/* * field_t: represents fields, rings and groups. * element_t: represents an element of a field_t. */ // Requires: // * stdarg.h // * stdio.h // * gmp.h // * utils.h #ifndef __PBC_FIELD_H__ #define __PBC_FIELD_H__ struct field_s; struct element_s { struct field_s *field; void *data; }; typedef struct element_s *element_ptr; typedef struct element_s element_t[1]; struct element_pp_s { struct field_s *field; void *data; }; typedef struct element_pp_s element_pp_t[1]; typedef struct element_pp_s *element_pp_ptr; void pbc_assert(int expr, char *msg, const char *func); void pbc_assert_match2(element_ptr a, element_ptr b, const char *func); void pbc_assert_match3(element_ptr a, element_ptr b, element_ptr c, const char *func); struct multiz_s; typedef struct multiz_s *multiz; struct pairing_s; struct field_s { void (*field_clear)(struct field_s *f); void (*init)(element_ptr); void (*clear)(element_ptr); void (*set_mpz)(element_ptr, mpz_ptr); void (*set_multiz)(element_ptr, multiz); void (*set)(element_ptr, element_ptr); void (*set0)(element_ptr); void (*set1)(element_ptr); int (*set_str)(element_ptr e, const char *s, int base); size_t(*out_str)(FILE *stream, int base, element_ptr); void (*add)(element_ptr, element_ptr, element_ptr); void (*sub)(element_ptr, element_ptr, element_ptr); void (*mul)(element_ptr, element_ptr, element_ptr); int (*is_sqr)(element_ptr); void (*sqrt)(element_ptr, element_ptr); // Defaults exist for these functions. int (*item_count)(element_ptr); element_ptr (*item)(element_ptr, int); element_ptr (*get_x)(element_ptr); element_ptr (*get_y)(element_ptr); void (*set_si)(element_ptr, signed long int); void (*add_ui)(element_ptr, element_ptr, unsigned long int); void (*mul_mpz)(element_ptr, element_ptr, mpz_ptr); void (*mul_si)(element_ptr, element_ptr, signed long int); void (*div)(element_ptr, element_ptr, element_ptr); void (*doub)(element_ptr, element_ptr); // Can't call it "double"! void (*multi_doub)(element_ptr*, element_ptr*, int n); void (*multi_add)(element_ptr*, element_ptr*, element_ptr*, int n); void (*halve)(element_ptr, element_ptr); void (*square)(element_ptr, element_ptr); void (*cubic) (element_ptr, element_ptr); void (*pow_mpz)(element_ptr, element_ptr, mpz_ptr); void (*invert)(element_ptr, element_ptr); void (*neg)(element_ptr, element_ptr); void (*random)(element_ptr); void (*from_hash)(element_ptr, void *data, int len); int (*is1)(element_ptr); int (*is0)(element_ptr); int (*sign)(element_ptr); // satisfies sign(x) = -sign(-x) int (*cmp)(element_ptr, element_ptr); int (*to_bytes)(unsigned char *data, element_ptr); int (*from_bytes)(element_ptr, unsigned char *data); int (*length_in_bytes)(element_ptr); int fixed_length_in_bytes; // length of an element in bytes; -1 for variable int (*snprint)(char *s, size_t n, element_ptr e); void (*to_mpz)(mpz_ptr, element_ptr); void (*out_info)(FILE *, struct field_s *); void (*pp_init)(element_pp_t p, element_t in); void (*pp_clear)(element_pp_t p); void (*pp_pow)(element_t out, mpz_ptr power, element_pp_t p); struct pairing_s *pairing; mpz_t order; // 0 for infinite order element_ptr nqr; // nonquadratic residue char *name; void *data; }; typedef struct field_s *field_ptr; typedef struct field_s field_t[1]; typedef void (*fieldmap) (element_t dst, element_t src); void field_out_info(FILE* out, field_ptr f); /*@manual internal Initialize 'e' to be an element of the algebraic structure 'f' and set it to be the zero element. */ static inline void element_init(element_t e, field_ptr f) { e->field = f; f->init(e); } element_ptr element_new(field_ptr f); void element_free(element_ptr e); /*@manual einit Initialize 'e' to be an element of the algebraic structure that 'e2' lies in. */ static inline void element_init_same_as(element_t e, element_t e2) { element_init(e, e2->field); } /*@manual einit Free the space occupied by 'e'. Call this when the variable 'e' is no longer needed. */ static inline void element_clear(element_t e) { e->field->clear(e); } /*@manual eio Output 'e' on 'stream' in base 'base'. The base must be between 2 and 36. */ static inline size_t element_out_str(FILE * stream, int base, element_t e) { return e->field->out_str(stream, base, e); } /*@manual eio */ int element_printf(const char *format, ...); /*@manual eio */ int element_fprintf(FILE * stream, const char *format, ...); /*@manual eio */ int element_snprintf(char *buf, size_t size, const char *fmt, ...); /*@manual eio Same as printf family except also has the 'B' conversion specifier for types of *element_t*, and 'Y', 'Z' conversion specifiers for +mpz_t+. For example if 'e' is of type +element_t+ then element_printf("%B\n", e); will print the value of 'e' in a human-readable form on standard output. */ int element_vsnprintf(char *buf, size_t size, const char *fmt, va_list ap); /*@manual eio Convert an element to a human-friendly string. Behaves as *snprintf* but only on one element at a time. */ static inline int element_snprint(char *s, size_t n, element_t e) { return e->field->snprint(s, n, e); } static inline void element_set_multiz(element_t e, multiz m) { e->field->set_multiz(e, m); } /*@manual eio Set the element 'e' from 's', a null-terminated C string in base 'base'. Whitespace is ignored. Points have the form "['x,y']" or "'O'", while polynomials have the form "['a0,...,an']". Returns number of characters read (unlike GMP's mpz_set_str). A return code of zero means PBC could not find a well-formed string describing an element. */ static inline int element_set_str(element_t e, const char *s, int base) { return e->field->set_str(e, s, base); } /*@manual eassign Set 'e' to zero. */ static inline void element_set0(element_t e) { e->field->set0(e); } /*@manual eassign Set 'e' to one. */ static inline void element_set1(element_t e) { e->field->set1(e); } /*@manual eassign Set 'e' to 'i'. */ static inline void element_set_si(element_t e, signed long int i) { e->field->set_si(e, i); } /*@manual eassign Set 'e' to 'z'. */ static inline void element_set_mpz(element_t e, mpz_t z) { e->field->set_mpz(e, z); } /*@manual eassign Set 'e' to 'a'. */ static inline void element_set(element_t e, element_t a) { PBC_ASSERT_MATCH2(e, a); e->field->set(e, a); } static inline void element_add_ui(element_t n, element_t a, unsigned long int b) { n->field->add_ui(n, a, b); } /*@manual econvert Converts 'e' to a GMP integer 'z' if such an operation makes sense */ static inline void element_to_mpz(mpz_t z, element_t e) { e->field->to_mpz(z, e); } static inline long element_to_si(element_t e) { mpz_t z; mpz_init(z); e->field->to_mpz(z, e); long res = mpz_get_si(z); mpz_clear(z); return res; } /*@manual econvert Generate an element 'e' deterministically from the 'len' bytes stored in the buffer 'data'. */ static inline void element_from_hash(element_t e, void *data, int len) { e->field->from_hash(e, data, len); } /*@manual earith Set 'n' to 'a' + 'b'. */ static inline void element_add(element_t n, element_t a, element_t b) { PBC_ASSERT_MATCH3(n, a, b); n->field->add(n, a, b); } /*@manual earith Set 'n' to 'a' - 'b'. */ static inline void element_sub(element_t n, element_t a, element_t b) { PBC_ASSERT_MATCH3(n, a, b); n->field->sub(n, a, b); } /*@manual earith Set 'n' = 'a' 'b'. */ static inline void element_mul(element_t n, element_t a, element_t b) { PBC_ASSERT_MATCH3(n, a, b); n->field->mul(n, a, b); } static inline void element_cubic(element_t n, element_t a) { PBC_ASSERT_MATCH2(n, a); n->field->cubic(n, a); } /*@manual earith */ static inline void element_mul_mpz(element_t n, element_t a, mpz_t z) { PBC_ASSERT_MATCH2(n, a); n->field->mul_mpz(n, a, z); } /*@manual earith Set 'n' = 'a' 'z', that is 'a' + 'a' + ... + 'a' where there are 'z' 'a'#'s#. */ static inline void element_mul_si(element_t n, element_t a, signed long int z) { PBC_ASSERT_MATCH2(n, a); n->field->mul_si(n, a, z); } /*@manual earith 'z' must be an element of a integer mod ring (i.e. *Z*~n~ for some n). Set 'c' = 'a' 'z', that is 'a' + 'a' + ... + 'a' where there are 'z' 'a''s. */ static inline void element_mul_zn(element_t c, element_t a, element_t z) { mpz_t z0; PBC_ASSERT_MATCH2(c, a); //TODO: check z->field is Zn mpz_init(z0); element_to_mpz(z0, z); element_mul_mpz(c, a, z0); mpz_clear(z0); } /*@manual earith Set 'n' = 'a' / 'b'. */ static inline void element_div(element_t n, element_t a, element_t b) { PBC_ASSERT_MATCH3(n, a, b); n->field->div(n, a, b); } /*@manual earith Set 'n' = 'a' + 'a'. */ static inline void element_double(element_t n, element_t a) { PBC_ASSERT_MATCH2(n, a); n->field->doub(n, a); } // Set n_i = a_i + a_i for all i at one time. // Uses multi_doub(), which only elliptic curves have at the moment. void element_multi_double(element_t n[], element_t a[], int m); // Set n_i =a_i + b_i for all i at one time. // Uses multi_add(), which only elliptic curves have at the moment. void element_multi_add(element_t n[], element_t a[],element_t b[], int m); /*@manual earith Set 'n' = 'a/2' */ static inline void element_halve(element_t n, element_t a) { PBC_ASSERT_MATCH2(n, a); n->field->halve(n, a); } /*@manual earith Set 'n' = 'a'^2^ */ static inline void element_square(element_t n, element_t a) { PBC_ASSERT_MATCH2(n, a); n->field->square(n, a); } /*@manual epow Set 'x' = 'a'^'n'^, that is 'a' times 'a' times ... times 'a' where there are 'n' 'a'#'s#. */ static inline void element_pow_mpz(element_t x, element_t a, mpz_t n) { PBC_ASSERT_MATCH2(x, a); x->field->pow_mpz(x, a, n); } /*@manual epow Set 'x' = 'a'^'n'^, where 'n' is an element of a ring *Z*~N~ for some 'N' (typically the order of the algebraic structure 'x' lies in). */ static inline void element_pow_zn(element_t x, element_t a, element_t n) { mpz_t z; PBC_ASSERT_MATCH2(x, a); mpz_init(z); element_to_mpz(z, n); element_pow_mpz(x, a, z); mpz_clear(z); } /*@manual earith Set 'n' = -'a'. */ static inline void element_neg(element_t n, element_t a) { PBC_ASSERT_MATCH2(n, a); n->field->neg(n, a); } /*@manual earith Set 'n' to the inverse of 'a'. */ static inline void element_invert(element_t n, element_t a) { PBC_ASSERT_MATCH2(n, a); n->field->invert(n, a); } /*@manual erandom If the 'e' lies in a finite algebraic structure, assigns a uniformly random element to 'e'. */ static inline void element_random(element_t e) { e->field->random(e); } /*@manual ecmp Returns true if 'n' is 1. */ static inline int element_is1(element_t n) { return n->field->is1(n); } /*@manual ecmp Returns true if 'n' is 0. */ static inline int element_is0(element_t n) { return n->field->is0(n); } /*@manual ecmp Returns 0 if 'a' and 'b' are the same, nonzero otherwise. */ static inline int element_cmp(element_t a, element_t b) { PBC_ASSERT_MATCH2(a, b); return a->field->cmp(a, b); } /*@manual ecmp Returns nonzero if 'a' is a perfect square (quadratic residue), zero otherwise. */ static inline int element_is_sqr(element_t a) { return a->field->is_sqr(a); } /*@manual ecmp */ static inline int element_sgn(element_t a) { return a->field->sign(a); } /*@manual ecmp If 'a' is zero, returns 0. For nozero 'a' the behaviour depends on the algebraic structure, but has the property that element_sgn('a') = -element_sgn(-'a') and element_sgn('a') = 0 implies 'a' = 0 with overwhelming probability. */ static inline int element_sign(element_t a) { return a->field->sign(a); } static inline void element_sqrt(element_t a, element_t b) { PBC_ASSERT_MATCH2(a, b); a->field->sqrt(a, b); } /*@manual etrade Returns the length in bytes the element 'e' will take to represent */ static inline int element_length_in_bytes(element_t e) { if (e->field->fixed_length_in_bytes < 0) { return e->field->length_in_bytes(e); } else { return e->field->fixed_length_in_bytes; } } /*@manual etrade Converts 'e' to byte, writing the result in the buffer 'data'. The number of bytes it will write can be determined from calling *element_length_in_bytes()*. Returns number of bytes written. */ static inline int element_to_bytes(unsigned char *data, element_t e) { return e->field->to_bytes(data, e); } /*@manual etrade Reads 'e' from the buffer 'data', and returns the number of bytes read. */ static inline int element_from_bytes(element_t e, unsigned char *data) { return e->field->from_bytes(e, data); } /*@manual epow Sets 'x' = 'a1'^'n1'^ 'a2'^'n2'^, and is generally faster than performing two separate exponentiations. */ void element_pow2_mpz(element_t x, element_t a1, mpz_t n1, element_t a2, mpz_t n2); /*@manual epow Also sets 'x' = 'a1'^'n1'^ 'a2'^'n2'^, but 'n1', 'n2' must be elements of a ring *Z*~n~ for some integer n. */ static inline void element_pow2_zn(element_t x, element_t a1, element_t n1, element_t a2, element_t n2) { mpz_t z1, z2; mpz_init(z1); mpz_init(z2); element_to_mpz(z1, n1); element_to_mpz(z2, n2); element_pow2_mpz(x, a1, z1, a2, z2); mpz_clear(z1); mpz_clear(z2); } /*@manual epow Sets 'x' = 'a1'^'n1'^ 'a2'^'n2'^ 'a3'^'n3'^, generally faster than performing three separate exponentiations. */ void element_pow3_mpz(element_t x, element_t a1, mpz_t n1, element_t a2, mpz_t n2, element_t a3, mpz_t n3); /*@manual epow Also sets 'x' = 'a1'^'n1'^ 'a2'^'n2'^ 'a3'^'n3'^, but 'n1', 'n2', 'n3' must be elements of a ring *Z*~n~ for some integer n. */ static inline void element_pow3_zn(element_t x, element_t a1, element_t n1, element_t a2, element_t n2, element_t a3, element_t n3) { mpz_t z1, z2, z3; mpz_init(z1); mpz_init(z2); mpz_init(z3); element_to_mpz(z1, n1); element_to_mpz(z2, n2); element_to_mpz(z3, n3); element_pow3_mpz(x, a1, z1, a2, z2, a3, z3); mpz_clear(z1); mpz_clear(z2); mpz_clear(z3); } void field_clear(field_ptr f); element_ptr field_get_nqr(field_ptr f); void field_set_nqr(field_ptr f, element_t nqr); void field_gen_nqr(field_ptr f); void field_init(field_ptr f); static inline int mpz_is0(mpz_t z) { return !mpz_sgn(z); //return !mpz_cmp_ui(z, 0); } /*@manual etrade Assumes 'e' is a point on an elliptic curve. Writes the x-coordinate of 'e' to the buffer 'data' */ int element_to_bytes_x_only(unsigned char *data, element_t e); /*@manual etrade Assumes 'e' is a point on an elliptic curve. Sets 'e' to a point with x-coordinate represented by the buffer 'data'. This is not unique. For each 'x'-coordinate, there exist two different points, at least for the elliptic curves in PBC. (They are inverses of each other.) */ int element_from_bytes_x_only(element_t e, unsigned char *data); /*@manual etrade Assumes 'e' is a point on an elliptic curve. Returns the length in bytes needed to hold the x-coordinate of 'e'. */ int element_length_in_bytes_x_only(element_t e); /*@manual etrade If possible, outputs a compressed form of the element 'e' to the buffer of bytes 'data'. Currently only implemented for points on an elliptic curve. */ int element_to_bytes_compressed(unsigned char *data, element_t e); /*@manual etrade Sets element 'e' to the element in compressed form in the buffer of bytes 'data'. Currently only implemented for points on an elliptic curve. */ int element_from_bytes_compressed(element_t e, unsigned char *data); /*@manual etrade Returns the number of bytes needed to hold 'e' in compressed form. Currently only implemented for points on an elliptic curve. */ int element_length_in_bytes_compressed(element_t e); /*@manual epow Prepare to exponentiate an element 'in', and store preprocessing information in 'p'. */ static inline void element_pp_init(element_pp_t p, element_t in) { p->field = in->field; in->field->pp_init(p, in); } /*@manual epow Clear 'p'. Should be called after 'p' is no longer needed. */ static inline void element_pp_clear(element_pp_t p) { p->field->pp_clear(p); } /*@manual epow Raise 'in' to 'power' and store the result in 'out', where 'in' is a previously preprocessed element, that is, the second argument passed to a previous *element_pp_init* call. */ static inline void element_pp_pow(element_t out, mpz_ptr power, element_pp_t p) { p->field->pp_pow(out, power, p); } /*@manual epow Same except 'power' is an element of *Z*~n~ for some integer n. */ static inline void element_pp_pow_zn(element_t out, element_t power, element_pp_t p) { mpz_t z; mpz_init(z); element_to_mpz(z, power); element_pp_pow(out, z, p); mpz_clear(z); } void pbc_mpz_out_raw_n(unsigned char *data, int n, mpz_t z); void pbc_mpz_from_hash(mpz_t z, mpz_t limit, unsigned char *data, unsigned int len); /*@manual etrade For points, returns the number of coordinates. For polynomials, returns the number of coefficients. Otherwise returns zero. */ static inline int element_item_count(element_t e) { return e->field->item_count(e); } /*@manual etrade For points, returns 'n'#th# coordinate. For polynomials, returns coefficient of 'x^n^'. Otherwise returns NULL. The element the return value points to may be modified. */ static inline element_ptr element_item(element_t e, int i) { // TODO: Document the following: // For polynomials, never zero the leading coefficient, e.g. never write: // element_set0(element_item(f, poly_degree(f))); // Use poly_set_coeff0() to zero the leading coefficient. return e->field->item(e, i); } // Returns the field containing the items. // Returns NULL if there are no items. static inline field_ptr element_item_field(element_t e) { if (!element_item_count(e)) return NULL; return element_item(e, 0)->field; } /*@manual etrade Equivalent to `element_item(a, 0)`. */ static inline element_ptr element_x(element_ptr a) { return a->field->get_x(a); } /*@manual etrade Equivalent to `element_item(a, 1)`. */ static inline element_ptr element_y(element_ptr a) { return a->field->get_y(a); } /*@manual epow Computes 'x' such that 'g^x^ = h' by brute force, where 'x' lies in a field where `element_set_mpz()` makes sense. */ void element_dlog_brute_force(element_t x, element_t g, element_t h); /*@manual epow Computes 'x' such that 'g^x^ = h' using Pollard rho method, where 'x' lies in a field where `element_set_mpz()` makes sense. */ void element_dlog_pollard_rho(element_t x, element_t g, element_t h); // Trial division up to a given limit. If limit == NULL, then there is no limit. // Call the callback for each factor found, abort and return 1 if the callback // returns nonzero, otherwise return 0. int pbc_trial_divide(int (*fun)(mpz_t factor, unsigned int multiplicity, void *scope_ptr), void *scope_ptr, mpz_t n, mpz_ptr limit); #endif // __PBC_FIELD_H__