// Low level AHCI disk access // // Copyright (C) 2010 Gerd Hoffmann // // This file may be distributed under the terms of the GNU LGPLv3 license. #include "ahci.h" // CDB_CMD_READ_10 #include "ata.h" // ATA_CB_STAT #include "biosvar.h" // GET_GLOBAL #include "blockcmd.h" // CDB_CMD_READ_10 #include "malloc.h" // free #include "output.h" // dprintf #include "pci.h" // foreachpci #include "pci_ids.h" // PCI_CLASS_STORAGE_OTHER #include "pci_regs.h" // PCI_INTERRUPT_LINE #include "stacks.h" // yield #include "std/disk.h" // DISK_RET_SUCCESS #include "string.h" // memset #include "util.h" // timer_calc #include "x86.h" // inb #define AHCI_REQUEST_TIMEOUT 32000 // 32 seconds max for IDE ops #define AHCI_RESET_TIMEOUT 500 // 500 miliseconds #define AHCI_LINK_TIMEOUT 10 // 10 miliseconds // prepare sata command fis static void sata_prep_simple(struct sata_cmd_fis *fis, u8 command) { memset_fl(fis, 0, sizeof(*fis)); fis->command = command; } static void sata_prep_readwrite(struct sata_cmd_fis *fis, struct disk_op_s *op, int iswrite) { u64 lba = op->lba; u8 command; memset_fl(fis, 0, sizeof(*fis)); if (op->count >= (1<<8) || lba + op->count >= (1<<28)) { fis->sector_count2 = op->count >> 8; fis->lba_low2 = lba >> 24; fis->lba_mid2 = lba >> 32; fis->lba_high2 = lba >> 40; lba &= 0xffffff; command = (iswrite ? ATA_CMD_WRITE_DMA_EXT : ATA_CMD_READ_DMA_EXT); } else { command = (iswrite ? ATA_CMD_WRITE_DMA : ATA_CMD_READ_DMA); } fis->feature = 1; /* dma */ fis->command = command; fis->sector_count = op->count; fis->lba_low = lba; fis->lba_mid = lba >> 8; fis->lba_high = lba >> 16; fis->device = ((lba >> 24) & 0xf) | ATA_CB_DH_LBA; } static void sata_prep_atapi(struct sata_cmd_fis *fis, u16 blocksize) { memset_fl(fis, 0, sizeof(*fis)); fis->command = ATA_CMD_PACKET; fis->feature = 1; /* dma */ fis->lba_mid = blocksize; fis->lba_high = blocksize >> 8; } // ahci register access helpers static u32 ahci_ctrl_readl(struct ahci_ctrl_s *ctrl, u32 reg) { u32 addr = ctrl->iobase + reg; return readl((void*)addr); } static void ahci_ctrl_writel(struct ahci_ctrl_s *ctrl, u32 reg, u32 val) { u32 addr = ctrl->iobase + reg; writel((void*)addr, val); } static u32 ahci_port_to_ctrl(u32 pnr, u32 port_reg) { u32 ctrl_reg = 0x100; ctrl_reg += pnr * 0x80; ctrl_reg += port_reg; return ctrl_reg; } static u32 ahci_port_readl(struct ahci_ctrl_s *ctrl, u32 pnr, u32 reg) { u32 ctrl_reg = ahci_port_to_ctrl(pnr, reg); return ahci_ctrl_readl(ctrl, ctrl_reg); } static void ahci_port_writel(struct ahci_ctrl_s *ctrl, u32 pnr, u32 reg, u32 val) { u32 ctrl_reg = ahci_port_to_ctrl(pnr, reg); ahci_ctrl_writel(ctrl, ctrl_reg, val); } // submit ahci command + wait for result static int ahci_command(struct ahci_port_s *port_gf, int iswrite, int isatapi, void *buffer, u32 bsize) { u32 val, status, success, flags, intbits, error; struct ahci_ctrl_s *ctrl = port_gf->ctrl; struct ahci_cmd_s *cmd = port_gf->cmd; struct ahci_fis_s *fis = port_gf->fis; struct ahci_list_s *list = port_gf->list; u32 pnr = port_gf->pnr; cmd->fis.reg = 0x27; cmd->fis.pmp_type = 1 << 7; /* cmd fis */ cmd->prdt[0].base = (u32)buffer; cmd->prdt[0].baseu = 0; cmd->prdt[0].flags = bsize-1; flags = ((1 << 16) | /* one prd entry */ (iswrite ? (1 << 6) : 0) | (isatapi ? (1 << 5) : 0) | (5 << 0)); /* fis length (dwords) */ list[0].flags = flags; list[0].bytes = 0; list[0].base = (u32)(cmd); list[0].baseu = 0; dprintf(8, "AHCI/%d: send cmd ...\n", pnr); intbits = ahci_port_readl(ctrl, pnr, PORT_IRQ_STAT); if (intbits) ahci_port_writel(ctrl, pnr, PORT_IRQ_STAT, intbits); ahci_port_writel(ctrl, pnr, PORT_SCR_ACT, 1); ahci_port_writel(ctrl, pnr, PORT_CMD_ISSUE, 1); u32 end = timer_calc(AHCI_REQUEST_TIMEOUT); do { for (;;) { intbits = ahci_port_readl(ctrl, pnr, PORT_IRQ_STAT); if (intbits) { ahci_port_writel(ctrl, pnr, PORT_IRQ_STAT, intbits); if (intbits & 0x02) { status = GET_LOWFLAT(fis->psfis[2]); error = GET_LOWFLAT(fis->psfis[3]); break; } if (intbits & 0x01) { status = GET_LOWFLAT(fis->rfis[2]); error = GET_LOWFLAT(fis->rfis[3]); break; } } if (timer_check(end)) { warn_timeout(); return -1; } yield(); } dprintf(8, "AHCI/%d: ... intbits 0x%x, status 0x%x ...\n", pnr, intbits, status); } while (status & ATA_CB_STAT_BSY); success = (0x00 == (status & (ATA_CB_STAT_BSY | ATA_CB_STAT_DF | ATA_CB_STAT_ERR)) && ATA_CB_STAT_RDY == (status & (ATA_CB_STAT_RDY))); if (success) { dprintf(8, "AHCI/%d: ... finished, status 0x%x, OK\n", pnr, status); } else { dprintf(2, "AHCI/%d: ... finished, status 0x%x, ERROR 0x%x\n", pnr, status, error); // non-queued error recovery (AHCI 1.3 section 6.2.2.1) // Clears PxCMD.ST to 0 to reset the PxCI register val = ahci_port_readl(ctrl, pnr, PORT_CMD); ahci_port_writel(ctrl, pnr, PORT_CMD, val & ~PORT_CMD_START); // waits for PxCMD.CR to clear to 0 while (1) { val = ahci_port_readl(ctrl, pnr, PORT_CMD); if ((val & PORT_CMD_LIST_ON) == 0) break; yield(); } // Clears any error bits in PxSERR to enable capturing new errors val = ahci_port_readl(ctrl, pnr, PORT_SCR_ERR); ahci_port_writel(ctrl, pnr, PORT_SCR_ERR, val); // Clears status bits in PxIS as appropriate val = ahci_port_readl(ctrl, pnr, PORT_IRQ_STAT); ahci_port_writel(ctrl, pnr, PORT_IRQ_STAT, val); // If PxTFD.STS.BSY or PxTFD.STS.DRQ is set to 1, issue // a COMRESET to the device to put it in an idle state val = ahci_port_readl(ctrl, pnr, PORT_TFDATA); if (val & (ATA_CB_STAT_BSY | ATA_CB_STAT_DRQ)) { dprintf(2, "AHCI/%d: issue comreset\n", pnr); val = ahci_port_readl(ctrl, pnr, PORT_SCR_CTL); // set Device Detection Initialization (DET) to 1 for 1 ms for comreset ahci_port_writel(ctrl, pnr, PORT_SCR_CTL, val | 1); mdelay (1); ahci_port_writel(ctrl, pnr, PORT_SCR_CTL, val); } // Sets PxCMD.ST to 1 to enable issuing new commands val = ahci_port_readl(ctrl, pnr, PORT_CMD); ahci_port_writel(ctrl, pnr, PORT_CMD, val | PORT_CMD_START); } return success ? 0 : -1; } #define CDROM_CDB_SIZE 12 int ahci_cmd_data(struct disk_op_s *op, void *cdbcmd, u16 blocksize) { if (! CONFIG_AHCI) return 0; struct ahci_port_s *port_gf = container_of( op->drive_gf, struct ahci_port_s, drive); struct ahci_cmd_s *cmd = port_gf->cmd; u8 *atapi = cdbcmd; int i, rc; sata_prep_atapi(&cmd->fis, blocksize); for (i = 0; i < CDROM_CDB_SIZE; i++) { cmd->atapi[i] = atapi[i]; } rc = ahci_command(port_gf, 0, 1, op->buf_fl, op->count * blocksize); if (rc < 0) return DISK_RET_EBADTRACK; return DISK_RET_SUCCESS; } // read/write count blocks from a harddrive, op->buf_fl must be word aligned static int ahci_disk_readwrite_aligned(struct disk_op_s *op, int iswrite) { struct ahci_port_s *port_gf = container_of( op->drive_gf, struct ahci_port_s, drive); struct ahci_cmd_s *cmd = port_gf->cmd; int rc; sata_prep_readwrite(&cmd->fis, op, iswrite); rc = ahci_command(port_gf, iswrite, 0, op->buf_fl, op->count * DISK_SECTOR_SIZE); dprintf(8, "ahci disk %s, lba %6x, count %3x, buf %p, rc %d\n", iswrite ? "write" : "read", (u32)op->lba, op->count, op->buf_fl, rc); if (rc < 0) return DISK_RET_EBADTRACK; return DISK_RET_SUCCESS; } // read/write count blocks from a harddrive. static int ahci_disk_readwrite(struct disk_op_s *op, int iswrite) { // if caller's buffer is word aligned, use it directly if (((u32) op->buf_fl & 1) == 0) return ahci_disk_readwrite_aligned(op, iswrite); // Use a word aligned buffer for AHCI I/O int rc; struct disk_op_s localop = *op; u8 *alignedbuf_fl = bounce_buf_fl; u8 *position = op->buf_fl; localop.buf_fl = alignedbuf_fl; localop.count = 1; if (iswrite) { u16 block; for (block = 0; block < op->count; block++) { memcpy_fl (alignedbuf_fl, position, DISK_SECTOR_SIZE); rc = ahci_disk_readwrite_aligned (&localop, 1); if (rc) return rc; position += DISK_SECTOR_SIZE; localop.lba++; } } else { // read u16 block; for (block = 0; block < op->count; block++) { rc = ahci_disk_readwrite_aligned (&localop, 0); if (rc) return rc; memcpy_fl (position, alignedbuf_fl, DISK_SECTOR_SIZE); position += DISK_SECTOR_SIZE; localop.lba++; } } return DISK_RET_SUCCESS; } // command demuxer int VISIBLE32FLAT process_ahci_op(struct disk_op_s *op) { if (!CONFIG_AHCI) return 0; switch (op->command) { case CMD_READ: return ahci_disk_readwrite(op, 0); case CMD_WRITE: return ahci_disk_readwrite(op, 1); case CMD_FORMAT: case CMD_RESET: case CMD_ISREADY: case CMD_VERIFY: case CMD_SEEK: return DISK_RET_SUCCESS; default: dprintf(1, "AHCI: unknown disk command %d\n", op->command); return DISK_RET_EPARAM; } } static void ahci_port_reset(struct ahci_ctrl_s *ctrl, u32 pnr) { u32 val; /* disable FIS + CMD */ u32 end = timer_calc(AHCI_RESET_TIMEOUT); for (;;) { val = ahci_port_readl(ctrl, pnr, PORT_CMD); if (!(val & (PORT_CMD_FIS_RX | PORT_CMD_START | PORT_CMD_FIS_ON | PORT_CMD_LIST_ON))) break; val &= ~(PORT_CMD_FIS_RX | PORT_CMD_START); ahci_port_writel(ctrl, pnr, PORT_CMD, val); if (timer_check(end)) { warn_timeout(); break; } yield(); } /* disable + clear IRQs */ ahci_port_writel(ctrl, pnr, PORT_IRQ_MASK, 0); val = ahci_port_readl(ctrl, pnr, PORT_IRQ_STAT); if (val) ahci_port_writel(ctrl, pnr, PORT_IRQ_STAT, val); } static struct ahci_port_s* ahci_port_alloc(struct ahci_ctrl_s *ctrl, u32 pnr) { struct ahci_port_s *port = malloc_tmp(sizeof(*port)); if (!port) { warn_noalloc(); return NULL; } port->pnr = pnr; port->ctrl = ctrl; port->list = memalign_tmp(1024, 1024); port->fis = memalign_tmp(256, 256); port->cmd = memalign_tmp(256, 256); if (port->list == NULL || port->fis == NULL || port->cmd == NULL) { warn_noalloc(); return NULL; } memset(port->list, 0, 1024); memset(port->fis, 0, 256); memset(port->cmd, 0, 256); ahci_port_writel(ctrl, pnr, PORT_LST_ADDR, (u32)port->list); ahci_port_writel(ctrl, pnr, PORT_FIS_ADDR, (u32)port->fis); return port; } static void ahci_port_release(struct ahci_port_s *port) { ahci_port_reset(port->ctrl, port->pnr); free(port->list); free(port->fis); free(port->cmd); free(port); } static struct ahci_port_s* ahci_port_realloc(struct ahci_port_s *port) { struct ahci_port_s *tmp; u32 cmd; tmp = malloc_fseg(sizeof(*port)); if (!tmp) { warn_noalloc(); ahci_port_release(port); return NULL; } *tmp = *port; free(port); port = tmp; ahci_port_reset(port->ctrl, port->pnr); free(port->list); free(port->fis); free(port->cmd); port->list = memalign_high(1024, 1024); port->fis = memalign_high(256, 256); port->cmd = memalign_high(256, 256); ahci_port_writel(port->ctrl, port->pnr, PORT_LST_ADDR, (u32)port->list); ahci_port_writel(port->ctrl, port->pnr, PORT_FIS_ADDR, (u32)port->fis); cmd = ahci_port_readl(port->ctrl, port->pnr, PORT_CMD); cmd |= (PORT_CMD_FIS_RX|PORT_CMD_START); ahci_port_writel(port->ctrl, port->pnr, PORT_CMD, cmd); return port; } #define MAXMODEL 40 /* See ahci spec chapter 10.1 "Software Initialization of HBA" */ static int ahci_port_setup(struct ahci_port_s *port) { struct ahci_ctrl_s *ctrl = port->ctrl; u32 pnr = port->pnr; char model[MAXMODEL+1]; u16 buffer[256]; u32 cmd, stat, err, tf; int rc; /* enable FIS recv */ cmd = ahci_port_readl(ctrl, pnr, PORT_CMD); cmd |= PORT_CMD_FIS_RX; ahci_port_writel(ctrl, pnr, PORT_CMD, cmd); /* spin up */ cmd |= PORT_CMD_SPIN_UP; ahci_port_writel(ctrl, pnr, PORT_CMD, cmd); u32 end = timer_calc(AHCI_LINK_TIMEOUT); for (;;) { stat = ahci_port_readl(ctrl, pnr, PORT_SCR_STAT); if ((stat & 0x07) == 0x03) { dprintf(2, "AHCI/%d: link up\n", port->pnr); break; } if (timer_check(end)) { dprintf(2, "AHCI/%d: link down\n", port->pnr); return -1; } yield(); } /* clear error status */ err = ahci_port_readl(ctrl, pnr, PORT_SCR_ERR); if (err) ahci_port_writel(ctrl, pnr, PORT_SCR_ERR, err); /* wait for device becoming ready */ end = timer_calc(AHCI_REQUEST_TIMEOUT); for (;;) { tf = ahci_port_readl(ctrl, pnr, PORT_TFDATA); if (!(tf & (ATA_CB_STAT_BSY | ATA_CB_STAT_DRQ))) break; if (timer_check(end)) { warn_timeout(); dprintf(1, "AHCI/%d: device not ready (tf 0x%x)\n", port->pnr, tf); return -1; } yield(); } /* start device */ cmd |= PORT_CMD_START; ahci_port_writel(ctrl, pnr, PORT_CMD, cmd); sata_prep_simple(&port->cmd->fis, ATA_CMD_IDENTIFY_PACKET_DEVICE); rc = ahci_command(port, 0, 0, buffer, sizeof(buffer)); if (rc == 0) { port->atapi = 1; } else { port->atapi = 0; sata_prep_simple(&port->cmd->fis, ATA_CMD_IDENTIFY_DEVICE); rc = ahci_command(port, 0, 0, buffer, sizeof(buffer)); if (rc < 0) return -1; } port->drive.cntl_id = pnr; port->drive.removable = (buffer[0] & 0x80) ? 1 : 0; if (!port->atapi) { // found disk (ata) port->drive.type = DTYPE_AHCI; port->drive.blksize = DISK_SECTOR_SIZE; port->drive.pchs.cylinder = buffer[1]; port->drive.pchs.head = buffer[3]; port->drive.pchs.sector = buffer[6]; u64 sectors; if (buffer[83] & (1 << 10)) // word 83 - lba48 support sectors = *(u64*)&buffer[100]; // word 100-103 else sectors = *(u32*)&buffer[60]; // word 60 and word 61 port->drive.sectors = sectors; u64 adjsize = sectors >> 11; char adjprefix = 'M'; if (adjsize >= (1 << 16)) { adjsize >>= 10; adjprefix = 'G'; } port->desc = znprintf(MAXDESCSIZE , "AHCI/%d: %s ATA-%d Hard-Disk (%u %ciBytes)" , port->pnr , ata_extract_model(model, MAXMODEL, buffer) , ata_extract_version(buffer) , (u32)adjsize, adjprefix); port->prio = bootprio_find_ata_device(ctrl->pci_tmp, pnr, 0); } else { // found cdrom (atapi) port->drive.type = DTYPE_AHCI_ATAPI; port->drive.blksize = CDROM_SECTOR_SIZE; port->drive.sectors = (u64)-1; u8 iscd = ((buffer[0] >> 8) & 0x1f) == 0x05; if (!iscd) { dprintf(1, "AHCI/%d: atapi device isn't a cdrom\n", port->pnr); return -1; } port->desc = znprintf(MAXDESCSIZE , "DVD/CD [AHCI/%d: %s ATAPI-%d DVD/CD]" , port->pnr , ata_extract_model(model, MAXMODEL, buffer) , ata_extract_version(buffer)); port->prio = bootprio_find_ata_device(ctrl->pci_tmp, pnr, 0); } return 0; } // Detect any drives attached to a given controller. static void ahci_port_detect(void *data) { struct ahci_port_s *port = data; int rc; dprintf(2, "AHCI/%d: probing\n", port->pnr); ahci_port_reset(port->ctrl, port->pnr); rc = ahci_port_setup(port); if (rc < 0) ahci_port_release(port); else { port = ahci_port_realloc(port); if (port == NULL) return; dprintf(1, "AHCI/%d: registering: \"%s\"\n", port->pnr, port->desc); if (!port->atapi) { // Register with bcv system. boot_add_hd(&port->drive, port->desc, port->prio); } else { // fill cdidmap boot_add_cd(&port->drive, port->desc, port->prio); } } } // Initialize an ata controller and detect its drives. static void ahci_controller_setup(struct pci_device *pci) { struct ahci_ctrl_s *ctrl = malloc_fseg(sizeof(*ctrl)); struct ahci_port_s *port; u16 bdf = pci->bdf; u32 val, pnr, max; if (!ctrl) { warn_noalloc(); return; } if (create_bounce_buf() < 0) { warn_noalloc(); free(ctrl); return; } ctrl->pci_tmp = pci; ctrl->pci_bdf = bdf; ctrl->iobase = pci_config_readl(bdf, PCI_BASE_ADDRESS_5); ctrl->irq = pci_config_readb(bdf, PCI_INTERRUPT_LINE); dprintf(1, "AHCI controller at %02x.%x, iobase %x, irq %d\n", bdf >> 3, bdf & 7, ctrl->iobase, ctrl->irq); pci_config_maskw(bdf, PCI_COMMAND, 0, PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); val = ahci_ctrl_readl(ctrl, HOST_CTL); ahci_ctrl_writel(ctrl, HOST_CTL, val | HOST_CTL_AHCI_EN); ctrl->caps = ahci_ctrl_readl(ctrl, HOST_CAP); ctrl->ports = ahci_ctrl_readl(ctrl, HOST_PORTS_IMPL); dprintf(2, "AHCI: cap 0x%x, ports_impl 0x%x\n", ctrl->caps, ctrl->ports); max = 0x1f; for (pnr = 0; pnr <= max; pnr++) { if (!(ctrl->ports & (1 << pnr))) continue; port = ahci_port_alloc(ctrl, pnr); if (port == NULL) continue; run_thread(ahci_port_detect, port); } } // Locate and init ahci controllers. static void ahci_scan(void) { // Scan PCI bus for ATA adapters struct pci_device *pci; foreachpci(pci) { if (pci->class != PCI_CLASS_STORAGE_SATA) continue; if (pci->prog_if != 1 /* AHCI rev 1 */) continue; ahci_controller_setup(pci); } } void ahci_setup(void) { ASSERT32FLAT(); if (!CONFIG_AHCI) return; dprintf(3, "init ahci\n"); ahci_scan(); }