/* * QEMU aio implementation * * Copyright IBM, Corp. 2008 * * Authors: * Anthony Liguori <aliguori@us.ibm.com> * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ #ifndef QEMU_AIO_H #define QEMU_AIO_H #include "qemu-common.h" #include "qemu/queue.h" #include "qemu/event_notifier.h" #include "qemu/thread.h" #include "qemu/rfifolock.h" #include "qemu/timer.h" typedef struct BlockAIOCB BlockAIOCB; typedef void BlockCompletionFunc(void *opaque, int ret); typedef struct AIOCBInfo { void (*cancel_async)(BlockAIOCB *acb); AioContext *(*get_aio_context)(BlockAIOCB *acb); size_t aiocb_size; } AIOCBInfo; struct BlockAIOCB { const AIOCBInfo *aiocb_info; BlockDriverState *bs; BlockCompletionFunc *cb; void *opaque; int refcnt; }; void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs, BlockCompletionFunc *cb, void *opaque); void qemu_aio_unref(void *p); void qemu_aio_ref(void *p); typedef struct AioHandler AioHandler; typedef void QEMUBHFunc(void *opaque); typedef void IOHandler(void *opaque); struct AioContext { GSource source; /* Protects all fields from multi-threaded access */ RFifoLock lock; /* The list of registered AIO handlers */ QLIST_HEAD(, AioHandler) aio_handlers; /* This is a simple lock used to protect the aio_handlers list. * Specifically, it's used to ensure that no callbacks are removed while * we're walking and dispatching callbacks. */ int walking_handlers; /* Used to avoid unnecessary event_notifier_set calls in aio_notify; * accessed with atomic primitives. If this field is 0, everything * (file descriptors, bottom halves, timers) will be re-evaluated * before the next blocking poll(), thus the event_notifier_set call * can be skipped. If it is non-zero, you may need to wake up a * concurrent aio_poll or the glib main event loop, making * event_notifier_set necessary. * * Bit 0 is reserved for GSource usage of the AioContext, and is 1 * between a call to aio_ctx_check and the next call to aio_ctx_dispatch. * Bits 1-31 simply count the number of active calls to aio_poll * that are in the prepare or poll phase. * * The GSource and aio_poll must use a different mechanism because * there is no certainty that a call to GSource's prepare callback * (via g_main_context_prepare) is indeed followed by check and * dispatch. It's not clear whether this would be a bug, but let's * play safe and allow it---it will just cause extra calls to * event_notifier_set until the next call to dispatch. * * Instead, the aio_poll calls include both the prepare and the * dispatch phase, hence a simple counter is enough for them. */ uint32_t notify_me; /* lock to protect between bh's adders and deleter */ QemuMutex bh_lock; /* Anchor of the list of Bottom Halves belonging to the context */ struct QEMUBH *first_bh; /* A simple lock used to protect the first_bh list, and ensure that * no callbacks are removed while we're walking and dispatching callbacks. */ int walking_bh; /* Used by aio_notify. * * "notified" is used to avoid expensive event_notifier_test_and_clear * calls. When it is clear, the EventNotifier is clear, or one thread * is going to clear "notified" before processing more events. False * positives are possible, i.e. "notified" could be set even though the * EventNotifier is clear. * * Note that event_notifier_set *cannot* be optimized the same way. For * more information on the problem that would result, see "#ifdef BUG2" * in the docs/aio_notify_accept.promela formal model. */ bool notified; EventNotifier notifier; /* Scheduling this BH forces the event loop it iterate */ QEMUBH *notify_dummy_bh; /* Thread pool for performing work and receiving completion callbacks */ struct ThreadPool *thread_pool; /* TimerLists for calling timers - one per clock type */ QEMUTimerListGroup tlg; int external_disable_cnt; /* epoll(7) state used when built with CONFIG_EPOLL */ int epollfd; bool epoll_enabled; bool epoll_available; }; /** * aio_context_new: Allocate a new AioContext. * * AioContext provide a mini event-loop that can be waited on synchronously. * They also provide bottom halves, a service to execute a piece of code * as soon as possible. */ AioContext *aio_context_new(Error **errp); /** * aio_context_ref: * @ctx: The AioContext to operate on. * * Add a reference to an AioContext. */ void aio_context_ref(AioContext *ctx); /** * aio_context_unref: * @ctx: The AioContext to operate on. * * Drop a reference to an AioContext. */ void aio_context_unref(AioContext *ctx); /* Take ownership of the AioContext. If the AioContext will be shared between * threads, and a thread does not want to be interrupted, it will have to * take ownership around calls to aio_poll(). Otherwise, aio_poll() * automatically takes care of calling aio_context_acquire and * aio_context_release. * * Access to timers and BHs from a thread that has not acquired AioContext * is possible. Access to callbacks for now must be done while the AioContext * is owned by the thread (FIXME). */ void aio_context_acquire(AioContext *ctx); /* Relinquish ownership of the AioContext. */ void aio_context_release(AioContext *ctx); /** * aio_bh_new: Allocate a new bottom half structure. * * Bottom halves are lightweight callbacks whose invocation is guaranteed * to be wait-free, thread-safe and signal-safe. The #QEMUBH structure * is opaque and must be allocated prior to its use. */ QEMUBH *aio_bh_new(AioContext *ctx, QEMUBHFunc *cb, void *opaque); /** * aio_notify: Force processing of pending events. * * Similar to signaling a condition variable, aio_notify forces * aio_wait to exit, so that the next call will re-examine pending events. * The caller of aio_notify will usually call aio_wait again very soon, * or go through another iteration of the GLib main loop. Hence, aio_notify * also has the side effect of recalculating the sets of file descriptors * that the main loop waits for. * * Calling aio_notify is rarely necessary, because for example scheduling * a bottom half calls it already. */ void aio_notify(AioContext *ctx); /** * aio_notify_accept: Acknowledge receiving an aio_notify. * * aio_notify() uses an EventNotifier in order to wake up a sleeping * aio_poll() or g_main_context_iteration(). Calls to aio_notify() are * usually rare, but the AioContext has to clear the EventNotifier on * every aio_poll() or g_main_context_iteration() in order to avoid * busy waiting. This event_notifier_test_and_clear() cannot be done * using the usual aio_context_set_event_notifier(), because it must * be done before processing all events (file descriptors, bottom halves, * timers). * * aio_notify_accept() is an optimized event_notifier_test_and_clear() * that is specific to an AioContext's notifier; it is used internally * to clear the EventNotifier only if aio_notify() had been called. */ void aio_notify_accept(AioContext *ctx); /** * aio_bh_call: Executes callback function of the specified BH. */ void aio_bh_call(QEMUBH *bh); /** * aio_bh_poll: Poll bottom halves for an AioContext. * * These are internal functions used by the QEMU main loop. * And notice that multiple occurrences of aio_bh_poll cannot * be called concurrently */ int aio_bh_poll(AioContext *ctx); /** * qemu_bh_schedule: Schedule a bottom half. * * Scheduling a bottom half interrupts the main loop and causes the * execution of the callback that was passed to qemu_bh_new. * * Bottom halves that are scheduled from a bottom half handler are instantly * invoked. This can create an infinite loop if a bottom half handler * schedules itself. * * @bh: The bottom half to be scheduled. */ void qemu_bh_schedule(QEMUBH *bh); /** * qemu_bh_cancel: Cancel execution of a bottom half. * * Canceling execution of a bottom half undoes the effect of calls to * qemu_bh_schedule without freeing its resources yet. While cancellation * itself is also wait-free and thread-safe, it can of course race with the * loop that executes bottom halves unless you are holding the iothread * mutex. This makes it mostly useless if you are not holding the mutex. * * @bh: The bottom half to be canceled. */ void qemu_bh_cancel(QEMUBH *bh); /** *qemu_bh_delete: Cancel execution of a bottom half and free its resources. * * Deleting a bottom half frees the memory that was allocated for it by * qemu_bh_new. It also implies canceling the bottom half if it was * scheduled. * This func is async. The bottom half will do the delete action at the finial * end. * * @bh: The bottom half to be deleted. */ void qemu_bh_delete(QEMUBH *bh); /* Return whether there are any pending callbacks from the GSource * attached to the AioContext, before g_poll is invoked. * * This is used internally in the implementation of the GSource. */ bool aio_prepare(AioContext *ctx); /* Return whether there are any pending callbacks from the GSource * attached to the AioContext, after g_poll is invoked. * * This is used internally in the implementation of the GSource. */ bool aio_pending(AioContext *ctx); /* Dispatch any pending callbacks from the GSource attached to the AioContext. * * This is used internally in the implementation of the GSource. */ bool aio_dispatch(AioContext *ctx); /* Progress in completing AIO work to occur. This can issue new pending * aio as a result of executing I/O completion or bh callbacks. * * Return whether any progress was made by executing AIO or bottom half * handlers. If @blocking == true, this should always be true except * if someone called aio_notify. * * If there are no pending bottom halves, but there are pending AIO * operations, it may not be possible to make any progress without * blocking. If @blocking is true, this function will wait until one * or more AIO events have completed, to ensure something has moved * before returning. */ bool aio_poll(AioContext *ctx, bool blocking); /* Register a file descriptor and associated callbacks. Behaves very similarly * to qemu_set_fd_handler. Unlike qemu_set_fd_handler, these callbacks will * be invoked when using aio_poll(). * * Code that invokes AIO completion functions should rely on this function * instead of qemu_set_fd_handler[2]. */ void aio_set_fd_handler(AioContext *ctx, int fd, bool is_external, IOHandler *io_read, IOHandler *io_write, void *opaque); /* Register an event notifier and associated callbacks. Behaves very similarly * to event_notifier_set_handler. Unlike event_notifier_set_handler, these callbacks * will be invoked when using aio_poll(). * * Code that invokes AIO completion functions should rely on this function * instead of event_notifier_set_handler. */ void aio_set_event_notifier(AioContext *ctx, EventNotifier *notifier, bool is_external, EventNotifierHandler *io_read); /* Return a GSource that lets the main loop poll the file descriptors attached * to this AioContext. */ GSource *aio_get_g_source(AioContext *ctx); /* Return the ThreadPool bound to this AioContext */ struct ThreadPool *aio_get_thread_pool(AioContext *ctx); /** * aio_timer_new: * @ctx: the aio context * @type: the clock type * @scale: the scale * @cb: the callback to call on timer expiry * @opaque: the opaque pointer to pass to the callback * * Allocate a new timer attached to the context @ctx. * The function is responsible for memory allocation. * * The preferred interface is aio_timer_init. Use that * unless you really need dynamic memory allocation. * * Returns: a pointer to the new timer */ static inline QEMUTimer *aio_timer_new(AioContext *ctx, QEMUClockType type, int scale, QEMUTimerCB *cb, void *opaque) { return timer_new_tl(ctx->tlg.tl[type], scale, cb, opaque); } /** * aio_timer_init: * @ctx: the aio context * @ts: the timer * @type: the clock type * @scale: the scale * @cb: the callback to call on timer expiry * @opaque: the opaque pointer to pass to the callback * * Initialise a new timer attached to the context @ctx. * The caller is responsible for memory allocation. */ static inline void aio_timer_init(AioContext *ctx, QEMUTimer *ts, QEMUClockType type, int scale, QEMUTimerCB *cb, void *opaque) { timer_init_tl(ts, ctx->tlg.tl[type], scale, cb, opaque); } /** * aio_compute_timeout: * @ctx: the aio context * * Compute the timeout that a blocking aio_poll should use. */ int64_t aio_compute_timeout(AioContext *ctx); /** * aio_disable_external: * @ctx: the aio context * * Disable the further processing of external clients. */ static inline void aio_disable_external(AioContext *ctx) { atomic_inc(&ctx->external_disable_cnt); } /** * aio_enable_external: * @ctx: the aio context * * Enable the processing of external clients. */ static inline void aio_enable_external(AioContext *ctx) { assert(ctx->external_disable_cnt > 0); atomic_dec(&ctx->external_disable_cnt); } /** * aio_external_disabled: * @ctx: the aio context * * Return true if the external clients are disabled. */ static inline bool aio_external_disabled(AioContext *ctx) { return atomic_read(&ctx->external_disable_cnt); } /** * aio_node_check: * @ctx: the aio context * @is_external: Whether or not the checked node is an external event source. * * Check if the node's is_external flag is okay to be polled by the ctx at this * moment. True means green light. */ static inline bool aio_node_check(AioContext *ctx, bool is_external) { return !is_external || !atomic_read(&ctx->external_disable_cnt); } /** * aio_context_setup: * @ctx: the aio context * * Initialize the aio context. */ void aio_context_setup(AioContext *ctx, Error **errp); #endif