aboutsummaryrefslogtreecommitdiffstats
path: root/moon-abe/pbc-0.5.14/guru/sing.c
diff options
context:
space:
mode:
Diffstat (limited to 'moon-abe/pbc-0.5.14/guru/sing.c')
-rw-r--r--moon-abe/pbc-0.5.14/guru/sing.c263
1 files changed, 263 insertions, 0 deletions
diff --git a/moon-abe/pbc-0.5.14/guru/sing.c b/moon-abe/pbc-0.5.14/guru/sing.c
new file mode 100644
index 00000000..d29e3ff5
--- /dev/null
+++ b/moon-abe/pbc-0.5.14/guru/sing.c
@@ -0,0 +1,263 @@
+/*
+ * Example of a singular curve, similar to 19.c
+ * but the Tate pairing degenerates
+ *
+ * Consider the curve E: y^2 = x^3 + x^2 over F_19:
+ * E_ns(F_19) is a cyclic group of order 18.
+ */
+
+#include "pbc.h"
+#include "pbc_singular.h"
+#include "pbc_fp.h"
+
+static void miller(element_t res, element_t P, element_t Q, element_t R, int n)
+{
+ //collate divisions
+ int m;
+ element_t v, vd;
+ element_t Z;
+ element_t a, b, c;
+ element_t e0, e1;
+ mpz_t q;
+ element_ptr Zx, Zy;
+ const element_ptr Px = curve_x_coord(P);
+ const element_ptr Py = curve_y_coord(P);
+ const element_ptr numx = curve_x_coord(Q);
+ const element_ptr numy = curve_y_coord(Q);
+ const element_ptr denomx = curve_x_coord(R);
+ const element_ptr denomy = curve_y_coord(R);
+
+ void do_vertical(element_t e, element_t edenom)
+ {
+ element_sub(e0, numx, Zx);
+ element_mul(e, e, e0);
+
+ element_sub(e0, denomx, Zx);
+ element_mul(edenom, edenom, e0);
+ }
+
+ void do_tangent(element_t e, element_t edenom)
+ {
+ //a = -slope_tangent(A.x, A.y);
+ //b = 1;
+ //c = -(A.y + a * A.x);
+ //but we multiply by 2*A.y to avoid division
+
+ //a = -Ax * (Ax + Ax + Ax + twicea_2) - a_4;
+ //This curve is special:
+ //a = -(3 Ax^2 + 2Ax)
+ //b = 2 * Ay
+ //c = -(2 Ay^2 + a Ax);
+
+ if (element_is0(Zy)) {
+ do_vertical(e, edenom);
+ return;
+ }
+ element_square(a, Zx);
+ element_mul_si(a, a, 3);
+ element_add(a, a, Zx);
+ element_add(a, a, Zx);
+ element_neg(a, a);
+
+ element_add(b, Zy, Zy);
+
+ element_mul(e0, b, Zy);
+ element_mul(c, a, Zx);
+ element_add(c, c, e0);
+ element_neg(c, c);
+
+ element_mul(e0, a, numx);
+ element_mul(e1, b, numy);
+ element_add(e0, e0, e1);
+ element_add(e0, e0, c);
+ element_mul(e, e, e0);
+
+ element_mul(e0, a, denomx);
+ element_mul(e1, b, denomy);
+ element_add(e0, e0, e1);
+ element_add(e0, e0, c);
+ element_mul(edenom, edenom, e0);
+ }
+
+ void do_line(element_ptr e, element_ptr edenom)
+ {
+ if (!element_cmp(Zx, Px)) {
+ if (!element_cmp(Zy, Py)) {
+ do_tangent(e, edenom);
+ } else {
+ do_vertical(e, edenom);
+ }
+ return;
+ }
+
+ element_sub(b, Px, Zx);
+ element_sub(a, Zy, Py);
+ element_mul(c, Zx, Py);
+ element_mul(e0, Zy, Px);
+ element_sub(c, c, e0);
+
+ element_mul(e0, a, numx);
+ element_mul(e1, b, numy);
+ element_add(e0, e0, e1);
+ element_add(e0, e0, c);
+ element_mul(e, e, e0);
+
+ element_mul(e0, a, denomx);
+ element_mul(e1, b, denomy);
+ element_add(e0, e0, e1);
+ element_add(e0, e0, c);
+ element_mul(edenom, edenom, e0);
+ }
+
+ element_init(a, res->field);
+ element_init(b, res->field);
+ element_init(c, res->field);
+ element_init(e0, res->field);
+ element_init(e1, res->field);
+
+ element_init(v, res->field);
+ element_init(vd, res->field);
+ element_init(Z, P->field);
+
+ element_set(Z, P);
+ Zx = curve_x_coord(Z);
+ Zy = curve_y_coord(Z);
+
+ element_set1(v);
+ element_set1(vd);
+
+ mpz_init(q);
+ mpz_set_ui(q, n);
+ m = mpz_sizeinbase(q, 2) - 2;
+
+ while(m >= 0) {
+ element_square(v, v);
+ element_square(vd, vd);
+ do_tangent(v, vd);
+ element_double(Z, Z);
+ do_vertical(vd, v);
+
+ if (mpz_tstbit(q, m)) {
+ do_line(v, vd);
+ element_add(Z, Z, P);
+ if (m) {
+ do_vertical(vd, v);
+ }
+ }
+ m--;
+ }
+
+ mpz_clear(q);
+
+ element_invert(vd, vd);
+ element_mul(res, v, vd);
+
+ element_clear(v);
+ element_clear(vd);
+ element_clear(Z);
+ element_clear(a);
+ element_clear(b);
+ element_clear(c);
+ element_clear(e0);
+ element_clear(e1);
+}
+
+static void tate_3(element_ptr out, element_ptr P, element_ptr Q, element_ptr R)
+{
+ mpz_t six;
+
+ mpz_init(six);
+ mpz_set_ui(six, 6);
+ element_t QR;
+ element_t e0;
+
+ element_init(QR, P->field);
+ element_init(e0, out->field);
+
+ element_add(QR, Q, R);
+
+ //for subgroup size 3, -2P = P, hence
+ //the tangent line at P has divisor 3(P) - 3(O)
+
+ miller(out, P, QR, R, 3);
+
+ element_pow_mpz(out, out, six);
+ element_clear(QR);
+ element_clear(e0);
+ mpz_clear(six);
+}
+
+static void tate_9(element_ptr out, element_ptr P, element_ptr Q, element_ptr R)
+{
+ element_t QR;
+ element_init(QR, P->field);
+
+ element_add(QR, Q, R);
+
+ miller(out, P, QR, R, 9);
+
+ element_square(out, out);
+
+ element_clear(QR);
+}
+
+int main(void)
+{
+ field_t c;
+ field_t Z19;
+ element_t P, Q, R;
+ mpz_t q, z;
+ element_t a;
+ int i;
+
+ mpz_init(q);
+ mpz_init(z);
+
+ mpz_set_ui(q, 19);
+
+ field_init_fp(Z19, q);
+ element_init(a, Z19);
+
+ field_init_curve_singular_with_node(c, Z19);
+
+ element_init(P, c);
+ element_init(Q, c);
+ element_init(R, c);
+
+ //(3,+/-6) is a generator
+ //we have an isomorphism from E_ns to F_19^*
+ // (3,6) --> 3
+ //(generally (x,y) --> (y+x)/(y-x)
+
+ curve_set_si(R, 3, 6);
+
+ for (i=1; i<=18; i++) {
+ mpz_set_si(z, i);
+ element_mul_mpz(Q, R, z);
+ element_printf("%dR = %B\n", i, Q);
+ }
+
+ mpz_set_ui(z, 6);
+ element_mul_mpz(P, R, z);
+ //P has order 3
+ element_printf("P = %B\n", P);
+
+ for (i=1; i<=3; i++) {
+ mpz_set_si(z, i);
+ element_mul_mpz(Q, R, z);
+ tate_3(a, P, Q, R);
+ element_printf("e_3(P,%dP) = %B\n", i, a);
+ }
+
+ element_double(P, R);
+ //P has order 9
+ element_printf("P = %B\n", P);
+ for (i=1; i<=9; i++) {
+ mpz_set_si(z, i);
+ element_mul_mpz(Q, P, z);
+ tate_9(a, P, Q, R);
+ element_printf("e_9(P,%dP) = %B\n", i, a);
+ }
+
+ return 0;
+}