Linux kernel coding style This is a short document describing the preferred coding style for the linux kernel. Coding style is very personal, and I won't _force_ my views on anybody, but this is what goes for anything that I have to be able to maintain, and I'd prefer it for most other things too. Please at least consider the points made here. First off, I'd suggest printing out a copy of the GNU coding standards, and NOT read it. Burn them, it's a great symbolic gesture. Anyway, here goes: Chapter 1: Indentation Tabs are 8 characters, and thus indentations are also 8 characters. There are heretic movements that try to make indentations 4 (or even 2!) characters deep, and that is akin to trying to define the value of PI to be 3. Rationale: The whole idea behind indentation is to clearly define where a block of control starts and ends. Especially when you've been looking at your screen for 20 straight hours, you'll find it a lot easier to see how the indentation works if you have large indentations. Now, some people will claim that having 8-character indentations makes the code move too far to the right, and makes it hard to read on a 80-character terminal screen. The answer to that is that if you need more than 3 levels of indentation, you're screwed anyway, and should fix your program. In short, 8-char indents make things easier to read, and have the added benefit of warning you when you're nesting your functions too deep. Heed that warning. The preferred way to ease multiple indentation levels in a switch statement is to align the "switch" and its subordinate "case" labels in the same column instead of "double-indenting" the "case" labels. E.g.: switch (suffix) { case 'G': case 'g': mem <<= 30; break; case 'M': case 'm': mem <<= 20; break; case 'K': case 'k': mem <<= 10; /* fall through */ default: break; } Don't put multiple statements on a single line unless you have something to hide: if (condition) do_this; do_something_everytime; Don't put multiple assignments on a single line either. Kernel coding style is super simple. Avoid tricky expressions. Outside of comments, documentation and except in Kconfig, spaces are never used for indentation, and the above example is deliberately broken. Get a decent editor and don't leave whitespace at the end of lines. Chapter 2: Breaking long lines and strings Coding style is all about readability and maintainability using commonly available tools. The limit on the length of lines is 80 columns and this is a strongly preferred limit. Statements longer than 80 columns will be broken into sensible chunks, unless exceeding 80 columns significantly increases readability and does not hide information. Descendants are always substantially shorter than the parent and are placed substantially to the right. The same applies to function headers with a long argument list. However, never break user-visible strings such as printk messages, because that breaks the ability to grep for them. Chapter 3: Placing Braces and Spaces The other issue that always comes up in C styling is the placement of braces. Unlike the indent size, there are few technical reasons to choose one placement strategy over the other, but the preferred way, as shown to us by the prophets Kernighan and Ritchie, is to put the opening brace last on the line, and put the closing brace first, thusly: if (x is true) { we do y } This applies to all non-function statement blocks (if, switch, for, while, do). E.g.: switch (action) { case KOBJ_ADD: return "add"; case KOBJ_REMOVE: return "remove"; case KOBJ_CHANGE: return "change"; default: return NULL; } However, there is one special case, namely functions: they have the opening brace at the beginning of the next line, thus: int function(int x) { body of function } Heretic people all over the world have claimed that this inconsistency is ... well ... inconsistent, but all right-thinking people know that (a) K&R are _right_ and (b) K&R are right. Besides, functions are special anyway (you can't nest them in C). Note that the closing brace is empty on a line of its own, _except_ in the cases where it is followed by a continuation of the same statement, ie a "while" in a do-statement or an "else" in an if-statement, like this: do { body of do-loop } while (condition); and if (x == y) { .. } else if (x > y) { ... } else { .... } Rationale: K&R. Also, note that this brace-placement also minimizes the number of empty (or almost empty) lines, without any loss of readability. Thus, as the supply of new-lines on
<ul class="globaltoc">
{{ toctree(maxdepth=theme_globaltoc_depth|toint, collapse=False,includehidden=theme_globaltoc_includehidden|tobool) }}
</ul>
l API functions, please use the kernel-doc format. See the files Documentation/kernel-doc-nano-HOWTO.txt and scripts/kernel-doc for details. Linux style for comments is the C89 "/* ... */" style. Don't use C99-style "// ..." comments. The preferred style for long (multi-line) comments is: /* * This is the preferred style for multi-line * comments in the Linux kernel source code. * Please use it consistently. * * Description: A column of asterisks on the left side, * with beginning and ending almost-blank lines. */ For files in net/ and drivers/net/ the preferred style for long (multi-line) comments is a little different. /* The preferred comment style for files in net/ and drivers/net * looks like this. * * It is nearly the same as the generally preferred comment style, * but there is no initial almost-blank line. */ It's also important to comment data, whether they are basic types or derived types. To this end, use just one data declaration per line (no commas for multiple data declarations). This leaves you room for a small comment on each item, explaining its use. Chapter 9: You've made a mess of it That's OK, we all do. You've probably been told by your long-time Unix user helper that "GNU emacs" automatically formats the C sources for you, and you've noticed that yes, it does do that, but the defaults it uses are less than desirable (in fact, they are worse than random typing - an infinite number of monkeys typing into GNU emacs would never make a good program). So, you can either get rid of GNU emacs, or change it to use saner values. To do the latter, you can stick the following in your .emacs file: (defun c-lineup-arglist-tabs-only (ignored) "Line up argument lists by tabs, not spaces" (let* ((anchor (c-langelem-pos c-syntactic-element)) (column (c-langelem-2nd-pos c-syntactic-element)) (offset (- (1+ column) anchor)) (steps (floor offset c-basic-offset))) (* (max steps 1) c-basic-offset))) (add-hook 'c-mode-common-hook (lambda () ;; Add kernel style (c-add-style "linux-tabs-only" '("linux" (c-offsets-alist (arglist-cont-nonempty c-lineup-gcc-asm-reg c-lineup-arglist-tabs-only)))))) (add-hook 'c-mode-hook (lambda () (let ((filename (buffer-file-name))) ;; Enable kernel mode for the appropriate files (when (and filename (string-match (expand-file-name "~/src/linux-trees") filename)) (setq indent-tabs-mode t) (setq show-trailing-whitespace t) (c-set-style "linux-tabs-only"))))) This will make emacs go better with the kernel coding style for C files below ~/src/linux-trees. But even if you fail in getting emacs to do sane formatting, not everything is lost: use "indent". Now, again, GNU indent has the same brain-dead settings that GNU emacs has, which is why you need to give it a few command line options. However, that's not too bad, because even the makers of GNU indent recognize the authority of K&R (the GNU people aren't evil, they are just severely misguided in this matter), so you just give indent the options "-kr -i8" (stands for "K&R, 8 character indents"), or use "scripts/Lindent", which indents in the latest style. "indent" has a lot of options, and especially when it comes to comment re-formatting you may want to take a look at the man page. But remember: "indent" is not a fix for bad programming. Chapter 10: Kconfig configuration files For all of the Kconfig* configuration files throughout the source tree, the indentation is somewhat different. Lines under a "config" definition are indented with one tab, while help text is indented an additional two spaces. Example: config AUDIT bool "Auditing support" depends on NET help Enable auditing infrastructure that can be used with another kernel subsystem, such as SELinux (which requires this for logging of avc messages output). Does not do system-call auditing without CONFIG_AUDITSYSCALL. Seriously dangerous features (such as write support for certain filesystems) should advertise this prominently in their prompt string: config ADFS_FS_RW bool "ADFS write support (DANGEROUS)" depends on ADFS_FS ... For full documentation on the configuration files, see the file Documentation/kbuild/kconfig-language.txt. Chapter 11: Data structures Data structures that have visibility outside the single-threaded environment they are created and destroyed in should always have reference counts. In the kernel, garbage collection doesn't exist (and outside the kernel garbage collection is slow and inefficient), which means that you absolutely _have_ to reference count all your uses. Reference counting means that you can avoid locking, and allows multiple users to have access to the data structure in parallel - and not having to worry about the structure suddenly going away from under them just because they slept or did something else for a while. Note that locking is _not_ a replacement for reference counting. Locking is used to keep data structures coherent, while reference counting is a memory management technique. Usually both are needed, and they are not to be confused with each other. Many data structures can indeed have two levels of reference counting, when there are users of different "classes". The subclass count counts the number of subclass users, and decrements the global count just once when the subclass count goes to zero. Examples of this kind of "multi-level-reference-counting" can be found in memory management ("struct mm_struct": mm_users and mm_count), and in filesystem code ("struct super_block": s_count and s_active). Remember: if another thread can find your data structure, and you don't have a reference count on it, you almost certainly have a bug. Chapter 12: Macros, Enums and RTL Names of macros defining constants and labels in enums are capitalized. #define CONSTANT 0x12345 Enums are preferred when defining several related constants. CAPITALIZED macro names are appreciated but macros resembling functions may be named in lower case. Generally, inline functions are preferable to macros resembling functions. Macros with multiple statements should be enclosed in a do - while block: #define macrofun(a, b, c) \ do { \ if (a == 5) \ do_this(b, c); \ } while (0) Things to avoid when using macros: 1) macros that affect control flow: #define FOO(x) \ do { \ if (blah(x) < 0) \ return -EBUGGERED; \ } while(0) is a _very_ bad idea. It looks like a function call but exits the "calling" function; don't break the internal parsers of those who will read the code. 2) macros that depend on having a local variable with a magic name: #define FOO(val) bar(index, val) might look like a good thing, but it's confusing as hell when one reads the code and it's prone to breakage from seemingly innocent changes. 3) macros with arguments that are used as l-values: FOO(x) = y; will bite you if somebody e.g. turns FOO into an inline function. 4) forgetting about precedence: macros defining constants using expressions must enclose the expression in parentheses. Beware of similar issues with macros using parameters. #define CONSTANT 0x4000 #define CONSTEXP (CONSTANT | 3) 5) namespace collisions when defining local variables in macros resembling functions: #define FOO(x) \ ({ \ typeof(x) ret; \ ret = calc_ret(x); \ (ret); \ )} ret is a common name for a local variable - __foo_ret is less likely to collide with an existing variable. The cpp manual deals with macros exhaustively. The gcc internals manual also covers RTL which is used frequently with assembly language in the kernel. Chapter 13: Printing kernel messages Kernel developers like to be seen as literate. Do mind the spelling of kernel messages to make a good impression. Do not use crippled words like "dont"; use "do not" or "don't" instead. Make the messages concise, clear, and unambiguous. Kernel messages do not have to be terminated with a period. Printing numbers in parentheses (%d) adds no value and should be avoided. There are a number of driver model diagnostic macros in which you should use to make sure messages are matched to the right device and driver, and are tagged with the right level: dev_err(), dev_warn(), dev_info(), and so forth. For messages that aren't associated with a particular device, defines pr_notice(), pr_info(), pr_warn(), pr_err(), etc. Coming up with good debugging messages can be quite a challenge; and once you have them, they can be a huge help for remote troubleshooting. However debug message printing is handled differently than printing other non-debug messages. While the other pr_XXX() functions print unconditionally, pr_debug() does not; it is compiled out by default, unless either DEBUG is defined or CONFIG_DYNAMIC_DEBUG is set. That is true for dev_dbg() also, and a related convention uses VERBOSE_DEBUG to add dev_vdbg() messages to the ones already enabled by DEBUG. Many subsystems have Kconfig debug options to turn on -DDEBUG in the corresponding Makefile; in other cases specific files #define DEBUG. And when a debug message should be unconditionally printed, such as if it is already inside a debug-related #ifdef section, printk(KERN_DEBUG ...) can be used. Chapter 14: Allocating memory The kernel provides the following general purpose memory allocators: kmalloc(), kzalloc(), kmalloc_array(), kcalloc(), vmalloc(), and vzalloc(). Please refer to the API documentation for further information about them. The preferred form for passing a size of a struct is the following: p = kmalloc(sizeof(*p), ...); The alternative form where struct name is spelled out hurts readability and introduces an opportunity for a bug when the pointer variable type is changed but the corresponding sizeof that is passed to a memory allocator is not. Casting the return value which is a void pointer is redundant. The conversion from void pointer to any other pointer type is guaranteed by the C programming language. The preferred form for allocating an array is the following: p = kmalloc_array(n, sizeof(...), ...); The preferred form for allocating a zeroed array is the following: p = kcalloc(n, sizeof(...), ...); Both forms check for overflow on the allocation size n * sizeof(...), and return NULL if that occurred. Chapter 15: The inline disease There appears to be a common misperception that gcc has a magic "make me faster" speedup option called "inline". While the use of inlines can be appropriate (for example as a means of replacing macros, see Chapter 12), it very often is not. Abundant use of the inline keyword leads to a much bigger kernel, which in turn slows the system as a whole down, due to a bigger icache footprint for the CPU and simply because there is less memory available for the pagecache. Just think about it; a pagecache miss causes a disk seek, which easily takes 5 milliseconds. There are a LOT of cpu cycles that can go into these 5 milliseconds. A reasonable rule of thumb is to not put inline at functions that have more than 3 lines of code in them. An exception to this rule are the cases where a parameter is known to be a compiletime constant, and as a result of this constantness you *know* the compiler will be able to optimize most of your function away at compile time. For a good example of this later case, see the kmalloc() inline function. Often people argue that adding inline to functions that are static and used only once is always a win since there is no space tradeoff. While this is technically correct, gcc is capable of inlining these automatically without help, and the maintenance issue of removing the inline when a second user appears outweighs the potential value of the hint that tells gcc to do something it would have done anyway. Chapter 16: Function return values and names Functions can return values of many different kinds, and one of the most common is a value indicating whether the function succeeded or failed. Such a value can be represented as an error-code integer (-Exxx = failure, 0 = success) or a "succeeded" boolean (0 = failure, non-zero = success). Mixing up these two sorts of representations is a fertile source of difficult-to-find bugs. If the C language included a strong distinction between integers and booleans then the compiler would find these mistakes for us... but it doesn't. To help prevent such bugs, always follow this convention: If the name of a function is an action or an imperative command, the function should return an error-code integer. If the name is a predicate, the function should return a "succeeded" boolean. For example, "add work" is a command, and the add_work() function returns 0 for success or -EBUSY for failure. In the same way, "PCI device present" is a predicate, and the pci_dev_present() function returns 1 if it succeeds in finding a matching device or 0 if it doesn't. All EXPORTed functions must respect this convention, and so should all public functions. Private (static) functions need not, but it is recommended that they do. Functions whose return value is the actual result of a computation, rather than an indication of whether the computation succeeded, are not subject to this rule. Generally they indicate failure by returning some out-of-range result. Typical examples would be functions that return pointers; they use NULL or the ERR_PTR mechanism to report failure. Chapter 17: Don't re-invent the kernel macros The header file include/linux/kernel.h contains a number of macros that you should use, rather than explicitly coding some variant of them yourself. For example, if you need to calculate the length of an array, take advantage of the macro #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) Similarly, if you need to calculate the size of some structure member, use #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f)) There are also min() and max() macros that do strict type checking if you need them. Feel free to peruse that header file to see what else is already defined that you shouldn't reproduce in your code. Chapter 18: Editor modelines and other cruft Some editors can interpret configuration information embedded in source files, indicated with special markers. For example, emacs interprets lines marked like this: -*- mode: c -*- Or like this: /* Local Variables: compile-command: "gcc -DMAGIC_DEBUG_FLAG foo.c" End: */ Vim interprets markers that look like this: /* vim:set sw=8 noet */ Do not include any of these in source files. People have their own personal editor configurations, and your source files should not override them. This includes markers for indentation and mode configuration. People may use their own custom mode, or may have some other magic method for making indentation work correctly. Chapter 19: Inline assembly In architecture-specific code, you may need to use inline assembly to interface with CPU or platform functionality. Don't hesitate to do so when necessary. However, don't use inline assembly gratuitously when C can do the job. You can and should poke hardware from C when possible. Consider writing simple helper functions that wrap common bits of inline assembly, rather than repeatedly writing them with slight variations. Remember that inline assembly can use C parameters. Large, non-trivial assembly functions should go in .S files, with corresponding C prototypes defined in C header files. The C prototypes for assembly functions should use "asmlinkage". You may need to mark your asm statement as volatile, to prevent GCC from removing it if GCC doesn't notice any side effects. You don't always need to do so, though, and doing so unnecessarily can limit optimization. When writing a single inline assembly statement containing multiple instructions, put each instruction on a separate line in a separate quoted string, and end each string except the last with \n\t to properly indent the next instruction in the assembly output: asm ("magic %reg1, #42\n\t" "more_magic %reg2, %reg3" : /* outputs */ : /* inputs */ : /* clobbers */); Chapter 20: Conditional Compilation Wherever possible, don't use preprocessor conditionals (#if, #ifdef) in .c files; doing so makes code harder to read and logic harder to follow. Instead, use such conditionals in a header file defining functions for use in those .c files, providing no-op stub versions in the #else case, and then call those functions unconditionally from .c files. The compiler will avoid generating any code for the stub calls, producing identical results, but the logic will remain easy to follow. Prefer to compile out entire functions, rather than portions of functions or portions of expressions. Rather than putting an ifdef in an expression, factor out part or all of the expression into a separate helper function and apply the conditional to that function. If you have a function or variable which may potentially go unused in a particular configuration, and the compiler would warn about its definition going unused, mark the definition as __maybe_unused rather than wrapping it in a preprocessor conditional. (However, if a function or variable *always* goes unused, delete it.) Within code, where possible, use the IS_ENABLED macro to convert a Kconfig symbol into a C boolean expression, and use it in a normal C conditional: if (IS_ENABLED(CONFIG_SOMETHING)) { ... } The compiler will constant-fold the conditional away, and include or exclude the block of code just as with an #ifdef, so this will not add any runtime overhead. However, this approach still allows the C compiler to see the code inside the block, and check it for correctness (syntax, types, symbol references, etc). Thus, you still have to use an #ifdef if the code inside the block references symbols that will not exist if the condition is not met. At the end of any non-trivial #if or #ifdef block (more than a few lines), place a comment after the #endif on the same line, noting the conditional expression used. For instance: #ifdef CONFIG_SOMETHING ... #endif /* CONFIG_SOMETHING */ Appendix I: References The C Programming Language, Second Edition by Brian W. Kernighan and Dennis M. Ritchie. Prentice Hall, Inc., 1988. ISBN 0-13-110362-8 (paperback), 0-13-110370-9 (hardback). URL: http://cm.bell-labs.com/cm/cs/cbook/ The Practice of Programming by Brian W. Kernighan and Rob Pike. Addison-Wesley, Inc., 1999. ISBN 0-201-61586-X. URL: http://cm.bell-labs.com/cm/cs/tpop/ GNU manuals - where in compliance with K&R and this text - for cpp, gcc, gcc internals and indent, all available from http://www.gnu.org/manual/ WG14 is the international standardization working group for the programming language C, URL: http://www.open-std.org/JTC1/SC22/WG14/ Kernel CodingStyle, by greg@kroah.com at OLS 2002: http://www.kroah.com/linux/talks/ols_2002_kernel_codingstyle_talk/html/