/*
 * linux/mm/process_vm_access.c
 *
 * Copyright (C) 2010-2011 Christopher Yeoh <cyeoh@au1.ibm.com>, IBM Corp.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

#include <linux/mm.h>
#include <linux/uio.h>
#include <linux/sched.h>
#include <linux/highmem.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/syscalls.h>

#ifdef CONFIG_COMPAT
#include <linux/compat.h>
#endif

/**
 * process_vm_rw_pages - read/write pages from task specified
 * @pages: array of pointers to pages we want to copy
 * @start_offset: offset in page to start copying from/to
 * @len: number of bytes to copy
 * @iter: where to copy to/from locally
 * @vm_write: 0 means copy from, 1 means copy to
 * Returns 0 on success, error code otherwise
 */
static int process_vm_rw_pages(struct page **pages,
			       unsigned offset,
			       size_t len,
			       struct iov_iter *iter,
			       int vm_write)
{
	/* Do the copy for each page */
	while (len && iov_iter_count(iter)) {
		struct page *page = *pages++;
		size_t copy = PAGE_SIZE - offset;
		size_t copied;

		if (copy > len)
			copy = len;

		if (vm_write) {
			copied = copy_page_from_iter(page, offset, copy, iter);
			set_page_dirty_lock(page);
		} else {
			copied = copy_page_to_iter(page, offset, copy, iter);
		}
		len -= copied;
		if (copied < copy && iov_iter_count(iter))
			return -EFAULT;
		offset = 0;
	}
	return 0;
}

/* Maximum number of pages kmalloc'd to hold struct page's during copy */
#define PVM_MAX_KMALLOC_PAGES (PAGE_SIZE * 2)

/**
 * process_vm_rw_single_vec - read/write pages from task specified
 * @addr: start memory address of target process
 * @len: size of area to copy to/from
 * @iter: where to copy to/from locally
 * @process_pages: struct pages area that can store at least
 *  nr_pages_to_copy struct page pointers
 * @mm: mm for task
 * @task: task to read/write from
 * @vm_write: 0 means copy from, 1 means copy to
 * Returns 0 on success or on failure error code
 */
static int process_vm_rw_single_vec(unsigned long addr,
				    unsigned long len,
				    struct iov_iter *iter,
				    struct page **process_pages,
				    struct mm_struct *mm,
				    struct task_struct *task,
				    int vm_write)
{
	unsigned long pa = addr & PAGE_MASK;
	unsigned long start_offset = addr - pa;
	unsigned long nr_pages;
	ssize_t rc = 0;
	unsigned long max_pages_per_loop = PVM_MAX_KMALLOC_PAGES
		/ sizeof(struct pages *);

	/* Work out address and page range required */
	if (len == 0)
		return 0;
	nr_pages = (addr + len - 1) / PAGE_SIZE - addr / PAGE_SIZE + 1;

	while (!rc && nr_pages && iov_iter_count(iter)) {
		int pages = min(nr_pages, max_pages_per_loop);
		size_t bytes;

		/* Get the pages we're interested in */
		pages = get_user_pages_unlocked(task, mm, pa, pages,
						vm_write, 0, process_pages);
		if (pages <= 0)
			return -EFAULT;

		bytes = pages * PAGE_SIZE - start_offset;
		if (bytes > len)
			bytes = len;

		rc = process_vm_rw_pages(process_pages,
					 start_offset, bytes, iter,
					 vm_write);
		len -= bytes;
		start_offset = 0;
		nr_pages -= pages;
		pa += pages * PAGE_SIZE;
		while (pages)
			put_page(process_pages[--pages]);
	}

	return rc;
}

/* Maximum number of entries for process pages array
   which lives on stack */
#define PVM_MAX_PP_ARRAY_COUNT 16

/**
 * process_vm_rw_core - core of reading/writing pages from task specified
 * @pid: PID of process to read/write from/to
 * @iter: where to copy to/from locally
 * @rvec: iovec array specifying where to copy to/from in the other process
 * @riovcnt: size of rvec array
 * @flags: currently unused
 * @vm_write: 0 if reading from other process, 1 if writing to other process
 * Returns the number of bytes read/written or error code. May
 *  return less bytes than expected if an error occurs during the copying
 *  process.
 */
static ssize_t process_vm_rw_core(pid_t pid, struct iov_iter *iter,
				  const struct iovec *rvec,
				  unsigned long riovcnt,
				  unsigned long flags, int vm_write)
{
	struct task_struct *task;
	struct page *pp_stack[PVM_MAX_PP_ARRAY_COUNT];
	struct page **process_pages = pp_stack;
	struct mm_struct *mm;
	unsigned long i;
	ssize_t rc = 0;
	unsigned long nr_pages = 0;
	unsigned long nr_pages_iov;
	ssize_t iov_len;
	size_t total_len = iov_iter_count(iter);

	/*
	 * Work out how many pages of struct pages we're going to need
	 * when eventually calling get_user_pages
	 */
	for (i = 0; i < riovcnt; i++) {
		iov_len = rvec[i].iov_len;
		if (iov_len > 0) {
			nr_pages_iov = ((unsigned long)rvec[i].iov_base
					+ iov_len)
				/ PAGE_SIZE - (unsigned long)rvec[i].iov_base
				/ PAGE_SIZE + 1;
			nr_pages = max(nr_pages, nr_pages_iov);
		}
	}

	if (nr_pages == 0)
		return 0;

	if (nr_pages > PVM_MAX_PP_ARRAY_COUNT) {
		/* For reliability don't try to kmalloc more than
		   2 pages worth */
		process_pages = kmalloc(min_t(size_t, PVM_MAX_KMALLOC_PAGES,
					      sizeof(struct pages *)*nr_pages),
					GFP_KERNEL);

		if (!process_pages)
			return -ENOMEM;
	}

	/* Get process information */
	rcu_read_lock();
	task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();
	if (!task) {
		rc = -ESRCH;
		goto free_proc_pages;
	}

	mm = mm_access(task, PTRACE_MODE_ATTACH_REALCREDS);
	if (!mm || IS_ERR(mm)) {
		rc = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
		/*
		 * Explicitly map EACCES to EPERM as EPERM is a more a
		 * appropriate error code for process_vw_readv/writev
		 */
		if (rc == -EACCES)
			rc = -EPERM;
		goto put_task_struct;
	}

	for (i = 0; i < riovcnt && iov_iter_count(iter) && !rc; i++)
		rc = process_vm_rw_single_vec(
			(unsigned long)rvec[i].iov_base, rvec[i].iov_len,
			iter, process_pages, mm, task, vm_write);

	/* copied = space before - space after */
	total_len -= iov_iter_count(iter);

	/* If we have managed to copy any data at all then
	   we return the number of bytes copied. Otherwise
	   we return the error code */
	if (total_len)
		rc = total_len;

	mmput(mm);

put_task_struct:
	put_task_struct(task);

free_proc_pages:
	if (process_pages != pp_stack)
		kfree(process_pages);
	return rc;
}

/**
 * process_vm_rw - check iovecs before calling core routine
 * @pid: PID of process to read/write from/to
 * @lvec: iovec array specifying where to copy to/from locally
 * @liovcnt: size of lvec array
 * @rvec: iovec array specifying where to copy to/from in the other process
 * @riovcnt: size of rvec array
 * @flags: currently unused
 * @vm_write: 0 if reading from other process, 1 if writing to other process
 * Returns the number of bytes read/written or error code. May
 *  return less bytes than expected if an error occurs during the copying
 *  process.
 */
static ssize_t process_vm_rw(pid_t pid,
			     const struct iovec __user *lvec,
			     unsigned long liovcnt,
			     const struct iovec __user *rvec,
			     unsigned long riovcnt,
			     unsigned long flags, int vm_write)
{
	struct iovec iovstack_l[UIO_FASTIOV];
	struct iovec iovstack_r[UIO_FASTIOV];
	struct iovec *iov_l = iovstack_l;
	struct iovec *iov_r = iovstack_r;
	struct iov_iter iter;
	ssize_t rc;
	int dir = vm_write ? WRITE : READ;

	if (flags != 0)
		return -EINVAL;

	/* Check iovecs */
	rc = import_iovec(dir, lvec, liovcnt, UIO_FASTIOV, &iov_l, &iter);
	if (rc < 0)
		return rc;
	if (!iov_iter_count(&iter))
		goto free_iovecs;

	rc = rw_copy_check_uvector(CHECK_IOVEC_ONLY, rvec, riovcnt, UIO_FASTIOV,
				   iovstack_r, &iov_r);
	if (rc <= 0)
		goto free_iovecs;

	rc = process_vm_rw_core(pid, &iter, iov_r, riovcnt, flags, vm_write);

free_iovecs:
	if (iov_r != iovstack_r)
		kfree(iov_r);
	kfree(iov_l);

	return rc;
}

SYSCALL_DEFINE6(process_vm_readv, pid_t, pid, const struct iovec __user *, lvec,
		unsigned long, liovcnt, const struct iovec __user *, rvec,
		unsigned long, riovcnt,	unsigned long, flags)
{
	return process_vm_rw(pid, lvec, liovcnt, rvec, riovcnt, flags, 0);
}

SYSCALL_DEFINE6(process_vm_writev, pid_t, pid,
		const struct iovec __user *, lvec,
		unsigned long, liovcnt, const struct iovec __user *, rvec,
		unsigned long, riovcnt,	unsigned long, flags)
{
	return process_vm_rw(pid, lvec, liovcnt, rvec, riovcnt, flags, 1);
}

#ifdef CONFIG_COMPAT

static ssize_t
compat_process_vm_rw(compat_pid_t pid,
		     const struct compat_iovec __user *lvec,
		     unsigned long liovcnt,
		     const struct compat_iovec __user *rvec,
		     unsigned long riovcnt,
		     unsigned long flags, int vm_write)
{
	struct iovec iovstack_l[UIO_FASTIOV];
	struct iovec iovstack_r[UIO_FASTIOV];
	struct iovec *iov_l = iovstack_l;
	struct iovec *iov_r = iovstack_r;
	struct iov_iter iter;
	ssize_t rc = -EFAULT;
	int dir = vm_write ? WRITE : READ;

	if (flags != 0)
		return -EINVAL;

	rc = compat_import_iovec(dir, lvec, liovcnt, UIO_FASTIOV, &iov_l, &iter);
	if (rc < 0)
		return rc;
	if (!iov_iter_count(&iter))
		goto free_iovecs;
	rc = compat_rw_copy_check_uvector(CHECK_IOVEC_ONLY, rvec, riovcnt,
					  UIO_FASTIOV, iovstack_r,
					  &iov_r);
	if (rc <= 0)
		goto free_iovecs;

	rc = process_vm_rw_core(pid, &iter, iov_r, riovcnt, flags, vm_write);

free_iovecs:
	if (iov_r != iovstack_r)
		kfree(iov_r);
	kfree(iov_l);
	return rc;
}

COMPAT_SYSCALL_DEFINE6(process_vm_readv, compat_pid_t, pid,
		       const struct compat_iovec __user *, lvec,
		       compat_ulong_t, liovcnt,
		       const struct compat_iovec __user *, rvec,
		       compat_ulong_t, riovcnt,
		       compat_ulong_t, flags)
{
	return compat_process_vm_rw(pid, lvec, liovcnt, rvec,
				    riovcnt, flags, 0);
}

COMPAT_SYSCALL_DEFINE6(process_vm_writev, compat_pid_t, pid,
		       const struct compat_iovec __user *, lvec,
		       compat_ulong_t, liovcnt,
		       const struct compat_iovec __user *, rvec,
		       compat_ulong_t, riovcnt,
		       compat_ulong_t, flags)
{
	return compat_process_vm_rw(pid, lvec, liovcnt, rvec,
				    riovcnt, flags, 1);
}

#endif