aboutsummaryrefslogtreecommitdiffstats
path: root/moon-abe/pbc-0.5.14/include/pbc_field.h
diff options
context:
space:
mode:
Diffstat (limited to 'moon-abe/pbc-0.5.14/include/pbc_field.h')
-rw-r--r--moon-abe/pbc-0.5.14/include/pbc_field.h694
1 files changed, 694 insertions, 0 deletions
diff --git a/moon-abe/pbc-0.5.14/include/pbc_field.h b/moon-abe/pbc-0.5.14/include/pbc_field.h
new file mode 100644
index 00000000..5bcb8c83
--- /dev/null
+++ b/moon-abe/pbc-0.5.14/include/pbc_field.h
@@ -0,0 +1,694 @@
+/*
+ * field_t: represents fields, rings and groups.
+ * element_t: represents an element of a field_t.
+ */
+
+// Requires:
+// * stdarg.h
+// * stdio.h
+// * gmp.h
+// * utils.h
+#ifndef __PBC_FIELD_H__
+#define __PBC_FIELD_H__
+
+struct field_s;
+
+struct element_s {
+ struct field_s *field;
+ void *data;
+};
+typedef struct element_s *element_ptr;
+typedef struct element_s element_t[1];
+
+struct element_pp_s {
+ struct field_s *field;
+ void *data;
+};
+typedef struct element_pp_s element_pp_t[1];
+typedef struct element_pp_s *element_pp_ptr;
+
+void pbc_assert(int expr, char *msg, const char *func);
+void pbc_assert_match2(element_ptr a, element_ptr b, const char *func);
+void pbc_assert_match3(element_ptr a, element_ptr b, element_ptr c,
+ const char *func);
+
+struct multiz_s;
+typedef struct multiz_s *multiz;
+
+struct pairing_s;
+struct field_s {
+ void (*field_clear)(struct field_s *f);
+ void (*init)(element_ptr);
+ void (*clear)(element_ptr);
+
+ void (*set_mpz)(element_ptr, mpz_ptr);
+ void (*set_multiz)(element_ptr, multiz);
+ void (*set)(element_ptr, element_ptr);
+ void (*set0)(element_ptr);
+ void (*set1)(element_ptr);
+ int (*set_str)(element_ptr e, const char *s, int base);
+ size_t(*out_str)(FILE *stream, int base, element_ptr);
+ void (*add)(element_ptr, element_ptr, element_ptr);
+ void (*sub)(element_ptr, element_ptr, element_ptr);
+ void (*mul)(element_ptr, element_ptr, element_ptr);
+
+ int (*is_sqr)(element_ptr);
+ void (*sqrt)(element_ptr, element_ptr);
+
+ // Defaults exist for these functions.
+ int (*item_count)(element_ptr);
+ element_ptr (*item)(element_ptr, int);
+ element_ptr (*get_x)(element_ptr);
+ element_ptr (*get_y)(element_ptr);
+ void (*set_si)(element_ptr, signed long int);
+ void (*add_ui)(element_ptr, element_ptr, unsigned long int);
+ void (*mul_mpz)(element_ptr, element_ptr, mpz_ptr);
+ void (*mul_si)(element_ptr, element_ptr, signed long int);
+ void (*div)(element_ptr, element_ptr, element_ptr);
+ void (*doub)(element_ptr, element_ptr); // Can't call it "double"!
+ void (*multi_doub)(element_ptr*, element_ptr*, int n);
+ void (*multi_add)(element_ptr*, element_ptr*, element_ptr*, int n);
+ void (*halve)(element_ptr, element_ptr);
+ void (*square)(element_ptr, element_ptr);
+
+ void (*cubic) (element_ptr, element_ptr);
+ void (*pow_mpz)(element_ptr, element_ptr, mpz_ptr);
+ void (*invert)(element_ptr, element_ptr);
+ void (*neg)(element_ptr, element_ptr);
+ void (*random)(element_ptr);
+ void (*from_hash)(element_ptr, void *data, int len);
+ int (*is1)(element_ptr);
+ int (*is0)(element_ptr);
+ int (*sign)(element_ptr); // satisfies sign(x) = -sign(-x)
+ int (*cmp)(element_ptr, element_ptr);
+ int (*to_bytes)(unsigned char *data, element_ptr);
+ int (*from_bytes)(element_ptr, unsigned char *data);
+ int (*length_in_bytes)(element_ptr);
+ int fixed_length_in_bytes; // length of an element in bytes; -1 for variable
+ int (*snprint)(char *s, size_t n, element_ptr e);
+ void (*to_mpz)(mpz_ptr, element_ptr);
+ void (*out_info)(FILE *, struct field_s *);
+ void (*pp_init)(element_pp_t p, element_t in);
+ void (*pp_clear)(element_pp_t p);
+ void (*pp_pow)(element_t out, mpz_ptr power, element_pp_t p);
+
+ struct pairing_s *pairing;
+
+ mpz_t order; // 0 for infinite order
+ element_ptr nqr; // nonquadratic residue
+
+ char *name;
+ void *data;
+};
+typedef struct field_s *field_ptr;
+typedef struct field_s field_t[1];
+
+typedef void (*fieldmap) (element_t dst, element_t src);
+
+void field_out_info(FILE* out, field_ptr f);
+
+/*@manual internal
+Initialize 'e' to be an element of the algebraic structure 'f'
+and set it to be the zero element.
+*/
+static inline void element_init(element_t e, field_ptr f) {
+ e->field = f;
+ f->init(e);
+}
+
+element_ptr element_new(field_ptr f);
+void element_free(element_ptr e);
+
+/*@manual einit
+Initialize 'e' to be an element of the algebraic structure that 'e2'
+lies in.
+*/
+static inline void element_init_same_as(element_t e, element_t e2) {
+ element_init(e, e2->field);
+}
+
+/*@manual einit
+Free the space occupied by 'e'. Call this when
+the variable 'e' is no longer needed.
+*/
+static inline void element_clear(element_t e) {
+ e->field->clear(e);
+}
+
+/*@manual eio
+Output 'e' on 'stream' in base 'base'. The base must be between
+2 and 36.
+*/
+static inline size_t element_out_str(FILE * stream, int base, element_t e) {
+ return e->field->out_str(stream, base, e);
+}
+
+/*@manual eio
+*/
+int element_printf(const char *format, ...);
+
+/*@manual eio
+*/
+int element_fprintf(FILE * stream, const char *format, ...);
+
+/*@manual eio
+*/
+int element_snprintf(char *buf, size_t size, const char *fmt, ...);
+
+/*@manual eio
+Same as printf family
+except also has the 'B' conversion specifier for types
+of *element_t*, and 'Y', 'Z' conversion specifiers for
++mpz_t+. For example if 'e' is of type
++element_t+ then
+
+ element_printf("%B\n", e);
+
+will print the value of 'e' in a human-readable form on standard output.
+*/
+int element_vsnprintf(char *buf, size_t size, const char *fmt, va_list ap);
+
+/*@manual eio
+Convert an element to a human-friendly string.
+Behaves as *snprintf* but only on one element at a time.
+*/
+static inline int element_snprint(char *s, size_t n, element_t e) {
+ return e->field->snprint(s, n, e);
+}
+
+static inline void element_set_multiz(element_t e, multiz m) {
+ e->field->set_multiz(e, m);
+}
+
+/*@manual eio
+Set the element 'e' from 's', a null-terminated C string in base 'base'.
+Whitespace is ignored. Points have the form "['x,y']" or "'O'",
+while polynomials have the form "['a0,...,an']".
+Returns number of characters read (unlike GMP's mpz_set_str).
+A return code of zero means PBC could not find a well-formed string
+describing an element.
+*/
+static inline int element_set_str(element_t e, const char *s, int base) {
+ return e->field->set_str(e, s, base);
+}
+
+/*@manual eassign
+Set 'e' to zero.
+*/
+static inline void element_set0(element_t e) {
+ e->field->set0(e);
+}
+
+/*@manual eassign
+Set 'e' to one.
+*/
+static inline void element_set1(element_t e) {
+ e->field->set1(e);
+}
+
+/*@manual eassign
+Set 'e' to 'i'.
+*/
+static inline void element_set_si(element_t e, signed long int i) {
+ e->field->set_si(e, i);
+}
+
+/*@manual eassign
+Set 'e' to 'z'.
+*/
+static inline void element_set_mpz(element_t e, mpz_t z) {
+ e->field->set_mpz(e, z);
+}
+
+/*@manual eassign
+Set 'e' to 'a'.
+*/
+static inline void element_set(element_t e, element_t a) {
+ PBC_ASSERT_MATCH2(e, a);
+ e->field->set(e, a);
+}
+
+static inline void element_add_ui(element_t n, element_t a,
+ unsigned long int b) {
+ n->field->add_ui(n, a, b);
+}
+
+/*@manual econvert
+Converts 'e' to a GMP integer 'z'
+if such an operation makes sense
+*/
+static inline void element_to_mpz(mpz_t z, element_t e) {
+ e->field->to_mpz(z, e);
+}
+
+static inline long element_to_si(element_t e) {
+ mpz_t z;
+ mpz_init(z);
+ e->field->to_mpz(z, e);
+ long res = mpz_get_si(z);
+ mpz_clear(z);
+ return res;
+}
+
+/*@manual econvert
+Generate an element 'e' deterministically from
+the 'len' bytes stored in the buffer 'data'.
+*/
+static inline void element_from_hash(element_t e, void *data, int len) {
+ e->field->from_hash(e, data, len);
+}
+
+/*@manual earith
+Set 'n' to 'a' + 'b'.
+*/
+static inline void element_add(element_t n, element_t a, element_t b) {
+ PBC_ASSERT_MATCH3(n, a, b);
+ n->field->add(n, a, b);
+}
+
+/*@manual earith
+Set 'n' to 'a' - 'b'.
+*/
+static inline void element_sub(element_t n, element_t a, element_t b) {
+ PBC_ASSERT_MATCH3(n, a, b);
+ n->field->sub(n, a, b);
+}
+
+/*@manual earith
+Set 'n' = 'a' 'b'.
+*/
+static inline void element_mul(element_t n, element_t a, element_t b) {
+ PBC_ASSERT_MATCH3(n, a, b);
+ n->field->mul(n, a, b);
+}
+
+static inline void element_cubic(element_t n, element_t a) {
+ PBC_ASSERT_MATCH2(n, a);
+ n->field->cubic(n, a);
+}
+
+/*@manual earith
+*/
+static inline void element_mul_mpz(element_t n, element_t a, mpz_t z) {
+ PBC_ASSERT_MATCH2(n, a);
+ n->field->mul_mpz(n, a, z);
+}
+
+/*@manual earith
+Set 'n' = 'a' 'z', that is 'a' + 'a' + ... + 'a' where there are 'z' 'a'#'s#.
+*/
+static inline void element_mul_si(element_t n, element_t a,
+ signed long int z) {
+ PBC_ASSERT_MATCH2(n, a);
+ n->field->mul_si(n, a, z);
+}
+
+/*@manual earith
+'z' must be an element of a integer mod ring (i.e. *Z*~n~ for some n).
+Set 'c' = 'a' 'z', that is 'a' + 'a' + ... + 'a'
+where there are 'z' 'a''s.
+*/
+static inline void element_mul_zn(element_t c, element_t a, element_t z) {
+ mpz_t z0;
+ PBC_ASSERT_MATCH2(c, a);
+ //TODO: check z->field is Zn
+ mpz_init(z0);
+ element_to_mpz(z0, z);
+ element_mul_mpz(c, a, z0);
+ mpz_clear(z0);
+}
+
+/*@manual earith
+Set 'n' = 'a' / 'b'.
+*/
+static inline void element_div(element_t n, element_t a, element_t b) {
+ PBC_ASSERT_MATCH3(n, a, b);
+ n->field->div(n, a, b);
+}
+
+/*@manual earith
+Set 'n' = 'a' + 'a'.
+*/
+static inline void element_double(element_t n, element_t a) {
+ PBC_ASSERT_MATCH2(n, a);
+ n->field->doub(n, a);
+}
+
+// Set n_i = a_i + a_i for all i at one time.
+// Uses multi_doub(), which only elliptic curves have at the moment.
+void element_multi_double(element_t n[], element_t a[], int m);
+
+// Set n_i =a_i + b_i for all i at one time.
+// Uses multi_add(), which only elliptic curves have at the moment.
+void element_multi_add(element_t n[], element_t a[],element_t b[], int m);
+
+/*@manual earith
+Set 'n' = 'a/2'
+*/
+static inline void element_halve(element_t n, element_t a) {
+ PBC_ASSERT_MATCH2(n, a);
+ n->field->halve(n, a);
+}
+
+/*@manual earith
+Set 'n' = 'a'^2^
+*/
+static inline void element_square(element_t n, element_t a) {
+ PBC_ASSERT_MATCH2(n, a);
+ n->field->square(n, a);
+}
+
+/*@manual epow
+Set 'x' = 'a'^'n'^, that is
+'a' times 'a' times ... times 'a' where there are 'n' 'a'#'s#.
+*/
+static inline void element_pow_mpz(element_t x, element_t a, mpz_t n) {
+ PBC_ASSERT_MATCH2(x, a);
+ x->field->pow_mpz(x, a, n);
+}
+
+/*@manual epow
+Set 'x' = 'a'^'n'^, where 'n' is an element of a ring *Z*~N~
+for some 'N' (typically the order of the algebraic structure 'x' lies in).
+*/
+static inline void element_pow_zn(element_t x, element_t a, element_t n) {
+ mpz_t z;
+ PBC_ASSERT_MATCH2(x, a);
+ mpz_init(z);
+ element_to_mpz(z, n);
+ element_pow_mpz(x, a, z);
+ mpz_clear(z);
+}
+
+/*@manual earith
+Set 'n' = -'a'.
+*/
+static inline void element_neg(element_t n, element_t a) {
+ PBC_ASSERT_MATCH2(n, a);
+ n->field->neg(n, a);
+}
+
+/*@manual earith
+Set 'n' to the inverse of 'a'.
+*/
+static inline void element_invert(element_t n, element_t a) {
+ PBC_ASSERT_MATCH2(n, a);
+ n->field->invert(n, a);
+}
+
+/*@manual erandom
+If the 'e' lies in a finite algebraic structure,
+assigns a uniformly random element to 'e'.
+*/
+static inline void element_random(element_t e) {
+ e->field->random(e);
+}
+
+/*@manual ecmp
+Returns true if 'n' is 1.
+*/
+static inline int element_is1(element_t n) {
+ return n->field->is1(n);
+}
+
+/*@manual ecmp
+Returns true if 'n' is 0.
+*/
+static inline int element_is0(element_t n) {
+ return n->field->is0(n);
+}
+
+/*@manual ecmp
+Returns 0 if 'a' and 'b' are the same, nonzero otherwise.
+*/
+static inline int element_cmp(element_t a, element_t b) {
+ PBC_ASSERT_MATCH2(a, b);
+ return a->field->cmp(a, b);
+}
+
+/*@manual ecmp
+Returns nonzero if 'a' is a perfect square (quadratic residue),
+zero otherwise.
+*/
+static inline int element_is_sqr(element_t a) {
+ return a->field->is_sqr(a);
+}
+
+/*@manual ecmp
+*/
+static inline int element_sgn(element_t a) {
+ return a->field->sign(a);
+}
+
+/*@manual ecmp
+If 'a' is zero, returns 0. For nozero 'a' the behaviour depends on
+the algebraic structure, but has the property that
+element_sgn('a') = -element_sgn(-'a')
+and
+element_sgn('a') = 0 implies 'a' = 0 with overwhelming probability.
+*/
+static inline int element_sign(element_t a) {
+ return a->field->sign(a);
+}
+
+static inline void element_sqrt(element_t a, element_t b) {
+ PBC_ASSERT_MATCH2(a, b);
+ a->field->sqrt(a, b);
+}
+
+/*@manual etrade
+Returns the length in bytes the element 'e' will take to represent
+*/
+static inline int element_length_in_bytes(element_t e) {
+ if (e->field->fixed_length_in_bytes < 0) {
+ return e->field->length_in_bytes(e);
+ } else {
+ return e->field->fixed_length_in_bytes;
+ }
+}
+
+/*@manual etrade
+Converts 'e' to byte, writing the result in the buffer 'data'.
+The number of bytes it will write can be determined from calling
+*element_length_in_bytes()*. Returns number of bytes written.
+*/
+static inline int element_to_bytes(unsigned char *data, element_t e) {
+ return e->field->to_bytes(data, e);
+}
+
+/*@manual etrade
+Reads 'e' from the buffer 'data', and returns the number of bytes read.
+*/
+static inline int element_from_bytes(element_t e, unsigned char *data) {
+ return e->field->from_bytes(e, data);
+}
+
+/*@manual epow
+Sets 'x' = 'a1'^'n1'^ 'a2'^'n2'^, and is generally faster than
+performing two separate exponentiations.
+*/
+void element_pow2_mpz(element_t x, element_t a1, mpz_t n1, element_t a2,
+ mpz_t n2);
+/*@manual epow
+Also sets 'x' = 'a1'^'n1'^ 'a2'^'n2'^,
+but 'n1', 'n2' must be elements of a ring *Z*~n~ for some integer n.
+*/
+static inline void element_pow2_zn(element_t x, element_t a1, element_t n1,
+ element_t a2, element_t n2) {
+ mpz_t z1, z2;
+ mpz_init(z1);
+ mpz_init(z2);
+ element_to_mpz(z1, n1);
+ element_to_mpz(z2, n2);
+ element_pow2_mpz(x, a1, z1, a2, z2);
+ mpz_clear(z1);
+ mpz_clear(z2);
+}
+
+/*@manual epow
+Sets 'x' = 'a1'^'n1'^ 'a2'^'n2'^ 'a3'^'n3'^,
+generally faster than performing three separate exponentiations.
+*/
+void element_pow3_mpz(element_t x, element_t a1, mpz_t n1,
+ element_t a2, mpz_t n2, element_t a3, mpz_t n3);
+
+/*@manual epow
+Also sets 'x' = 'a1'^'n1'^ 'a2'^'n2'^ 'a3'^'n3'^,
+but 'n1', 'n2', 'n3' must be elements of a ring *Z*~n~ for some integer n.
+*/
+static inline void element_pow3_zn(element_t x, element_t a1, element_t n1,
+ element_t a2, element_t n2,
+ element_t a3, element_t n3) {
+ mpz_t z1, z2, z3;
+ mpz_init(z1);
+ mpz_init(z2);
+ mpz_init(z3);
+ element_to_mpz(z1, n1);
+ element_to_mpz(z2, n2);
+ element_to_mpz(z3, n3);
+ element_pow3_mpz(x, a1, z1, a2, z2, a3, z3);
+ mpz_clear(z1);
+ mpz_clear(z2);
+ mpz_clear(z3);
+}
+
+void field_clear(field_ptr f);
+
+element_ptr field_get_nqr(field_ptr f);
+void field_set_nqr(field_ptr f, element_t nqr);
+void field_gen_nqr(field_ptr f);
+
+void field_init(field_ptr f);
+
+static inline int mpz_is0(mpz_t z) {
+ return !mpz_sgn(z);
+ //return !mpz_cmp_ui(z, 0);
+}
+
+/*@manual etrade
+Assumes 'e' is a point on an elliptic curve.
+Writes the x-coordinate of 'e' to the buffer 'data'
+*/
+int element_to_bytes_x_only(unsigned char *data, element_t e);
+/*@manual etrade
+Assumes 'e' is a point on an elliptic curve.
+Sets 'e' to a point with
+x-coordinate represented by the buffer 'data'. This is not unique.
+For each 'x'-coordinate, there exist two different points, at least
+for the elliptic curves in PBC. (They are inverses of each other.)
+*/
+int element_from_bytes_x_only(element_t e, unsigned char *data);
+/*@manual etrade
+Assumes 'e' is a point on an elliptic curve.
+Returns the length in bytes needed to hold the x-coordinate of 'e'.
+*/
+int element_length_in_bytes_x_only(element_t e);
+
+/*@manual etrade
+If possible, outputs a compressed form of the element 'e' to
+the buffer of bytes 'data'.
+Currently only implemented for points on an elliptic curve.
+*/
+int element_to_bytes_compressed(unsigned char *data, element_t e);
+
+/*@manual etrade
+Sets element 'e' to the element in compressed form in the buffer of bytes
+'data'.
+Currently only implemented for points on an elliptic curve.
+*/
+int element_from_bytes_compressed(element_t e, unsigned char *data);
+
+/*@manual etrade
+Returns the number of bytes needed to hold 'e' in compressed form.
+Currently only implemented for points on an elliptic curve.
+*/
+int element_length_in_bytes_compressed(element_t e);
+
+/*@manual epow
+Prepare to exponentiate an element 'in', and store preprocessing information
+in 'p'.
+*/
+static inline void element_pp_init(element_pp_t p, element_t in) {
+ p->field = in->field;
+ in->field->pp_init(p, in);
+}
+
+/*@manual epow
+Clear 'p'. Should be called after 'p' is no longer needed.
+*/
+static inline void element_pp_clear(element_pp_t p) {
+ p->field->pp_clear(p);
+}
+
+/*@manual epow
+Raise 'in' to 'power' and store the result in 'out', where 'in'
+is a previously preprocessed element, that is, the second argument
+passed to a previous *element_pp_init* call.
+*/
+static inline void element_pp_pow(element_t out, mpz_ptr power,
+ element_pp_t p) {
+ p->field->pp_pow(out, power, p);
+}
+
+/*@manual epow
+Same except 'power' is an element of *Z*~n~ for some integer n.
+*/
+static inline void element_pp_pow_zn(element_t out, element_t power,
+ element_pp_t p) {
+ mpz_t z;
+ mpz_init(z);
+ element_to_mpz(z, power);
+ element_pp_pow(out, z, p);
+ mpz_clear(z);
+}
+
+void pbc_mpz_out_raw_n(unsigned char *data, int n, mpz_t z);
+void pbc_mpz_from_hash(mpz_t z, mpz_t limit,
+ unsigned char *data, unsigned int len);
+
+/*@manual etrade
+For points, returns the number of coordinates.
+For polynomials, returns the number of coefficients.
+Otherwise returns zero.
+*/
+static inline int element_item_count(element_t e) {
+ return e->field->item_count(e);
+}
+
+/*@manual etrade
+For points, returns 'n'#th# coordinate.
+For polynomials, returns coefficient of 'x^n^'.
+Otherwise returns NULL.
+The element the return value points to may be modified.
+*/
+static inline element_ptr element_item(element_t e, int i) {
+ // TODO: Document the following:
+ // For polynomials, never zero the leading coefficient, e.g. never write:
+ // element_set0(element_item(f, poly_degree(f)));
+ // Use poly_set_coeff0() to zero the leading coefficient.
+ return e->field->item(e, i);
+}
+
+// Returns the field containing the items.
+// Returns NULL if there are no items.
+static inline field_ptr element_item_field(element_t e) {
+ if (!element_item_count(e)) return NULL;
+ return element_item(e, 0)->field;
+}
+
+/*@manual etrade
+Equivalent to `element_item(a, 0)`.
+*/
+static inline element_ptr element_x(element_ptr a) {
+ return a->field->get_x(a);
+}
+/*@manual etrade
+Equivalent to `element_item(a, 1)`.
+*/
+static inline element_ptr element_y(element_ptr a) {
+ return a->field->get_y(a);
+}
+
+/*@manual epow
+Computes 'x' such that 'g^x^ = h' by brute force, where
+'x' lies in a field where `element_set_mpz()` makes sense.
+*/
+void element_dlog_brute_force(element_t x, element_t g, element_t h);
+
+/*@manual epow
+Computes 'x' such that 'g^x^ = h' using Pollard rho method, where
+'x' lies in a field where `element_set_mpz()` makes sense.
+*/
+void element_dlog_pollard_rho(element_t x, element_t g, element_t h);
+
+// Trial division up to a given limit. If limit == NULL, then there is no limit.
+// Call the callback for each factor found, abort and return 1 if the callback
+// returns nonzero, otherwise return 0.
+int pbc_trial_divide(int (*fun)(mpz_t factor,
+ unsigned int multiplicity,
+ void *scope_ptr),
+ void *scope_ptr,
+ mpz_t n,
+ mpz_ptr limit);
+
+#endif // __PBC_FIELD_H__