/* // Copyright (c) 2010-2019 Intel Corporation // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. */ //#define LAT_DEBUG #include <rte_cycles.h> #include <stdio.h> #include <math.h> #include "handle_gen.h" #include "prox_malloc.h" #include "mbuf_utils.h" #include "handle_lat.h" #include "log.h" #include "task_init.h" #include "task_base.h" #include "stats.h" #include "lconf.h" #include "quit.h" #include "eld.h" #include "prox_shared.h" #include "prox_port_cfg.h" #define DEFAULT_BUCKET_SIZE 11 #define ACCURACY_BUFFER_SIZE (2 * ACCURACY_WINDOW) struct lat_info { uint32_t rx_packet_index; uint64_t tx_packet_index; uint32_t tx_err; uint32_t rx_err; uint64_t rx_time; uint64_t tx_time; uint16_t port_queue_id; #ifdef LAT_DEBUG uint16_t id_in_bulk; uint16_t bulk_size; uint64_t begin; uint64_t after; uint64_t before; #endif }; struct delayed_latency_entry { uint32_t rx_packet_id; uint32_t tx_packet_id; uint32_t packet_id; uint8_t generator_id; uint64_t pkt_rx_time; uint64_t pkt_tx_time; // Time written into packets by gen. Unit is TSC >> LATENCY_ACCURACY uint64_t rx_time_err; }; static struct delayed_latency_entry *delayed_latency_get(struct delayed_latency_entry **delayed_latency_entries, uint8_t generator_id, uint32_t packet_id) { struct delayed_latency_entry *delayed_latency_entry = &delayed_latency_entries[generator_id][packet_id % ACCURACY_BUFFER_SIZE]; if (delayed_latency_entry->packet_id == packet_id) return delayed_latency_entry; else return NULL; } static struct delayed_latency_entry *delayed_latency_create(struct delayed_latency_entry **delayed_latency_entries, uint8_t generator_id, uint32_t packet_id) { struct delayed_latency_entry *delayed_latency_entry = &delayed_latency_entries[generator_id][packet_id % ACCURACY_BUFFER_SIZE]; delayed_latency_entry->packet_id = packet_id; return delayed_latency_entry; } struct rx_pkt_meta_data { uint8_t *hdr; uint32_t pkt_tx_time; uint32_t bytes_after_in_bulk; }; struct task_lat { struct task_base base; uint64_t limit; uint64_t rx_packet_index; uint64_t last_pkts_tsc; struct delayed_latency_entry **delayed_latency_entries; struct lat_info *latency_buffer; uint32_t latency_buffer_idx; uint32_t latency_buffer_size; uint64_t begin; uint16_t lat_pos; uint16_t unique_id_pos; uint16_t accur_pos; uint16_t sig_pos; uint32_t sig; volatile uint16_t use_lt; /* which lt to use, */ volatile uint16_t using_lt; /* 0 or 1 depending on which of the 2 measurements are used */ struct lat_test lt[2]; struct lat_test *lat_test; uint32_t generator_count; uint16_t min_pkt_len; struct early_loss_detect *eld; struct rx_pkt_meta_data *rx_pkt_meta; // Following fields are only used when starting or stopping, not in general runtime uint64_t *prev_tx_packet_index; FILE *fp_rx; FILE *fp_tx; struct prox_port_cfg *port; uint64_t *bytes_to_tsc; uint64_t *previous_packet; }; /* This function calculate the difference between rx and tx_time * Both values are uint32_t (see handle_lat_bulk) * rx time should be higher than tx_time...except every UINT32_MAX * cycles, when rx_time overflows. * As the return value is also uint32_t, returning (rx_time - tx_time) * is also fine when it overflows. */ static uint32_t diff_time(uint32_t rx_time, uint32_t tx_time) { return rx_time - tx_time; } uint32_t task_lat_get_latency_bucket_size(struct task_lat *task) { return task->lat_test->bucket_size; } struct lat_test *task_lat_get_latency_meassurement(struct task_lat *task) { if (task->use_lt == task->using_lt) return &task->lt[!task->using_lt]; return NULL; } void task_lat_use_other_latency_meassurement(struct task_lat *task) { task->use_lt = !task->using_lt; } static void task_lat_update_lat_test(struct task_lat *task) { if (task->use_lt != task->using_lt) { task->using_lt = task->use_lt; task->lat_test = &task->lt[task->using_lt]; task->lat_test->accuracy_limit_tsc = task->limit; } } static int compare_tx_time(const void *val1, const void *val2) { const struct lat_info *ptr1 = val1; const struct lat_info *ptr2 = val2; return ptr1->tx_time > ptr2->tx_time ? 1 : -1; } static int compare_tx_packet_index(const void *val1, const void *val2) { const struct lat_info *ptr1 = val1; const struct lat_info *ptr2 = val2; return ptr1->tx_packet_index > ptr2->tx_packet_index ? 1 : -1; } static void fix_latency_buffer_tx_packet_index(struct lat_info *lat, uint32_t count) { uint32_t tx_packet_index, old_tx_packet_index = lat->tx_packet_index, n_overflow = 0; uint32_t small = UINT32_MAX >> 1; lat++; /* Buffer is sorted so far by RX time. * We might have packets being reordered by SUT. * => consider small differences as re-order and big ones as overflow of tx_packet_index. * Note that: * - overflow only happens if receiving and storing 4 billions packets... * - a absolute difference of less than 2 billion packets is not considered as an overflow */ for (uint32_t i = 1; i < count; i++) { tx_packet_index = lat->tx_packet_index; if (tx_packet_index > old_tx_packet_index) { if (tx_packet_index - old_tx_packet_index < small) { // The diff is small => increasing index count } else { // The diff is big => it is more likely that the previous packet was overflow n_overflow--; } } else { if (old_tx_packet_index - tx_packet_index < small) { // The diff is small => packet reorder } else { // The diff is big => it is more likely that this is an overflow n_overflow++; } } lat->tx_packet_index += ((uint64_t)UINT32_MAX + 1) * n_overflow; old_tx_packet_index = tx_packet_index; lat++; } } static void fix_latency_buffer_tx_time(struct lat_info *lat, uint32_t count) { uint32_t tx_time, old_tx_time = lat->tx_time, n_overflow = 0; uint32_t small = UINT32_MAX >> 1; lat++; /* * Same algorithm as above, but with time. * Note that: * - overflow happens after 4 billions "cycles" (shifted by LATENCY_ACCURACY) = ~4sec * - a absolute difference up to 2 billion (shifted) cycles (~=2sec) is not considered as an overflow * => algorithm does not work if receiving less than 1 packet every 2 seconds */ for (uint32_t i = 1; i < count; i++) { tx_time = lat->tx_time; if (tx_time > old_tx_time) { if (tx_time - old_tx_time > small) { n_overflow--; } } else { if (old_tx_time - tx_time > small) { n_overflow++; } } lat->tx_time += ((uint64_t)UINT32_MAX + 1) * n_overflow; old_tx_time = tx_time; lat++; } } static void task_lat_count_remaining_lost_packets(struct task_lat *task) { struct lat_test *lat_test = task->lat_test; for (uint32_t j = 0; j < task->generator_count; j++) { struct early_loss_detect *eld = &task->eld[j]; lat_test->lost_packets += early_loss_detect_count_remaining_loss(eld); } } static void task_lat_reset_eld(struct task_lat *task) { for (uint32_t j = 0; j < task->generator_count; j++) { early_loss_detect_reset(&task->eld[j]); } } static uint64_t lat_latency_buffer_get_min_tsc(struct task_lat *task) { uint64_t min_tsc = UINT64_MAX; for (uint32_t i = 0; i < task->latency_buffer_idx; i++) { if (min_tsc > task->latency_buffer[i].tx_time) min_tsc = task->latency_buffer[i].tx_time; } return min_tsc << LATENCY_ACCURACY; } static uint64_t lat_info_get_lat_tsc(struct lat_info *lat_info) { uint64_t lat = diff_time(lat_info->rx_time, lat_info->tx_time); return lat << LATENCY_ACCURACY; } static uint64_t lat_info_get_tx_err_tsc(const struct lat_info *lat_info) { return ((uint64_t)lat_info->tx_err) << LATENCY_ACCURACY; } static uint64_t lat_info_get_rx_err_tsc(const struct lat_info *lat_info) { return ((uint64_t)lat_info->rx_err) << LATENCY_ACCURACY; } static uint64_t lat_info_get_rx_tsc(const struct lat_info *lat_info) { return ((uint64_t)lat_info->rx_time) << LATENCY_ACCURACY; } static uint64_t lat_info_get_tx_tsc(const struct lat_info *lat_info) { return ((uint64_t)lat_info->tx_time) << LATENCY_ACCURACY; } static void lat_write_latency_to_file(struct task_lat *task) { uint64_t min_tsc; uint64_t n_loss; min_tsc = lat_latency_buffer_get_min_tsc(task); // Dumping all packet statistics fprintf(task->fp_rx, "Latency stats for %u packets, ordered by rx time\n", task->latency_buffer_idx); fprintf(task->fp_rx, "rx index; queue; tx index; lat (nsec);tx time;\n"); for (uint32_t i = 0; i < task->latency_buffer_idx ; i++) { struct lat_info *lat_info = &task->latency_buffer[i]; uint64_t lat_tsc = lat_info_get_lat_tsc(lat_info); uint64_t rx_tsc = lat_info_get_rx_tsc(lat_info); uint64_t tx_tsc = lat_info_get_tx_tsc(lat_info); fprintf(task->fp_rx, "%u;%u;%lu;%lu;%lu;%lu\n", lat_info->rx_packet_index, lat_info->port_queue_id, lat_info->tx_packet_index, tsc_to_nsec(lat_tsc), tsc_to_nsec(rx_tsc - min_tsc), tsc_to_nsec(tx_tsc - min_tsc)); } // To detect dropped packets, we need to sort them based on TX if (task->unique_id_pos) { plogx_info("Adapting tx_packet_index\n"); fix_latency_buffer_tx_packet_index(task->latency_buffer, task->latency_buffer_idx); plogx_info("Sorting packets based on tx_packet_index\n"); qsort (task->latency_buffer, task->latency_buffer_idx, sizeof(struct lat_info), compare_tx_packet_index); plogx_info("Sorted packets based on packet_index\n"); } else { plogx_info("Adapting tx_time\n"); fix_latency_buffer_tx_time(task->latency_buffer, task->latency_buffer_idx); plogx_info("Sorting packets based on tx_time\n"); qsort (task->latency_buffer, task->latency_buffer_idx, sizeof(struct lat_info), compare_tx_time); plogx_info("Sorted packets based on packet_time\n"); } // A packet is marked as dropped if 2 packets received from the same queue are not consecutive fprintf(task->fp_tx, "Latency stats for %u packets, sorted by tx time\n", task->latency_buffer_idx); fprintf(task->fp_tx, "queue;tx index; rx index; lat (nsec);tx time; rx time; tx_err;rx_err\n"); for (uint32_t i = 0; i < task->generator_count;i++) task->prev_tx_packet_index[i] = -1; for (uint32_t i = 0; i < task->latency_buffer_idx; i++) { struct lat_info *lat_info = &task->latency_buffer[i]; uint64_t lat_tsc = lat_info_get_lat_tsc(lat_info); uint64_t tx_err_tsc = lat_info_get_tx_err_tsc(lat_info); uint64_t rx_err_tsc = lat_info_get_rx_err_tsc(lat_info); uint64_t rx_tsc = lat_info_get_rx_tsc(lat_info); uint64_t tx_tsc = lat_info_get_tx_tsc(lat_info); /* Packet n + ACCURACY_WINDOW delivers the TX error for packet n, hence the last ACCURACY_WINDOW packets do no have TX error. */ if (i + ACCURACY_WINDOW >= task->latency_buffer_idx) { tx_err_tsc = 0; } if (lat_info->port_queue_id >= task->generator_count) { plog_err("Unexpected generator id %u for packet %lu - skipping packet\n", lat_info->port_queue_id, lat_info->tx_packet_index); continue; } // Log dropped packet n_loss = lat_info->tx_packet_index - task->prev_tx_packet_index[lat_info->port_queue_id] - 1; if (n_loss) fprintf(task->fp_tx, "===> %u;%lu;0;0;0;0;0;0 lost %lu packets <===\n", lat_info->port_queue_id, lat_info->tx_packet_index - n_loss, n_loss); // Log next packet fprintf(task->fp_tx, "%u;%lu;%u;%lu;%lu;%lu;%lu;%lu", lat_info->port_queue_id, lat_info->tx_packet_index, lat_info->rx_packet_index, tsc_to_nsec(lat_tsc), tsc_to_nsec(tx_tsc - min_tsc), tsc_to_nsec(rx_tsc - min_tsc), tsc_to_nsec(tx_err_tsc), tsc_to_nsec(rx_err_tsc)); #ifdef LAT_DEBUG fprintf(task->fp_tx, ";%u from %u;%lu;%lu;%lu", lat_info->id_in_bulk, lat_info->bulk_size, tsc_to_nsec(lat_info->begin - min_tsc), tsc_to_nsec(lat_info->before - min_tsc), tsc_to_nsec(lat_info->after - min_tsc)); #endif fprintf(task->fp_tx, "\n"); task->prev_tx_packet_index[lat_info->port_queue_id] = lat_info->tx_packet_index; } fflush(task->fp_rx); fflush(task->fp_tx); task->latency_buffer_idx = 0; } static void lat_stop(struct task_base *tbase) { struct task_lat *task = (struct task_lat *)tbase; if (task->unique_id_pos) { task_lat_count_remaining_lost_packets(task); task_lat_reset_eld(task); } if (task->latency_buffer) lat_write_latency_to_file(task); } #ifdef LAT_DEBUG static void task_lat_store_lat_debug(struct task_lat *task, uint32_t rx_packet_index, uint32_t id_in_bulk, uint32_t bulk_size) { struct lat_info *lat_info = &task->latency_buffer[rx_packet_index]; lat_info->bulk_size = bulk_size; lat_info->id_in_bulk = id_in_bulk; lat_info->begin = task->begin; lat_info->before = task->base.aux->tsc_rx.before; lat_info->after = task->base.aux->tsc_rx.after; } #endif static void task_lat_store_lat_buf(struct task_lat *task, uint64_t rx_packet_index, uint64_t rx_time, uint64_t tx_time, uint64_t rx_err, uint64_t tx_err, uint32_t packet_id, uint8_t generator_id) { struct lat_info *lat_info; /* If unique_id_pos is specified then latency is stored per packet being sent. Lost packets are detected runtime, and latency stored for those packets will be 0 */ lat_info = &task->latency_buffer[task->latency_buffer_idx++]; lat_info->rx_packet_index = rx_packet_index; lat_info->tx_packet_index = packet_id; lat_info->port_queue_id = generator_id; lat_info->rx_time = rx_time; lat_info->tx_time = tx_time; lat_info->rx_err = rx_err; lat_info->tx_err = tx_err; } static uint32_t task_lat_early_loss_detect(struct task_lat *task, uint32_t packet_id, uint8_t generator_id) { struct early_loss_detect *eld = &task->eld[generator_id]; return early_loss_detect_add(eld, packet_id); } static void lat_test_check_duplicate(struct task_lat *task, struct lat_test *lat_test, uint32_t packet_id, uint8_t generator_id) { struct early_loss_detect *eld = &task->eld[generator_id]; uint32_t old_queue_id, queue_pos; queue_pos = packet_id & PACKET_QUEUE_MASK; old_queue_id = eld->entries[queue_pos]; if ((packet_id >> PACKET_QUEUE_BITS) == old_queue_id) lat_test->duplicate++; } static uint64_t tsc_extrapolate_backward(struct task_lat *task, uint64_t tsc_from, uint64_t bytes, uint64_t tsc_minimum) { #ifdef NO_LAT_EXTRAPOLATION uint64_t tsc = tsc_from; #else uint64_t tsc = tsc_from - task->bytes_to_tsc[bytes]; #endif if (likely(tsc > tsc_minimum)) return tsc; else return tsc_minimum; } static void lat_test_histogram_add(struct lat_test *lat_test, uint64_t lat_tsc) { uint64_t bucket_id = (lat_tsc >> lat_test->bucket_size); size_t bucket_count = sizeof(lat_test->buckets)/sizeof(lat_test->buckets[0]); bucket_id = bucket_id < bucket_count? bucket_id : (bucket_count - 1); lat_test->buckets[bucket_id]++; } static void lat_test_check_ordering(struct task_lat *task, struct lat_test *lat_test, uint32_t packet_id, uint8_t generator_id) { if (packet_id < task->previous_packet[generator_id]) { lat_test->mis_ordered++; lat_test->extent += task->previous_packet[generator_id] - packet_id; } task->previous_packet[generator_id] = packet_id; } static void lat_test_add_lost(struct lat_test *lat_test, uint64_t lost_packets) { lat_test->lost_packets += lost_packets; } static void lat_test_add_latency(struct lat_test *lat_test, uint64_t lat_tsc, uint64_t error) { if (error > lat_test->accuracy_limit_tsc) return; lat_test->tot_pkts++; lat_test->tot_lat += lat_tsc; lat_test->tot_lat_error += error; /* (a +- b)^2 = a^2 +- (2ab + b^2) */ lat_test->var_lat += lat_tsc * lat_tsc; lat_test->var_lat_error += 2 * lat_tsc * error; lat_test->var_lat_error += error * error; if (lat_tsc > lat_test->max_lat) { lat_test->max_lat = lat_tsc; lat_test->max_lat_error = error; } if (lat_tsc < lat_test->min_lat) { lat_test->min_lat = lat_tsc; lat_test->min_lat_error = error; } #ifdef LATENCY_HISTOGRAM lat_test_histogram_add(lat_test, lat_tsc); #endif } static int task_lat_can_store_latency(struct task_lat *task) { return task->latency_buffer_idx < task->latency_buffer_size; } static void task_lat_store_lat(struct task_lat *task, uint64_t rx_packet_index, uint64_t rx_time, uint64_t tx_time, uint64_t rx_error, uint64_t tx_error, uint32_t packet_id, uint8_t generator_id) { uint32_t lat_tsc = diff_time(rx_time, tx_time) << LATENCY_ACCURACY; lat_test_add_latency(task->lat_test, lat_tsc, rx_error + tx_error); if (task_lat_can_store_latency(task)) { task_lat_store_lat_buf(task, rx_packet_index, rx_time, tx_time, rx_error, tx_error, packet_id, generator_id); } } static int handle_lat_bulk(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts) { struct task_lat *task = (struct task_lat *)tbase; int rc; if (n_pkts == 0) { task->begin = tbase->aux->tsc_rx.before; return 0; } task_lat_update_lat_test(task); // Remember those packets with bad length or bad signature uint32_t non_dp_count = 0; uint64_t pkt_bad_len_sig = 0; #define BIT64_SET(a64, bit) a64 |= (((uint64_t)1) << (bit & 63)) #define BIT64_CLR(a64, bit) a64 &= ~(((uint64_t)1) << (bit & 63)) #define BIT64_TEST(a64, bit) a64 & (((uint64_t)1) << (bit & 63)) /* Go once through all received packets and read them. If packet has just been modified by another core, the cost of latency will be partialy amortized though the bulk size */ for (uint16_t j = 0; j < n_pkts; ++j) { struct rte_mbuf *mbuf = mbufs[j]; task->rx_pkt_meta[j].hdr = rte_pktmbuf_mtod(mbuf, uint8_t *); // Remember those packets which are too short to hold the values that we expect if (unlikely(rte_pktmbuf_pkt_len(mbuf) < task->min_pkt_len)) { BIT64_SET(pkt_bad_len_sig, j); non_dp_count++; } else BIT64_CLR(pkt_bad_len_sig, j); } if (task->sig_pos) { for (uint16_t j = 0; j < n_pkts; ++j) { if (unlikely(BIT64_TEST(pkt_bad_len_sig, j))) continue; // Remember those packets with bad signature if (likely(*(uint32_t *)(task->rx_pkt_meta[j].hdr + task->sig_pos) == task->sig)) task->rx_pkt_meta[j].pkt_tx_time = *(uint32_t *)(task->rx_pkt_meta[j].hdr + task->lat_pos); else { BIT64_SET(pkt_bad_len_sig, j); non_dp_count++; } } } else { for (uint16_t j = 0; j < n_pkts; ++j) { if (unlikely(BIT64_TEST(pkt_bad_len_sig, j))) continue; task->rx_pkt_meta[j].pkt_tx_time = *(uint32_t *)(task->rx_pkt_meta[j].hdr + task->lat_pos); } } uint32_t bytes_total_in_bulk = 0; // Find RX time of first packet, for RX accuracy for (uint16_t j = 0; j < n_pkts; ++j) { uint16_t flipped = n_pkts - 1 - j; task->rx_pkt_meta[flipped].bytes_after_in_bulk = bytes_total_in_bulk; bytes_total_in_bulk += mbuf_wire_size(mbufs[flipped]); } const uint64_t rx_tsc = tbase->aux->tsc_rx.after; uint64_t rx_time_err; uint64_t pkt_rx_time64 = tsc_extrapolate_backward(task, rx_tsc, task->rx_pkt_meta[0].bytes_after_in_bulk, task->last_pkts_tsc) >> LATENCY_ACCURACY; if (unlikely((task->begin >> LATENCY_ACCURACY) > pkt_rx_time64)) { // Extrapolation went up to BEFORE begin => packets were stuck in the NIC but we were not seeing them rx_time_err = pkt_rx_time64 - (task->last_pkts_tsc >> LATENCY_ACCURACY); } else { rx_time_err = pkt_rx_time64 - (task->begin >> LATENCY_ACCURACY); } TASK_STATS_ADD_RX_NON_DP(&tbase->aux->stats, non_dp_count); for (uint16_t j = 0; j < n_pkts; ++j) { // Used to display % of packets within accuracy limit vs. total number of packets (used_col) task->lat_test->tot_all_pkts++; // Skip those packets with bad length or bad signature if (unlikely(BIT64_TEST(pkt_bad_len_sig, j))) continue; struct rx_pkt_meta_data *rx_pkt_meta = &task->rx_pkt_meta[j]; uint8_t *hdr = rx_pkt_meta->hdr; uint32_t pkt_rx_time = tsc_extrapolate_backward(task, rx_tsc, rx_pkt_meta->bytes_after_in_bulk, task->last_pkts_tsc) >> LATENCY_ACCURACY; uint32_t pkt_tx_time = rx_pkt_meta->pkt_tx_time; uint8_t generator_id; uint32_t packet_id; if (task->unique_id_pos) { struct unique_id *unique_id = (struct unique_id *)(hdr + task->unique_id_pos); unique_id_get(unique_id, &generator_id, &packet_id); if (unlikely(generator_id >= task->generator_count)) { /* No need to remember unexpected packet at this stage BIT64_SET(pkt_bad_len_sig, j); */ // Skip unexpected packet continue; } lat_test_check_ordering(task, task->lat_test, packet_id, generator_id); lat_test_check_duplicate(task, task->lat_test, packet_id, generator_id); lat_test_add_lost(task->lat_test, task_lat_early_loss_detect(task, packet_id, generator_id)); } else { generator_id = 0; packet_id = task->rx_packet_index; } /* If accuracy is enabled, latency is reported with a delay of ACCURACY_WINDOW packets since the generator puts the accuracy for packet N into packet N + ACCURACY_WINDOW. The delay ensures that all reported latencies have both rx and tx error. */ if (task->accur_pos) { uint32_t tx_time_err = *(uint32_t *)(hdr + task->accur_pos); struct delayed_latency_entry *delayed_latency_entry = delayed_latency_get(task->delayed_latency_entries, generator_id, packet_id - ACCURACY_WINDOW); if (delayed_latency_entry) { task_lat_store_lat(task, delayed_latency_entry->rx_packet_id, delayed_latency_entry->pkt_rx_time, delayed_latency_entry->pkt_tx_time, delayed_latency_entry->rx_time_err, tx_time_err, delayed_latency_entry->tx_packet_id, delayed_latency_entry->generator_id); } delayed_latency_entry = delayed_latency_create(task->delayed_latency_entries, generator_id, packet_id); delayed_latency_entry->pkt_rx_time = pkt_rx_time; delayed_latency_entry->pkt_tx_time = pkt_tx_time; delayed_latency_entry->rx_time_err = rx_time_err; delayed_latency_entry->rx_packet_id = task->rx_packet_index; delayed_latency_entry->tx_packet_id = packet_id; delayed_latency_entry->generator_id = generator_id; } else { task_lat_store_lat(task, task->rx_packet_index, pkt_rx_time, pkt_tx_time, 0, 0, packet_id, generator_id); } // Bad/unexpected packets do not need to be indexed task->rx_packet_index++; } if (n_pkts < MAX_PKT_BURST) task->begin = tbase->aux->tsc_rx.before; task->last_pkts_tsc = tbase->aux->tsc_rx.after; rc = task->base.tx_pkt(&task->base, mbufs, n_pkts, NULL); // non_dp_count should not be drop-handled, as there are all by definition considered as not handled // RX = DISCARDED + HANDLED + NON_DP + (TX - TX_NON_DP) + TX_FAIL TASK_STATS_ADD_DROP_HANDLED(&tbase->aux->stats, -non_dp_count); return rc; } static void init_task_lat_latency_buffer(struct task_lat *task, uint32_t core_id) { const int socket_id = rte_lcore_to_socket_id(core_id); char name[256]; size_t latency_buffer_mem_size = 0; if (task->latency_buffer_size > UINT32_MAX - MAX_RING_BURST) task->latency_buffer_size = UINT32_MAX - MAX_RING_BURST; latency_buffer_mem_size = sizeof(struct lat_info) * task->latency_buffer_size; task->latency_buffer = prox_zmalloc(latency_buffer_mem_size, socket_id); PROX_PANIC(task->latency_buffer == NULL, "Failed to allocate %zu kbytes for latency_buffer\n", latency_buffer_mem_size / 1024); sprintf(name, "latency.rx_%u.txt", core_id); task->fp_rx = fopen(name, "w+"); PROX_PANIC(task->fp_rx == NULL, "Failed to open %s\n", name); sprintf(name, "latency.tx_%u.txt", core_id); task->fp_tx = fopen(name, "w+"); PROX_PANIC(task->fp_tx == NULL, "Failed to open %s\n", name); task->prev_tx_packet_index = prox_zmalloc(sizeof(task->prev_tx_packet_index[0]) * task->generator_count, socket_id); PROX_PANIC(task->prev_tx_packet_index == NULL, "Failed to allocated prev_tx_packet_index\n"); } static void task_init_generator_count(struct task_lat *task) { uint8_t *generator_count = prox_sh_find_system("generator_count"); if (generator_count == NULL) { task->generator_count = 1; plog_info("\tNo generators found, hard-coding to %u generators\n", task->generator_count); } else task->generator_count = *generator_count; plog_info("\t\tLatency using %u generators\n", task->generator_count); } static void task_lat_init_eld(struct task_lat *task, uint8_t socket_id) { size_t eld_mem_size; eld_mem_size = sizeof(task->eld[0]) * task->generator_count; task->eld = prox_zmalloc(eld_mem_size, socket_id); PROX_PANIC(task->eld == NULL, "Failed to allocate eld\n"); } void task_lat_set_accuracy_limit(struct task_lat *task, uint32_t accuracy_limit_nsec) { task->limit = nsec_to_tsc(accuracy_limit_nsec); } static void lat_start(struct task_base *tbase) { struct task_lat *task = (struct task_lat *)tbase; } static void init_task_lat(struct task_base *tbase, struct task_args *targ) { struct task_lat *task = (struct task_lat *)tbase; const int socket_id = rte_lcore_to_socket_id(targ->lconf->id); task->lat_pos = targ->lat_pos; task->accur_pos = targ->accur_pos; task->sig_pos = targ->sig_pos; task->sig = targ->sig; task->unique_id_pos = targ->packet_id_pos; task->latency_buffer_size = targ->latency_buffer_size; PROX_PANIC(task->lat_pos == 0, "Missing 'lat pos' parameter in config file\n"); uint16_t min_pkt_len = task->lat_pos + sizeof(uint32_t); if (task->unique_id_pos && ( min_pkt_len < task->unique_id_pos + sizeof(struct unique_id))) min_pkt_len = task->unique_id_pos + sizeof(struct unique_id); if (task->accur_pos && ( min_pkt_len < task->accur_pos + sizeof(uint32_t))) min_pkt_len = task->accur_pos + sizeof(uint32_t); if (task->sig_pos && ( min_pkt_len < task->sig_pos + sizeof(uint32_t))) min_pkt_len = task->sig_pos + sizeof(uint32_t); task->min_pkt_len = min_pkt_len; task_init_generator_count(task); if (task->latency_buffer_size) { init_task_lat_latency_buffer(task, targ->lconf->id); } if (targ->bucket_size < DEFAULT_BUCKET_SIZE) { targ->bucket_size = DEFAULT_BUCKET_SIZE; } if (task->accur_pos) { task->delayed_latency_entries = prox_zmalloc(sizeof(*task->delayed_latency_entries) * task->generator_count , socket_id); PROX_PANIC(task->delayed_latency_entries == NULL, "Failed to allocate array for storing delayed latency entries\n"); for (uint i = 0; i < task->generator_count; i++) { task->delayed_latency_entries[i] = prox_zmalloc(sizeof(**task->delayed_latency_entries) * ACCURACY_BUFFER_SIZE, socket_id); PROX_PANIC(task->delayed_latency_entries[i] == NULL, "Failed to allocate array for storing delayed latency entries\n"); } if (task->unique_id_pos == 0) { /* When using accuracy feature, the accuracy from TX is written ACCURACY_WINDOW packets later * We can only retrieve the good packet if a packet id is written to it. * Otherwise we will use the packet RECEIVED ACCURACY_WINDOW packets ago which is OK if * packets are not re-ordered. If packets are re-ordered, then the matching between * the TX accuracy and the latency is wrong. */ plog_warn("\tWhen accuracy feature is used, a unique id should ideally also be used\n"); } } task->lt[0].min_lat = -1; task->lt[1].min_lat = -1; task->lt[0].bucket_size = targ->bucket_size; task->lt[1].bucket_size = targ->bucket_size; if (task->unique_id_pos) { task_lat_init_eld(task, socket_id); task_lat_reset_eld(task); task->previous_packet = prox_zmalloc(sizeof(task->previous_packet) * task->generator_count , socket_id); PROX_PANIC(task->previous_packet == NULL, "Failed to allocate array for storing previous packet\n"); } task->lat_test = &task->lt[task->using_lt]; task_lat_set_accuracy_limit(task, targ->accuracy_limit_nsec); task->rx_pkt_meta = prox_zmalloc(MAX_PKT_BURST * sizeof(*task->rx_pkt_meta), socket_id); PROX_PANIC(task->rx_pkt_meta == NULL, "unable to allocate memory to store RX packet meta data"); uint32_t max_frame_size = MAX_PKT_SIZE; uint64_t bytes_per_hz = UINT64_MAX; if (targ->nb_rxports) { struct prox_port_cfg *port = &prox_port_cfg[targ->rx_port_queue[0].port]; max_frame_size = port->mtu + PROX_RTE_ETHER_HDR_LEN + PROX_RTE_ETHER_CRC_LEN + 2 * PROX_VLAN_TAG_SIZE; // port->max_link_speed reports the maximum, non negotiated ink speed in Mbps e.g. 40k for a 40 Gbps NIC. // It can be UINT32_MAX (virtual devices or not supported by DPDK < 16.04) if (port->max_link_speed != UINT32_MAX) { bytes_per_hz = port->max_link_speed * 125000L; plog_info("\t\tPort %u: max link speed is %ld Mbps\n", (uint8_t)(port - prox_port_cfg), 8 * bytes_per_hz / 1000000); } } task->bytes_to_tsc = prox_zmalloc(max_frame_size * sizeof(task->bytes_to_tsc[0]) * MAX_PKT_BURST, rte_lcore_to_socket_id(targ->lconf->id)); PROX_PANIC(task->bytes_to_tsc == NULL, "Failed to allocate %u bytes (in huge pages) for bytes_to_tsc\n", max_frame_size); // There are cases where hz estimate might be slighly over-estimated // This results in too much extrapolation // Only account for 99% of extrapolation to handle cases with up to 1% error clocks for (unsigned int i = 0; i < max_frame_size * MAX_PKT_BURST ; i++) { if (bytes_per_hz == UINT64_MAX) task->bytes_to_tsc[i] = 0; else task->bytes_to_tsc[i] = (rte_get_tsc_hz() * i * 0.99) / bytes_per_hz; } } static struct task_init task_init_lat = { .mode_str = "lat", .init = init_task_lat, .handle = handle_lat_bulk, .start = lat_start, .stop = lat_stop, .flag_features = TASK_FEATURE_TSC_RX | TASK_FEATURE_ZERO_RX | TASK_FEATURE_NEVER_DISCARDS, .size = sizeof(struct task_lat) }; __attribute__((constructor)) static void reg_task_lat(void) { reg_task(&task_init_lat); }