#include #include #include #include // for intptr_t #include #include #include #include "pbc_utils.h" #include "pbc_field.h" #include "pbc_multiz.h" #include "pbc_poly.h" #include "pbc_curve.h" #include "pbc_memory.h" #include "pbc_random.h" #include "misc/darray.h" // Per-field data. typedef struct { field_ptr field; // The field where the curve is defined. element_t a, b; // The curve is E: Y^2 = X^3 + a X + b. // cofac == NULL means we're using the whole group of points. // otherwise we're working in the subgroup of order #E / cofac, // where #E is the number of points in E. mpz_ptr cofac; // A generator of E. element_t gen_no_cofac; // A generator of the subgroup. element_t gen; // A non-NULL quotient_cmp means we are working with the quotient group of // order #E / quotient_cmp, and the points are actually coset // representatives. Thus for a comparison, we must multiply by quotient_cmp // before comparing. mpz_ptr quotient_cmp; } *curve_data_ptr; // Per-element data. Elements of this group are points on the elliptic curve. typedef struct { int inf_flag; // inf_flag == 1 means O, the point at infinity. element_t x, y; // Otherwise we have the finite point (x, y). } *point_ptr; static void curve_init(element_ptr e) { curve_data_ptr cdp = e->field->data; point_ptr p = e->data = pbc_malloc(sizeof(*p)); element_init(p->x, cdp->field); element_init(p->y, cdp->field); p->inf_flag = 1; } static void curve_clear(element_ptr e) { point_ptr p = e->data; element_clear(p->x); element_clear(p->y); pbc_free(e->data); } static int curve_is_valid_point(element_ptr e) { element_t t0, t1; int result; curve_data_ptr cdp = e->field->data; point_ptr p = e->data; if (p->inf_flag) return 1; element_init(t0, cdp->field); element_init(t1, cdp->field); element_square(t0, p->x); element_add(t0, t0, cdp->a); element_mul(t0, t0, p->x); element_add(t0, t0, cdp->b); element_square(t1, p->y); result = !element_cmp(t0, t1); element_clear(t0); element_clear(t1); return result; } static void curve_invert(element_ptr c, element_ptr a) { point_ptr r = c->data, p = a->data; if (p->inf_flag) { r->inf_flag = 1; return; } r->inf_flag = 0; element_set(r->x, p->x); element_neg(r->y, p->y); } static void curve_set(element_ptr c, element_ptr a) { point_ptr r = c->data, p = a->data; if (p->inf_flag) { r->inf_flag = 1; return; } r->inf_flag = 0; element_set(r->x, p->x); element_set(r->y, p->y); } static inline void double_no_check(point_ptr r, point_ptr p, element_ptr a) { element_t lambda, e0, e1; field_ptr f = r->x->field; element_init(lambda, f); element_init(e0, f); element_init(e1, f); //lambda = (3x^2 + a) / 2y element_square(lambda, p->x); element_mul_si(lambda, lambda, 3); element_add(lambda, lambda, a); element_double(e0, p->y); element_invert(e0, e0); element_mul(lambda, lambda, e0); //x1 = lambda^2 - 2x //element_add(e1, p->x, p->x); element_double(e1, p->x); element_square(e0, lambda); element_sub(e0, e0, e1); //y1 = (x - x1)lambda - y element_sub(e1, p->x, e0); element_mul(e1, e1, lambda); element_sub(e1, e1, p->y); element_set(r->x, e0); element_set(r->y, e1); r->inf_flag = 0; element_clear(lambda); element_clear(e0); element_clear(e1); return; } static void curve_double(element_ptr c, element_ptr a) { curve_data_ptr cdp = a->field->data; point_ptr r = c->data, p = a->data; if (p->inf_flag) { r->inf_flag = 1; return; } if (element_is0(p->y)) { r->inf_flag = 1; return; } double_no_check(r, p, cdp->a); } static void curve_mul(element_ptr c, element_ptr a, element_ptr b) { curve_data_ptr cdp = a->field->data; point_ptr r = c->data, p = a->data, q = b->data; if (p->inf_flag) { curve_set(c, b); return; } if (q->inf_flag) { curve_set(c, a); return; } if (!element_cmp(p->x, q->x)) { if (!element_cmp(p->y, q->y)) { if (element_is0(p->y)) { r->inf_flag = 1; return; } else { double_no_check(r, p, cdp->a); return; } } //points are inverses of each other r->inf_flag = 1; return; } else { element_t lambda, e0, e1; element_init(lambda, cdp->field); element_init(e0, cdp->field); element_init(e1, cdp->field); //lambda = (y2-y1)/(x2-x1) element_sub(e0, q->x, p->x); element_invert(e0, e0); element_sub(lambda, q->y, p->y); element_mul(lambda, lambda, e0); //x3 = lambda^2 - x1 - x2 element_square(e0, lambda); element_sub(e0, e0, p->x); element_sub(e0, e0, q->x); //y3 = (x1-x3)lambda - y1 element_sub(e1, p->x, e0); element_mul(e1, e1, lambda); element_sub(e1, e1, p->y); element_set(r->x, e0); element_set(r->y, e1); r->inf_flag = 0; element_clear(lambda); element_clear(e0); element_clear(e1); } } //compute c_i=a_i+a_i at one time. static void multi_double(element_ptr c[], element_ptr a[], int n) { int i; element_t* table = pbc_malloc(sizeof(element_t)*n); //a big problem? element_t e0, e1, e2; point_ptr q, r; curve_data_ptr cdp = a[0]->field->data; q=a[0]->data; element_init(e0,q->y->field); element_init(e1,q->y->field); element_init(e2,q->y->field); for(i=0; idata; r=c[i]->data; element_init(table[i],q->y->field); if (q->inf_flag) { r->inf_flag = 1; continue; } if (element_is0(q->y)) { r->inf_flag = 1; continue; } } //to compute 1/2y multi. see Cohen's GTM139 Algorithm 10.3.4 for(i=0; idata; element_double(table[i],q->y); if(i>0) element_mul(table[i],table[i],table[i-1]); } element_invert(e2,table[n-1]); //ONLY ONE inv is required now. for(i=n-1; i>0; i--){ q=a[i]->data; element_mul(table[i],table[i-1],e2); element_mul(e2,e2,q->y); element_double(e2,e2); //e2=e2*2y_j } element_set(table[0],e2); //e2 no longer used. for(i=0; idata; r=c[i]->data; if(r->inf_flag) continue; //e2=lambda = (3x^2 + a) / 2y element_square(e2, q->x); element_mul_si(e2, e2, 3); element_add(e2, e2, cdp->a); element_mul(e2, e2, table[i]); //Recall that table[i]=1/2y_i //x1 = lambda^2 - 2x element_double(e1, q->x); element_square(e0, e2); element_sub(e0, e0, e1); //y1 = (x - x1)lambda - y element_sub(e1, q->x, e0); element_mul(e1, e1, e2); element_sub(e1, e1, q->y); element_set(r->x, e0); element_set(r->y, e1); r->inf_flag = 0; } element_clear(e0); element_clear(e1); element_clear(e2); for(i=0; ifield->data; p = a[0]->data; q = b[0]->data; element_init(e0, p->x->field); element_init(e1, p->x->field); element_init(e2, p->x->field); element_init(table[0], p->x->field); element_sub(table[0], q->x, p->x); for(i=1; idata; q = b[i]->data; element_init(table[i], p->x->field); element_sub(table[i], q->x, p->x); element_mul(table[i], table[i], table[i-1]); } element_invert(e2, table[n-1]); for(i=n-1; i>0; i--){ p = a[i]->data; q = b[i]->data; element_mul(table[i], table[i-1], e2); element_sub(e1, q->x, p->x); element_mul(e2,e2,e1); //e2=e2*(x2_j-x1_j) } element_set(table[0],e2); //e2 no longer used. for(i=0; idata; q = b[i]->data; r = c[i]->data; if (p->inf_flag) { curve_set(c[i], b[i]); continue; } if (q->inf_flag) { curve_set(c[i], a[i]); continue; } if (!element_cmp(p->x, q->x)) { //a[i]=b[i] if (!element_cmp(p->y, q->y)) { if (element_is0(p->y)) { r->inf_flag = 1; continue; } else { double_no_check(r, p, cdp->a); continue; } } //points are inverses of each other r->inf_flag = 1; continue; } else { //lambda = (y2-y1)/(x2-x1) element_sub(e2, q->y, p->y); element_mul(e2, e2, table[i]); //x3 = lambda^2 - x1 - x2 element_square(e0, e2); element_sub(e0, e0, p->x); element_sub(e0, e0, q->x); //y3 = (x1-x3)lambda - y1 element_sub(e1, p->x, e0); element_mul(e1, e1, e2); element_sub(e1, e1, p->y); element_set(r->x, e0); element_set(r->y, e1); r->inf_flag = 0; } } element_clear(e0); element_clear(e1); element_clear(e2); for(i=0; iinf_flag || q->inf_flag) { return !(p->inf_flag && q->inf_flag); } return element_cmp(p->x, q->x) || element_cmp(p->y, q->y); } static int curve_cmp(element_ptr a, element_ptr b) { if (a == b) { return 0; } else { // If we're working with a quotient group we must account for different // representatives of the same coset. curve_data_ptr cdp = a->field->data; if (cdp->quotient_cmp) { element_t e; element_init_same_as(e, a); element_div(e, a, b); element_pow_mpz(e, e, cdp->quotient_cmp); int result = !element_is1(e); element_clear(e); return result; } return point_cmp(a->data, b->data); } } static void curve_set1(element_ptr x) { point_ptr p = x->data; p->inf_flag = 1; } static int curve_is1(element_ptr x) { point_ptr p = x->data; return p->inf_flag; } static void curve_random_no_cofac_solvefory(element_ptr a) { //TODO: with 0.5 probability negate y-coord curve_data_ptr cdp = a->field->data; point_ptr p = a->data; element_t t; element_init(t, cdp->field); p->inf_flag = 0; do { element_random(p->x); element_square(t, p->x); element_add(t, t, cdp->a); element_mul(t, t, p->x); element_add(t, t, cdp->b); } while (!element_is_sqr(t)); element_sqrt(p->y, t); element_clear(t); } static void curve_random_solvefory(element_ptr a) { curve_data_ptr cdp = a->field->data; curve_random_no_cofac_solvefory(a); if (cdp->cofac) element_mul_mpz(a, a, cdp->cofac); } static void curve_random_pointmul(element_ptr a) { curve_data_ptr cdp = a->field->data; mpz_t x; mpz_init(x); pbc_mpz_random(x, a->field->order); element_mul_mpz(a, cdp->gen, x); mpz_clear(x); } void field_curve_use_random_solvefory(field_ptr f) { f->random = curve_random_solvefory; } void curve_set_gen_no_cofac(element_ptr a) { curve_data_ptr cdp = a->field->data; element_set(a, cdp->gen_no_cofac); } static int curve_sign(element_ptr e) { point_ptr p = e->data; if (p->inf_flag) return 0; return element_sign(p->y); } static void curve_from_hash(element_t a, void *data, int len) { element_t t, t1; point_ptr p = a->data; curve_data_ptr cdp = a->field->data; element_init(t, cdp->field); element_init(t1, cdp->field); p->inf_flag = 0; element_from_hash(p->x, data, len); for(;;) { element_square(t, p->x); element_add(t, t, cdp->a); element_mul(t, t, p->x); element_add(t, t, cdp->b); if (element_is_sqr(t)) break; // Compute x <- x^2 + 1 and try again. element_square(p->x, p->x); element_set1(t); element_add(p->x, p->x, t); } element_sqrt(p->y, t); if (element_sgn(p->y) < 0) element_neg(p->y, p->y); if (cdp->cofac) element_mul_mpz(a, a, cdp->cofac); element_clear(t); element_clear(t1); } static size_t curve_out_str(FILE *stream, int base, element_ptr a) { point_ptr p = a->data; size_t result, status; if (p->inf_flag) { if (EOF == fputc('O', stream)) return 0; return 1; } if (EOF == fputc('[', stream)) return 0; result = element_out_str(stream, base, p->x); if (!result) return 0; if (EOF == fputs(", ", stream)) return 0; status = element_out_str(stream, base, p->y); if (!status) return 0; if (EOF == fputc(']', stream)) return 0; return result + status + 4; } static int curve_snprint(char *s, size_t n, element_ptr a) { point_ptr p = a->data; size_t result = 0, left; int status; #define clip_sub() { \ result += status; \ left = result >= n ? 0 : n - result; \ } if (p->inf_flag) { status = snprintf(s, n, "O"); if (status < 0) return status; return 1; } status = snprintf(s, n, "["); if (status < 0) return status; clip_sub(); status = element_snprint(s + result, left, p->x); if (status < 0) return status; clip_sub(); status = snprintf(s + result, left, ", "); if (status < 0) return status; clip_sub(); status = element_snprint(s + result, left, p->y); if (status < 0) return status; clip_sub(); status = snprintf(s + result, left, "]"); if (status < 0) return status; return result + status; #undef clip_sub } static void curve_set_multiz(element_ptr a, multiz m) { if (multiz_is_z(m)) { if (multiz_is0(m)) { element_set0(a); return; } pbc_warn("bad multiz"); return; } else { if (multiz_count(m) < 2) { pbc_warn("multiz has too few coefficients"); return; } point_ptr p = a->data; p->inf_flag = 0; element_set_multiz(p->x, multiz_at(m, 0)); element_set_multiz(p->y, multiz_at(m, 1)); } } static int curve_set_str(element_ptr e, const char *s, int base) { point_ptr p = e->data; const char *cp = s; element_set0(e); while (*cp && isspace(*cp)) cp++; if (*cp == 'O') { return cp - s + 1; } p->inf_flag = 0; if (*cp != '[') return 0; cp++; cp += element_set_str(p->x, cp, base); while (*cp && isspace(*cp)) cp++; if (*cp != ',') return 0; cp++; cp += element_set_str(p->y, cp, base); if (*cp != ']') return 0; if (!curve_is_valid_point(e)) { element_set0(e); return 0; } return cp - s + 1; } static void field_clear_curve(field_t f) { curve_data_ptr cdp; cdp = f->data; element_clear(cdp->gen); element_clear(cdp->gen_no_cofac); if (cdp->cofac) { mpz_clear(cdp->cofac); pbc_free(cdp->cofac); } if (cdp->quotient_cmp) { mpz_clear(cdp->quotient_cmp); pbc_free(cdp->quotient_cmp); } element_clear(cdp->a); element_clear(cdp->b); pbc_free(cdp); } static int curve_length_in_bytes(element_ptr x) { point_ptr p = x->data; return element_length_in_bytes(p->x) + element_length_in_bytes(p->y); } static int curve_to_bytes(unsigned char *data, element_t e) { point_ptr P = e->data; int len; len = element_to_bytes(data, P->x); len += element_to_bytes(data + len, P->y); return len; } static int curve_from_bytes(element_t e, unsigned char *data) { point_ptr P = e->data; int len; P->inf_flag = 0; len = element_from_bytes(P->x, data); len += element_from_bytes(P->y, data + len); //if point does not lie on curve, set it to O if (!curve_is_valid_point(e)) { element_set0(e); } return len; } static void curve_out_info(FILE *out, field_t f) { int len; fprintf(out, "elliptic curve"); if ((len = f->fixed_length_in_bytes)) { fprintf(out, ", bits per coord = %d", len * 8 / 2); } else { fprintf(out, "variable-length"); } } static int odd_curve_is_sqr(element_ptr e) { UNUSED_VAR(e); return 1; } //TODO: untested static int even_curve_is_sqr(element_ptr e) { mpz_t z; element_t e1; int result; mpz_init(z); element_init(e1, e->field); mpz_sub_ui(z, e->field->order, 1); mpz_fdiv_q_2exp(z, z, 1); element_pow_mpz(e1, e, z); result = element_is1(e1); mpz_clear(z); element_clear(e1); return result; } static int curve_item_count(element_ptr e) { if (element_is0(e)) { return 0; } return 2; } static element_ptr curve_item(element_ptr e, int i) { if (element_is0(e)) return NULL; point_ptr P = e->data; switch(i) { case 0: return P->x; case 1: return P->y; default: return NULL; } } static element_ptr curve_get_x(element_ptr e) { point_ptr P = e->data; return P->x; } static element_ptr curve_get_y(element_ptr e) { point_ptr P = e->data; return P->y; } void field_init_curve_ab(field_ptr f, element_ptr a, element_ptr b, mpz_t order, mpz_t cofac) { /* if (element_is0(a)) { c->double_nocheck = cc_double_no_check_ais0; } else { c->double_nocheck = cc_double_no_check; } */ curve_data_ptr cdp; field_init(f); mpz_set(f->order, order); cdp = f->data = pbc_malloc(sizeof(*cdp)); cdp->field = a->field; element_init(cdp->a, cdp->field); element_init(cdp->b, cdp->field); element_set(cdp->a, a); element_set(cdp->b, b); f->init = curve_init; f->clear = curve_clear; f->neg = f->invert = curve_invert; f->square = f->doub = curve_double; f->multi_doub = multi_double; f->add = f->mul = curve_mul; f->multi_add = multi_add; f->mul_mpz = element_pow_mpz; f->cmp = curve_cmp; f->set0 = f->set1 = curve_set1; f->is0 = f->is1 = curve_is1; f->sign = curve_sign; f->set = curve_set; f->random = curve_random_pointmul; //f->random = curve_random_solvefory; f->from_hash = curve_from_hash; f->out_str = curve_out_str; f->snprint = curve_snprint; f->set_multiz = curve_set_multiz; f->set_str = curve_set_str; f->field_clear = field_clear_curve; if (cdp->field->fixed_length_in_bytes < 0) { f->length_in_bytes = curve_length_in_bytes; } else { f->fixed_length_in_bytes = 2 * cdp->field->fixed_length_in_bytes; } f->to_bytes = curve_to_bytes; f->from_bytes = curve_from_bytes; f->out_info = curve_out_info; f->item_count = curve_item_count; f->item = curve_item; f->get_x = curve_get_x; f->get_y = curve_get_y; if (mpz_odd_p(order)) { f->is_sqr = odd_curve_is_sqr; } else { f->is_sqr = even_curve_is_sqr; } element_init(cdp->gen_no_cofac, f); element_init(cdp->gen, f); curve_random_no_cofac_solvefory(cdp->gen_no_cofac); if (cofac) { cdp->cofac = pbc_malloc(sizeof(mpz_t)); mpz_init(cdp->cofac); mpz_set(cdp->cofac, cofac); element_mul_mpz(cdp->gen, cdp->gen_no_cofac, cofac); } else{ cdp->cofac = NULL; element_set(cdp->gen, cdp->gen_no_cofac); } cdp->quotient_cmp = NULL; } // Requires e to be a point on an elliptic curve. int element_to_bytes_compressed(unsigned char *data, element_ptr e) { point_ptr P = e->data; int len; len = element_to_bytes(data, P->x); if (element_sign(P->y) > 0) { data[len] = 1; } else { data[len] = 0; } len++; return len; } // Computes a point on the elliptic curve Y^2 = X^3 + a X + b given its // x-coordinate. // Requires a solution to exist. static void point_from_x(point_ptr p, element_t x, element_t a, element_t b) { element_t t; element_init(t, x->field); p->inf_flag = 0; element_square(t, x); element_add(t, t, a); element_mul(t, t, x); element_add(t, t, b); element_sqrt(p->y, t); element_set(p->x, x); element_clear(t); } void curve_from_x(element_ptr e, element_t x) { curve_data_ptr cdp = e->field->data; point_from_x(e->data, x, cdp->a, cdp->b); } // Requires e to be a point on an elliptic curve. int element_from_bytes_compressed(element_ptr e, unsigned char *data) { curve_data_ptr cdp = e->field->data; point_ptr P = e->data; int len; len = element_from_bytes(P->x, data); point_from_x(P, P->x, cdp->a, cdp->b); if (data[len]) { if (element_sign(P->y) < 0) element_neg(P->y, P->y); } else if (element_sign(P->y) > 0) { element_neg(P->y, P->y); } len++; return len; } int element_length_in_bytes_compressed(element_ptr e) { point_ptr P = e->data; return element_length_in_bytes(P->x) + 1; } // Requires e to be a point on an elliptic curve. int element_to_bytes_x_only(unsigned char *data, element_ptr e) { point_ptr P = e->data; int len; len = element_to_bytes(data, P->x); return len; } // Requires e to be a point on an elliptic curve. int element_from_bytes_x_only(element_ptr e, unsigned char *data) { curve_data_ptr cdp = e->field->data; point_ptr P = e->data; int len; len = element_from_bytes(P->x, data); point_from_x(P, P->x, cdp->a, cdp->b); return len; } int element_length_in_bytes_x_only(element_ptr e) { point_ptr P = e->data; return element_length_in_bytes(P->x); } inline element_ptr curve_x_coord(element_t e) { return ((point_ptr) e->data)->x; } inline element_ptr curve_y_coord(element_t e) { return ((point_ptr) e->data)->y; } inline element_ptr curve_a_coeff(element_t e) { return ((curve_data_ptr) e->field->data)->a; } inline element_ptr curve_b_coeff(element_t e) { return ((curve_data_ptr) e->field->data)->b; } inline element_ptr curve_field_a_coeff(field_t f) { return ((curve_data_ptr) f->data)->a; } inline element_ptr curve_field_b_coeff(field_t f) { return ((curve_data_ptr) f->data)->b; } void field_init_curve_ab_map(field_t cnew, field_t c, fieldmap map, field_ptr mapdest, mpz_t ordernew, mpz_t cofacnew) { element_t a, b; curve_data_ptr cdp = c->data; element_init(a, mapdest); element_init(b, mapdest); map(a, cdp->a); map(b, cdp->b); field_init_curve_ab(cnew, a, b, ordernew, cofacnew); element_clear(a); element_clear(b); } // Existing points are invalidated as this mangles c. void field_reinit_curve_twist(field_ptr c) { curve_data_ptr cdp = c->data; element_ptr nqr = field_get_nqr(cdp->field); element_mul(cdp->a, cdp->a, nqr); element_mul(cdp->a, cdp->a, nqr); element_mul(cdp->b, cdp->b, nqr); element_mul(cdp->b, cdp->b, nqr); element_mul(cdp->b, cdp->b, nqr); // Recompute generators. curve_random_no_cofac_solvefory(cdp->gen_no_cofac); if (cdp->cofac) { element_mul_mpz(cdp->gen, cdp->gen_no_cofac, cdp->cofac); } else{ element_set(cdp->gen, cdp->gen_no_cofac); } } // I could generalize this for all fields, but is there any point? void field_curve_set_quotient_cmp(field_ptr c, mpz_t quotient_cmp) { curve_data_ptr cdp = c->data; cdp->quotient_cmp = pbc_malloc(sizeof(mpz_t)); mpz_init(cdp->quotient_cmp); mpz_set(cdp->quotient_cmp, quotient_cmp); } // Requires j != 0, 1728. void field_init_curve_j(field_ptr f, element_ptr j, mpz_t order, mpz_t cofac) { element_t a, b; element_init(a, j->field); element_init(b, j->field); element_set_si(a, 1728); element_sub(a, a, j); element_invert(a, a); element_mul(a, a, j); //b = 2 j / (1728 - j) element_add(b, a, a); //a = 3 j / (1728 - j) element_add(a, a, b); field_init_curve_ab(f, a, b, order, cofac); element_clear(a); element_clear(b); } void field_init_curve_b(field_ptr f, element_ptr b, mpz_t order, mpz_t cofac) { element_t a; element_init(a, b->field); field_init_curve_ab(f, a, b, order, cofac); element_clear(a); } // Compute trace of Frobenius at q^n given trace at q. // See p.105 of Blake, Seroussi and Smart. void pbc_mpz_trace_n(mpz_t res, mpz_t q, mpz_t trace, int n) { int i; mpz_t c0, c1, c2; mpz_t t0; mpz_init(c0); mpz_init(c1); mpz_init(c2); mpz_init(t0); mpz_set_ui(c2, 2); mpz_set(c1, trace); for (i=2; i<=n; i++) { mpz_mul(c0, trace, c1); mpz_mul(t0, q, c2); mpz_sub(c0, c0, t0); mpz_set(c2, c1); mpz_set(c1, c0); } mpz_set(res, c1); mpz_clear(t0); mpz_clear(c2); mpz_clear(c1); mpz_clear(c0); } // Given q, t such that #E(F_q) = q - t + 1, compute #E(F_q^k). void pbc_mpz_curve_order_extn(mpz_t res, mpz_t q, mpz_t t, int k) { mpz_t z; mpz_t tk; mpz_init(z); mpz_init(tk); mpz_pow_ui(z, q, k); mpz_add_ui(z, z, 1); pbc_mpz_trace_n(tk, q, t, k); mpz_sub(z, z, tk); mpz_set(res, z); mpz_clear(z); mpz_clear(tk); } void curve_set_si(element_t R, long int x, long int y) { point_ptr p = R->data; element_set_si(p->x, x); element_set_si(p->y, y); p->inf_flag = 0; }