From 3baeb11a8fbcfcdbc31976d421f17b85503b3ecd Mon Sep 17 00:00:00 2001 From: WuKong Date: Fri, 4 Sep 2015 09:25:34 +0200 Subject: init attribute-based encryption Change-Id: Iba1a3d722110abf747a0fba366f3ebc911d25b25 --- moon-abe/pbc-0.5.14/ecc/g_param.c | 1435 +++++++++++++++++++++++++++++++++++++ 1 file changed, 1435 insertions(+) create mode 100644 moon-abe/pbc-0.5.14/ecc/g_param.c (limited to 'moon-abe/pbc-0.5.14/ecc/g_param.c') diff --git a/moon-abe/pbc-0.5.14/ecc/g_param.c b/moon-abe/pbc-0.5.14/ecc/g_param.c new file mode 100644 index 00000000..75a08c57 --- /dev/null +++ b/moon-abe/pbc-0.5.14/ecc/g_param.c @@ -0,0 +1,1435 @@ +#include +#include +#include // for intptr_t +#include +#include +#include +#include "pbc_utils.h" +#include "pbc_field.h" +#include "pbc_poly.h" +#include "pbc_hilbert.h" +#include "pbc_fp.h" +#include "pbc_fieldquadratic.h" +#include "pbc_mnt.h" +#include "pbc_curve.h" +#include "pbc_param.h" +#include "pbc_pairing.h" +#include "pbc_memory.h" +#include "pbc_g_param.h" +#include "ecc/param.h" + +struct g_param_s { + mpz_t q; // Curve defined over F_q. + mpz_t n; // n = #E(F_q) (= q - t + 1) + mpz_t h; // h * r = n, r is prime + mpz_t r; + mpz_t a, b; // E: y^2 = x^3 + ax + b + + // k = 10 for these curves. + mpz_t nk; // #E(F_q^k) + mpz_t hk; // hk * r^2 = nk + mpz_t *coeff; //Coefficients of polynomial used to extend F_q by k/2 + mpz_t nqr; // Quadratic nonresidue in F_q^d that lies in F_q. +}; + +typedef struct g_param_s g_param_t[1]; +typedef struct g_param_s *g_param_ptr; + +struct mnt_pairing_data_s { + field_t Fq, Fqx, Fqd, Fqk; + field_t Eq, Etwist; + element_t nqrinv, nqrinv2; + element_t xpowq, xpowq2, xpowq3, xpowq4; +}; +typedef struct mnt_pairing_data_s mnt_pairing_data_t[1]; +typedef struct mnt_pairing_data_s *mnt_pairing_data_ptr; + +static void g_clear(void *data) { + g_param_ptr param = data; + int i; + mpz_clear(param->q); + mpz_clear(param->n); + mpz_clear(param->h); + mpz_clear(param->r); + mpz_clear(param->a); + mpz_clear(param->b); + mpz_clear(param->nk); + mpz_clear(param->hk); + mpz_clear(param->nqr); + for (i = 0; i < 5; i++) { + mpz_clear(param->coeff[i]); + } + pbc_free(param->coeff); + pbc_free(data); +} + +static void g_out_str(FILE *stream, void *data) { + g_param_ptr p = data; + int i; + char s[8]; + param_out_type(stream, "g"); + param_out_mpz(stream, "q", p->q); + param_out_mpz(stream, "n", p->n); + param_out_mpz(stream, "h", p->h); + param_out_mpz(stream, "r", p->r); + param_out_mpz(stream, "a", p->a); + param_out_mpz(stream, "b", p->b); + param_out_mpz(stream, "nk", p->nk); + param_out_mpz(stream, "hk", p->hk); + for (i=0; i<5; i++) { + sprintf(s, "coeff%d", i); + param_out_mpz(stream, s, p->coeff[i]); + } + param_out_mpz(stream, "nqr", p->nqr); +} + +static inline void d_miller_evalfn(element_t e0, + element_t a, element_t b, element_t c, + element_t Qx, element_t Qy) { + //a, b, c are in Fq + //point Q is (Qx, Qy * sqrt(nqr)) where nqr is used to construct + //the quadratic field extension Fqk of Fqd + element_ptr re_out = element_x(e0); + element_ptr im_out = element_y(e0); + + int i; + int d = polymod_field_degree(re_out->field); + for (i=0; ifield); + element_init(b, a->field); + element_init(c, a->field); + element_init(t0, a->field); + element_init(t1, a->field); + element_init(e0, res->field); + element_init(z, a->field); + element_init(z2, a->field); + element_set1(z); + element_set1(z2); + + element_init(v, res->field); + element_init(Z, P->field); + + element_set(Z, P); + Zx = curve_x_coord(Z); + Zy = curve_x_coord(Z); + + element_set1(v); + m = mpz_sizeinbase(q, 2) - 2; + + for(;;) { + do_tangent(); + if (!m) break; + proj_double(); + if (mpz_tstbit(q, m)) { + do_line(); + proj_mixin(); + } + m--; + element_square(v, v); + } + + element_set(res, v); + + element_clear(v); + element_clear(Z); + element_clear(a); + element_clear(b); + element_clear(c); + element_clear(t0); + element_clear(t1); + element_clear(e0); + element_clear(z); + element_clear(z2); + #undef proj_double + #undef proj_mixin + #undef do_tangent + #undef do_line +} + +static void cc_miller_no_denom_affine(element_t res, mpz_t q, element_t P, + element_ptr Qx, element_ptr Qy) { + int m; + element_t v; + element_t Z; + element_t a, b, c; + element_t t0; + element_t e0; + const element_ptr cca = curve_a_coeff(P); + const element_ptr Px = curve_x_coord(P); + const element_ptr Py = curve_y_coord(P); + element_ptr Zx, Zy; + + /* TODO: when exactly is this not needed? + void do_vertical(void) + { + mapbase(e0, Z->x); + element_sub(e0, Qx, e0); + element_mul(v, v, e0); + } + */ + + #define do_tangent() { \ + /* a = -(3 Zx^2 + cc->a) */ \ + /* b = 2 * Zy */ \ + /* c = -(2 Zy^2 + a Zx); */ \ + element_square(a, Zx); \ + element_mul_si(a, a, 3); \ + element_add(a, a, cca); \ + element_neg(a, a); \ + \ + element_add(b, Zy, Zy); \ + \ + element_mul(t0, b, Zy); \ + element_mul(c, a, Zx); \ + element_add(c, c, t0); \ + element_neg(c, c); \ + \ + d_miller_evalfn(e0, a, b, c, Qx, Qy); \ + element_mul(v, v, e0); \ + } + + #define do_line() { \ + /* a = -(B.y - A.y) / (B.x - A.x); */ \ + /* b = 1; */ \ + /* c = -(A.y + a * A.x); */ \ + /* but we'll multiply by B.x - A.x */ \ + /* to avoid division */ \ + \ + element_sub(b, Px, Zx); \ + element_sub(a, Zy, Py); \ + element_mul(t0, b, Zy); \ + element_mul(c, a, Zx); \ + element_add(c, c, t0); \ + element_neg(c, c); \ + \ + d_miller_evalfn(e0, a, b, c, Qx, Qy); \ + element_mul(v, v, e0); \ + } + + element_init(a, Px->field); + element_init(b, a->field); + element_init(c, a->field); + element_init(t0, a->field); + element_init(e0, res->field); + + element_init(v, res->field); + element_init(Z, P->field); + + element_set(Z, P); + Zx = curve_x_coord(Z); + Zy = curve_y_coord(Z); + + element_set1(v); + m = mpz_sizeinbase(q, 2) - 2; + + for(;;) { + do_tangent(); + if (!m) break; + element_double(Z, Z); + if (mpz_tstbit(q, m)) { + do_line(); + element_add(Z, Z, P); + } + m--; + element_square(v, v); + } + + element_set(res, v); + + element_clear(v); + element_clear(Z); + element_clear(a); + element_clear(b); + element_clear(c); + element_clear(t0); + element_clear(e0); + #undef do_tangent + #undef do_line +} + +// Requires cofactor is even. +// Requires in != out. +// Mangles in. +static void lucas_even(element_ptr out, element_ptr in, mpz_t cofactor) { + element_t temp; + element_init_same_as(temp, out); + element_ptr in0 = element_x(in); + element_ptr in1 = element_y(in); + element_ptr v0 = element_x(out); + element_ptr v1 = element_y(out); + element_ptr t0 = element_x(temp); + element_ptr t1 = element_y(temp); + int j; + + element_set_si(t0, 2); + element_double(t1, in0); + + element_set(v0, t0); + element_set(v1, t1); + + j = mpz_sizeinbase(cofactor, 2) - 1; + for (;;) { + if (!j) { + element_mul(v1, v0, v1); + element_sub(v1, v1, t1); + element_square(v0, v0); + element_sub(v0, v0, t0); + break; + } + if (mpz_tstbit(cofactor, j)) { + element_mul(v0, v0, v1); + element_sub(v0, v0, t1); + element_square(v1, v1); + element_sub(v1, v1, t0); + } else { + element_mul(v1, v0, v1); + element_sub(v1, v1, t1); + element_square(v0, v0); + element_sub(v0, v0, t0); + } + j--; + } + + //assume cofactor = (q^2 - q + 1) / r is odd + //thus v1 = V_k, v0 = V_{k-1} + // U = (P v1 - 2 v0) / (P^2 - 4) + + element_double(v0, v0); + element_mul(in0, t1, v1); + element_sub(in0, in0, v0); + + element_square(t1, t1); + element_sub(t1, t1, t0); + element_sub(t1, t1, t0); + + element_halve(v0, v1); + element_div(v1, in0, t1); + element_mul(v1, v1, in1); + element_clear(temp); +} + +static void tatepower10(element_ptr out, element_ptr in, pairing_t pairing) { + mnt_pairing_data_ptr p = pairing->data; + element_t e0, e1, e2, e3; + element_init(e0, p->Fqk); + element_init(e1, p->Fqd); + element_init(e2, p->Fqd); + element_init(e3, p->Fqk); + element_ptr e0re = element_x(e0); + element_ptr e0im = element_y(e0); + element_ptr e0re0 = ((element_t *) e0re->data)[0]; + element_ptr e0im0 = ((element_t *) e0im->data)[0]; + element_t *inre = element_x(in)->data; + element_t *inim = element_y(in)->data; + //see thesis + #define qpower(sign) { \ + polymod_const_mul(e2, inre[1], p->xpowq); \ + element_set(e0re, e2); \ + polymod_const_mul(e2, inre[2], p->xpowq2); \ + element_add(e0re, e0re, e2); \ + polymod_const_mul(e2, inre[3], p->xpowq3); \ + element_add(e0re, e0re, e2); \ + polymod_const_mul(e2, inre[4], p->xpowq4); \ + element_add(e0re, e0re, e2); \ + element_add(e0re0, e0re0, inre[0]); \ + \ + if (sign > 0) { \ + polymod_const_mul(e2, inim[1], p->xpowq); \ + element_set(e0im, e2); \ + polymod_const_mul(e2, inim[2], p->xpowq2); \ + element_add(e0im, e0im, e2); \ + polymod_const_mul(e2, inim[3], p->xpowq3); \ + element_add(e0im, e0im, e2); \ + polymod_const_mul(e2, inim[4], p->xpowq4); \ + element_add(e0im, e0im, e2); \ + element_add(e0im0, e0im0, inim[0]); \ + } else { \ + polymod_const_mul(e2, inim[1], p->xpowq); \ + element_neg(e0im, e2); \ + polymod_const_mul(e2, inim[2], p->xpowq2); \ + element_sub(e0im, e0im, e2); \ + polymod_const_mul(e2, inim[3], p->xpowq3); \ + element_sub(e0im, e0im, e2); \ + polymod_const_mul(e2, inim[4], p->xpowq4); \ + element_sub(e0im, e0im, e2); \ + element_sub(e0im0, e0im0, inim[0]); \ + } \ + } + qpower(1); + element_set(e3, e0); + element_set(e0re, element_x(in)); + element_neg(e0im, element_y(in)); + element_mul(e3, e3, e0); + qpower(-1); + element_mul(e0, e0, in); + element_invert(e0, e0); + element_mul(in, e3, e0); + + element_set(e0, in); + lucas_even(out, e0, pairing->phikonr); + + element_clear(e0); + element_clear(e1); + element_clear(e2); + element_clear(e3); + #undef qpower +} + +static void (*cc_miller_no_denom_fn)(element_t res, mpz_t q, element_t P, + element_ptr Qx, element_ptr Qy); + +static void cc_pairing(element_ptr out, element_ptr in1, element_ptr in2, + pairing_t pairing) { + element_ptr Qbase = in2; + element_t Qx, Qy; + mnt_pairing_data_ptr p = pairing->data; + + element_init(Qx, p->Fqd); + element_init(Qy, p->Fqd); + //map from twist: (x, y) --> (v^-1 x, v^-(3/2) y) + //where v is the quadratic nonresidue used to construct the twist + element_mul(Qx, curve_x_coord(Qbase), p->nqrinv); + //v^-3/2 = v^-2 * v^1/2 + element_mul(Qy, curve_y_coord(Qbase), p->nqrinv2); + cc_miller_no_denom_fn(out, pairing->r, in1, Qx, Qy); + tatepower10(out, out, pairing); + element_clear(Qx); + element_clear(Qy); +} + +static int cc_is_almost_coddh(element_ptr a, element_ptr b, + element_ptr c, element_ptr d, + pairing_t pairing) { + int res = 0; + element_t t0, t1, t2; + element_t cx, cy; + element_t dx, dy; + mnt_pairing_data_ptr p = pairing->data; + + element_init(cx, p->Fqd); + element_init(cy, p->Fqd); + element_init(dx, p->Fqd); + element_init(dy, p->Fqd); + + element_init(t0, p->Fqk); + element_init(t1, p->Fqk); + element_init(t2, p->Fqk); + //map from twist: (x, y) --> (v^-1 x, v^-(3/2) y) + //where v is the quadratic nonresidue used to construct the twist + element_mul(cx, curve_x_coord(c), p->nqrinv); + element_mul(dx, curve_x_coord(d), p->nqrinv); + //v^-3/2 = v^-2 * v^1/2 + element_mul(cy, curve_y_coord(c), p->nqrinv2); + element_mul(dy, curve_y_coord(d), p->nqrinv2); + + cc_miller_no_denom_fn(t0, pairing->r, a, dx, dy); + cc_miller_no_denom_fn(t1, pairing->r, b, cx, cy); + tatepower10(t0, t0, pairing); + tatepower10(t1, t1, pairing); + element_mul(t2, t0, t1); + if (element_is1(t2)) { + //g, g^x, h, h^-x case + res = 1; + } else { + element_invert(t1, t1); + element_mul(t2, t0, t1); + if (element_is1(t2)) { + //g, g^x, h, h^x case + res = 1; + } + } + element_clear(cx); + element_clear(cy); + element_clear(dx); + element_clear(dy); + element_clear(t0); + element_clear(t1); + element_clear(t2); + return res; +} + +struct pp_coeff_s { + element_t a; + element_t b; + element_t c; +}; +typedef struct pp_coeff_s pp_coeff_t[1]; +typedef struct pp_coeff_s *pp_coeff_ptr; + +static void g_pairing_pp_init(pairing_pp_t p, element_ptr in1, pairing_t pairing) { + element_ptr P = in1; + const element_ptr Px = curve_x_coord(P); + const element_ptr Py = curve_y_coord(P); + element_t Z; + int m; + mnt_pairing_data_ptr info = pairing->data; + element_t t0; + element_t a, b, c; + field_ptr Fq = info->Fq; + pp_coeff_t *coeff; + mpz_ptr q = pairing->r; + pp_coeff_ptr pp; + const element_ptr cca = curve_a_coeff(P); + element_ptr Zx; + element_ptr Zy; + + #define store_abc() { \ + element_init(pp->a, Fq); \ + element_init(pp->b, Fq); \ + element_init(pp->c, Fq); \ + element_set(pp->a, a); \ + element_set(pp->b, b); \ + element_set(pp->c, c); \ + pp++; \ + } + + //a = -slope_tangent(Z.x, Z.y); + //b = 1; + //c = -(Z.y + a * Z.x); + //but we multiply by 2*Z.y to avoid division + + //a = -Zx * (3 Zx + twicea_2) - a_4; + //Common curves: a2 = 0 (and cc->a is a_4), so + //a = -(3 Zx^2 + cc->a) + //b = 2 * Zy + //c = -(2 Zy^2 + a Zx); + #define do_tangent() { \ + element_square(a, Zx); \ + element_double(t0, a); \ + element_add(a, a, t0); \ + element_add(a, a, cca); \ + element_neg(a, a); \ + \ + element_add(b, Zy, Zy); \ + \ + element_mul(t0, b, Zy); \ + element_mul(c, a, Zx); \ + element_add(c, c, t0); \ + element_neg(c, c); \ + \ + store_abc(); \ + } + + //a = -(B.y - A.y) / (B.x - A.x); + //b = 1; + //c = -(A.y + a * A.x); + //but we'll multiply by B.x - A.x to avoid division + #define do_line() { \ + element_sub(b, Px, Zx); \ + element_sub(a, Zy, Py); \ + element_mul(t0, b, Zy); \ + element_mul(c, a, Zx); \ + element_add(c, c, t0); \ + element_neg(c, c); \ + store_abc(); \ + } + + element_init(Z, P->field); + element_set(Z, P); + Zx = curve_x_coord(Z); + Zy = curve_y_coord(Z); + + element_init(t0, Fq); + element_init(a, Fq); + element_init(b, Fq); + element_init(c, Fq); + + m = mpz_sizeinbase(q, 2) - 2; + p->data = pbc_malloc(sizeof(pp_coeff_t) * 2 * m); + coeff = (pp_coeff_t *) p->data; + pp = coeff[0]; + + for(;;) { + do_tangent(); + if (!m) break; + element_double(Z, Z); + if (mpz_tstbit(q, m)) { + do_line(); + element_add(Z, Z, P); + } + m--; + } + + element_clear(t0); + element_clear(a); + element_clear(b); + element_clear(c); + element_clear(Z); + #undef store_abc + #undef do_tangent + #undef do_line +} + +static void g_pairing_pp_clear(pairing_pp_t p) { + //TODO: better to store a sentinel value in p->data? + mpz_ptr q = p->pairing->r; + int m = mpz_sizeinbase(q, 2) + mpz_popcount(q) - 3; + int i; + pp_coeff_t *coeff = (pp_coeff_t *) p->data; + pp_coeff_ptr pp; + for (i=0; ia); + element_clear(pp->b); + element_clear(pp->c); + } + pbc_free(p->data); +} + +static void g_pairing_pp_apply(element_ptr out, element_ptr in2, pairing_pp_t p) { + mpz_ptr q = p->pairing->r; + mnt_pairing_data_ptr info = p->pairing->data; + int m = mpz_sizeinbase(q, 2) - 2; + pp_coeff_t *coeff = (pp_coeff_t *) p->data; + pp_coeff_ptr pp = coeff[0]; + element_ptr Qbase = in2; + element_t e0; + element_t Qx, Qy; + element_t v; + element_init_same_as(e0, out); + element_init_same_as(v, out); + element_init(Qx, info->Fqd); + element_init(Qy, info->Fqd); + + //map from twist: (x, y) --> (v^-1 x, v^-(3/2) y) + //where v is the quadratic nonresidue used to construct the twist + element_mul(Qx, curve_x_coord(Qbase), info->nqrinv); + //v^-3/2 = v^-2 * v^1/2 + element_mul(Qy, curve_y_coord(Qbase), info->nqrinv2); + + element_set1(out); + for(;;) { + d_miller_evalfn(e0, pp->a, pp->b, pp->c, Qx, Qy); + element_mul(out, out, e0); + pp++; + + if (!m) break; + + if (mpz_tstbit(q, m)) { + d_miller_evalfn(e0, pp->a, pp->b, pp->c, Qx, Qy); + element_mul(out, out, e0); + pp++; + } + m--; + element_square(out, out); + } + tatepower10(out, out, p->pairing); + + element_clear(e0); + element_clear(Qx); + element_clear(Qy); + element_clear(v); +} + +// in1, in2 are from E(F_q), out from F_q^2 +// Compute pairing via elliptic nets (see Stange). +static void g_pairing_ellnet(element_ptr out, element_ptr in1, element_ptr in2, + pairing_t pairing) { + mnt_pairing_data_ptr p = pairing->data; + + const element_ptr a = curve_a_coeff(in1); + const element_ptr b = curve_b_coeff(in1); + + element_ptr x = curve_x_coord(in1); + element_ptr y = curve_y_coord(in1); + + element_ptr x2 = curve_x_coord(in2); + element_ptr y2 = curve_y_coord(in2); + + //we map (x2,y2) to (-x2, i y2) before pairing + //notation: cmi means c_{k-i}, ci means c_{k+i} + element_t cm3, cm2, cm1, c0, c1, c2, c3, c4; + element_t dm1, d0, d1; + element_t A, B, C; + + element_init_same_as(cm3, x); + element_init_same_as(cm2, x); + element_init_same_as(cm1, x); + element_init_same_as(c0, x); + element_init_same_as(c1, x); + element_init_same_as(c2, x); + element_init_same_as(c3, x); + element_init_same_as(c4, x); + element_init_same_as(C, x); + + element_init_same_as(dm1, out); + element_init_same_as(d0, out); + element_init_same_as(d1, out); + element_init_same_as(A, out); + element_init_same_as(B, out); + + // c1 = 2y + // cm3 = -2y + element_double(c1, y); + element_neg(cm3, c1); + + //use c0, cm1, cm2, C, c4 as temp variables for now + //compute c3, c2 + element_square(cm2, x); + element_square(C, cm2); + element_mul(cm1, b, x); + element_double(cm1, cm1); + element_square(c4, a); + + element_mul(c2, cm1, cm2); + element_double(c2, c2); + element_mul(c0, a, C); + element_add(c2, c2, c0); + element_mul(c0, c4, cm2); + element_sub(c2, c2, c0); + element_double(c0, c2); + element_double(c0, c0); + element_add(c2, c2, c0); + + element_mul(c0, cm1, a); + element_square(c3, b); + element_double(c3, c3); + element_double(c3, c3); + element_add(c0, c0, c3); + element_double(c0, c0); + element_mul(c3, a, c4); + element_add(c0, c0, c3); + element_sub(c2, c2, c0); + element_mul(c0, cm2, C); + element_add(c3, c0, c2); + element_mul(c3, c3, c1); + element_double(c3, c3); + + element_mul(c0, a, cm2); + element_add(c0, c0, cm1); + element_double(c0, c0); + element_add(c0, c0, C); + element_double(c2, c0); + element_add(c0, c0, c2); + element_sub(c2, c0, c4); + + // c0 = 1 + // cm2 = -1 + element_set1(c0); + element_neg(cm2, c0); + + // c4 = c_5 = c_2^3 c_4 - c_3^3 = c1^3 c3 - c2^3 + element_square(C, c1); + element_mul(c4, C, c1); + element_mul(c4, c4, c3); + element_square(C, c2); + element_mul(C, C, c2); + element_sub(c4, c4, C); + + //compute A, B, d1 + + element_mul(element_x(d0), x2, p->nqrinv); + element_neg(A, d0); + element_add(element_item(element_x(A), 0), element_item(element_x(A), 0), x); + + element_double(C, x); + element_add(element_item(element_x(d0), 0), element_item(element_x(d0), 0), C); + + element_square(dm1, A); + element_mul(dm1, d0, dm1); + + element_mul(element_y(d1), y2, p->nqrinv2); + element_set(element_item(element_x(d1), 0), y); + + element_square(d1, d1); + element_sub(d1, dm1, d1); + element_invert(B, d1); + + element_invert(A, A); + + element_mul(element_y(d1), y2, p->nqrinv2); + element_set0(element_x(d1)); + element_neg(element_item(element_x(d1), 0), y); + element_mul(d1, d1, A); + element_square(d1, d1); + element_sub(d1, d0, d1); + + // cm1 = 0 + // C = (2y)^-1 + element_set0(cm1); + element_invert(C, c1); + + element_set1(dm1); + element_set1(d0); + + element_t sm2, sm1; + element_t s0, s1, s2, s3; + element_t tm2, tm1; + element_t t0, t1, t2, t3; + element_t e0, e1; + element_t u, v; + + element_init_same_as(sm2, x); + element_init_same_as(sm1, x); + element_init_same_as(s0, x); + element_init_same_as(s1, x); + element_init_same_as(s2, x); + element_init_same_as(s3, x); + + element_init_same_as(tm2, x); + element_init_same_as(tm1, x); + element_init_same_as(t0, x); + element_init_same_as(t1, x); + element_init_same_as(t2, x); + element_init_same_as(t3, x); + + element_init_same_as(e0, x); + element_init_same_as(e1, x); + + element_init_same_as(u, d0); + element_init_same_as(v, d0); + + int m = mpz_sizeinbase(pairing->r, 2) - 2; + for (;;) { + element_square(sm2, cm2); + element_square(sm1, cm1); + element_square(s0, c0); + element_square(s1, c1); + element_square(s2, c2); + element_square(s3, c3); + + element_mul(tm2, cm3, cm1); + element_mul(tm1, cm2, c0); + element_mul(t0, cm1, c1); + element_mul(t1, c0, c2); + element_mul(t2, c1, c3); + element_mul(t3, c2, c4); + + element_square(u, d0); + element_mul(v, dm1, d1); + + if (mpz_tstbit(pairing->r, m)) { + //double-and-add + element_mul(e0, t0, sm2); + element_mul(e1, tm2, s0); + element_sub(cm3, e0, e1); + element_mul(cm3, cm3, C); + + element_mul(e0, t0, sm1); + element_mul(e1, tm1, s0); + element_sub(cm2, e0, e1); + + element_mul(e0, t1, sm1); + element_mul(e1, tm1, s1); + element_sub(cm1, e0, e1); + element_mul(cm1, cm1, C); + + element_mul(e0, t1, s0); + element_mul(e1, t0, s1); + element_sub(c0, e0, e1); + + element_mul(e0, t2, s0); + element_mul(e1, t0, s2); + element_sub(c1, e0, e1); + element_mul(c1, c1, C); + + element_mul(e0, t2, s1); + element_mul(e1, t1, s2); + element_sub(c2, e0, e1); + + element_mul(e0, t3, s1); + element_mul(e1, t1, s3); + element_sub(c3, e0, e1); + element_mul(c3, c3, C); + + element_mul(e0, t3, s2); + element_mul(e1, t2, s3); + element_sub(c4, e0, e1); + + polymod_const_mul(element_x(out), t0, element_x(u)); + polymod_const_mul(element_y(out), t0, element_y(u)); + polymod_const_mul(element_x(dm1), s0, element_x(v)); + polymod_const_mul(element_y(dm1), s0, element_y(v)); + element_sub(dm1, dm1, out); + + polymod_const_mul(element_x(out), t1, element_x(u)); + polymod_const_mul(element_y(out), t1, element_y(u)); + polymod_const_mul(element_x(d0), s1, element_x(v)); + polymod_const_mul(element_y(d0), s1, element_y(v)); + element_sub(d0, d0, out); + element_mul(d0, d0, A); + + polymod_const_mul(element_x(out), t2, element_x(u)); + polymod_const_mul(element_y(out), t2, element_y(u)); + polymod_const_mul(element_x(d1), s2, element_x(v)); + polymod_const_mul(element_y(d1), s2, element_y(v)); + element_sub(d1, d1, out); + element_mul(d1, d1, B); + } else { + //double + element_mul(e0, tm1, sm2); + element_mul(e1, tm2, sm1); + element_sub(cm3, e0, e1); + + element_mul(e0, t0, sm2); + element_mul(e1, tm2, s0); + element_sub(cm2, e0, e1); + element_mul(cm2, cm2, C); + + element_mul(e0, t0, sm1); + element_mul(e1, tm1, s0); + element_sub(cm1, e0, e1); + + element_mul(e0, t1, sm1); + element_mul(e1, tm1, s1); + element_sub(c0, e0, e1); + element_mul(c0, c0, C); + + element_mul(e0, t1, s0); + element_mul(e1, t0, s1); + element_sub(c1, e0, e1); + + element_mul(e0, t2, s0); + element_mul(e1, t0, s2); + element_sub(c2, e0, e1); + element_mul(c2, c2, C); + + element_mul(e0, t2, s1); + element_mul(e1, t1, s2); + element_sub(c3, e0, e1); + + element_mul(e0, t3, s1); + element_mul(e1, t1, s3); + element_sub(c4, e0, e1); + element_mul(c4, c4, C); + + polymod_const_mul(element_x(out), tm1, element_x(u)); + polymod_const_mul(element_y(out), tm1, element_y(u)); + polymod_const_mul(element_x(dm1), sm1, element_x(v)); + polymod_const_mul(element_y(dm1), sm1, element_y(v)); + element_sub(dm1, dm1, out); + + polymod_const_mul(element_x(out), t0, element_x(u)); + polymod_const_mul(element_y(out), t0, element_y(u)); + polymod_const_mul(element_x(d0), s0, element_x(v)); + polymod_const_mul(element_y(d0), s0, element_y(v)); + element_sub(d0, d0, out); + + polymod_const_mul(element_x(out), t1, element_x(u)); + polymod_const_mul(element_y(out), t1, element_y(u)); + polymod_const_mul(element_x(d1), s1, element_x(v)); + polymod_const_mul(element_y(d1), s1, element_y(v)); + element_sub(d1, d1, out); + element_mul(d1, d1, A); + } + if (!m) break; + m--; + } + // since c_k lies base field + // it gets killed by the final powering + //element_invert(c1, c1); + //element_mul(element_x(d1), element_x(d1), c1); + //element_mul(element_y(d1), element_y(d1), c1); + + tatepower10(out, d1, pairing); + + element_clear(dm1); + element_clear(d0); + element_clear(d1); + + element_clear(cm3); + element_clear(cm2); + element_clear(cm1); + element_clear(c0); + element_clear(c1); + element_clear(c2); + element_clear(c3); + element_clear(c4); + + element_clear(sm2); + element_clear(sm1); + element_clear(s0); + element_clear(s1); + element_clear(s2); + element_clear(s3); + + element_clear(tm2); + element_clear(tm1); + element_clear(t0); + element_clear(t1); + element_clear(t2); + element_clear(t3); + + element_clear(e0); + element_clear(e1); + element_clear(A); + element_clear(B); + element_clear(C); + element_clear(u); + element_clear(v); +} + +static void g_pairing_clear(pairing_t pairing) { + field_clear(pairing->GT); + mnt_pairing_data_ptr p = pairing->data; + + element_clear(p->xpowq); + element_clear(p->xpowq2); + element_clear(p->xpowq3); + element_clear(p->xpowq4); + mpz_clear(pairing->phikonr); + + field_clear(p->Etwist); + field_clear(p->Eq); + element_clear(p->nqrinv); + element_clear(p->nqrinv2); + field_clear(p->Fqk); + field_clear(p->Fqd); + field_clear(p->Fqx); + field_clear(p->Fq); + field_clear(pairing->Zr); + mpz_clear(pairing->r); + pbc_free(p); +} + +static void g_pairing_option_set(pairing_t pairing, char *key, char *value) { + UNUSED_VAR(pairing); + if (!strcmp(key, "method")) { + if (!strcmp(value, "miller")) { + cc_miller_no_denom_fn = cc_miller_no_denom_proj; + } else if (!strcmp(value, "miller-affine")) { + cc_miller_no_denom_fn = cc_miller_no_denom_affine; + } else if (!strcmp(value, "shipsey-stange")) { + pairing->map = g_pairing_ellnet; + } + } +} + +static void g_finalpow(element_ptr e) { + element_t t0; + element_init_same_as(t0, e->data); + tatepower10(t0, e->data, e->field->pairing); + element_set(e->data, t0); + element_clear(t0); +} + +// Computes a curve and sets fp to the field it is defined over using the +// complex multiplication method, where cm holds appropriate data +// (e.g. discriminant, field order). +static void compute_cm_curve(g_param_ptr param, pbc_cm_ptr cm) { + element_t hp, root; + field_t fp, fpx; + field_t cc; + + field_init_fp(fp, cm->q); + field_init_poly(fpx, fp); + element_init(hp, fpx); + + mpz_t *coefflist; + int n = pbc_hilbert(&coefflist, cm->D); + + // Temporarily set the coefficient of x^{n-1} to 1 so hp has degree n - 1, + // allowing us to use element_item(). + poly_set_coeff1(hp, n - 1); + int i; + for (i = 0; i < n; i++) { + element_set_mpz(element_item(hp, i), coefflist[i]); + } + pbc_hilbert_free(coefflist, n); + + //TODO: remove x = 0, 1728 roots + //TODO: what if there's no roots? + //printf("hp "); + //element_out_str(stdout, 0, hp); + //printf("\n"); + + element_init(root, fp); + poly_findroot(root, hp); + //printf("root = "); + //element_out_str(stdout, 0, root); + //printf("\n"); + element_clear(hp); + field_clear(fpx); + + //the root is the j-invariant of our desired curve + field_init_curve_j(cc, root, cm->n, NULL); + element_clear(root); + + //we may need to twist it however + { + // Pick a random point P and twist the curve if it has the wrong order. + element_t P; + element_init(P, cc); + element_random(P); + element_mul_mpz(P, P, cm->n); + if (!element_is0(P)) field_reinit_curve_twist(cc); + element_clear(P); + } + + mpz_set(param->q, cm->q); + mpz_set(param->n, cm->n); + mpz_set(param->h, cm->h); + mpz_set(param->r, cm->r); + element_to_mpz(param->a, curve_field_a_coeff(cc)); + element_to_mpz(param->b, curve_field_b_coeff(cc)); + { + mpz_t z; + mpz_init(z); + //compute order of curve in F_q^k + //n = q - t + 1 hence t = q - n + 1 + mpz_sub(z, param->q, param->n); + mpz_add_ui(z, z, 1); + pbc_mpz_trace_n(z, param->q, z, 10); + mpz_pow_ui(param->nk, param->q, 10); + mpz_sub_ui(z, z, 1); + mpz_sub(param->nk, param->nk, z); + mpz_mul(z, param->r, param->r); + mpz_divexact(param->hk, param->nk, z); + mpz_clear(z); + } + field_clear(cc); + field_clear(fp); +} + +static void g_init_pairing(pairing_t pairing, void *data) { + g_param_ptr param = data; + mnt_pairing_data_ptr p; + element_t a, b; + element_t irred; + int i; + + mpz_init(pairing->r); + mpz_set(pairing->r, param->r); + field_init_fp(pairing->Zr, pairing->r); + pairing->map = cc_pairing; + pairing->is_almost_coddh = cc_is_almost_coddh; + + p = pairing->data = pbc_malloc(sizeof(mnt_pairing_data_t)); + field_init_fp(p->Fq, param->q); + element_init(a, p->Fq); + element_init(b, p->Fq); + element_set_mpz(a, param->a); + element_set_mpz(b, param->b); + field_init_curve_ab(p->Eq, a, b, pairing->r, param->h); + + field_init_poly(p->Fqx, p->Fq); + element_init(irred, p->Fqx); + + // First set the coefficient of x^5 to 1 so we can call element_item() + // for the other coefficients. + poly_set_coeff1(irred, 5); + for (i=0; i<5; i++) { + element_set_mpz(element_item(irred, i), param->coeff[i]); + } + + field_init_polymod(p->Fqd, irred); + element_clear(irred); + + p->Fqd->nqr = pbc_malloc(sizeof(element_t)); + element_init(p->Fqd->nqr, p->Fqd); + element_set_mpz(((element_t *) p->Fqd->nqr->data)[0], param->nqr); + + field_init_quadratic(p->Fqk, p->Fqd); + + // Compute phi(k)/r = (q^4 - q^3 + ... + 1)/r. + { + element_ptr e = p->xpowq; + mpz_t z0; + mpz_ptr q = param->q; + mpz_ptr z = pairing->phikonr; + mpz_init(z); + mpz_init(z0); + mpz_set_ui(z, 1); + mpz_sub(z, z, q); + mpz_mul(z0, q, q); + mpz_add(z, z, z0); + mpz_mul(z0, z0, q); + mpz_sub(z, z, z0); + mpz_mul(z0, z0, q); + mpz_add(z, z, z0); + mpz_clear(z0); + mpz_divexact(z, z, pairing->r); + + element_init(e, p->Fqd); + element_init(p->xpowq2, p->Fqd); + element_init(p->xpowq3, p->Fqd); + element_init(p->xpowq4, p->Fqd); + element_set1(((element_t *) e->data)[1]); + element_pow_mpz(e, e, q); + + element_square(p->xpowq2, p->xpowq); + element_square(p->xpowq4, p->xpowq2); + element_mul(p->xpowq3, p->xpowq2, p->xpowq); + } + + field_init_curve_ab_map(p->Etwist, p->Eq, element_field_to_polymod, p->Fqd, pairing->r, NULL); + field_reinit_curve_twist(p->Etwist); + + element_init(p->nqrinv, p->Fqd); + element_invert(p->nqrinv, field_get_nqr(p->Fqd)); + element_init(p->nqrinv2, p->Fqd); + element_square(p->nqrinv2, p->nqrinv); + + mpz_t ndonr; + mpz_init(ndonr); + // ndonr temporarily holds the trace. + mpz_sub(ndonr, param->q, param->n); + mpz_add_ui(ndonr, ndonr, 1); + // Negate because we want the order of the twist. + mpz_neg(ndonr, ndonr); + pbc_mpz_curve_order_extn(ndonr, param->q, ndonr, 5); + mpz_divexact(ndonr, ndonr, param->r); + field_curve_set_quotient_cmp(p->Etwist, ndonr); + mpz_clear(ndonr); + + pairing->G1 = p->Eq; + pairing->G2 = p->Etwist; + pairing_GT_init(pairing, p->Fqk); + pairing->finalpow = g_finalpow; + + cc_miller_no_denom_fn = cc_miller_no_denom_affine; + pairing->option_set = g_pairing_option_set; + pairing->pp_init = g_pairing_pp_init; + pairing->pp_clear = g_pairing_pp_clear; + pairing->pp_apply = g_pairing_pp_apply; + + pairing->clear_func = g_pairing_clear; + + element_clear(a); + element_clear(b); +} + +static void g_init(pbc_param_ptr p) { + static pbc_param_interface_t interface = {{ + g_clear, + g_init_pairing, + g_out_str, + }}; + p->api = interface; + g_param_ptr param = p->data = pbc_malloc(sizeof(*param)); + mpz_init(param->q); + mpz_init(param->n); + mpz_init(param->h); + mpz_init(param->r); + mpz_init(param->a); + mpz_init(param->b); + mpz_init(param->nk); + mpz_init(param->hk); + param->coeff = NULL; + mpz_init(param->nqr); +} + +// Public interface: + +int pbc_param_init_g(pbc_param_ptr par, struct symtab_s *tab) { + g_init(par); + g_param_ptr p = par->data; + char s[80]; + + int err = 0; + err += lookup_mpz(p->q, tab, "q"); + err += lookup_mpz(p->n, tab, "n"); + err += lookup_mpz(p->h, tab, "h"); + err += lookup_mpz(p->r, tab, "r"); + err += lookup_mpz(p->a, tab, "a"); + err += lookup_mpz(p->b, tab, "b"); + err += lookup_mpz(p->nk, tab, "nk"); + err += lookup_mpz(p->hk, tab, "hk"); + err += lookup_mpz(p->nqr, tab, "nqr"); + + p->coeff = pbc_realloc(p->coeff, sizeof(mpz_t) * 5); + int i; + for (i = 0; i < 5; i++) { + sprintf(s, "coeff%d", i); + mpz_init(p->coeff[i]); + err += lookup_mpz(p->coeff[i], tab, s); + } + return err; +} + +void pbc_param_init_g_gen(pbc_param_t p, pbc_cm_ptr cm) { + g_init(p); + g_param_ptr param = p->data; + field_t Fq, Fqx, Fqd; + element_t irred, nqr; + int i; + + compute_cm_curve(param, cm); + + field_init_fp(Fq, param->q); + field_init_poly(Fqx, Fq); + element_init(irred, Fqx); + do { + poly_random_monic(irred, 5); + } while (!poly_is_irred(irred)); + field_init_polymod(Fqd, irred); + + // Find a quadratic nonresidue of Fqd lying in Fq. + element_init(nqr, Fqd); + do { + element_random(((element_t *) nqr->data)[0]); + } while (element_is_sqr(nqr)); + + param->coeff = pbc_realloc(param->coeff, sizeof(mpz_t) * 5); + + for (i=0; i<5; i++) { + mpz_init(param->coeff[i]); + element_to_mpz(param->coeff[i], element_item(irred, i)); + } + element_to_mpz(param->nqr, ((element_t *) nqr->data)[0]); + + element_clear(nqr); + element_clear(irred); + + field_clear(Fqx); + field_clear(Fqd); + field_clear(Fq); +} -- cgit 1.2.3-korg