/* // Copyright (c) 2010-2020 Intel Corporation // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. */ #include #include #include #include #include "task_base.h" #include "lconf.h" #include "prefetch.h" #include "log.h" #include "defines.h" #include "handle_master.h" #include "prox_port_cfg.h" #include "packet_utils.h" #include "prox_shared.h" #include "prox_lua.h" #include "hash_entry_types.h" #include "prox_compat.h" #include "tx_pkt.h" static inline int find_ip(struct ether_hdr_arp *pkt, uint16_t len, uint32_t *ip_dst) { prox_rte_vlan_hdr *vlan_hdr; prox_rte_ether_hdr *eth_hdr = (prox_rte_ether_hdr*)pkt; prox_rte_ipv4_hdr *ip; uint16_t ether_type = eth_hdr->ether_type; uint16_t l2_len = sizeof(prox_rte_ether_hdr); // Unstack VLAN tags while (((ether_type == ETYPE_8021ad) || (ether_type == ETYPE_VLAN)) && (l2_len + sizeof(prox_rte_vlan_hdr) < len)) { vlan_hdr = (prox_rte_vlan_hdr *)((uint8_t *)pkt + l2_len); l2_len +=4; ether_type = vlan_hdr->eth_proto; } switch (ether_type) { case ETYPE_MPLSU: case ETYPE_MPLSM: // In case of MPLS, next hop MAC is based on MPLS, not destination IP l2_len = 0; break; case ETYPE_IPv4: break; case ETYPE_EoGRE: case ETYPE_ARP: case ETYPE_IPv6: l2_len = 0; break; default: l2_len = 0; plog_warn("Unsupported packet type %x - CRC might be wrong\n", ether_type); break; } if (l2_len && (l2_len + sizeof(prox_rte_ipv4_hdr) <= len)) { prox_rte_ipv4_hdr *ip = (prox_rte_ipv4_hdr *)((uint8_t *)pkt + l2_len); // TODO: implement LPM => replace ip_dst by next hop IP DST *ip_dst = ip->dst_addr; return 0; } return -1; } /* This implementation could be improved: instead of checking each time we send a packet whether we need also to send an ARP, we should only check whether the MAC is valid. We should check arp_update_time in the master process. This would also require the generating task to clear its arp ring to avoid sending many ARP while starting after a long stop. We could also check for arp_timeout in the master so that dataplane has only to check whether MAC is available but this would require either thread safety, or the exchange of information between master and generating core. */ static inline int add_key_and_send_arp(struct rte_hash *ip_hash, uint32_t *ip_dst, struct arp_table *entries, uint64_t tsc, uint64_t hz, uint32_t arp_update_time, prox_next_hop_index_type nh, uint64_t **time) { int ret = rte_hash_add_key(ip_hash, (const void *)ip_dst); if (unlikely(ret < 0)) { // No reason to send ARP, as reply would be anyhow ignored plogx_err("Unable to add ip "IPv4_BYTES_FMT" in mac_hash\n", IP4(*ip_dst)); return DROP_MBUF; } else { entries[ret].ip = *ip_dst; entries[ret].nh = nh; *time = &entries[ret].arp_update_time; } return SEND_ARP; } static inline int update_mac_and_send_mbuf(struct arp_table *entry, prox_rte_ether_addr *mac, uint64_t tsc, uint64_t hz, uint32_t arp_update_time, uint64_t **time) { if (likely((tsc < entry->arp_update_time) && (tsc < entry->arp_timeout))) { memcpy(mac, &entry->mac, sizeof(prox_rte_ether_addr)); return SEND_MBUF; } else if (tsc > entry->arp_update_time) { // long time since we have sent an arp, send arp *time = &entry->arp_update_time; if (tsc < entry->arp_timeout){ // MAC is valid in the table => send also the mbuf memcpy(mac, &entry->mac, sizeof(prox_rte_ether_addr)); return SEND_MBUF_AND_ARP; } else { // MAC still unknown, or timed out => only send ARP return SEND_ARP; } } // MAC is unknown and we already sent an ARP recently, drop mbuf and wait for ARP reply return DROP_MBUF; } int write_dst_mac(struct task_base *tbase, struct rte_mbuf *mbuf, uint32_t *ip_dst, uint64_t **time, uint64_t tsc) { const uint64_t hz = rte_get_tsc_hz(); struct ether_hdr_arp *packet = rte_pktmbuf_mtod(mbuf, struct ether_hdr_arp *); prox_rte_ether_addr *mac = &packet->ether_hdr.d_addr; prox_next_hop_index_type next_hop_index; static uint64_t last_tsc = 0, n_no_route = 0; struct l3_base *l3 = &(tbase->l3); // First find the next hop if (l3->ipv4_lpm) { // A routing table was configured // If a gw (gateway_ipv4) is also specified, it is used as default gw only i.e. lowest priority (shortest prefix) // This is implemented automatically through lpm uint16_t len = rte_pktmbuf_pkt_len(mbuf); if (find_ip(packet, len, ip_dst) != 0) { // Unable to find IP address => non IP packet => send it as it return SEND_MBUF; } if (unlikely(rte_lpm_lookup(l3->ipv4_lpm, rte_bswap32(*ip_dst), &next_hop_index) != 0)) { // Prevent printing too many messages n_no_route++; if (tsc > last_tsc + rte_get_tsc_hz()) { plog_err("No route to IP "IPv4_BYTES_FMT" (%ld times)\n", IP4(*ip_dst), n_no_route); last_tsc = tsc; n_no_route = 0; } return DROP_MBUF; } struct arp_table *entry = &l3->next_hops[next_hop_index]; if (entry->ip) { *ip_dst = entry->ip; return update_mac_and_send_mbuf(entry, mac, tsc, hz, l3->arp_update_time, time); } // no next ip: this is a local route // Find IP in lookup table. Send ARP if not found int ret = rte_hash_lookup(l3->ip_hash, (const void *)ip_dst); if (unlikely(ret < 0)) { // IP not found, try to send an ARP return add_key_and_send_arp(l3->ip_hash, ip_dst, l3->arp_table, tsc, hz, l3->arp_update_time, MAX_HOP_INDEX, time); } else { return update_mac_and_send_mbuf(&l3->arp_table[ret], mac, tsc, hz, l3->arp_update_time, time); } return 0; } // No Routing table specified: only a local ip and maybe a gateway // Old default behavior: if a gw is specified, ALL packets go to this gateway (even those we could send w/o the gw if (l3->gw.ip) { if (likely((l3->flags & FLAG_DST_MAC_KNOWN) && (tsc < l3->gw.arp_update_time) && (tsc < l3->gw.arp_timeout))) { memcpy(mac, &l3->gw.mac, sizeof(prox_rte_ether_addr)); return SEND_MBUF; } else if (tsc > l3->gw.arp_update_time) { // long time since we have successfully sent an arp, send arp // If sending ARP failed (ring full) then arp_update_time is not updated to avoid having to wait 1 sec to send ARP REQ again *time = &l3->gw.arp_update_time; *ip_dst = l3->gw.ip; if ((l3->flags & FLAG_DST_MAC_KNOWN) && (tsc < l3->gw.arp_timeout)){ // MAC is valid in the table => send also the mbuf memcpy(mac, &l3->gw.mac, sizeof(prox_rte_ether_addr)); return SEND_MBUF_AND_ARP; } else { // MAC still unknown, or timed out => only send ARP return SEND_ARP; } } else { // MAC is unknown and we already sent an ARP recently, drop mbuf and wait for ARP reply return DROP_MBUF; } } uint16_t len = rte_pktmbuf_pkt_len(mbuf); if (find_ip(packet, len, ip_dst) != 0) { // Unable to find IP address => non IP packet => send it as it return SEND_MBUF; } if (likely(l3->n_pkts < 4)) { for (unsigned int idx = 0; idx < l3->n_pkts; idx++) { if (*ip_dst == l3->optimized_arp_table[idx].ip) { // IP address already in table return update_mac_and_send_mbuf(&l3->optimized_arp_table[idx], mac, tsc, hz, l3->arp_update_time, time); } } // IP address not found in table l3->optimized_arp_table[l3->n_pkts].ip = *ip_dst; *time = &l3->optimized_arp_table[l3->n_pkts].arp_update_time; l3->n_pkts++; if (l3->n_pkts < 4) { return SEND_ARP; } // We have too many IP addresses to search linearly; lets use hash table instead => copy all entries in hash table for (uint32_t idx = 0; idx < l3->n_pkts; idx++) { uint32_t ip = l3->optimized_arp_table[idx].ip; int ret = rte_hash_add_key(l3->ip_hash, (const void *)&ip); if (ret < 0) { // This should not happen as few entries so far. // If it happens, we still send the ARP as easier: // If the ARP corresponds to this error, the ARP reply will be ignored // If ARP does not correspond to this error/ip, then ARP reply will be handled. plogx_err("Unable add ip "IPv4_BYTES_FMT" in mac_hash (already %d entries)\n", IP4(ip), idx); } else { memcpy(&l3->arp_table[ret], &l3->optimized_arp_table[idx], sizeof(struct arp_table)); } } return SEND_ARP; } else { // Find IP in lookup table. Send ARP if not found int ret = rte_hash_lookup(l3->ip_hash, (const void *)ip_dst); if (unlikely(ret < 0)) { // IP not found, try to send an ARP return add_key_and_send_arp(l3->ip_hash, ip_dst, &l3->arp_table[ret], tsc, hz, l3->arp_update_time, MAX_HOP_INDEX, time); } else { // IP has been found return update_mac_and_send_mbuf(&l3->arp_table[ret], mac, tsc, hz, l3->arp_update_time, time); } } // Should not happen return DROP_MBUF; } void task_init_l3(struct task_base *tbase, struct task_args *targ) { static char hash_name[30]; uint32_t n_entries = MAX_ARP_ENTRIES * 4; const int socket_id = rte_lcore_to_socket_id(targ->lconf->id); sprintf(hash_name, "A%03d_%03d_mac_table", targ->lconf->id, targ->id); hash_name[0]++; struct rte_hash_parameters hash_params = { .name = hash_name, .entries = n_entries, .key_len = sizeof(uint32_t), .hash_func = rte_hash_crc, .hash_func_init_val = 0, }; tbase->l3.ip_hash = rte_hash_create(&hash_params); PROX_PANIC(tbase->l3.ip_hash == NULL, "Failed to set up ip hash table\n"); tbase->l3.arp_table = (struct arp_table *)prox_zmalloc(n_entries * sizeof(struct arp_table), socket_id); PROX_PANIC(tbase->l3.arp_table == NULL, "Failed to allocate memory for %u entries in arp table\n", n_entries); plog_info("\tarp table, with %d entries of size %ld\n", n_entries, sizeof(struct l3_base)); targ->lconf->ctrl_func_p[targ->task] = handle_ctrl_plane_pkts; targ->lconf->ctrl_timeout = freq_to_tsc(targ->ctrl_freq); tbase->l3.gw.ip = rte_cpu_to_be_32(targ->gateway_ipv4); tbase->flags |= TASK_L3; tbase->l3.core_id = targ->lconf->id; tbase->l3.task_id = targ->id; tbase->l3.tmaster = targ->tmaster; tbase->l3.seed = (uint)rte_rdtsc(); if (targ->arp_timeout != 0) tbase->l3.arp_timeout = targ->arp_timeout; else tbase->l3.arp_timeout = DEFAULT_ARP_TIMEOUT; if (targ->arp_update_time != 0) tbase->l3.arp_update_time = targ->arp_update_time; else tbase->l3.arp_update_time = DEFAULT_ARP_UPDATE_TIME; } void task_start_l3(struct task_base *tbase, struct task_args *targ) { const int NB_ARP_MBUF = 1024; const int ARP_MBUF_SIZE = 2048; const int NB_CACHE_ARP_MBUF = 256; const int socket_id = rte_lcore_to_socket_id(targ->lconf->id); struct prox_port_cfg *port = find_reachable_port(targ); if (port && (tbase->l3.arp_pool == NULL)) { static char name[] = "arp0_pool"; tbase->l3.reachable_port_id = port - prox_port_cfg; if (targ->local_ipv4) { tbase->local_ipv4 = rte_be_to_cpu_32(targ->local_ipv4); register_ip_to_ctrl_plane(tbase->l3.tmaster, tbase->local_ipv4, tbase->l3.reachable_port_id, targ->lconf->id, targ->id); } if (strcmp(targ->route_table, "") != 0) { struct lpm4 *lpm; int ret; PROX_PANIC(tbase->local_ipv4 == 0, "missing local_ipv4 will route table is specified in L3 mode\n"); // LPM might be modified runtime => do not share with other cores ret = lua_to_lpm4(prox_lua(), GLOBAL, targ->route_table, socket_id, &lpm); PROX_PANIC(ret, "Failed to load IPv4 LPM:\n%s\n", get_lua_to_errors()); tbase->l3.ipv4_lpm = lpm->rte_lpm; tbase->l3.next_hops = prox_zmalloc(sizeof(*tbase->l3.next_hops) * MAX_HOP_INDEX, socket_id); PROX_PANIC(tbase->l3.next_hops == NULL, "Could not allocate memory for next hop\n"); for (uint32_t i = 0; i < MAX_HOP_INDEX; i++) { if (!lpm->next_hops[i].ip_dst) continue; tbase->l3.nb_gws++; tbase->l3.next_hops[i].ip = rte_bswap32(lpm->next_hops[i].ip_dst); int tx_port = lpm->next_hops[i].mac_port.out_idx; // gen only supports one port right now .... hence port = 0 if ((tx_port > targ->nb_txports - 1) && (tx_port > targ->nb_txrings - 1)) { PROX_PANIC(1, "Routing Table contains port %d but only %d tx port/ %d ring:\n", tx_port, targ->nb_txports, targ->nb_txrings); } } plog_info("Using routing table %s in l3 mode, with %d gateways\n", targ->route_table, tbase->l3.nb_gws); // Last but one "next_hop_index" is not a gateway but direct routes tbase->l3.next_hops[tbase->l3.nb_gws].ip = 0; ret = rte_lpm_add(tbase->l3.ipv4_lpm, targ->local_ipv4, targ->local_prefix, tbase->l3.nb_gws++); PROX_PANIC(ret, "Failed to add local_ipv4 "IPv4_BYTES_FMT"/%d to lpm\n", IP4(tbase->local_ipv4), targ->local_prefix); // Last "next_hop_index" is default gw tbase->l3.next_hops[tbase->l3.nb_gws].ip = rte_bswap32(targ->gateway_ipv4); if (targ->gateway_ipv4) { ret = rte_lpm_add(tbase->l3.ipv4_lpm, targ->gateway_ipv4, 0, tbase->l3.nb_gws++); PROX_PANIC(ret, "Failed to add gateway_ipv4 "IPv4_BYTES_FMT"/%d to lpm\n", IP4(tbase->l3.gw.ip), 0); } } master_init_vdev(tbase->l3.tmaster, tbase->l3.reachable_port_id, targ->lconf->id, targ->id); name[3]++; struct rte_mempool *ret = rte_mempool_create(name, NB_ARP_MBUF, ARP_MBUF_SIZE, NB_CACHE_ARP_MBUF, sizeof(struct rte_pktmbuf_pool_private), rte_pktmbuf_pool_init, NULL, rte_pktmbuf_init, 0, rte_socket_id(), 0); PROX_PANIC(ret == NULL, "Failed to allocate ARP memory pool on socket %u with %u elements\n", rte_socket_id(), NB_ARP_MBUF); plog_info("\t\tMempool %p (%s) size = %u * %u cache %u, socket %d\n", ret, name, NB_ARP_MBUF, ARP_MBUF_SIZE, NB_CACHE_ARP_MBUF, rte_socket_id()); tbase->l3.arp_pool = ret; } } void task_set_gateway_ip(struct task_base *tbase, uint32_t ip) { tbase->l3.gw.ip = ip; tbase->flags &= ~FLAG_DST_MAC_KNOWN; } void task_set_local_ip(struct task_base *tbase, uint32_t ip) { tbase->local_ipv4 = ip; } static void reset_arp_update_time(struct l3_base *l3, uint32_t ip) { uint32_t idx; plogx_dbg("MAC entry for IP "IPv4_BYTES_FMT" timeout in kernel\n", IP4(ip)); if (l3->ipv4_lpm) { int ret = rte_hash_lookup(l3->ip_hash, (const void *)&ip); if (ret >= 0) l3->arp_table[ret].arp_update_time = 0; } else if (ip == l3->gw.ip) { l3->gw.arp_update_time = 0; } else if (l3->n_pkts < 4) { for (idx = 0; idx < l3->n_pkts; idx++) { uint32_t ip_dst = l3->optimized_arp_table[idx].ip; if (ip_dst == ip) break; } if (idx < l3->n_pkts) { l3->optimized_arp_table[idx].arp_update_time = 0; } } else { int ret = rte_hash_lookup(l3->ip_hash, (const void *)&ip); if (ret >= 0) l3->arp_table[ret].arp_update_time = 0; } return; } static prox_next_hop_index_type get_nh_index(struct task_base *tbase, uint32_t gw_ip) { // Check if gateway already exists for (prox_next_hop_index_type i = 0; i < tbase->l3.nb_gws; i++) { if (tbase->l3.next_hops[i].ip == gw_ip) { return i; } } if (tbase->l3.nb_gws < MAX_HOP_INDEX) { tbase->l3.next_hops[tbase->l3.nb_gws].ip = gw_ip; tbase->l3.nb_gws++; return tbase->l3.nb_gws - 1; } else return MAX_HOP_INDEX; } void handle_ctrl_plane_pkts(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts) { uint8_t out[1]; const uint64_t hz = rte_get_tsc_hz(); uint32_t ip, ip_dst, idx, gateway_ip, prefix; prox_next_hop_index_type gateway_index; int j, ret, modified_route; uint16_t command; prox_rte_ether_hdr *hdr; struct ether_hdr_arp *hdr_arp; struct l3_base *l3 = &tbase->l3; uint64_t tsc= rte_rdtsc(); uint64_t arp_timeout = l3->arp_timeout * hz / 1000; uint32_t nh; prox_rte_ipv4_hdr *pip; prox_rte_udp_hdr *udp_hdr; for (j = 0; j < n_pkts; ++j) { PREFETCH0(mbufs[j]); } for (j = 0; j < n_pkts; ++j) { PREFETCH0(rte_pktmbuf_mtod(mbufs[j], void *)); } for (j = 0; j < n_pkts; ++j) { pip = NULL; udp_hdr = NULL; out[0] = OUT_HANDLED; command = mbufs[j]->udata64 & 0xFFFF; plogx_dbg("\tReceived %s mbuf %p\n", actions_string[command], mbufs[j]); switch(command) { case ROUTE_ADD_FROM_CTRL: ip = ctrl_ring_get_ip(mbufs[j]); gateway_ip = ctrl_ring_get_gateway_ip(mbufs[j]); prefix = ctrl_ring_get_prefix(mbufs[j]); gateway_index = get_nh_index(tbase, gateway_ip); if (gateway_index >= MAX_HOP_INDEX) { plog_err("Unable to find or define gateway index - too many\n"); return; } modified_route = rte_lpm_is_rule_present(tbase->l3.ipv4_lpm, rte_bswap32(ip), prefix, &nh); ret = rte_lpm_add(tbase->l3.ipv4_lpm, rte_bswap32(ip), prefix, gateway_index); if (ret < 0) { plog_err("Failed to add route to "IPv4_BYTES_FMT"/%d using "IPv4_BYTES_FMT"(index = %d)\n", IP4(ip), prefix, IP4(gateway_ip), gateway_index); } else if (modified_route) plogx_dbg("Modified route to "IPv4_BYTES_FMT"/%d using "IPv4_BYTES_FMT"(index = %d) (was using "IPv4_BYTES_FMT"(index = %d)\n", IP4(ip), prefix, IP4(gateway_ip), gateway_index, IP4(tbase->l3.next_hops[nh].ip), nh); else { plogx_dbg("Added new route to "IPv4_BYTES_FMT"/%d using "IPv4_BYTES_FMT"(index = %d)\n", IP4(ip), prefix, IP4(gateway_ip), gateway_index); } tx_drop(mbufs[j]); break; case ROUTE_DEL_FROM_CTRL: ip = ctrl_ring_get_ip(mbufs[j]); prefix = ctrl_ring_get_prefix(mbufs[j]); ret = rte_lpm_is_rule_present(tbase->l3.ipv4_lpm, rte_bswap32(ip), prefix, &nh); if (ret > 0) { ret = rte_lpm_delete(tbase->l3.ipv4_lpm, rte_bswap32(ip), prefix); if (ret < 0) { plog_err("Failed to add rule\n"); } plog_info("Deleting route to "IPv4_BYTES_FMT"/%d\n", IP4(ip), prefix); } tx_drop(mbufs[j]); break; case UPDATE_FROM_CTRL: hdr_arp = rte_pktmbuf_mtod(mbufs[j], struct ether_hdr_arp *); ip = (mbufs[j]->udata64 >> 32) & 0xFFFFFFFF; if (prox_rte_is_zero_ether_addr(&hdr_arp->arp.data.sha)) { // MAC timeout or deleted from kernel table => reset update_time // This will cause us to send new ARP request // However, as arp_timeout not touched, we should continue sending our regular IP packets reset_arp_update_time(l3, ip); return; } else plogx_dbg("\tUpdating MAC entry for IP "IPv4_BYTES_FMT" with MAC "MAC_BYTES_FMT"\n", IP4(ip), MAC_BYTES(hdr_arp->arp.data.sha.addr_bytes)); if (l3->ipv4_lpm) { uint32_t nh; struct arp_table *entry; ret = rte_hash_add_key(l3->ip_hash, (const void *)&ip); if (ret < 0) { plogx_info("Unable add ip "IPv4_BYTES_FMT" in mac_hash\n", IP4(ip)); } else if ((nh = l3->arp_table[ret].nh) != MAX_HOP_INDEX) { entry = &l3->next_hops[nh]; memcpy(&entry->mac, &(hdr_arp->arp.data.sha), sizeof(prox_rte_ether_addr)); entry->arp_timeout = tsc + arp_timeout; update_arp_update_time(l3, &entry->arp_update_time, l3->arp_update_time); } else { memcpy(&l3->arp_table[ret].mac, &(hdr_arp->arp.data.sha), sizeof(prox_rte_ether_addr)); l3->arp_table[ret].arp_timeout = tsc + arp_timeout; update_arp_update_time(l3, &l3->arp_table[ret].arp_update_time, l3->arp_update_time); } } else if (ip == l3->gw.ip) { // MAC address of the gateway memcpy(&l3->gw.mac, &hdr_arp->arp.data.sha, 6); l3->flags |= FLAG_DST_MAC_KNOWN; l3->gw.arp_timeout = tsc + arp_timeout; update_arp_update_time(l3, &l3->gw.arp_update_time, l3->arp_update_time); } else if (l3->n_pkts < 4) { // Few packets tracked - should be faster to loop through them thean using a hash table for (idx = 0; idx < l3->n_pkts; idx++) { ip_dst = l3->optimized_arp_table[idx].ip; if (ip_dst == ip) break; } if (idx < l3->n_pkts) { memcpy(&l3->optimized_arp_table[idx].mac, &(hdr_arp->arp.data.sha), sizeof(prox_rte_ether_addr)); l3->optimized_arp_table[idx].arp_timeout = tsc + arp_timeout; update_arp_update_time(l3, &l3->optimized_arp_table[idx].arp_update_time, l3->arp_update_time); } } else { ret = rte_hash_add_key(l3->ip_hash, (const void *)&ip); if (ret < 0) { plogx_info("Unable add ip "IPv4_BYTES_FMT" in mac_hash\n", IP4(ip)); } else { memcpy(&l3->arp_table[ret].mac, &(hdr_arp->arp.data.sha), sizeof(prox_rte_ether_addr)); l3->arp_table[ret].arp_timeout = tsc + arp_timeout; update_arp_update_time(l3, &l3->arp_table[ret].arp_update_time, l3->arp_update_time); } } tx_drop(mbufs[j]); break; case ARP_REPLY_FROM_CTRL: case ARP_REQ_FROM_CTRL: out[0] = 0; // tx_ctrlplane_pkt does not drop packets plogx_dbg("\tForwarding (ARP) packet from master\n"); tbase->aux->tx_ctrlplane_pkt(tbase, &mbufs[j], 1, out); TASK_STATS_ADD_TX_NON_DP(&tbase->aux->stats, 1); break; case ICMP_FROM_CTRL: out[0] = 0; // tx_ctrlplane_pkt does not drop packets plogx_dbg("\tForwarding (PING) packet from master\n"); tbase->aux->tx_ctrlplane_pkt(tbase, &mbufs[j], 1, out); TASK_STATS_ADD_TX_NON_DP(&tbase->aux->stats, 1); break; case PKT_FROM_TAP: // Drop Pseudo packets sent to generate ARP requests // There are other IPv4 packets sent from TAP which we cannot delete e.g. BGP packets out[0] = 0; hdr = rte_pktmbuf_mtod(mbufs[j], prox_rte_ether_hdr *); if (hdr->ether_type == ETYPE_IPv4) { pip = (prox_rte_ipv4_hdr *)(hdr + 1); } else if (hdr->ether_type == ETYPE_VLAN) { prox_rte_vlan_hdr *vlan = (prox_rte_vlan_hdr *)(hdr + 1); vlan = (prox_rte_vlan_hdr *)(hdr + 1); if (vlan->eth_proto == ETYPE_IPv4) { pip = (prox_rte_ipv4_hdr *)(vlan + 1); } } if (pip && (pip->next_proto_id == IPPROTO_UDP)) { udp_hdr = (prox_rte_udp_hdr *)(pip + 1); if ((udp_hdr->dst_port == rte_cpu_to_be_16(PROX_PSEUDO_PKT_PORT)) && (udp_hdr->src_port == rte_cpu_to_be_16(PROX_PSEUDO_PKT_PORT)) && (rte_be_to_cpu_16(udp_hdr->dgram_len) == 8)) { plogx_dbg("Dropping PROX packet\n"); tx_drop(mbufs[j]); return; } } /* Debugging ... uint16_t src_port = 0, dst_port = 0, len = 0; if (udp_hdr) { src_port = udp_hdr->src_port; dst_port = udp_hdr->dst_port; len = rte_be_to_cpu_16(udp_hdr->dgram_len); } plogx_dbg("tForwarding TAP packet from master. Type = %x, pip=%p, udp = %p, udp = {src = %x, dst = %x, len = %d}\n", hdr->ether_type, pip, udp_hdr, src_port, dst_port,len ); */ // tx_ctrlplane_pkt does not drop packets tbase->aux->tx_ctrlplane_pkt(tbase, &mbufs[j], 1, out); TASK_STATS_ADD_TX_NON_DP(&tbase->aux->stats, 1); break; } } }