// F_p using Montgomery representation. // // Let b = 256^sizeof(mp_limb_t). // Let R = b^t be the smallest power of b greater than the modulus p. // Then x is stored as xR (mod p). // Addition: same as naive implementation. // Multipication: Montgomery reduction. // Code assumes the modulus p is odd. // // TODO: mul_2exp(x, p->bytes * 8) could be replaced with // faster code that messes with GMP internals #include #include #include // for intptr_t #include #include #include #include "pbc_utils.h" #include "pbc_field.h" #include "pbc_random.h" #include "pbc_fp.h" #include "pbc_memory.h" // Per-field data. typedef struct { size_t limbs; // Number of limbs per element. size_t bytes; // Number of bytes per element. mp_limb_t *primelimbs; // Points to an array of limbs holding the modulus. mp_limb_t negpinv; // -p^-1 mod b mp_limb_t *R; // R mod p mp_limb_t *R3; // R^3 mod p } *fptr; // Per-element data. typedef struct { char flag; // flag == 0 means the element is zero. mp_limb_t *d; // Otherwise d points to an array holding the element. } *eptr; // Copies limbs of z into dst and zeroes any leading limbs, where n is the // total number of limbs. // Requires z to have at most n limbs. static inline void set_limbs(mp_limb_t *dst, mpz_t z, size_t n) { size_t count; mpz_export(dst, &count, -1, sizeof(mp_limb_t), 0, 0, z); memset((void *) (((unsigned char *) dst) + count * sizeof(mp_limb_t)), 0, (n - count) * sizeof(mp_limb_t)); } static void fp_init(element_ptr e) { fptr p = e->field->data; eptr ep = e->data = pbc_malloc(sizeof(*ep)); ep->flag = 0; ep->d = pbc_malloc(p->bytes); } static void fp_clear(element_ptr e) { eptr ep = e->data; pbc_free(ep->d); pbc_free(e->data); } static void fp_set_mpz(element_ptr e, mpz_ptr z) { fptr p = e->field->data; eptr ep = e->data; if (!mpz_sgn(z)) ep->flag = 0; else { mpz_t tmp; mpz_init(tmp); mpz_mul_2exp(tmp, z, p->bytes * 8); mpz_mod(tmp, tmp, e->field->order); if (!mpz_sgn(tmp)) ep->flag = 0; else { set_limbs(ep->d, tmp, p->limbs); ep->flag = 2; } mpz_clear(tmp); } } static void fp_set_si(element_ptr e, signed long int op) { fptr p = e->field->data; eptr ep = e->data; if (!op) ep->flag = 0; else { mpz_t tmp; mpz_init(tmp); // TODO: Could be optimized. mpz_set_si(tmp, op); mpz_mul_2exp(tmp, tmp, p->bytes * 8); mpz_mod(tmp, tmp, e->field->order); if (!mpz_sgn(tmp)) ep->flag = 0; else { set_limbs(ep->d, tmp, p->limbs); ep->flag = 2; } mpz_clear(tmp); } } // Montgomery reduction. // Algorithm II.4 from Blake, Seroussi and Smart. static void mont_reduce(mp_limb_t *x, mp_limb_t *y, fptr p) { size_t t = p->limbs; size_t i; mp_limb_t flag = 0; for (i = 0; i < t; i++) { mp_limb_t u = y[i] * p->negpinv; mp_limb_t carry = mpn_addmul_1(&y[i], p->primelimbs, t, u); //mpn_add_1(&y[i+t], &y[i+t], t - i + 1, carry); flag += mpn_add_1(&y[i + t], &y[i + t], t - i, carry); } if (flag || mpn_cmp(&y[t], p->primelimbs, t) >= 0) { mpn_sub_n(x, &y[t], p->primelimbs, t); } else { // TODO: GMP set might be faster. memcpy(x, &y[t], t * sizeof(mp_limb_t)); } } static void fp_to_mpz(mpz_ptr z, element_ptr e) { eptr ep = e->data; if (!ep->flag) mpz_set_ui(z, 0); else { // x is stored as xR. // We must divide out R to convert to standard representation. fptr p = e->field->data; mp_limb_t tmp[2 * p->limbs]; memcpy(tmp, ep->d, p->limbs * sizeof(mp_limb_t)); memset(&tmp[p->limbs], 0, p->limbs * sizeof(mp_limb_t)); _mpz_realloc(z, p->limbs); mont_reduce(z->_mp_d, tmp, p); // Remove leading zero limbs. for (z->_mp_size = p->limbs; !z->_mp_d[z->_mp_size - 1]; z->_mp_size--); } } static void fp_set0(element_ptr e) { eptr ep = e->data; ep->flag = 0; } static void fp_set1(element_ptr e) { fptr p = e->field->data; eptr ep = e->data; ep->flag = 2; memcpy(ep->d, p->R, p->bytes); } static int fp_is1(element_ptr e) { eptr ep = e->data; if (!ep->flag) return 0; else { fptr p = e->field->data; return !mpn_cmp(ep->d, p->R, p->limbs); } } static int fp_is0(element_ptr e) { eptr ep = e->data; return !ep->flag; } static size_t fp_out_str(FILE * stream, int base, element_ptr e) { size_t result; mpz_t z; mpz_init(z); fp_to_mpz(z, e); result = mpz_out_str(stream, base, z); mpz_clear(z); return result; } static int fp_snprint(char *s, size_t n, element_ptr e) { int result; mpz_t z; mpz_init(z); fp_to_mpz(z, e); result = gmp_snprintf(s, n, "%Zd", z); mpz_clear(z); return result; } static int fp_set_str(element_ptr e, const char *s, int base) { mpz_t z; mpz_init(z); int result = pbc_mpz_set_str(z, s, base); mpz_mod(z, z, e->field->order); fp_set_mpz(e, z); mpz_clear(z); return result; } static void fp_set(element_ptr c, element_ptr a) { eptr ad = a->data; eptr cd = c->data; if (a == c) return; if (!ad->flag) cd->flag = 0; else { fptr p = a->field->data; // Assembly is faster, but I don't want to stoop to that level. // Instead of memcpy(), we rewrite so GMP assembly ends up being invoked. /* memcpy(cd->d, ad->d, p->bytes); */ mpz_t z1, z2; z1->_mp_d = cd->d; z2->_mp_d = ad->d; z1->_mp_size = z1->_mp_alloc = z2->_mp_size = z2->_mp_alloc = p->limbs; mpz_set(z1, z2); cd->flag = 2; } } static void fp_add(element_ptr c, element_ptr a, element_ptr b) { eptr ad = a->data, bd = b->data; if (!ad->flag) { fp_set(c, b); } else if (!bd->flag) { fp_set(c, a); } else { eptr cd = c->data; fptr p = a->field->data; const size_t t = p->limbs; mp_limb_t carry; carry = mpn_add_n(cd->d, ad->d, bd->d, t); if (carry) { // Assumes result of following sub is not zero, // i.e. modulus cannot be 2^(n * bits_per_limb). mpn_sub_n(cd->d, cd->d, p->primelimbs, t); cd->flag = 2; } else { int i = mpn_cmp(cd->d, p->primelimbs, t); if (!i) { cd->flag = 0; } else { cd->flag = 2; if (i > 0) { mpn_sub_n(cd->d, cd->d, p->primelimbs, t); } } } } } static void fp_double(element_ptr c, element_ptr a) { eptr ad = a->data, cd = c->data; if (!ad->flag) { cd->flag = 0; } else { fptr p = c->field->data; const size_t t = p->limbs; if (mpn_lshift(cd->d, ad->d, t, 1)) { cd->flag = 2; // Again, assumes result is not zero. mpn_sub_n(cd->d, cd->d, p->primelimbs, t); } else { int i = mpn_cmp(cd->d, p->primelimbs, t); if (!i) { cd->flag = 0; } else { cd->flag = 2; if (i > 0) { mpn_sub_n(cd->d, cd->d, p->primelimbs, t); } } } } } static void fp_halve(element_ptr c, element_ptr a) { eptr ad = a->data, cd = c->data; if (!ad->flag) { cd->flag = 0; } else { fptr p = c->field->data; const size_t t = p->limbs; int carry = 0; mp_limb_t *alimb = ad->d; mp_limb_t *climb = cd->d; if (alimb[0] & 1) { carry = mpn_add_n(climb, alimb, p->primelimbs, t); } else fp_set(c, a); mpn_rshift(climb, climb, t, 1); if (carry) climb[t - 1] |= ((mp_limb_t) 1) << (sizeof(mp_limb_t) * 8 - 1); } } static void fp_neg(element_ptr c, element_ptr a) { eptr ad = a->data, cd = c->data; if (!ad->flag) cd->flag = 0; else { fptr p = a->field->data; mpn_sub_n(cd->d, p->primelimbs, ad->d, p->limbs); cd->flag = 2; } } static void fp_sub(element_ptr c, element_ptr a, element_ptr b) { eptr ad = a->data, bd = b->data; if (!ad->flag) { fp_neg(c, b); } else if (!bd->flag) { fp_set(c, a); } else { fptr p = c->field->data; size_t t = p->limbs; eptr cd = c->data; int i = mpn_cmp(ad->d, bd->d, t); if (i == 0) { cd->flag = 0; } else { cd->flag = 2; mpn_sub_n(cd->d, ad->d, bd->d, t); if (i < 0) { mpn_add_n(cd->d, cd->d, p->primelimbs, t); } } } } // Montgomery multiplication. // See Blake, Seroussi and Smart. static inline void mont_mul(mp_limb_t *c, mp_limb_t *a, mp_limb_t *b, fptr p) { // Instead of right shifting every iteration // I allocate more room for the z array. size_t i, t = p->limbs; mp_limb_t z[2 * t + 1]; mp_limb_t u = (a[0] * b[0]) * p->negpinv; mp_limb_t v = z[t] = mpn_mul_1(z, b, t, a[0]); z[t] += mpn_addmul_1(z, p->primelimbs, t, u); z[t + 1] = z[t] < v; // Handle overflow. for (i = 1; i < t; i++) { u = (z[i] + a[i] * b[0]) * p->negpinv; v = z[t + i] += mpn_addmul_1(z + i, b, t, a[i]); z[t + i] += mpn_addmul_1(z + i, p->primelimbs, t, u); z[t + i + 1] = z[t + i] < v; } if (z[t * 2] || mpn_cmp(z + t, p->primelimbs, t) >= 0) { mpn_sub_n(c, z + t, p->primelimbs, t); } else { memcpy(c, z + t, t * sizeof(mp_limb_t)); // Doesn't seem to make a difference: /* mpz_t z1, z2; z1->_mp_d = c; z2->_mp_d = z + t; z1->_mp_size = z1->_mp_alloc = z2->_mp_size = z2->_mp_alloc = t; mpz_set(z1, z2); */ } } static void fp_mul(element_ptr c, element_ptr a, element_ptr b) { eptr ad = a->data, bd = b->data; eptr cd = c->data; if (!ad->flag || !bd->flag) { cd->flag = 0; } else { fptr p = c->field->data; mont_mul(cd->d, ad->d, bd->d, p); cd->flag = 2; } } static void fp_pow_mpz(element_ptr c, element_ptr a, mpz_ptr op) { // Alternative: rewrite GMP mpz_powm(). fptr p = a->field->data; eptr ad = a->data; eptr cd = c->data; if (!ad->flag) cd->flag = 0; else { mpz_t z; mpz_init(z); fp_to_mpz(z, a); mpz_powm(z, z, op, a->field->order); mpz_mul_2exp(z, z, p->bytes * 8); mpz_mod(z, z, a->field->order); set_limbs(cd->d, z, p->limbs); mpz_clear(z); cd->flag = 2; } } // Inversion is slower than in a naive Fp implementation because of an extra // multiplication. // Requires nonzero a. static void fp_invert(element_ptr c, element_ptr a) { eptr ad = a->data; eptr cd = c->data; fptr p = a->field->data; mp_limb_t tmp[p->limbs]; mpz_t z; mpz_init(z); // Copy the limbs into a regular mpz_t so we can invert using the standard // mpz_invert(). mpz_import(z, p->limbs, -1, sizeof(mp_limb_t), 0, 0, ad->d); mpz_invert(z, z, a->field->order); set_limbs(tmp, z, p->limbs); // Normalize. mont_mul(cd->d, tmp, p->R3, p); cd->flag = 2; mpz_clear(z); } static void fp_random(element_ptr a) { fptr p = a->field->data; eptr ad = a->data; mpz_t z; mpz_init(z); pbc_mpz_random(z, a->field->order); if (mpz_sgn(z)) { mpz_mul_2exp(z, z, p->bytes * 8); mpz_mod(z, z, a->field->order); set_limbs(ad->d, z, p->limbs); ad->flag = 2; } else { ad->flag = 0; } mpz_clear(z); } static void fp_from_hash(element_ptr a, void *data, int len) { mpz_t z; mpz_init(z); pbc_mpz_from_hash(z, a->field->order, data, len); fp_set_mpz(a, z); mpz_clear(z); } static int fp_cmp(element_ptr a, element_ptr b) { eptr ad = a->data, bd = b->data; if (!ad->flag) return bd->flag; else { fptr p = a->field->data; return mpn_cmp(ad->d, bd->d, p->limbs); //return memcmp(ad->d, bd->d, p->limbs); } } static int fp_sgn_odd(element_ptr a) { eptr ad = a->data; if (!ad->flag) return 0; else { mpz_t z; mpz_init(z); int res; fp_to_mpz(z, a); res = mpz_odd_p(z) ? 1 : -1; mpz_clear(z); return res; } } static int fp_is_sqr(element_ptr a) { eptr ad = a->data; int res; mpz_t z; mpz_init(z); // 0 is a square. if (!ad->flag) return 1; fp_to_mpz(z, a); res = mpz_legendre(z, a->field->order) == 1; mpz_clear(z); return res; } static int fp_to_bytes(unsigned char *data, element_t a) { mpz_t z; int n = a->field->fixed_length_in_bytes; mpz_init(z); fp_to_mpz(z, a); pbc_mpz_out_raw_n(data, n, z); mpz_clear(z); return n; } static int fp_from_bytes(element_t a, unsigned char *data) { fptr p = a->field->data; eptr ad = a->data; int n; mpz_t z; mpz_init(z); n = a->field->fixed_length_in_bytes; mpz_import(z, n, 1, 1, 1, 0, data); if (!mpz_sgn(z)) ad->flag = 0; else { ad->flag = 2; mpz_mul_2exp(z, z, p->bytes * 8); mpz_mod(z, z, a->field->order); set_limbs(ad->d, z, p->limbs); } mpz_clear(z); return n; } static void fp_field_clear(field_t f) { fptr p = f->data; pbc_free(p->primelimbs); pbc_free(p->R); pbc_free(p->R3); pbc_free(p); } // The only public functions. All the above should be static. static void fp_out_info(FILE * out, field_ptr f) { element_fprintf(out, "GF(%Zd): Montgomery representation", f->order); } void field_init_mont_fp(field_ptr f, mpz_t prime) { PBC_ASSERT(!mpz_fits_ulong_p(prime), "modulus too small"); fptr p; field_init(f); f->init = fp_init; f->clear = fp_clear; f->set_si = fp_set_si; f->set_mpz = fp_set_mpz; f->out_str = fp_out_str; f->snprint = fp_snprint; f->set_str = fp_set_str; f->add = fp_add; f->sub = fp_sub; f->set = fp_set; f->mul = fp_mul; f->doub = fp_double; f->halve = fp_halve; f->pow_mpz = fp_pow_mpz; f->neg = fp_neg; f->sign = fp_sgn_odd; f->cmp = fp_cmp; f->invert = fp_invert; f->random = fp_random; f->from_hash = fp_from_hash; f->is1 = fp_is1; f->is0 = fp_is0; f->set0 = fp_set0; f->set1 = fp_set1; f->is_sqr = fp_is_sqr; f->sqrt = element_tonelli; f->field_clear = fp_field_clear; f->to_bytes = fp_to_bytes; f->from_bytes = fp_from_bytes; f->to_mpz = fp_to_mpz; f->out_info = fp_out_info; // Initialize per-field data specific to this implementation. p = f->data = pbc_malloc(sizeof(*p)); p->limbs = mpz_size(prime); p->bytes = p->limbs * sizeof(mp_limb_t); p->primelimbs = pbc_malloc(p->bytes); mpz_export(p->primelimbs, &p->limbs, -1, sizeof(mp_limb_t), 0, 0, prime); mpz_set(f->order, prime); f->fixed_length_in_bytes = (mpz_sizeinbase(prime, 2) + 7) / 8; // Compute R, R3 and negpinv. mpz_t z; mpz_init(z); p->R = pbc_malloc(p->bytes); p->R3 = pbc_malloc(p->bytes); mpz_setbit(z, p->bytes * 8); mpz_mod(z, z, prime); set_limbs(p->R, z, p->limbs); mpz_powm_ui(z, z, 3, prime); set_limbs(p->R3, z, p->limbs); mpz_set_ui(z, 0); // Algorithm II.5 in Blake, Seroussi and Smart is better but this suffices // since we're only doing it once. mpz_setbit(z, p->bytes * 8); mpz_invert(z, prime, z); p->negpinv = -mpz_get_ui(z); mpz_clear(z); }