/* * linux/arch/arm/vfp/vfpdouble.c * * This code is derived in part from John R. Housers softfloat library, which * carries the following notice: * * =========================================================================== * This C source file is part of the SoftFloat IEC/IEEE Floating-point * Arithmetic Package, Release 2. * * Written by John R. Hauser. This work was made possible in part by the * International Computer Science Institute, located at Suite 600, 1947 Center * Street, Berkeley, California 94704. Funding was partially provided by the * National Science Foundation under grant MIP-9311980. The original version * of this code was written as part of a project to build a fixed-point vector * processor in collaboration with the University of California at Berkeley, * overseen by Profs. Nelson Morgan and John Wawrzynek. More information * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ * arithmetic/softfloat.html'. * * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT * TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. * * Derivative works are acceptable, even for commercial purposes, so long as * (1) they include prominent notice that the work is derivative, and (2) they * include prominent notice akin to these three paragraphs for those parts of * this code that are retained. * =========================================================================== */ #include #include #include #include #include "vfpinstr.h" #include "vfp.h" static struct vfp_double vfp_double_default_qnan = { .exponent = 2047, .sign = 0, .significand = VFP_DOUBLE_SIGNIFICAND_QNAN, }; static void vfp_double_dump(const char *str, struct vfp_double *d) { pr_debug("VFP: %s: sign=%d exponent=%d significand=%016llx\n", str, d->sign != 0, d->exponent, d->significand); } static void vfp_double_normalise_denormal(struct vfp_double *vd) { int bits = 31 - fls(vd->significand >> 32); if (bits == 31) bits = 63 - fls(vd->significand); vfp_double_dump("normalise_denormal: in", vd); if (bits) { vd->exponent -= bits - 1; vd->significand <<= bits; } vfp_double_dump("normalise_denormal: out", vd); } u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func) { u64 significand, incr; int exponent, shift, underflow; u32 rmode; vfp_double_dump("pack: in", vd); /* * Infinities and NaNs are a special case. */ if (vd->exponent == 2047 && (vd->significand == 0 || exceptions)) goto pack; /* * Special-case zero. */ if (vd->significand == 0) { vd->exponent = 0; goto pack; } exponent = vd->exponent; significand = vd->significand; shift = 32 - fls(significand >> 32); if (shift == 32) shift = 64 - fls(significand); if (shift) { exponent -= shift; significand <<= shift; } #ifdef DEBUG vd->exponent = exponent; vd->significand = significand; vfp_double_dump("pack: normalised", vd); #endif /* * Tiny number? */ underflow = exponent < 0; if (underflow) { significand = vfp_shiftright64jamming(significand, -exponent); exponent = 0; #ifdef DEBUG vd->exponent = exponent; vd->significand = significand; vfp_double_dump("pack: tiny number", vd); #endif if (!(significand & ((1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1))) underflow = 0; } /* * Select rounding increment. */ incr = 0; rmode = fpscr & FPSCR_RMODE_MASK; if (rmode == FPSCR_ROUND_NEAREST) { incr = 1ULL << VFP_DOUBLE_LOW_BITS; if ((significand & (1ULL << (VFP_DOUBLE_LOW_BITS + 1))) == 0) incr -= 1; } else if (rmode == FPSCR_ROUND_TOZERO) { incr = 0; } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vd->sign != 0)) incr = (1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1; pr_debug("VFP: rounding increment = 0x%08llx\n", incr); /* * Is our rounding going to overflow? */ if ((significand + incr) < significand) { exponent += 1; significand = (significand >> 1) | (significand & 1); incr >>= 1; #ifdef DEBUG vd->exponent = exponent; vd->significand = significand; vfp_double_dump("pack: overflow", vd); #endif } /* * If any of the low bits (which will be shifted out of the * number) are non-zero, the result is inexact. */ if (significand & ((1 << (VFP_DOUBLE_LOW_BITS + 1)) - 1)) exceptions |= FPSCR_IXC; /* * Do our rounding. */ significand += incr; /* * Infinity? */ if (exponent >= 2046) { exceptions |= FPSCR_OFC | FPSCR_IXC; if (incr == 0) { vd->exponent = 2045; vd->significand = 0x7fffffffffffffffULL; } else { vd->exponent = 2047; /* infinity */ vd->significand = 0; } } else { if (significand >> (VFP_DOUBLE_LOW_BITS + 1) == 0) exponent = 0; if (exponent || significand > 0x8000000000000000ULL) underflow = 0; if (underflow) exceptions |= FPSCR_UFC; vd->exponent = exponent; vd->significand = significand >> 1; } pack: vfp_double_dump("pack: final", vd); { s64 d = vfp_double_pack(vd); pr_debug("VFP: %s: d(d%d)=%016llx exceptions=%08x\n", func, dd, d, exceptions); vfp_put_double(d, dd); } return exceptions; } /* * Propagate the NaN, setting exceptions if it is signalling. * 'n' is always a NaN. 'm' may be a number, NaN or infinity. */ static u32 vfp_propagate_nan(struct vfp_double *vdd, struct vfp_double *vdn, struct vfp_double *vdm, u32 fpscr) { struct vfp_double *nan; int tn, tm = 0; tn = vfp_double_type(vdn); if (vdm) tm = vfp_double_type(vdm); if (fpscr & FPSCR_DEFAULT_NAN) /* * Default NaN mode - always returns a quiet NaN */ nan = &vfp_double_default_qnan; else { /* * Contemporary mode - select the first signalling * NAN, or if neither are signalling, the first * quiet NAN. */ if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN)) nan = vdn; else nan = vdm; /* * Make the NaN quiet. */ nan->significand |= VFP_DOUBLE_SIGNIFICAND_QNAN; } *vdd = *nan; /* * If one was a signalling NAN, raise invalid operation. */ return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG; } /* * Extended operations */ static u32 vfp_double_fabs(int dd, int unused, int dm, u32 fpscr) { vfp_put_double(vfp_double_packed_abs(vfp_get_double(dm)), dd); return 0; } static u32 vfp_double_fcpy(int dd, int unused, int dm, u32 fpscr) { vfp_put_double(vfp_get_double(dm), dd); return 0; } static u32 vfp_double_fneg(int dd, int unused, int dm, u32 fpscr) { vfp_put_double(vfp_double_packed_negate(vfp_get_double(dm)), dd); return 0; } static u32 vfp_double_fsqrt(int dd, int unused, int dm, u32 fpscr) { struct vfp_double vdm, vdd; int ret, tm; vfp_double_unpack(&vdm, vfp_get_double(dm)); tm = vfp_double_type(&vdm); if (tm & (VFP_NAN|VFP_INFINITY)) { struct vfp_double *vdp = &vdd; if (tm & VFP_NAN) ret = vfp_propagate_nan(vdp, &vdm, NULL, fpscr); else if (vdm.sign == 0) { sqrt_copy: vdp = &vdm; ret = 0; } else { sqrt_invalid: vdp = &vfp_double_default_qnan; ret = FPSCR_IOC; } vfp_put_double(vfp_double_pack(vdp), dd); return ret; } /* * sqrt(+/- 0) == +/- 0 */ if (tm & VFP_ZERO) goto sqrt_copy; /* * Normalise a denormalised number */ if (tm & VFP_DENORMAL) vfp_double_normalise_denormal(&vdm); /* * sqrt(<0) = invalid */ if (vdm.sign) goto sqrt_invalid; vfp_double_dump("sqrt", &vdm); /* * Estimate the square root. */ vdd.sign = 0; vdd.exponent = ((vdm.exponent - 1023) >> 1) + 1023; vdd.significand = (u64)vfp_estimate_sqrt_significand(vdm.exponent, vdm.significand >> 32) << 31; vfp_double_dump("sqrt estimate1", &vdd); vdm.significand >>= 1 + (vdm.exponent & 1); vdd.significand += 2 + vfp_estimate_div128to64(vdm.significand, 0, vdd.significand); vfp_double_dump("sqrt estimate2", &vdd); /* * And now adjust. */ if ((vdd.significand & VFP_DOUBLE_LOW_BITS_MASK) <= 5) { if (vdd.significand < 2) { vdd.significand = ~0ULL; } else { u64 termh, terml, remh, reml; vdm.significand <<= 2; mul64to128(&termh, &terml, vdd.significand, vdd.significand); sub128(&remh, &reml, vdm.significand, 0, termh, terml); while ((s64)remh < 0) { vdd.significand -= 1; shift64left(&termh, &terml, vdd.significand); terml |= 1; add128(&remh, &reml, remh, reml, termh, terml); } vdd.significand |= (remh | reml) != 0; } } vdd.significand = vfp_shiftright64jamming(vdd.significand, 1); return vfp_double_normaliseround(dd, &vdd, fpscr, 0, "fsqrt"); } /* * Equal := ZC * Less than := N * Greater than := C * Unordered := CV */ static u32 vfp_compare(int dd, int signal_on_qnan, int dm, u32 fpscr) { s64 d, m; u32 ret = 0; m = vfp_get_double(dm); if (vfp_double_packed_exponent(m) == 2047 && vfp_double_packed_mantissa(m)) { ret |= FPSCR_C | FPSCR_V; if (signal_on_qnan || !(vfp_double_packed_mantissa(m) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1)))) /* * Signalling NaN, or signalling on quiet NaN */ ret |= FPSCR_IOC; } d = vfp_get_double(dd); if (vfp_double_packed_exponent(d) == 2047 && vfp_double_packed_mantissa(d)) { ret |= FPSCR_C | FPSCR_V; if (signal_on_qnan || !(vfp_double_packed_mantissa(d) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1)))) /* * Signalling NaN, or signalling on quiet NaN */ ret |= FPSCR_IOC; } if (ret == 0) { if (d == m || vfp_double_packed_abs(d | m) == 0) { /* * equal */ ret |= FPSCR_Z | FPSCR_C; } else if (vfp_double_packed_sign(d ^ m)) { /* * different signs */ if (vfp_double_packed_sign(d)) /* * d is negative, so d < m */ ret |= FPSCR_N; else /* * d is positive, so d > m */ ret |= FPSCR_C; } else if ((vfp_double_packed_sign(d) != 0) ^ (d < m)) { /* * d < m */ ret |= FPSCR_N; } else if ((vfp_double_packed_sign(d) != 0) ^ (d > m)) { /* * d > m */ ret |= FPSCR_C; } } return ret; } static u32 vfp_double_fcmp(int dd, int unused, int dm, u32 fpscr) { return vfp_compare(dd, 0, dm, fpscr); } static u32 vfp_double_fcmpe(int dd, int unused, int dm, u32 fpscr) { return vfp_compare(dd, 1, dm, fpscr); } static u32 vfp_double_fcmpz(int dd, int unused, int dm, u32 fpscr) { return vfp_compare(dd, 0, VFP_REG_ZERO, fpscr); } static u32 vfp_double_fcmpez(int dd, int unused, int dm, u32 fpscr) { return vfp_compare(dd, 1, VFP_REG_ZERO, fpscr); } static u32 vfp_double_fcvts(int sd, int unused, int dm, u32 fpscr) { struct vfp_double vdm; struct vfp_single vsd; int tm; u32 exceptions = 0; vfp_double_unpack(&vdm, vfp_get_double(dm)); tm = vfp_double_type(&vdm); /* * If we have a signalling NaN, signal invalid operation. */ if (tm == VFP_SNAN) exceptions = FPSCR_IOC; if (tm & VFP_DENORMAL) vfp_double_normalise_denormal(&vdm); vsd.sign = vdm.sign; vsd.significand = vfp_hi64to32jamming(vdm.significand); /* * If we have an infinity or a NaN, the exponent must be 255 */ if (tm & (VFP_INFINITY|VFP_NAN)) { vsd.exponent = 255; if (tm == VFP_QNAN) vsd.significand |= VFP_SINGLE_SIGNIFICAND_QNAN; goto pack_nan; } else if (tm & VFP_ZERO) vsd.exponent = 0; else vsd.exponent = vdm.exponent - (1023 - 127); return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fcvts"); pack_nan: vfp_put_float(vfp_single_pack(&vsd), sd); return exceptions; } static u32 vfp_double_fuito(int dd, int unused, int dm, u32 fpscr) { struct vfp_double vdm; u32 m = vfp_get_float(dm); vdm.sign = 0; vdm.exponent = 1023 + 63 - 1; vdm.significand = (u64)m; return vfp_double_normaliseround(dd, &vdm, fpscr, 0, "fuito"); } static u32 vfp_double_fsito(int dd, int unused, int dm, u32 fpscr) { struct vfp_double vdm; u32 m = vfp_get_float(dm); vdm.sign = (m & 0x80000000) >> 16; vdm.exponent = 1023 + 63 - 1; vdm.significand = vdm.sign ? -m : m; return vfp_double_normaliseround(dd, &vdm, fpscr, 0, "fsito"); } static u32 vfp_double_ftoui(int sd, int unused, int dm, u32 fpscr) { struct vfp_double vdm; u32 d, exceptions = 0; int rmode = fpscr & FPSCR_RMODE_MASK; int tm; vfp_double_unpack(&vdm, vfp_get_double(dm)); /* * Do we have a denormalised number? */ tm = vfp_double_type(&vdm); if (tm & VFP_DENORMAL) exceptions |= FPSCR_IDC; if (tm & VFP_NAN) vdm.sign = 0; if (vdm.exponent >= 1023 + 32) { d = vdm.sign ? 0 : 0xffffffff; exceptions = FPSCR_IOC; } else if (vdm.exponent >= 1023 - 1) { int shift = 1023 + 63 - vdm.exponent; u64 rem, incr = 0; /* * 2^0 <= m < 2^32-2^8 */ d = (vdm.significand << 1) >> shift; rem = vdm.significand << (65 - shift); if (rmode == FPSCR_ROUND_NEAREST) { incr = 0x8000000000000000ULL; if ((d & 1) == 0) incr -= 1; } else if (rmode == FPSCR_ROUND_TOZERO) { incr = 0; } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) { incr = ~0ULL; } if ((rem + incr) < rem) { if (d < 0xffffffff) d += 1; else exceptions |= FPSCR_IOC; } if (d && vdm.sign) { d = 0; exceptions |= FPSCR_IOC; } else if (rem) exceptions |= FPSCR_IXC; } else { d = 0; if (vdm.exponent | vdm.significand) { exceptions |= FPSCR_IXC; if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0) d = 1; else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign) { d = 0; exceptions |= FPSCR_IOC; } } } pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions); vfp_put_float(d, sd); return exceptions; } static u32 vfp_double_ftouiz(int sd, int unused, int dm, u32 fpscr) { return vfp_double_ftoui(sd, unused, dm, FPSCR_ROUND_TOZERO); } static u32 vfp_double_ftosi(int sd, int unused, int dm, u32 fpscr) { struct vfp_double vdm; u32 d, exceptions = 0; int rmode = fpscr & FPSCR_RMODE_MASK; int tm; vfp_double_unpack(&vdm, vfp_get_double(dm)); vfp_double_dump("VDM", &vdm); /* * Do we have denormalised number? */ tm = vfp_double_type(&vdm); if (tm & VFP_DENORMAL) exceptions |= FPSCR_IDC; if (tm & VFP_NAN) { d = 0; exceptions |= FPSCR_IOC; } else if (vdm.exponent >= 1023 + 32) { d = 0x7fffffff; if (vdm.sign) d = ~d; exceptions |= FPSCR_IOC; } else if (vdm.exponent >= 1023 - 1) { int shift = 1023 + 63 - vdm.exponent; /* 58 */ u64 rem, incr = 0; d = (vdm.significand << 1) >> shift; rem = vdm.significand << (65 - shift); if (rmode == FPSCR_ROUND_NEAREST) { incr = 0x8000000000000000ULL; if ((d & 1) == 0) incr -= 1; } else if (rmode == FPSCR_ROUND_TOZERO) { incr = 0; } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) { incr = ~0ULL; } if ((rem + incr) < rem && d < 0xffffffff) d += 1; if (d > 0x7fffffff + (vdm.sign != 0
/*
 * Driver for Sound Core PDAudioCF soundcard
 *
 * Copyright (c) 2003 by Jaroslav Kysela <perex@perex.cz>
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <sound/core.h>
#include "pdaudiocf.h"
#include <sound/initval.h>
#include <asm/irq_regs.h>

/*
 *
 */
irqreturn_t pdacf_interrupt(int irq, void *dev)
{
	struct snd_pdacf *chip = dev;
	unsigned short stat;
	bool wake_thread = false;

	if ((chip->chip_status & (PDAUDIOCF_STAT_IS_STALE|
				  PDAUDIOCF_STAT_IS_CONFIGURED|
				  PDAUDIOCF_STAT_IS_SUSPENDED)) != PDAUDIOCF_STAT_IS_CONFIGURED)
		return IRQ_HANDLED;	/* IRQ_NONE here? */

	stat = inw(chip->port + PDAUDIOCF_REG_ISR);
	if (stat & (PDAUDIOCF_IRQLVL|PDAUDIOCF_IRQOVR)) {
		if (stat & PDAUDIOCF_IRQOVR)	/* should never happen */
			snd_printk(KERN_ERR "PDAUDIOCF SRAM buffer overrun detected!\n");
		if (chip->pcm_substream)
			wake_thread = true;
		if (!(stat & PDAUDIOCF_IRQAKM))
			stat |= PDAUDIOCF_IRQAKM;	/* check rate */
	}
	if (get_irq_regs() != NULL)
		snd_ak4117_check_rate_and_errors(chip->ak4117, 0);
	return