/* * Toy example of a field where the Tate pairing can be used * but the Weil pairing cannot. * * Consider the curve E: y^2 = x^3 + x + 6 over F_19: * E(F_19) is a cyclic group of order 18. * Thus E[3] is not contained in F_19 * (it turns out E[3] is contained in F_19^3). * * Hence the Weil pairing cannot be defined over F_19 * However, F_19 contains the cube roots of unity * so we can compute the Tate pairing */ /* * P = (12,13) generates a group of order 3: * <(12,13)> = {(12,13), (12,6), O} * e(P,P) = 7, so we have the isomorphism * <(12,13)> = <7> (in F_19^*) * * Similarly P = (4, 6) generates a group of order 9, and we find * <(4,6)> = <4> * * P = (0, 5) generates all of E(F_19) * Miller's algorithm will not allow us to calculate e(P, P) without * first extending F_19. * Instead of extending, we could manipulate rational functions since * 19 is small enough that an explicit expression of f_P can be found. */ #include "pbc.h" #include "pbc_fp.h" #include "pbc_fieldquadratic.h" static void miller(element_t res, element_t P, element_ptr QR, element_ptr R, int n) { // Collate divisions. int m; element_t v, vd; element_t Z; element_t a, b, c; const element_ptr cca = curve_a_coeff(P); const element_ptr Px = curve_x_coord(P); const element_ptr Py = curve_y_coord(P); element_t e0, e1; mpz_t q; element_ptr Zx, Zy; const element_ptr numx = curve_x_coord(QR); const element_ptr numy = curve_y_coord(QR); const element_ptr denomx = curve_x_coord(R); const element_ptr denomy = curve_y_coord(R); void do_vertical(element_t e, element_t edenom) { element_sub(e0, numx, Zx); element_mul(e, e, e0); element_sub(e0, denomx, Zx); element_mul(edenom, edenom, e0); } void do_tangent(element_t e, element_t edenom) { //a = -slope_tangent(A.x, A.y); //b = 1; //c = -(A.y + a * A.x); //but we multiply by 2*A.y to avoid division //a = -Ax * (Ax + Ax + Ax + twicea_2) - a_4; //Common curves: a2 = 0 (and cc->a is a_4), so //a = -(3 Ax^2 + cc->a) //b = 2 * Ay //c = -(2 Ay^2 + a Ax); if (element_is0(Zy)) { do_vertical(e, edenom); return; } element_square(a, Zx); element_mul_si(a, a, 3); element_add(a, a, cca); element_neg(a, a); element_add(b, Zy, Zy); element_mul(e0, b, Zy); element_mul(c, a, Zx); element_add(c, c, e0); element_neg(c, c); element_mul(e0, a, numx); element_mul(e1, b, numy); element_add(e0, e0, e1); element_add(e0, e0, c); element_mul(e, e, e0); element_mul(e0, a, denomx); element_mul(e1, b, denomy); element_add(e0, e0, e1); element_add(e0, e0, c); element_mul(edenom, edenom, e0); } void do_line(element_ptr e, element_ptr edenom) { if (!element_cmp(Zx, Px)) { if (!element_cmp(Zy, Py)) { do_tangent(e, edenom); } else { do_vertical(e, edenom); } return; } element_sub(b, Px, Zx); element_sub(a, Zy, Py); element_mul(c, Zx, Py); element_mul(e0, Zy, Px); element_sub(c, c, e0); element_mul(e0, a, numx); element_mul(e1, b, numy); element_add(e0, e0, e1); element_add(e0, e0, c); element_mul(e, e, e0); element_mul(e0, a, denomx); element_mul(e1, b, denomy); element_add(e0, e0, e1); element_add(e0, e0, c); element_mul(edenom, edenom, e0); } element_init(a, res->field); element_init(b, res->field); element_init(c, res->field); element_init(e0, res->field); element_init(e1, res->field); element_init(v, res->field); element_init(vd, res->field); element_init(Z, P->field); element_set(Z, P); Zx = curve_x_coord(Z); Zy = curve_y_coord(Z); element_set1(v); element_set1(vd); mpz_init(q); mpz_set_ui(q, n); m = mpz_sizeinbase(q, 2) - 2; while(m >= 0) { element_square(v, v); element_square(vd, vd); do_tangent(v, vd); element_double(Z, Z); do_vertical(vd, v); if (mpz_tstbit(q, m)) { do_line(v, vd); element_add(Z, Z, P); if (m) { do_vertical(vd, v); } } m--; } mpz_clear(q); element_invert(vd, vd); element_mul(res, v, vd); element_clear(v); element_clear(vd); element_clear(Z); element_clear(a); element_clear(b); element_clear(c); element_clear(e0); element_clear(e1); } static void tate_3(element_ptr out, element_ptr P, element_ptr Q, element_ptr R) { mpz_t six; mpz_init(six); mpz_set_ui(six, 6); element_t QR; element_t e0; element_init(QR, P->field); element_init(e0, out->field); element_add(QR, Q, R); //for subgroup size 3, -2P = P, hence //the tangent line at P has divisor 3(P) - 3(O) miller(out, P, QR, R, 3); element_pow_mpz(out, out, six); element_clear(QR); element_clear(e0); mpz_clear(six); } static void tate_9(element_ptr out, element_ptr P, element_ptr Q, element_ptr R) { element_t QR; element_init(QR, P->field); element_add(QR, Q, R); miller(out, P, QR, R, 9); element_square(out, out); element_clear(QR); } static void tate_18(element_ptr out, element_ptr P, element_ptr Q, element_ptr R, element_ptr S) { mpz_t pow; element_t PR; element_t QS; element_init(PR, P->field); element_init(QS, P->field); element_t outd; element_init(outd, out->field); mpz_init(pow); mpz_set_ui(pow, (19*19-1)/18); element_add(PR, P, R); element_add(QS, Q, S); if (element_is0(QS)) { element_t S2; element_init(S2, P->field); element_double(S2, S); miller(out, PR, S, S2, 18); miller(outd, R, S, S2, 18); element_clear(S2); } else { miller(out, PR, QS, S, 18); miller(outd, R, QS, S, 18); } element_clear(PR); element_clear(QS); element_invert(outd, outd); element_mul(out, out, outd); element_pow_mpz(out, out, pow); element_clear(outd); mpz_clear(pow); } int main(void) { field_t c; field_t Z19; element_t P, Q, R; mpz_t q, z; element_t a, b; int i; field_t Z19_2; field_t c2; element_t P2, Q2, R2; element_t a2; mpz_init(q); mpz_init(z); mpz_set_ui(q, 19); field_init_fp(Z19, q); element_init(a, Z19); element_init(b, Z19); element_set_si(a, 1); element_set_si(b, 6); mpz_set_ui(q, 18); field_init_curve_ab(c, a, b, q, NULL); element_init(P, c); element_init(Q, c); element_init(R, c); printf("Y^2 = X^3 + X + 6 over F_19\n"); //(0,+/-5) is a generator element_set0(a); curve_from_x(R, a); for (i=1; i<19; i++) { mpz_set_si(z, i); element_mul_mpz(Q, R, z); element_printf("%dR = %B\n", i, Q); } mpz_set_ui(z, 6); element_mul_mpz(P, R, z); //P has order 3 element_printf("P = %B\n", P); for (i=1; i<=3; i++) { mpz_set_si(z, i); element_mul_mpz(Q, R, z); tate_3(a, P, Q, R); element_printf("e_3(P,%dR) = %B\n", i, a); } element_double(P, R); //P has order 9 element_printf("P = %B\n", P); for (i=1; i<=9; i++) { mpz_set_si(z, i); //we're supposed to use multiples of R //but 2R works just as well and it allows us //to use R as the offset every time element_mul_mpz(Q, P, z); tate_9(a, P, Q, R); element_printf("e_9(P,%dP) = %B\n", i, a); } //to do the pairing on all of E(F_19) we need to move to F_19^2 //or compute the rational function explicitly printf("moving to F_19^2\n"); field_init_fi(Z19_2, Z19); //don't need to tell it the real order field_init_curve_ab_map(c2, c, element_field_to_fi, Z19_2, q, NULL); element_init(P2, c2); element_init(Q2, c2); element_init(R2, c2); element_init(a2, Z19_2); element_set0(a2); curve_from_x(P2, a2); element_random(R2); element_printf("P = %B\n", P2); for (i=1; i<=18; i++) { mpz_set_si(z, i); element_mul_mpz(Q2, P2, z); tate_18(a2, P2, Q2, R2, P2); element_printf("e_18(P,%dP) = %B\n", i, a2); } element_clear(P2); element_clear(Q2); element_clear(R2); element_clear(a2); field_clear(c2); field_clear(Z19_2); field_clear(c); element_clear(a); element_clear(b); element_clear(P); element_clear(Q); element_clear(R); field_clear(Z19); mpz_clear(q); mpz_clear(z); return 0; }