/* * Intel MIC Platform Software Stack (MPSS) * * Copyright(c) 2014 Intel Corporation. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * The full GNU General Public License is included in this distribution in * the file called "COPYING". * * Intel MIC X100 DMA Driver. * * Adapted from IOAT dma driver. */ #include #include #include #include #include "mic_x100_dma.h" #define MIC_DMA_MAX_XFER_SIZE_CARD (1 * 1024 * 1024 -\ MIC_DMA_ALIGN_BYTES) #define MIC_DMA_MAX_XFER_SIZE_HOST (1 * 1024 * 1024 >> 1) #define MIC_DMA_DESC_TYPE_SHIFT 60 #define MIC_DMA_MEMCPY_LEN_SHIFT 46 #define MIC_DMA_STAT_INTR_SHIFT 59 /* high-water mark for pushing dma descriptors */ static int mic_dma_pending_level = 4; /* Status descriptor is used to write a 64 bit value to a memory location */ enum mic_dma_desc_format_type { MIC_DMA_MEMCPY = 1, MIC_DMA_STATUS, }; static inline u32 mic_dma_hw_ring_inc(u32 val) { return (val + 1) % MIC_DMA_DESC_RX_SIZE; } static inline u32 mic_dma_hw_ring_dec(u32 val) { return val ? val - 1 : MIC_DMA_DESC_RX_SIZE - 1; } static inline void mic_dma_hw_ring_inc_head(struct mic_dma_chan *ch) { ch->head = mic_dma_hw_ring_inc(ch->head); } /* Prepare a memcpy desc */ static inline void mic_dma_memcpy_desc(struct mic_dma_desc *desc, dma_addr_t src_phys, dma_addr_t dst_phys, u64 size) { u64 qw0, qw1; qw0 = src_phys; qw0 |= (size >> MIC_DMA_ALIGN_SHIFT) << MIC_DMA_MEMCPY_LEN_SHIFT; qw1 = MIC_DMA_MEMCPY; qw1 <<= MIC_DMA_DESC_TYPE_SHIFT; qw1 |= dst_phys; desc->qw0 = qw0; desc->qw1 = qw1; } /* Prepare a status desc. with @data to be written at @dst_phys */ static inline void mic_dma_prep_status_desc(struct mic_dma_desc *desc, u64 data, dma_addr_t dst_phys, bool generate_intr) { u64 qw0, qw1; qw0 = data; qw1 = (u64) MIC_DMA_STATUS << MIC_DMA_DESC_TYPE_SHIFT | dst_phys; if (generate_intr) qw1 |= (1ULL << MIC_DMA_STAT_INTR_SHIFT); desc->qw0 = qw0; desc->qw1 = qw1; } static void mic_dma_cleanup(struct mic_dma_chan *ch) { struct dma_async_tx_descriptor *tx; u32 tail; u32 last_tail; spin_lock(&ch->cleanup_lock); tail = mic_dma_read_cmp_cnt(ch); /* * This is the barrier pair for smp_wmb() in fn. * mic_dma_tx_submit_unlock. It's required so that we read the * updated cookie value from tx->cookie. */ smp_rmb(); for (last_tail = ch->last_tail; tail != last_tail;) { tx = &ch->tx_array[last_tail]; if (tx->cookie) { dma_cookie_complete(tx); if (tx->callback) { tx->callback(tx->callback_param); tx->callback = NULL; } } last_tail = mic_dma_hw_ring_inc(last_tail); } /* finish all completion callbacks before incrementing tail */ smp_mb(); ch->last_tail = last_tail; spin_unlock(&ch->cleanup_lock); } static u32 mic_dma_ring_count(u32 head, u32 tail) { u32 count; if (head >= tail) count = (tail - 0) + (MIC_DMA_DESC_RX_SIZE - head); else count = tail - head; return count - 1; } /* Returns the num. of free descriptors on success, -ENOMEM on failure */ static int mic_dma_avail_desc_ring_space(struct mic_dma_chan *ch, int required) { struct device *dev = mic_dma_ch_to_device(ch); u32 count; count = mic_dma_ring_count(ch->head, ch->last_tail); if (count < required) { mic_dma_cleanup(ch); count = mic_dma_ring_count(ch->head, ch->last_tail); } if (count < required) { dev_dbg(dev, "Not enough desc space"); dev_dbg(dev, "%s %d required=%u, avail=%u\n", __func__, __LINE__, required, count); return -ENOMEM; } else { return count; } } /* Program memcpy descriptors into the descriptor ring and update s/w head ptr*/ static int mic_dma_prog_memcpy_desc(struct mic_dma_chan *ch, dma_addr_t src, dma_addr_t dst, size_t len) { size_t current_transfer_len; size_t max_xfer_size = to_mic_dma_dev(ch)->max_xfer_size; /* 3 is added to make sure we have enough space for status desc */ int num_desc = len / max_xfer_size + 3; int ret; if (len % max_xfer_size) num_desc++; ret = mic_dma_avail_desc_ring_space(ch, num_desc); if (ret < 0) return ret; do { current_transfer_len = min(len, max_xfer_size); mic_dma_memcpy_desc(&ch->desc_ring[ch->head], src, dst, current_transfer_len); mic_dma_hw_ring_inc_head(ch); len -= current_transfer_len; dst = dst + current_transfer_len; src = src + current_transfer_len; } while (len > 0); return 0; } /* It's a h/w quirk and h/w needs 2 status descriptors for every status desc */ static void mic_dma_prog_intr(struct mic_dma_chan *ch) { mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0, ch->status_dest_micpa, false); mic_dma_hw_ring_inc_head(ch); mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0, ch->status_dest_micpa, true); mic_dma_hw_ring_inc_head(ch); } /* Wrapper function to program memcpy descriptors/status descriptors */ static int mic_dma_do_dma(struct mic_dma_chan *ch, int flags, dma_addr_t src, dma_addr_t dst, size_t len) { if (len && -ENOMEM == mic_dma_prog_memcpy_desc(ch, src, dst, len)) { return -ENOMEM; } else { /* 3 is the maximum number of status descriptors */ int ret = mic_dma_avail_desc_ring_space(ch, 3); if (ret < 0) return ret; } /* Above mic_dma_prog_memcpy_desc() makes sure we have enough space */ if (flags & DMA_PREP_FENCE) { mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0, ch->status_dest_micpa, false); mic_dma_hw_ring_inc_head(ch); } if (flags & DMA_PREP_INTERRUPT) mic_dma_prog_intr(ch); return 0; } static inline void mic_dma_issue_pending(struct dma_chan *ch) { struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch); spin_lock(&mic_ch->issue_lock); /* * Write to head triggers h/w to act on the descriptors. * On MIC, writing the same head value twice causes * a h/w error. On second write, h/w assumes we filled * the entire ring & overwrote some of the descriptors. */ if (mic_ch->issued == mic_ch->submitted) goto out; mic_ch->issued = mic_ch->submitted; /* * make descriptor updates visible before advancing head, * this is purposefully not smp_wmb() since we are also * publishing the descriptor updates to a dma device */ wmb(); mic_dma_write_reg(mic_ch, MIC_DMA_REG_DHPR, mic_ch->issued); out: spin_unlock(&mic_ch->issue_lock); } static inline void mic_dma_update_pending(struct mic_dma_chan *ch) { if (mic_dma_ring_count(ch->issued, ch->submitted) > mic_dma_pending_level) mic_dma_issue_pending(&ch->api_ch); } static dma_cookie_t mic_dma_tx_submit_unlock(struct dma_async_tx_descriptor *tx) { struct mic_dma_chan *mic_ch = to_mic_dma_chan(tx->chan); dma_cookie_t cookie; dma_cookie_assign(tx); cookie = tx->cookie; /* * We need an smp write barrier here because another CPU might see * an update to submitted and update h/w head even before we * assigned a cookie to this tx. */ smp_wmb(); mic_ch->submitted = mic_ch->head; spin_unlock(&mic_ch->prep_lock); mic_dma_update_pending(mic_ch); return cookie; } static inline struct dma_async_tx_descriptor * allocate_tx(struct mic_dma_chan *ch) { u32 idx = mic_dma_hw_ring_dec(ch->head); struct dma_async_tx_descriptor *tx = &ch->tx_array[idx]; dma_async_tx_descriptor_init(tx, &ch->api_ch); tx->tx_submit = mic_dma_tx_submit_unlock; return tx; } /* Program a status descriptor with dst as address and value to be written */ static struct dma_async_tx_descriptor * mic_dma_prep_status_lock(struct dma_chan *ch, dma_addr_t dst, u64 src_val, unsigned long flags) { struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch); int result; spin_lock(&mic_ch->prep_lock); result = mic_dma_avail_desc_ring_space(mic_ch, 4); if (result < 0) goto error; mic_dma_prep_status_desc(&mic_ch->desc_ring[mic_ch->head], src_val, dst, false); mic_dma_hw_ring_inc_head(mic_ch); result = mic_dma_do_dma(mic_ch, flags, 0, 0, 0); if (result < 0) goto error; return allocate_tx(mic_ch); error: dev_err(mic_dma_ch_to_device(mic_ch), "Error enqueueing dma status descriptor, error=%d\n", result); spin_unlock(&mic_ch->prep_lock); return NULL; } /* * Prepare a memcpy descriptor to be added to the ring. * Note that the temporary descriptor adds an extra overhead of copying the * descriptor to ring. So, we copy directly to the descriptor ring */ static struct dma_async_tx_descriptor * mic_dma_prep_memcpy_lock(struct dma_chan *ch, dma_addr_t dma_dest, dma_addr_t dma_src, size_t len, unsigned long flags) { struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch); struct device *dev = mic_dma_ch_to_device(mic_ch); int result; if (!len && !flags) return NULL; spin_lock(&mic_ch->prep_lock); result = mic_dma_do_dma(mic_ch, flags, dma_src, dma_dest, len); if (result >= 0) return allocate_tx(mic_ch); dev_err(dev, "Error enqueueing dma, error=%d\n", result); spin_unlock(&mic_ch->prep_lock); return NULL; } static struct dma_async_tx_descriptor * mic_dma_prep_interrupt_lock(struct dma_chan *ch, unsigned long flags) { struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch); int ret; spin_lock(&mic_ch->prep_lock); ret = mic_dma_do_dma(mic_ch, flags, 0, 0, 0); if (!ret) return allocate_tx(mic_ch); spin_unlock(&mic_ch->prep_lock); return NULL; } /* Return the status of the transaction */ static enum dma_status mic_dma_tx_status(struct dma_chan *ch, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch); if (DMA_COMPLETE != dma_cookie_status(ch, cookie, txstate)) mic_dma_cleanup(mic_ch); return dma_cookie_status(ch, cookie, txstate); } static irqreturn_t mic_dma_thread_fn(int irq, void *data) { mic_dma_cleanup((struct mic_dma_chan *)data); return IRQ_HANDLED; } static irqreturn_t mic_dma_intr_handler(int irq, void *data) { struct mic_dma_chan *ch = ((struct mic_dma_chan *)data); mic_dma_ack_interrupt(ch); return IRQ_WAKE_THREAD; } static int mic_dma_alloc_desc_ring(struct mic_dma_chan *ch) { u64 desc_ring_size = MIC_DMA_DESC_RX_SIZE * sizeof(*ch->desc_ring); struct device *dev = &to_mbus_device(ch)->dev; desc_ring_size = ALIGN(desc_ring_size, MIC_DMA_ALIGN_BYTES); ch->desc_ring = kzalloc(desc_ring_size, GFP_KERNEL); if (!ch->desc_ring) return -ENOMEM; ch->desc_ring_micpa = dma_map_single(dev, ch->desc_ring, desc_ring_size, DMA_BIDIRECTIONAL); if (dma_mapping_error(dev, ch->desc_ring_micpa)) goto map_error; ch->tx_array = vzalloc(MIC_DMA_DESC_RX_SIZE * sizeof(*ch->tx_array)); if (!ch->tx_array) goto tx_error; return 0; tx_error: dma_unmap_single(dev, ch->desc_ring_micpa, desc_ring_size, DMA_BIDIRECTIONAL); map_error: kfree(ch->desc_ring); return -ENOMEM; } static void mic_dma_free_desc_ring(struct mic_dma_chan *ch) { u64 desc_ring_size = MIC_DMA_DESC_RX_SIZE * sizeof(*ch->desc_ring); vfree(ch->tx_array); desc_ring_size = ALIGN(desc_ring_size, MIC_DMA_ALIGN_BYTES); dma_unmap_single(&to_mbus_device(ch)->dev, ch->desc_ring_micpa, desc_ring_size, DMA_BIDIRECTIONAL); kfree(ch->desc_ring); ch->desc_ring = NULL; } static void mic_dma_free_status_dest(struct mic_dma_chan *ch) { dma_unmap_single(&to_mbus_device(ch)->dev, ch->status_dest_micpa, L1_CACHE_BYTES, DMA_BIDIRECTIONAL); kfree(ch->status_dest); } static int mic_dma_alloc_status_dest(struct mic_dma_chan *ch) { struct device *dev = &to_mbus_device(ch)->dev; ch->status_dest = kzalloc(L1_CACHE_BYTES, GFP_KERNEL); if (!ch->status_dest) return -ENOMEM; ch->status_dest_micpa = dma_map_single(dev, ch->status_dest, L1_CACHE_BYTES, DMA_BIDIRECTIONAL); if (dma_mapping_error(dev, ch->status_dest_micpa)) { kfree(ch->status_dest); ch->status_dest = NULL; return -ENOMEM; } return 0; } static int mic_dma_check_chan(struct mic_dma_chan *ch) { if (mic_dma_read_reg(ch, MIC_DMA_REG_DCHERR) || mic_dma_read_reg(ch, MIC_DMA_REG_DSTAT) & MIC_DMA_CHAN_QUIESCE) { mic_dma_disable_chan(ch); mic_dma_chan_mask_intr(ch); dev_err(mic_dma_ch_to_device(ch), "%s %d error setting up mic dma chan %d\n", __func__, __LINE__, ch->ch_num); return -EBUSY; } return 0; } static int mic_dma_chan_setup(struct mic_dma_chan *ch) { if (MIC_DMA_CHAN_MIC == ch->owner) mic_dma_chan_set_owner(ch); mic_dma_disable_chan(ch); mic_dma_chan_mask_intr(ch); mic_dma_write_reg(ch, MIC_DMA_REG_DCHERRMSK, 0); mic_dma_chan_set_desc_ring(ch); ch->last_tail = mic_dma_read_reg(ch, MIC_DMA_REG_DTPR); ch->head = ch->last_tail; ch->issued = 0; mic_dma_chan_unmask_intr(ch); mic_dma_enable_chan(ch); return mic_dma_check_chan(ch); } static void mic_dma_chan_destroy(struct mic_dma_chan *ch) { mic_dma_disable_chan(ch); mic_dma_chan_mask_intr(ch); } static void mic_dma_unregister_dma_device(struct mic_dma_device *mic_dma_dev) { dma_async_device_unregister(&mic_dma_dev->dma_dev); } static int mic_dma_setup_irq(struct mic_dma_chan *ch) { ch->cookie = to_mbus_hw_ops(ch)->request_threaded_irq(to_mbus_device(ch), mic_dma_intr_handler, mic_dma_thread_fn, "mic dma_channel", ch, ch->ch_num); if (IS_ERR(ch->cookie)) return IS_ERR(ch->cookie); return 0; } static inline void mic_dma_free_irq(struct mic_dma_chan *ch) { to_mbus_hw_ops(ch)->free_irq(to_mbus_device(ch), ch->cookie, ch); } static int mic_dma_chan_init(struct mic_dma_chan *ch) { int ret = mic_dma_alloc_desc_ring(ch); if (ret) goto ring_error; ret = mic_dma_alloc_status_dest(ch); if (ret) goto status_error; ret = mic_dma_chan_setup(ch); if (ret) goto chan_error; return ret; chan_error: mic_dma_free_status_dest(ch); status_error: mic_dma_free_desc_ring(ch); ring_error: return ret; } static int mic_dma_drain_chan(struct mic_dma_chan *ch) { struct dma_async_tx_descriptor *tx; int err = 0; dma_cookie_t cookie; tx = mic_dma_prep_memcpy_lock(&ch->api_ch, 0, 0, 0, DMA_PREP_FENCE); if (!tx) { err = -ENOMEM; goto error; } cookie = tx->tx_submit(tx); if (dma_submit_error(cookie)) err = -ENOMEM; else err = dma_sync_wait(&ch->api_ch, cookie); if (err) { dev_err(mic_dma_ch_to_device(ch), "%s %d TO chan 0x%x\n", __func__, __LINE__, ch->ch_num); err = -EIO; } error: mic_dma_cleanup(ch); return err; } static inline void mic_dma_chan_uninit(struct mic_dma_chan *ch) { mic_dma_chan_destroy(ch); mic_dma_cleanup(ch); mic_dma_free_status_dest(ch); mic_dma_free_desc_ring(ch); } static int mic_dma_init(struct mic_dma_device *mic_dma_dev, enum mic_dma_chan_owner owner) { int i, first_chan = mic_dma_dev->start_ch; struct mic_dma_chan *ch; int ret; for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) { unsigned long data; ch = &mic_dma_dev->mic_ch[i]; data = (unsigned long)ch; ch->ch_num = i; ch->owner = owner; spin_lock_init(&ch->cleanup_lock); spin_lock_init(&ch->prep_lock); spin_lock_init(&ch->issue_lock); ret = mic_dma_setup_irq(ch); if (ret) goto error; } return 0; error: for (i = i - 1; i >= first_chan; i--) mic_dma_free_irq(ch); return ret; } static void mic_dma_uninit(struct mic_dma_device *mic_dma_dev) { int i, first_chan = mic_dma_dev->start_ch; struct mic_dma_chan *ch; for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) { ch = &mic_dma_dev->mic_ch[i]; mic_dma_free_irq(ch); } } static int mic_dma_alloc_chan_resources(struct dma_chan *ch) { int ret = mic_dma_chan_init(to_mic_dma_chan(ch)); if (ret) return ret; return MIC_DMA_DESC_RX_SIZE; } static void mic_dma_free_chan_resources(struct dma_chan *ch) { struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch); mic_dma_drain_chan(mic_ch); mic_dma_chan_uninit(mic_ch); } /* Set the fn. handlers and register the dma device with dma api */ static int mic_dma_register_dma_device(struct mic_dma_device *mic_dma_dev, enum mic_dma_chan_owner owner) { int i, first_chan = mic_dma_dev->start_ch; dma_cap_zero(mic_dma_dev->dma_dev.cap_mask); /* * This dma engine is not capable of host memory to host memory * transfers */ dma_cap_set(DMA_MEMCPY, mic_dma_dev->dma_dev.cap_mask); if (MIC_DMA_CHAN_HOST == owner) dma_cap_set(DMA_PRIVATE, mic_dma_dev->dma_dev.cap_mask); mic_dma_dev->dma_dev.device_alloc_chan_resources = mic_dma_alloc_chan_resources; mic_dma_dev->dma_dev.device_free_chan_resources = mic_dma_free_chan_resources; mic_dma_dev->dma_dev.device_tx_status = mic_dma_tx_status; mic_dma_dev->dma_dev.device_prep_dma_memcpy = mic_dma_prep_memcpy_lock; mic_dma_dev->dma_dev.device_prep_dma_imm_data = mic_dma_prep_status_lock; mic_dma_dev->dma_dev.device_prep_dma_interrupt = mic_dma_prep_interrupt_lock; mic_dma_dev->dma_dev.device_issue_pending = mic_dma_issue_pending; mic_dma_dev->dma_dev.copy_align = MIC_DMA_ALIGN_SHIFT; INIT_LIST_HEAD(&mic_dma_dev->dma_dev.channels); for (i = first_chan; i < fir a_uninit(mic_dma_dev); init_error: kfree(mic_dma_dev); mic_dma_dev = NULL; alloc_error: dev_err(dev, "Error at %s %d ret=%d\n", __func__, __LINE__, ret); return mic_dma_dev; } static void mic_dma_dev_unreg(struct mic_dma_device *mic_dma_dev) { mic_dma_unregister_dma_device(mic_dma_dev); mic_dma_uninit(mic_dma_dev); kfree(mic_dma_dev); } /* DEBUGFS CODE */ static int mic_dma_reg_seq_show(struct seq_file *s, void *pos) { struct mic_dma_device *mic_dma_dev = s->private; int i, chan_num, first_chan = mic_dma_dev->start_ch; struct mic_dma_chan *ch; seq_printf(s, "SBOX_DCR: %#x\n", mic_dma_mmio_read(&mic_dma_dev->mic_ch[first_chan], MIC_DMA_SBOX_BASE + MIC_DMA_SBOX_DCR)); seq_puts(s, "DMA Channel Registers\n"); seq_printf(s, "%-10s| %-10s %-10s %-10s %-10s %-10s", "Channel", "DCAR", "DTPR", "DHPR", "DRAR_HI", "DRAR_LO"); seq_printf(s, " %-11s %-14s %-10s\n", "DCHERR", "DCHERRMSK", "DSTAT"); for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) { ch = &mic_dma_dev->mic_ch[i]; chan_num = ch->ch_num; seq_printf(s, "%-10i| %-#10x %-#10x %-#10x %-#10x", chan_num, mic_dma_read_reg(ch, MIC_DMA_REG_DCAR), mic_dma_read_reg(ch, MIC_DMA_REG_DTPR), mic_dma_read_reg(ch, MIC_DMA_REG_DHPR), mic_dma_read_reg(ch, MIC_DMA_REG_DRAR_HI)); seq_printf(s, " %-#10x %-#10x %-#14x %-#10x\n", mic_dma_read_reg(ch, MIC_DMA_REG_DRAR_LO), mic_dma_read_reg(ch, MIC_DMA_REG_DCHERR), mic_dma_read_reg(ch, MIC_DMA_REG_DCHERRMSK), mic_dma_read_reg(ch, MIC_DMA_REG_DSTAT)); } return 0; } static int mic_dma_reg_debug_open(struct inode *inode, struct file *file) { return single_open(file, mic_dma_reg_seq_show, inode->i_private); } static int mic_dma_reg_debug_release(struct inode *inode, struct file *file) { return single_release(inode, file); } static const struct file_operations mic_dma_reg_ops = { .owner = THIS_MODULE, .open = mic_dma_reg_debug_open, .read = seq_read, .llseek = seq_lseek, .release = mic_dma_reg_debug_release }; /* Debugfs parent dir */ static struct dentry *mic_dma_dbg; static int mic_dma_driver_probe(struct mbus_device *mbdev) { struct mic_dma_device *mic_dma_dev; enum mic_dma_chan_owner owner; if (MBUS_DEV_DMA_MIC == mbdev->id.device) owner = MIC_DMA_CHAN_MIC; else owner = MIC_DMA_CHAN_HOST; mic_dma_dev = mic_dma_dev_reg(mbdev, owner); dev_set_drvdata(&mbdev->dev, mic_dma_dev); if (mic_dma_dbg) { mic_dma_dev->dbg_dir = debugfs_create_dir(dev_name(&mbdev->dev), mic_dma_dbg); if (mic_dma_dev->dbg_dir) debugfs_create_file("mic_dma_reg", 0444, mic_dma_dev->dbg_dir, mic_dma_dev, &mic_dma_reg_ops); } return 0; } static void mic_dma_driver_remove(struct mbus_device *mbdev) { struct mic_dma_device *mic_dma_dev; mic_dma_dev = dev_get_drvdata(&mbdev->dev); debugfs_remove_recursive(mic_dma_dev->dbg_dir); mic_dma_dev_unreg(mic_dma_dev); } static struct mbus_device_id id_table[] = { {MBUS_DEV_DMA_MIC, MBUS_DEV_ANY_ID}, {MBUS_DEV_DMA_HOST, MBUS_DEV_ANY_ID}, {0}, }; static struct mbus_driver mic_dma_driver = { .driver.name = KBUILD_MODNAME, .driver.owner = THIS_MODULE, .id_table = id_table, .probe = mic_dma_driver_probe, .remove = mic_dma_driver_remove, }; static int __init mic_x100_dma_init(void) { int rc = mbus_register_driver(&mic_dma_driver); if (rc) return rc; mic_dma_dbg = debugfs_create_dir(KBUILD_MODNAME, NULL); return 0; } static void __exit mic_x100_dma_exit(void) { debugfs_remove_recursive(mic_dma_dbg); mbus_unregister_driver(&mic_dma_driver); } module_init(mic_x100_dma_init); module_exit(mic_x100_dma_exit); MODULE_DEVICE_TABLE(mbus, id_table); MODULE_AUTHOR("Intel Corporation"); MODULE_DESCRIPTION("Intel(R) MIC X100 DMA Driver"); MODULE_LICENSE("GPL v2");