// Type D pairings, aka MNT curves. #include #include #include // for intptr_t #include #include #include #include "pbc_utils.h" #include "pbc_field.h" #include "pbc_poly.h" #include "pbc_hilbert.h" #include "pbc_fp.h" #include "pbc_fieldquadratic.h" #include "pbc_mnt.h" #include "pbc_curve.h" #include "pbc_param.h" #include "pbc_pairing.h" #include "pbc_memory.h" #include "pbc_d_param.h" #include "ecc/param.h" struct d_param_s { mpz_t q; // curve defined over F_q mpz_t n; // has order n (= q - t + 1) in F_q mpz_t h; // h * r = n, r is prime mpz_t r; mpz_t a, b; // curve equation is y^2 = x^3 + ax + b int k; // embedding degree mpz_t nk; // order of curve over F_q^k mpz_t hk; // hk * r^2 = nk mpz_t *coeff; // coefficients of polynomial used to extend F_q by k/2 mpz_t nqr; // a quadratic nonresidue in F_q^d that lies in F_q }; typedef struct d_param_s d_param_t[1]; typedef struct d_param_s *d_param_ptr; // Per-pairing data. typedef struct { field_t Fq, Fqx, Fqd, Fqk; // The fields F_q, F_q[x], F_q^d, F_q^k. field_t Eq, Etwist; // The curves E(F_q) and E'(F_q^d). // Let v be the quadratic nonresidue used to construct F_q^k from F_q^d, // namely Fqk = Fqd[sqrt(v)]. element_t nqrinv, nqrinv2; // The constants v^-1 and v^-2. mpz_t tateexp; // The Tate exponent, // to standardize coset representatives. int k; // The embedding degree, usually 6. // Let x be the element used to build Fqd from Fq, i.e. Fqd = Fq[x]. element_t xpowq, xpowq2; // x^q and x^{2q} in F_q^d. } *pptr; static void d_clear(void *data) { d_param_ptr param = data; int d = param->k / 2; int i; mpz_clear(param->q); mpz_clear(param->n); mpz_clear(param->h); mpz_clear(param->r); mpz_clear(param->a); mpz_clear(param->b); mpz_clear(param->nk); mpz_clear(param->hk); mpz_clear(param->nqr); for (i=0; icoeff[i]); } pbc_free(param->coeff); pbc_free(data); } static void d_out_str(FILE *stream, void *data) { d_param_ptr p = data; int d = p->k / 2; int i; char s[8]; param_out_type(stream, "d"); param_out_mpz(stream, "q", p->q); param_out_mpz(stream, "n", p->n); param_out_mpz(stream, "h", p->h); param_out_mpz(stream, "r", p->r); param_out_mpz(stream, "a", p->a); param_out_mpz(stream, "b", p->b); param_out_int(stream, "k", p->k); param_out_mpz(stream, "nk", p->nk); param_out_mpz(stream, "hk", p->hk); for (i=0; icoeff[i]); } param_out_mpz(stream, "nqr", p->nqr); } // Define l = aX + bY + c where a, b, c are in Fq. // Compute e0 = l(Q) specialized for the case when Q has the form // (Qx, Qy * sqrt(v)) where Qx, Qy are in Fqd and v is the quadratic nonresidue // used to construct the quadratic field extension Fqk of Fqd. static inline void d_miller_evalfn(element_t e0, element_t a, element_t b, element_t c, element_t Qx, element_t Qy) { element_ptr re_out = element_x(e0); element_ptr im_out = element_y(e0); int i; int d = polymod_field_degree(re_out->field); for (i = 0; i < d; i++) { element_mul(element_item(re_out, i), element_item(Qx, i), a); element_mul(element_item(im_out, i), element_item(Qy, i), b); } element_add(element_item(re_out, 0), element_item(re_out, 0), c); } // Miller's algorithm, assuming we can ignore the denominator. We can do this // with careful group selection when the embedding degree is even. See thesis. // This version uses projective coordinates, which don't seem much faster. static void cc_miller_no_denom_proj(element_t res, mpz_t q, element_t P, element_ptr Qx, element_ptr Qy) { int m; element_t v; element_t Z; element_t a, b, c; element_t t0, t1; element_ptr t2 = a, t3 = b, t4 = c; element_t e0; element_t z, z2; element_ptr Zx, Zy; const element_ptr curve_a = curve_a_coeff(P); const element_ptr Px = curve_x_coord(P); const element_ptr Py = curve_y_coord(P); #define proj_double() { \ /* t0 = 3x^2 + (curve_a) z^4 */ \ element_square(t0, Zx); \ /* element_mul_si(t0, t0, 3); */ \ element_double(t1, t0); \ element_add(t0, t0, t1); \ element_square(t1, z2); \ element_mul(t1, t1, curve_a); \ element_add(t0, t0, t1); \ \ /* z_out = 2 y z */ \ element_mul(z, Zy, z); \ /* element_mul_si(z, z, 2); */ \ element_double(z, z); \ element_square(z2, z); \ \ /* t1 = 4 x y^2 */ \ element_square(t2, Zy); \ element_mul(t1, Zx, t2); \ /* element_mul_si(t1, t1, 4); */ \ element_double(t1, t1); \ element_double(t1, t1); \ \ /* x_out = t0^2 - 2 t1 */ \ /* element_mul_si(t3, t1, 2); */ \ element_double(t3, t1); \ element_square(Zx, t0); \ element_sub(Zx, Zx, t3); \ \ /* t2 = 8y^4 */ \ element_square(t2, t2); \ /* element_mul_si(t2, t2, 8); */ \ element_double(t2, t2); \ element_double(t2, t2); \ element_double(t2, t2); \ \ /* y_out = t0(t1 - x_out) - t2 */ \ element_sub(t1, t1, Zx); \ element_mul(t0, t0, t1); \ element_sub(Zy, t0, t2); \ } #define proj_mixin() { \ /* t2 = Px z^2 */ \ element_mul(t2, z2, Px); \ \ /* t3 = Zx - t2 */ \ element_sub(t3, Zx, t2); \ \ /* t0 = Py z^3 */ \ element_mul(t0, z2, Py); \ element_mul(t0, t0, z); \ \ /* t1 = Zy - t0 */ \ element_sub(t1, Zy, t0); \ \ /* e7 = Zx + t2, use t2 to double for e7 */ \ element_add(t2, Zx, t2); \ \ /* e8 = Zy + t0, use t0 to double for e8 */ \ element_add(t0, Zy, t0); \ \ /* z = z t3 */ \ element_mul(z, z, t3); \ element_square(z2, z); \ \ /* Zx = t1^2 - e7 t3^2 */ \ /* t3 now holds t3^3, */ \ /* t4 holds e7 t3^2. */ \ element_square(t4, t3); \ element_mul(t3, t4, t3); \ element_square(Zx, t1); \ element_mul(t4, t2, t4); \ element_sub(Zx, Zx, t4); \ \ /* t4 = e7 t3^2 - 2 Zx */ \ element_sub(t4, t4, Zx); \ element_sub(t4, t4, Zx); \ \ /* Zy = (t4 t1 - e8 t3^3)/2 */ \ element_mul(t4, t4, t1); \ element_mul(t0, t0, t3); \ element_sub(t4, t4, t0); \ element_halve(Zy, t4); \ } #define do_tangent() { \ /* a = -(3x^2 + cca z^4) */ \ /* b = 2 y z^3 */ \ /* c = -(2 y^2 + x a) */ \ /* a = z^2 a */ \ element_square(a, z2); \ element_mul(a, a, curve_a); \ element_square(b, Zx); \ /* element_mul_si(b, b, 3); */ \ element_double(t0, b); \ element_add(b, b, t0); \ element_add(a, a, b); \ element_neg(a, a); \ \ element_mul(b, z, z2); \ element_mul(b, b, Zy); \ element_mul_si(b, b, 2); \ \ element_mul(c, Zx, a); \ element_mul(a, a, z2); \ element_square(t0, Zy); \ element_mul_si(t0, t0, 2); \ element_add(c, c, t0); \ element_neg(c, c); \ \ d_miller_evalfn(e0, a, b, c, Qx, Qy); \ element_mul(v, v, e0); \ } #define do_line() { \ /* a = -(Py z^3 - Zy) */ \ /* b = Px z^3 - Zx z */ \ /* c = Zx z Py - Zy Px; */ \ \ element_mul(t0, Zx, z); \ element_mul(t1, z2, z); \ \ element_mul(a, Py, t1); \ element_sub(a, Zy, a); \ \ element_mul(b, Px, t1); \ element_sub(b, b, t0); \ \ element_mul(t0, t0, Py); \ element_mul(c, Zy, Px); \ element_sub(c, t0, c); \ \ d_miller_evalfn(e0, a, b, c, Qx, Qy); \ element_mul(v, v, e0); \ } element_init(a, Px->field); element_init(b, a->field); element_init(c, a->field); element_init(t0, a->field); element_init(t1, a->field); element_init(e0, res->field); element_init(z, a->field); element_init(z2, a->field); element_set1(z); element_set1(z2); element_init(v, res->field); element_init(Z, P->field); element_set(Z, P); Zx = curve_x_coord(Z); Zy = curve_x_coord(Z); element_set1(v); m = mpz_sizeinbase(q, 2) - 2; for(;;) { do_tangent(); if (!m) break; proj_double(); if (mpz_tstbit(q, m)) { do_line(); proj_mixin(); } m--; element_square(v, v); } element_set(res, v); element_clear(v); element_clear(Z); element_clear(a); element_clear(b); element_clear(c); element_clear(t0); element_clear(t1); element_clear(e0); element_clear(z); element_clear(z2); #undef proj_double #undef proj_mixin #undef do_tangent #undef do_line } // Same as above, but with affine coordinates. static void cc_miller_no_denom_affine(element_t res, mpz_t q, element_t P, element_ptr Qx, element_ptr Qy) { int m; element_t v; element_t Z; element_t a, b, c; element_t t0; element_t e0; const element_ptr cca = curve_a_coeff(P); const element_ptr Px = curve_x_coord(P); const element_ptr Py = curve_y_coord(P); element_ptr Zx, Zy; /* TODO: when exactly is this not needed? void do_vertical() { mapbase(e0, Z->x); element_sub(e0, Qx, e0); element_mul(v, v, e0); } */ #define do_tangent() { \ /* a = -(3 Zx^2 + cc->a) */ \ /* b = 2 * Zy */ \ /* c = -(2 Zy^2 + a Zx); */ \ \ element_square(a, Zx); \ element_mul_si(a, a, 3); \ element_add(a, a, cca); \ element_neg(a, a); \ \ element_add(b, Zy, Zy); \ \ element_mul(t0, b, Zy); \ element_mul(c, a, Zx); \ element_add(c, c, t0); \ element_neg(c, c); \ \ d_miller_evalfn(e0, a, b, c, Qx, Qy); \ element_mul(v, v, e0); \ } #define do_line() { \ /* a = -(B.y - A.y) / (B.x - A.x); */ \ /* b = 1; */ \ /* c = -(A.y + a * A.x); */ \ /* but we multiply by B.x - A.x to avoid division. */ \ \ element_sub(b, Px, Zx); \ element_sub(a, Zy, Py); \ element_mul(t0, b, Zy); \ element_mul(c, a, Zx); \ element_add(c, c, t0); \ element_neg(c, c); \ \ d_miller_evalfn(e0, a, b, c, Qx, Qy); \ element_mul(v, v, e0); \ } element_init(a, Px->field); element_init(b, a->field); element_init(c, a->field); element_init(t0, a->field); element_init(e0, res->field); element_init(v, res->field); element_init(Z, P->field); element_set(Z, P); Zx = curve_x_coord(Z); Zy = curve_y_coord(Z); element_set1(v); m = mpz_sizeinbase(q, 2) - 2; for(;;) { do_tangent(); if (!m) break; element_double(Z, Z); if (mpz_tstbit(q, m)) { do_line(); element_add(Z, Z, P); } m--; element_square(v, v); } element_set(res, v); element_clear(v); element_clear(Z); element_clear(a); element_clear(b); element_clear(c); element_clear(t0); element_clear(e0); #undef do_tangent #undef do_line } static void (*cc_miller_no_denom_fn)(element_t res, mpz_t q, element_t P, element_ptr Qx, element_ptr Qy); static void d_pairing_option_set(pairing_t pairing, char *key, char *value) { UNUSED_VAR(pairing); if (!strcmp(key, "method")) { if (!strcmp(value, "miller")) { cc_miller_no_denom_fn = cc_miller_no_denom_proj; } else if (!strcmp(value, "miller-affine")) { cc_miller_no_denom_fn = cc_miller_no_denom_affine; } } } // Requires cofactor is even. TODO: This seems to contradict a comment below. // Requires in != out. // Mangles in. static void lucas_even(element_ptr out, element_ptr in, mpz_t cofactor) { if (element_is1(in)) { element_set(out, in); return; } element_t temp; element_init_same_as(temp, out); element_ptr in0 = element_x(in); element_ptr in1 = element_y(in); element_ptr v0 = element_x(out); element_ptr v1 = element_y(out); element_ptr t0 = element_x(temp); element_ptr t1 = element_y(temp); int j; element_set_si(t0, 2); element_double(t1, in0); element_set(v0, t0); element_set(v1, t1); j = mpz_sizeinbase(cofactor, 2) - 1; for (;;) { if (!j) { element_mul(v1, v0, v1); element_sub(v1, v1, t1); element_square(v0, v0); element_sub(v0, v0, t0); break; } if (mpz_tstbit(cofactor, j)) { element_mul(v0, v0, v1); element_sub(v0, v0, t1); element_square(v1, v1); element_sub(v1, v1, t0); } else { element_mul(v1, v0, v1); element_sub(v1, v1, t1); element_square(v0, v0); element_sub(v0, v0, t0); } j--; } // Assume cofactor = (q^2 - q + 1) / r is odd // thus v1 = V_k, v0 = V_{k-1} // U = (P v1 - 2 v0) / (P^2 - 4) element_double(v0, v0); element_mul(in0, t1, v1); element_sub(in0, in0, v0); element_square(t1, t1); element_sub(t1, t1, t0); element_sub(t1, t1, t0); element_halve(v0, v1); element_div(v1, in0, t1); element_mul(v1, v1, in1); element_clear(temp); } // The final powering, where we standardize the coset representative. static void cc_tatepower(element_ptr out, element_ptr in, pairing_t pairing) { pptr p = pairing->data; #define qpower(sign) { \ polymod_const_mul(e2, inre[1], p->xpowq); \ element_set(e0re, e2); \ polymod_const_mul(e2, inre[2], p->xpowq2); \ element_add(e0re, e0re, e2); \ element_add(e0re0, e0re0, inre[0]); \ \ if (sign > 0) { \ polymod_const_mul(e2, inim[1], p->xpowq); \ element_set(e0im, e2); \ polymod_const_mul(e2, inim[2], p->xpowq2); \ element_add(e0im, e0im, e2); \ element_add(e0im0, e0im0, inim[0]); \ } else { \ polymod_const_mul(e2, inim[1], p->xpowq); \ element_neg(e0im, e2); \ polymod_const_mul(e2, inim[2], p->xpowq2); \ element_sub(e0im, e0im, e2); \ element_sub(e0im0, e0im0, inim[0]); \ } \ } if (p->k == 6) { // See thesis, section 6.9, "The Final Powering", which gives a formula // for the first step of the final powering when Fq6 has been implemented // as a quadratic extension on top of a cubic extension. element_t e0, e2, e3; element_init(e0, p->Fqk); element_init(e2, p->Fqd); element_init(e3, p->Fqk); element_ptr e0re = element_x(e0); element_ptr e0im = element_y(e0); element_ptr e0re0 = ((element_t *) e0re->data)[0]; element_ptr e0im0 = ((element_t *) e0im->data)[0]; element_t *inre = element_x(in)->data; element_t *inim = element_y(in)->data; // Expressions in the formula are similar, hence the following function. qpower(1); element_set(e3, e0); element_set(e0re, element_x(in)); element_neg(e0im, element_y(in)); element_mul(e3, e3, e0); qpower(-1); element_mul(e0, e0, in); element_invert(e0, e0); element_mul(in, e3, e0); element_set(e0, in); // We use Lucas sequences to complete the final powering. lucas_even(out, e0, pairing->phikonr); element_clear(e0); element_clear(e2); element_clear(e3); } else { element_pow_mpz(out, in, p->tateexp); } #undef qpower } static void cc_finalpow(element_t e) { cc_tatepower(e->data, e->data, e->field->pairing); } static void cc_pairing(element_ptr out, element_ptr in1, element_ptr in2, pairing_t pairing) { element_ptr Qbase = in2; element_t Qx, Qy; pptr p = pairing->data; element_init(Qx, p->Fqd); element_init(Qy, p->Fqd); // Twist: (x, y) --> (v^-1 x, v^-(3/2) y) // where v is the quadratic nonresidue used to construct the twist. element_mul(Qx, curve_x_coord(Qbase), p->nqrinv); // v^-3/2 = v^-2 * v^1/2 element_mul(Qy, curve_y_coord(Qbase), p->nqrinv2); cc_miller_no_denom_fn(out, pairing->r, in1, Qx, Qy); cc_tatepower(out, out, pairing); element_clear(Qx); element_clear(Qy); } //do many millers at one time with affine coordinates. static void cc_millers_no_denom_affine(element_t res, mpz_t q, element_t P[], element_t Qx[], element_t Qy[], int n_prod) { int m, i; element_t v; element_t a, b, c; element_t t0; element_t e0; const element_ptr cca = curve_a_coeff(P[0]); element_ptr Px, Py; element_t* Z = pbc_malloc(sizeof(element_t)*n_prod); element_ptr Zx, Zy; /* TODO: when exactly is this not needed? void do_vertical() { mapbase(e0, Z->x); element_sub(e0, Qx, e0); element_mul(v, v, e0); } */ #define do_tangents() { \ /* a = -(3 Zx^2 + cc->a) */ \ /* b = 2 * Zy */ \ /* c = -(2 Zy^2 + a Zx); */ \ for(i=0; ifield); element_init(b, a->field); element_init(c, a->field); element_init(t0, a->field); element_init(e0, res->field); element_init(v, res->field); for(i=0; ifield); element_set(Z[i], P[i]); } element_set1(v); m = mpz_sizeinbase(q, 2) - 2; for(;;) { do_tangents(); if (!m) break; element_multi_double(Z, Z, n_prod); //Z_i=Z_i+Z_i for all i. if (mpz_tstbit(q, m)) { do_lines(); element_multi_add(Z, Z, P, n_prod); //Z_i=Z_i+P_i for all i. } m--; element_square(v, v); } element_set(res, v); element_clear(v); for(i=0; idata; int i; for(i=0; iFqd); element_init(Qy[i], p->Fqd); Qbase = in2[i]; // Twist: (x, y) --> (v^-1 x, v^-(3/2) y) // where v is the quadratic nonresidue used to construct the twist. element_mul(Qx[i], curve_x_coord(Qbase), p->nqrinv); // v^-3/2 = v^-2 * v^1/2 element_mul(Qy[i], curve_y_coord(Qbase), p->nqrinv2); } cc_millers_no_denom_affine(out, pairing->r, in1, Qx, Qy, n_prod); cc_tatepower(out, out, pairing); for(i=0; idata; element_init(cx, p->Fqd); element_init(cy, p->Fqd); element_init(dx, p->Fqd); element_init(dy, p->Fqd); element_init(t0, p->Fqk); element_init(t1, p->Fqk); element_init(t2, p->Fqk); // Twist: (x, y) --> (v^-1 x, v^-(3/2) y) // where v is the quadratic nonresidue used to construct the twist. element_mul(cx, curve_x_coord(c), p->nqrinv); element_mul(dx, curve_x_coord(d), p->nqrinv); // v^-3/2 = v^-2 * v^1/2 element_mul(cy, curve_y_coord(c), p->nqrinv2); element_mul(dy, curve_y_coord(d), p->nqrinv2); cc_miller_no_denom_fn(t0, pairing->r, a, dx, dy); cc_miller_no_denom_fn(t1, pairing->r, b, cx, cy); cc_tatepower(t0, t0, pairing); cc_tatepower(t1, t1, pairing); element_mul(t2, t0, t1); if (element_is1(t2)) res = 1; // We were given g, g^x, h, h^-x. else { // Cheaply check the other case. element_invert(t1, t1); element_mul(t2, t0, t1); if (element_is1(t2)) res = 1; // We were given g, g^x, h, h^x. } element_clear(cx); element_clear(cy); element_clear(dx); element_clear(dy); element_clear(t0); element_clear(t1); element_clear(t2); return res; } struct pp_coeff_s { element_t a; element_t b; element_t c; }; typedef struct pp_coeff_s pp_coeff_t[1]; typedef struct pp_coeff_s *pp_coeff_ptr; static void d_pairing_pp_init(pairing_pp_t p, element_ptr in1, pairing_t pairing) { element_ptr P = in1; const element_ptr Px = curve_x_coord(P); const element_ptr Py = curve_y_coord(P); element_t Z; int m; pptr info = pairing->data; element_t t0; element_t a, b, c; field_ptr Fq = info->Fq; pp_coeff_t *coeff; mpz_ptr q = pairing->r; pp_coeff_ptr pp; const element_ptr cca = curve_a_coeff(P); element_ptr Zx; element_ptr Zy; #define store_abc() { \ element_init(pp->a, Fq); \ element_init(pp->b, Fq); \ element_init(pp->c, Fq); \ element_set(pp->a, a); \ element_set(pp->b, b); \ element_set(pp->c, c); \ pp++; \ } #define do_tangent() { \ /* a = -slope_tangent(Z.x, Z.y); */ \ /* b = 1; */ \ /* c = -(Z.y + a * Z.x); */ \ /* but we multiply by 2*Z.y to avoid division. */ \ \ /* a = -Zx * (3 Zx + twicea_2) - a_4; */ \ /* Common curves: a2 = 0 (and cc->a is a_4), so */ \ /* a = -(3 Zx^2 + cc->a) */ \ /* b = 2 * Zy */ \ /* c = -(2 Zy^2 + a Zx); */ \ \ element_square(a, Zx); \ element_double(t0, a); \ element_add(a, a, t0); \ element_add(a, a, cca); \ element_neg(a, a); \ \ element_add(b, Zy, Zy); \ \ element_mul(t0, b, Zy); \ element_mul(c, a, Zx); \ element_add(c, c, t0); \ element_neg(c, c); \ \ store_abc(); \ } #define do_line() { \ /* a = -(B.y - A.y) / (B.x - A.x); */ \ /* b = 1; */ \ /* c = -(A.y + a * A.x); */ \ /* but we'll multiply by B.x - A.x to avoid division */ \ \ element_sub(b, Px, Zx); \ element_sub(a, Zy, Py); \ element_mul(t0, b, Zy); \ element_mul(c, a, Zx); \ element_add(c, c, t0); \ element_neg(c, c); \ \ store_abc(); \ } element_init(Z, P->field); element_set(Z, P); Zx = curve_x_coord(Z); Zy = curve_y_coord(Z); element_init(t0, Fq); element_init(a, Fq); element_init(b, Fq); element_init(c, Fq); m = mpz_sizeinbase(q, 2) - 2; p->data = pbc_malloc(sizeof(pp_coeff_t) * 2 * m); coeff = (pp_coeff_t *) p->data; pp = coeff[0]; for(;;) { do_tangent(); if (!m) break; element_double(Z, Z); if (mpz_tstbit(q, m)) { do_line(); element_add(Z, Z, P); } m--; } element_clear(t0); element_clear(a); element_clear(b); element_clear(c); element_clear(Z); #undef store_abc #undef do_tangent #undef do_line } static void d_pairing_pp_clear(pairing_pp_t p) { // TODO: Better to store a sentinel value in p->data? mpz_ptr q = p->pairing->r; int m = mpz_sizeinbase(q, 2) + mpz_popcount(q) - 3; int i; pp_coeff_t *coeff = (pp_coeff_t *) p->data; pp_coeff_ptr pp; for (i=0; ia); element_clear(pp->b); element_clear(pp->c); } pbc_free(p->data); } static void d_pairing_pp_apply(element_ptr out, element_ptr in2, pairing_pp_t p) { mpz_ptr q = p->pairing->r; pptr info = p->pairing->data; int m = mpz_sizeinbase(q, 2) - 2; pp_coeff_t *coeff = (pp_coeff_t *) p->data; pp_coeff_ptr pp = coeff[0]; element_ptr Qbase = in2; element_t e0; element_t Qx, Qy; element_t v; element_init_same_as(e0, out); element_init_same_as(v, out); element_init(Qx, info->Fqd); element_init(Qy, info->Fqd); // Twist: (x, y) --> (v^-1 x, v^-(3/2) y) // where v is the quadratic nonresidue used to construct the twist element_mul(Qx, curve_x_coord(Qbase), info->nqrinv); // v^-3/2 = v^-2 * v^1/2 element_mul(Qy, curve_y_coord(Qbase), info->nqrinv2); element_set1(out); for(;;) { d_miller_evalfn(e0, pp->a, pp->b, pp->c, Qx, Qy); element_mul(out, out, e0); pp++; if (!m) break; if (mpz_tstbit(q, m)) { d_miller_evalfn(e0, pp->a, pp->b, pp->c, Qx, Qy); element_mul(out, out, e0); pp++; } m--; element_square(out, out); } cc_tatepower(out, out, p->pairing); element_clear(e0); element_clear(Qx); element_clear(Qy); element_clear(v); } static void d_pairing_clear(pairing_t pairing) { field_clear(pairing->GT); pptr p = pairing->data; if (p->k == 6) { element_clear(p->xpowq); element_clear(p->xpowq2); mpz_clear(pairing->phikonr); } else { mpz_clear(p->tateexp); } field_clear(p->Etwist); field_clear(p->Eq); element_clear(p->nqrinv); element_clear(p->nqrinv2); field_clear(p->Fqk); field_clear(p->Fqd); field_clear(p->Fqx); field_clear(p->Fq); field_clear(pairing->Zr); mpz_clear(pairing->r); pbc_free(p); } static void d_init_pairing(pairing_ptr pairing, void *data) { d_param_ptr param = data; pptr p; element_t a, b; element_t irred; int d = param->k / 2; int i; if (param->k % 2) pbc_die("k must be even"); mpz_init(pairing->r); mpz_set(pairing->r, param->r); field_init_fp(pairing->Zr, pairing->r); pairing->map = cc_pairing; pairing->prod_pairings = cc_pairings_affine; pairing->is_almost_coddh = cc_is_almost_coddh; p = pairing->data = pbc_malloc(sizeof(*p)); field_init_fp(p->Fq, param->q); element_init(a, p->Fq); element_init(b, p->Fq); element_set_mpz(a, param->a); element_set_mpz(b, param->b); field_init_curve_ab(p->Eq, a, b, pairing->r, param->h); field_init_poly(p->Fqx, p->Fq); element_init(irred, p->Fqx); poly_set_coeff1(irred, d); for (i = 0; i < d; i++) { element_set_mpz(element_item(irred, i), param->coeff[i]); } field_init_polymod(p->Fqd, irred); element_clear(irred); p->Fqd->nqr = pbc_malloc(sizeof(element_t)); element_init(p->Fqd->nqr, p->Fqd); element_set_mpz(((element_t *) p->Fqd->nqr->data)[0], param->nqr); field_init_quadratic(p->Fqk, p->Fqd); // Compute constants involved in the final powering. if (param->k == 6) { mpz_ptr q = param->q; mpz_ptr z = pairing->phikonr; mpz_init(z); mpz_mul(z, q, q); mpz_sub(z, z, q); mpz_add_ui(z, z, 1); mpz_divexact(z, z, pairing->r); element_ptr e = p->xpowq; element_init(e, p->Fqd); element_set1(((element_t *) e->data)[1]); element_pow_mpz(e, e, q); element_init(p->xpowq2, p->Fqd); element_square(p->xpowq2, e); } else { mpz_init(p->tateexp); mpz_sub_ui(p->tateexp, p->Fqk->order, 1); mpz_divexact(p->tateexp, p->tateexp, pairing->r); } field_init_curve_ab_map(p->Etwist, p->Eq, element_field_to_polymod, p->Fqd, pairing->r, NULL); field_reinit_curve_twist(p->Etwist); mpz_t ndonr; mpz_init(ndonr); // ndonr temporarily holds the trace. mpz_sub(ndonr, param->q, param->n); mpz_add_ui(ndonr, ndonr, 1); // Negate it because we want the trace of the twist. mpz_neg(ndonr, ndonr); pbc_mpz_curve_order_extn(ndonr, param->q, ndonr, d); mpz_divexact(ndonr, ndonr, param->r); field_curve_set_quotient_cmp(p->Etwist, ndonr); mpz_clear(ndonr); element_init(p->nqrinv, p->Fqd); element_invert(p->nqrinv, field_get_nqr(p->Fqd)); element_init(p->nqrinv2, p->Fqd); element_square(p->nqrinv2, p->nqrinv); pairing->G1 = p->Eq; pairing->G2 = p->Etwist; p->k = param->k; pairing_GT_init(pairing, p->Fqk); pairing->finalpow = cc_finalpow; // By default use affine coordinates. cc_miller_no_denom_fn = cc_miller_no_denom_affine; pairing->option_set = d_pairing_option_set; pairing->pp_init = d_pairing_pp_init; pairing->pp_clear = d_pairing_pp_clear; pairing->pp_apply = d_pairing_pp_apply; pairing->clear_func = d_pairing_clear; element_clear(a); element_clear(b); } // Computes a curve and sets fp to the field it is defined over using the // complex multiplication method, where cm holds the appropriate information // (e.g. discriminant, field order). static void compute_cm_curve(d_param_ptr param, pbc_cm_ptr cm) { element_t hp, root; field_t fp, fpx; field_t cc; field_init_fp(fp, cm->q); field_init_poly(fpx, fp); element_init(hp, fpx); mpz_t *coefflist; int n = pbc_hilbert(&coefflist, cm->D); // Temporarily set the coefficient of x^{n-1} to 1 so hp has degree n - 1, // allowing us to use poly_coeff(). poly_set_coeff1(hp, n - 1); int i; for (i = 0; i < n; i++) { element_set_mpz(element_item(hp, i), coefflist[i]); } pbc_hilbert_free(coefflist, n); // TODO: Remove x = 0, 1728 roots. // TODO: What if there are no roots? //printf("hp "); //element_out_str(stdout, 0, hp); //printf("\n"); element_init(root, fp); poly_findroot(root, hp); //printf("root = "); //element_out_str(stdout, 0, root); //printf("\n"); element_clear(hp); field_clear(fpx); // The root is the j-invariant of the desired curve. field_init_curve_j(cc, root, cm->n, NULL); element_clear(root); // We may need to twist it. { // Pick a random point P and twist the curve if it has the wrong order. element_t P; element_init(P, cc); element_random(P); element_mul_mpz(P, P, cm->n); if (!element_is0(P)) field_reinit_curve_twist(cc); element_clear(P); } mpz_set(param->q, cm->q); mpz_set(param->n, cm->n); mpz_set(param->h, cm->h); mpz_set(param->r, cm->r); element_to_mpz(param->a, curve_field_a_coeff(cc)); element_to_mpz(param->b, curve_field_b_coeff(cc)); param->k = cm->k; { mpz_t z; mpz_init(z); // Compute order of curve in F_q^k. // n = q - t + 1 hence t = q - n + 1 mpz_sub(z, param->q, param->n); mpz_add_ui(z, z, 1); pbc_mpz_trace_n(z, param->q, z, param->k); mpz_pow_ui(param->nk, param->q, param->k); mpz_sub_ui(z, z, 1); mpz_sub(param->nk, param->nk, z); mpz_mul(z, param->r, param->r); mpz_divexact(param->hk, param->nk, z); mpz_clear(z); } field_clear(cc); field_clear(fp); } static void d_param_init(pbc_param_ptr p) { static pbc_param_interface_t interface = {{ d_clear, d_init_pairing, d_out_str, }}; p->api = interface; d_param_ptr param = p->data = pbc_malloc(sizeof(*param)); mpz_init(param->q); mpz_init(param->n); mpz_init(param->h); mpz_init(param->r); mpz_init(param->a); mpz_init(param->b); mpz_init(param->nk); mpz_init(param->hk); param->k = 0; param->coeff = NULL; mpz_init(param->nqr); } // Public interface: int pbc_param_init_d(pbc_param_ptr par, struct symtab_s *tab) { d_param_init(par); d_param_ptr p = par->data; char s[80]; int i, d; int err = 0; err += lookup_mpz(p->q, tab, "q"); err += lookup_mpz(p->n, tab, "n"); err += lookup_mpz(p->h, tab, "h"); err += lookup_mpz(p->r, tab, "r"); err += lookup_mpz(p->a, tab, "a"); err += lookup_mpz(p->b, tab, "b"); err += lookup_int(&p->k, tab, "k"); err += lookup_mpz(p->nk, tab, "nk"); err += lookup_mpz(p->hk, tab, "hk"); err += lookup_mpz(p->nqr, tab, "nqr"); d = p->k / 2; p->coeff = pbc_realloc(p->coeff, sizeof(mpz_t) * d); for (i=0; icoeff[i]); err += lookup_mpz(p->coeff[i], tab, s); } return err; } void pbc_param_init_d_gen(pbc_param_ptr p, pbc_cm_ptr cm) { d_param_init(p); d_param_ptr param = p->data; field_t Fq, Fqx, Fqd; element_t irred, nqr; int d = cm->k / 2; int i; compute_cm_curve(param, cm); field_init_fp(Fq, param->q); field_init_poly(Fqx, Fq); element_init(irred, Fqx); do { poly_random_monic(irred, d); } while (!poly_is_irred(irred)); field_init_polymod(Fqd, irred); // Find a quadratic nonresidue of Fqd lying in Fq. element_init(nqr, Fqd); do { element_random(((element_t *) nqr->data)[0]); } while (element_is_sqr(nqr)); param->coeff = pbc_realloc(param->coeff, sizeof(mpz_t) * d); for (i=0; icoeff[i]); element_to_mpz(param->coeff[i], element_item(irred, i)); } element_to_mpz(param->nqr, ((element_t *) nqr->data)[0]); element_clear(nqr); element_clear(irred); field_clear(Fqx); field_clear(Fqd); field_clear(Fq); }