); } else { #if RTE_VERSION >= RTE_VERSION_NUM(1,8,0,0) tmp.data_off = 0; #endif rte_pktmbuf_data_len(&tmp) = tbase->aux->task_rt_dump.pkt_cpy_len[j]; rte_pktmbuf_pkt_len(&tmp) = tbase->aux->task_rt_dump.pkt_cpy_len[j]; tmp.buf_addr = tbase->aux->task_rt_dump.pkt_cpy[j]; plogd_info(&tmp, "Trace RX: "); } if (out) { if (out[i] != 0xFF) plogd_info(mbufs[i], "Trace TX[%d]: ", out[i]); else plogd_info(mbufs[i], "Trace Dropped: "); } else plogd_info(mbufs[i], "Trace TX: "); } ret = tbase->aux->tx_pkt_orig(tbase, mbufs, n_pkts, out); /* Unset by TX when n_trace = 0 */ if (0 == tbase->aux->task_rt_dump.n_trace) { tbase->tx_pkt = tbase->aux->tx_pkt_orig; tbase->aux->tx_pkt_orig = NULL; task_base_del_rx_pkt_function(tbase, rx_pkt_trace); } return ret; } int tx_pkt_dump(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts, uint8_t *out) { uint32_t n_dump = tbase->aux->task_rt_dump.n_print_tx; int ret = 0; n_dump = n_pkts < n_dump? n_pkts : n_dump; for (uint32_t i = 0; i < n_dump; ++i) { if (out) plogd_info(mbufs[i], "TX[%d]: ", out[i]); else plogd_info(mbufs[i], "TX: "); } tbase->aux->task_rt_dump.n_print_tx -= n_dump; ret = tbase->aux->tx_pkt_orig(tbase, mbufs, n_pkts, out); if (0 == tbase->aux->task_rt_dump.n_print_tx) { tbase->tx_pkt = tbase->aux->tx_pkt_orig; tbase->aux->tx_pkt_orig = NULL; } return ret; } /* Gather the distribution of the number of packets that have been xmitted from one TX call. Since the value is only modified by the task that xmits the packet, no atomic operation is needed. */ int tx_pkt_distr(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts, uint8_t *out) { tbase->aux->tx_bucket[n_pkts]++; return tbase->aux->tx_pkt_orig(tbase, mbufs, n_pkts, out); } int tx_pkt_bw(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts, uint8_t *out) { uint32_t tx_bytes = 0; uint32_t drop_bytes = 0; for (uint16_t i = 0; i < n_pkts; ++i) { if (!out || out[i] < OUT_HANDLED) tx_bytes += mbuf_wire_size(mbufs[i]); else drop_bytes += mbuf_wire_size(mbufs[i]); } TASK_STATS_ADD_TX_BYTES(&tbase->aux->stats, tx_bytes); TASK_STATS_ADD_DROP_BYTES(&tbase->aux->stats, drop_bytes); return tbase->aux->tx_pkt_orig(tbase, mbufs, n_pkts, out); } int tx_pkt_drop_all(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts, uint8_t *out) { for (uint16_t j = 0; j < n_pkts; ++j) { rte_pktmbuf_free(mbufs[j]); } if (out == NULL) TASK_STATS_ADD_DROP_HANDLED(&tbase->aux->stats, n_pkts); else { for (uint16_t j = 0; j < n_pkts; ++j) { if (out[j] == OUT_HANDLED) TASK_STATS_ADD_DROP_HANDLED(&tbase->aux->stats, 1); else TASK_STATS_ADD_DROP_DISCARD(&tbase->aux->stats, 1); } } return n_pkts; }