From 3baeb11a8fbcfcdbc31976d421f17b85503b3ecd Mon Sep 17 00:00:00 2001 From: WuKong Date: Fri, 4 Sep 2015 09:25:34 +0200 Subject: init attribute-based encryption Change-Id: Iba1a3d722110abf747a0fba366f3ebc911d25b25 --- moon-abe/pbc-0.5.14/guru/19.c | 373 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 373 insertions(+) create mode 100644 moon-abe/pbc-0.5.14/guru/19.c (limited to 'moon-abe/pbc-0.5.14/guru/19.c') diff --git a/moon-abe/pbc-0.5.14/guru/19.c b/moon-abe/pbc-0.5.14/guru/19.c new file mode 100644 index 00000000..5e225565 --- /dev/null +++ b/moon-abe/pbc-0.5.14/guru/19.c @@ -0,0 +1,373 @@ +/* + * Toy example of a field where the Tate pairing can be used + * but the Weil pairing cannot. + * + * Consider the curve E: y^2 = x^3 + x + 6 over F_19: + * E(F_19) is a cyclic group of order 18. + * Thus E[3] is not contained in F_19 + * (it turns out E[3] is contained in F_19^3). + * + * Hence the Weil pairing cannot be defined over F_19 + * However, F_19 contains the cube roots of unity + * so we can compute the Tate pairing + */ + +/* + * P = (12,13) generates a group of order 3: + * <(12,13)> = {(12,13), (12,6), O} + * e(P,P) = 7, so we have the isomorphism + * <(12,13)> = <7> (in F_19^*) + * + * Similarly P = (4, 6) generates a group of order 9, and we find + * <(4,6)> = <4> + * + * P = (0, 5) generates all of E(F_19) + * Miller's algorithm will not allow us to calculate e(P, P) without + * first extending F_19. + * Instead of extending, we could manipulate rational functions since + * 19 is small enough that an explicit expression of f_P can be found. + */ + +#include "pbc.h" +#include "pbc_fp.h" +#include "pbc_fieldquadratic.h" + +static void miller(element_t res, element_t P, element_ptr QR, element_ptr R, int n) { + // Collate divisions. + int m; + element_t v, vd; + element_t Z; + element_t a, b, c; + const element_ptr cca = curve_a_coeff(P); + const element_ptr Px = curve_x_coord(P); + const element_ptr Py = curve_y_coord(P); + element_t e0, e1; + mpz_t q; + element_ptr Zx, Zy; + const element_ptr numx = curve_x_coord(QR); + const element_ptr numy = curve_y_coord(QR); + const element_ptr denomx = curve_x_coord(R); + const element_ptr denomy = curve_y_coord(R); + + void do_vertical(element_t e, element_t edenom) + { + element_sub(e0, numx, Zx); + element_mul(e, e, e0); + + element_sub(e0, denomx, Zx); + element_mul(edenom, edenom, e0); + } + + void do_tangent(element_t e, element_t edenom) + { + //a = -slope_tangent(A.x, A.y); + //b = 1; + //c = -(A.y + a * A.x); + //but we multiply by 2*A.y to avoid division + + //a = -Ax * (Ax + Ax + Ax + twicea_2) - a_4; + //Common curves: a2 = 0 (and cc->a is a_4), so + //a = -(3 Ax^2 + cc->a) + //b = 2 * Ay + //c = -(2 Ay^2 + a Ax); + + if (element_is0(Zy)) { + do_vertical(e, edenom); + return; + } + element_square(a, Zx); + element_mul_si(a, a, 3); + element_add(a, a, cca); + element_neg(a, a); + + element_add(b, Zy, Zy); + + element_mul(e0, b, Zy); + element_mul(c, a, Zx); + element_add(c, c, e0); + element_neg(c, c); + + element_mul(e0, a, numx); + element_mul(e1, b, numy); + element_add(e0, e0, e1); + element_add(e0, e0, c); + element_mul(e, e, e0); + + element_mul(e0, a, denomx); + element_mul(e1, b, denomy); + element_add(e0, e0, e1); + element_add(e0, e0, c); + element_mul(edenom, edenom, e0); + } + + void do_line(element_ptr e, element_ptr edenom) + { + if (!element_cmp(Zx, Px)) { + if (!element_cmp(Zy, Py)) { + do_tangent(e, edenom); + } else { + do_vertical(e, edenom); + } + return; + } + + element_sub(b, Px, Zx); + element_sub(a, Zy, Py); + element_mul(c, Zx, Py); + element_mul(e0, Zy, Px); + element_sub(c, c, e0); + + element_mul(e0, a, numx); + element_mul(e1, b, numy); + element_add(e0, e0, e1); + element_add(e0, e0, c); + element_mul(e, e, e0); + + element_mul(e0, a, denomx); + element_mul(e1, b, denomy); + element_add(e0, e0, e1); + element_add(e0, e0, c); + element_mul(edenom, edenom, e0); + } + + element_init(a, res->field); + element_init(b, res->field); + element_init(c, res->field); + element_init(e0, res->field); + element_init(e1, res->field); + + element_init(v, res->field); + element_init(vd, res->field); + element_init(Z, P->field); + + element_set(Z, P); + Zx = curve_x_coord(Z); + Zy = curve_y_coord(Z); + + element_set1(v); + element_set1(vd); + + mpz_init(q); + mpz_set_ui(q, n); + m = mpz_sizeinbase(q, 2) - 2; + + while(m >= 0) { + element_square(v, v); + element_square(vd, vd); + do_tangent(v, vd); + element_double(Z, Z); + do_vertical(vd, v); + + if (mpz_tstbit(q, m)) { + do_line(v, vd); + element_add(Z, Z, P); + if (m) { + do_vertical(vd, v); + } + } + m--; + } + + mpz_clear(q); + + element_invert(vd, vd); + element_mul(res, v, vd); + + element_clear(v); + element_clear(vd); + element_clear(Z); + element_clear(a); + element_clear(b); + element_clear(c); + element_clear(e0); + element_clear(e1); +} + +static void tate_3(element_ptr out, element_ptr P, element_ptr Q, element_ptr R) { + mpz_t six; + + mpz_init(six); + mpz_set_ui(six, 6); + element_t QR; + element_t e0; + + element_init(QR, P->field); + element_init(e0, out->field); + + element_add(QR, Q, R); + + //for subgroup size 3, -2P = P, hence + //the tangent line at P has divisor 3(P) - 3(O) + + miller(out, P, QR, R, 3); + + element_pow_mpz(out, out, six); + element_clear(QR); + element_clear(e0); + mpz_clear(six); +} + +static void tate_9(element_ptr out, element_ptr P, element_ptr Q, element_ptr R) { + element_t QR; + element_init(QR, P->field); + + element_add(QR, Q, R); + + miller(out, P, QR, R, 9); + + element_square(out, out); + + element_clear(QR); +} + +static void tate_18(element_ptr out, element_ptr P, element_ptr Q, element_ptr R, element_ptr S) { + mpz_t pow; + element_t PR; + element_t QS; + element_init(PR, P->field); + element_init(QS, P->field); + element_t outd; + + element_init(outd, out->field); + + mpz_init(pow); + mpz_set_ui(pow, (19*19-1)/18); + + element_add(PR, P, R); + element_add(QS, Q, S); + + if (element_is0(QS)) { + element_t S2; + element_init(S2, P->field); + element_double(S2, S); + miller(out, PR, S, S2, 18); + miller(outd, R, S, S2, 18); + element_clear(S2); + } else { + miller(out, PR, QS, S, 18); + miller(outd, R, QS, S, 18); + } + + element_clear(PR); + element_clear(QS); + + element_invert(outd, outd); + element_mul(out, out, outd); + element_pow_mpz(out, out, pow); + + element_clear(outd); + mpz_clear(pow); +} + +int main(void) { + field_t c; + field_t Z19; + element_t P, Q, R; + mpz_t q, z; + element_t a, b; + int i; + + field_t Z19_2; + field_t c2; + element_t P2, Q2, R2; + element_t a2; + + mpz_init(q); + mpz_init(z); + + mpz_set_ui(q, 19); + + field_init_fp(Z19, q); + element_init(a, Z19); + element_init(b, Z19); + + element_set_si(a, 1); + element_set_si(b, 6); + + mpz_set_ui(q, 18); + field_init_curve_ab(c, a, b, q, NULL); + element_init(P, c); + element_init(Q, c); + element_init(R, c); + + printf("Y^2 = X^3 + X + 6 over F_19\n"); + //(0,+/-5) is a generator + element_set0(a); + curve_from_x(R, a); + + for (i=1; i<19; i++) { + mpz_set_si(z, i); + element_mul_mpz(Q, R, z); + element_printf("%dR = %B\n", i, Q); + } + + mpz_set_ui(z, 6); + element_mul_mpz(P, R, z); + //P has order 3 + element_printf("P = %B\n", P); + + for (i=1; i<=3; i++) { + mpz_set_si(z, i); + element_mul_mpz(Q, R, z); + tate_3(a, P, Q, R); + element_printf("e_3(P,%dR) = %B\n", i, a); + } + + element_double(P, R); + //P has order 9 + element_printf("P = %B\n", P); + for (i=1; i<=9; i++) { + mpz_set_si(z, i); + //we're supposed to use multiples of R + //but 2R works just as well and it allows us + //to use R as the offset every time + element_mul_mpz(Q, P, z); + tate_9(a, P, Q, R); + element_printf("e_9(P,%dP) = %B\n", i, a); + } + + //to do the pairing on all of E(F_19) we need to move to F_19^2 + //or compute the rational function explicitly + printf("moving to F_19^2\n"); + field_init_fi(Z19_2, Z19); + + //don't need to tell it the real order + field_init_curve_ab_map(c2, c, element_field_to_fi, Z19_2, q, NULL); + element_init(P2, c2); + element_init(Q2, c2); + element_init(R2, c2); + + element_init(a2, Z19_2); + element_set0(a2); + curve_from_x(P2, a2); + + element_random(R2); + + element_printf("P = %B\n", P2); + + for (i=1; i<=18; i++) { + mpz_set_si(z, i); + element_mul_mpz(Q2, P2, z); + tate_18(a2, P2, Q2, R2, P2); + element_printf("e_18(P,%dP) = %B\n", i, a2); + } + + element_clear(P2); + element_clear(Q2); + element_clear(R2); + element_clear(a2); + field_clear(c2); + field_clear(Z19_2); + + field_clear(c); + element_clear(a); + element_clear(b); + element_clear(P); + element_clear(Q); + element_clear(R); + field_clear(Z19); + + mpz_clear(q); + mpz_clear(z); + return 0; +} -- cgit 1.2.3-korg