/* * ToupTek UCMOS / AmScope MU series camera driver * TODO: contrast with ScopeTek / AmScope MDC cameras * * Copyright (C) 2012-2014 John McMaster <JohnDMcMaster@gmail.com> * * Special thanks to Bushing for helping with the decrypt algorithm and * Sean O'Sullivan / the Rensselaer Center for Open Source * Software (RCOS) for helping me learn kernel development * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include "gspca.h" #define MODULE_NAME "touptek" MODULE_AUTHOR("John McMaster"); MODULE_DESCRIPTION("ToupTek UCMOS / Amscope MU microscope camera driver"); MODULE_LICENSE("GPL"); /* * Exposure reg is linear with exposure time * Exposure (sec), E (reg) * 0.000400, 0x0002 * 0.001000, 0x0005 * 0.005000, 0x0019 * 0.020000, 0x0064 * 0.080000, 0x0190 * 0.400000, 0x07D0 * 1.000000, 0x1388 * 2.000000, 0x2710 * * Three gain stages * 0x1000: master channel enable bit * 0x007F: low gain bits * 0x0080: medium gain bit * 0x0100: high gain bit * gain = enable * (1 + regH) * (1 + regM) * z * regL * * Gain implementation * Want to do something similar to mt9v011.c's set_balance * * Gain does not vary with resolution (checked 640x480 vs 1600x1200) * * Constant derivation: * * Raw data: * Gain, GTOP, B, R, GBOT * 1.00, 0x105C, 0x1068, 0x10C8, 0x105C * 1.20, 0x106E, 0x107E, 0x10D6, 0x106E * 1.40, 0x10C0, 0x10CA, 0x10E5, 0x10C0 * 1.60, 0x10C9, 0x10D4, 0x10F3, 0x10C9 * 1.80, 0x10D2, 0x10DE, 0x11C1, 0x10D2 * 2.00, 0x10DC, 0x10E9, 0x11C8, 0x10DC * 2.20, 0x10E5, 0x10F3, 0x11CF, 0x10E5 * 2.40, 0x10EE, 0x10FE, 0x11D7, 0x10EE * 2.60, 0x10F7, 0x11C4, 0x11DE, 0x10F7 * 2.80, 0x11C0, 0x11CA, 0x11E5, 0x11C0 * 3.00, 0x11C5, 0x11CF, 0x11ED, 0x11C5 * * zR = 0.0069605943152454778 * about 3/431 = 0.0069605568445475635 * zB = 0.0095695970695970703 * about 6/627 = 0.0095693779904306216 * zG = 0.010889328063241107 * about 6/551 = 0.010889292196007259 * about 10 bits for constant + 7 bits for value => at least 17 bit * intermediate with 32 bit ints should be fine for overflow etc * Essentially gains are in range 0-0x001FF * * However, V4L expects a main gain channel + R and B balance * To keep things simple for now saturate the values of balance is too high/low * This isn't really ideal but easy way to fit the Linux model * * Converted using gain model turns out to be quite linear: * Gain, GTOP, B, R, GBOT * 1.00, 92, 104, 144, 92 * 1.20, 110, 126, 172, 110 * 1.40, 128, 148, 202, 128 * 1.60, 146, 168, 230, 146 * 1.80, 164, 188, 260, 164 * 2.00, 184, 210, 288, 184 * 2.20, 202, 230, 316, 202 * 2.40, 220, 252, 348, 220 * 2.60, 238, 272, 376, 238 * 2.80, 256, 296, 404, 256 * 3.00, 276, 316, 436, 276 * * Maximum gain is 0x7FF * 2 * 2 => 0x1FFC (8188) * or about 13 effective bits of gain * The highest the commercial driver goes in my setup 436 * However, because could *maybe* damage circuits * limit the gain until have a reason to go higher * Solution: gain clipped and warning emitted */ #define GAIN_MAX 511 /* Frame sync is a short read */ #define BULK_SIZE 0x4000 /* MT9E001 reg names to give a rough approximation */ #define REG_COARSE_INTEGRATION_TIME_ 0x3012 #define REG_GROUPED_PARAMETER_HOLD_ 0x3022 #define REG_MODE_SELECT 0x0100 #define REG_OP_SYS_CLK_DIV 0x030A #define REG_VT_SYS_CLK_DIV 0x0302 #define REG_PRE_PLL_CLK_DIV 0x0304 #define REG_VT_PIX_CLK_DIV 0x0300 #define REG_OP_PIX_CLK_DIV 0x0308 #define REG_PLL_MULTIPLIER 0x0306 #define REG_COARSE_INTEGRATION_TIME_ 0x3012 #define REG_FRAME_LENGTH_LINES 0x0340 #define REG_FRAME_LENGTH_LINES_ 0x300A #define REG_GREEN1_GAIN 0x3056 #define REG_GREEN2_GAIN 0x305C #define REG_GROUPED_PARAMETER_HOLD 0x0104 #define REG_LINE_LENGTH_PCK_ 0x300C #define REG_MODE_SELECT 0x0100 #define REG_PLL_MULTIPLIER 0x0306 #define REG_READ_MODE 0x3040 #define REG_BLUE_GAIN 0x3058 #define REG_RED_GAIN 0x305A #define REG_RESET_REGISTER 0x301A #define REG_SCALE_M 0x0404 #define REG_SCALING_MODE 0x0400 #define REG_SOFTWARE_RESET 0x0103 #define REG_X_ADDR_END 0x0348 #define REG_X_ADDR_START 0x0344 #define REG_X_ADDR_START 0x0344 #define REG_X_OUTPUT_SIZE 0x034C #define REG_Y_ADDR_END 0x034A #define REG_Y_ADDR_START 0x0346 #define REG_Y_OUTPUT_SIZE 0x034E /* specific webcam descriptor */ struct sd { struct gspca_dev gspca_dev; /* !! must be the first item */ /* How many bytes this frame */ unsigned int this_f; /* Device has separate gains for each Bayer quadrant V4L supports master gain which is referenced to G1/G2 and supplies individual balance controls for R/B */ struct v4l2_ctrl *blue; struct v4l2_ctrl *red; }; /* Used to simplify reg write error handling */ struct cmd { u16 value; u16 index; }; static const struct v4l2_pix_format vga_mode[] = { {800, 600, V4L2_PIX_FMT_SGRBG8, V4L2_FIELD_NONE, .bytesperline = 800, .sizeimage = 800 * 600, .colorspace = V4L2_COLORSPACE_SRGB}, {1600, 1200, V4L2_PIX_FMT_SGRBG8, V4L2_FIELD_NONE, .bytesperline = 1600, .sizeimage = 1600 * 1200, .colorspace = V4L2_COLORSPACE_SRGB}, {3264, 2448, V4L2_PIX_FMT_SGRBG8, V4L2_FIELD_NONE, .bytesperline = 3264, .sizeimage = 3264 * 2448, .colorspace = V4L2_COLORSPACE_SRGB}, }; /* * As theres no known frame sync, the only way to keep synced is to try hard * to never miss any packets */ #if MAX_NURBS < 4 #error "Not enough URBs in the gspca table" #endif static int val_reply(struct gspca_dev *gspca_dev, const char *reply, int rc) { if (rc < 0) { PERR("reply has error %d", rc); return -EIO; } if (rc != 1) { PERR("Bad reply size %d", rc); return -EIO; } if (reply[0] != 0x08) { PERR("Bad reply 0x%02X", reply[0]); return -EIO; } return 0; } static void reg_w(struct gspca_dev *gspca_dev, u16 value, u16 index) { char buff[1]; int rc; PDEBUG(D_USBO, "reg_w bReq=0x0B, bReqT=0xC0, wVal=0x%04X, wInd=0x%04X\n", value, index); rc = usb_control_msg(gspca_dev->dev, usb_rcvctrlpipe(gspca_dev->dev, 0), 0x0B, 0xC0, value, index, buff, 1, 500); PDEBUG(D_USBO, "rc=%d, ret={0x%02X}", rc, buff[0]); if (rc < 0) { PERR("Failed reg_w(0x0B, 0xC0, 0x%04X, 0x%04X) w/ rc %d\n", value, index, rc); gspca_dev->usb_err = rc; return; } if (val_reply(gspca_dev, buff, rc)) { PERR("Bad reply to reg_w(0x0B, 0xC0, 0x%04X, 0x%04X\n", value, index); gspca_dev->usb_err = -EIO; } } static void reg_w_buf(struct gspca_dev *gspca_dev, const struct cmd *p, int l) { do { reg_w(gspca_dev, p->value, p->index); p++; } while (--l > 0); } static void setexposure(struct gspca_dev *gspca_dev, s32 val) { u16 value; unsigned int w = gspca_dev->pixfmt.width; if (w == 800) value = val * 5; else if (w == 1600) value = val * 3; else if (w == 3264) value = val * 3 / 2; else { PERR("Invalid width %u\n", w); gspca_dev->usb_err = -EINVAL; return; } PDEBUG(D_STREAM, "exposure: 0x%04X ms\n", value); /* Wonder if theres a good reason for sending it twice */ /* probably not but leave it in because...why not */ reg_w(gspca_dev, value, REG_COARSE_INTEGRATION_TIME_); reg_w(gspca_dev, value, REG_COARSE_INTEGRATION_TIME_); } static int gainify(int in) { /* * TODO: check if there are any issues with corner cases * 0x000 (0):0x07F (127): regL * 0x080 (128) - 0x0FF (255): regM, regL * 0x100 (256) - max: regH, regM, regL */ if (in <= 0x7F) return 0x1000 | in; else if (in <= 0xFF) return 0x1080 | in / 2; else return 0x1180 | in / 4; } static void setggain(struct gspca_dev *gspca_dev, u16 global_gain) { u16 normalized; normalized = gainify(global_gain); PDEBUG(D_STREAM, "gain G1/G2 (0x%04X): 0x%04X (src 0x%04X)\n", REG_GREEN1_GAIN, normalized, global_gain); reg_w(gspca_dev, normalized, REG_GREEN1_GAIN); reg_w(gspca_dev, normalized, REG_GREEN2_GAIN); } static void setbgain(struct gspca_dev *gspca_dev, u16 gain, u16 global_gain) { u16 normalized; normalized = global_gain + ((u32)global_gain) * gain / GAIN_MAX; if (normalized > GAIN_MAX) { PDEBUG(D_STREAM, "Truncating blue 0x%04X w/ value 0x%04X\n", GAIN_MAX, normalized); normalized = GAIN_MAX; } normalized = gainify(normalized); PDEBUG(D_STREAM, "gain B (0x%04X): 0x%04X w/ source 0x%04X\n", REG_BLUE_GAIN, normalized, gain); reg_w(gspca_dev, normalized, REG_BLUE_GAIN); } static void setrgain(struct gspca_dev *gspca_dev, u16 gain, u16 global_gain) { u16 normalized; normalized = global_gain + ((u32)global_gain) * gain / GAIN_MAX; if (normalized > GAIN_MAX) { PDEBUG(D_STREAM, "Truncating gain 0x%04X w/ value 0x%04X\n", GAIN_MAX, normalized); normalized = GAIN_MAX; } normalized = gainify(normalized); PDEBUG(D_STREAM, "gain R (0x%04X): 0x%04X w / source 0x%04X\n", REG_RED_GAIN, normalized, gain); reg_w(gspca_dev, normalized, REG_RED_GAIN); } static void configure_wh(struct gspca_dev *gspca_dev) { unsigned int w = gspca_dev->pixfmt.width; PDEBUG(D_STREAM, "configure_wh\n"); if (w == 800) { static const struct cmd reg_init_res[] = { {0x0060, REG_X_ADDR_START}, {0x0CD9, REG_X_ADDR_END}, {0x0036, REG_Y_ADDR_START}, {0x098F, REG_Y_ADDR_END}, {0x07C7, REG_READ_MODE}, }; reg_w_buf(gspca_dev, reg_init_res, ARRAY_SIZE(reg_init_res)); } else if (w == 1600) { static const struct cmd reg_init_res[] = { {0x009C, REG_X_ADDR_START}, {0x0D19, REG_X_ADDR_END}, {0x0068, REG_Y_ADDR_START}, {0x09C5, REG_Y_ADDR_END}, {0x06C3, REG_READ_MODE}, }; reg_w_buf(gspca_dev, reg_init_res, ARRAY_SIZE(reg_init_res)); } else if (w == 3264) { static const struct cmd reg_init_res[] = { {0x00E8, REG_X_ADDR_START}, {0x0DA7, REG_X_ADDR_END}, {0x009E, REG_Y_ADDR_START}, {0x0A2D, REG_Y_ADDR_END}, {0x0241, REG_READ_MODE}, }; reg_w_buf(gspca_dev, reg_init_res, ARRAY_SIZE(reg_init_res)); } else { PERR("bad width %u\n", w); gspca_dev->usb_err = -EINVAL; return; } reg_w(gspca_dev, 0x0000, REG_SCALING_MODE); reg_w(gspca_dev, 0x0010, REG_SCALE_M); reg_w(gspca_dev, w, REG_X_OUTPUT_SIZE); reg_w(gspca_dev, gspca_dev->pixfmt.height, REG_Y_OUTPUT_SIZE); if (w == 800) { reg_w(gspca_dev, 0x0384, REG_FRAME_LENGTH_LINES_); reg_w(gspca_dev, 0x0960, REG_LINE_LENGTH_PCK_); } else if (w == 1600) { reg_w(gspca_dev, 0x0640, REG_FRAME_LENGTH_LINES_); reg_w(gspca_dev, 0x0FA0, REG_LINE_LENGTH_PCK_); } else if (w == 3264) { reg_w(gspca_dev, 0x0B4B, REG_FRAME_LENGTH_LINES_); reg_w(gspca_dev, 0x1F40, REG_LINE_LENGTH_PCK_); } else { PERR("bad width %u\n", w); gspca_dev->usb_err = -EINVAL; return; } } /* Packets that were encrypted, no idea if the grouping is significant */ static void configure_encrypted(struct gspca_dev *gspca_dev) { static const struct cmd reg_init_begin[] = { {0x0100, REG_SOFTWARE_RESET}, {0x0000, REG_MODE_SELECT}, {0x0100, REG_GROUPED_PARAMETER_HOLD}, {0x0004, REG_VT_PIX_CLK_DIV}, {0x0001, REG_VT_SYS_CLK_DIV}, {0x0008, REG_OP_PIX_CLK_DIV}, {0x0001, REG_OP_SYS_CLK_DIV}, {0x0004, REG_PRE_PLL_CLK_DIV}, {0x0040, REG_PLL_MULTIPLIER}, {0x0000, REG_GROUPED_PARAMETER_HOLD}, {0x0100, REG_GROUPED_PARAMETER_HOLD}, }; static const struct cmd reg_init_end[] = { {0x0000, REG_GROUPED_PARAMETER_HOLD}, {0x0301, 0x31AE}, {0x0805, 0x3064}, {0x0071, 0x3170}, {0x10DE, REG_RESET_REGISTER}, {0x0000, REG_MODE_SELECT}, {0x0010, REG_PLL_MULTIPLIER}, {0x0100, REG_MODE_SELECT}, }; PDEBUG(D_STREAM, "Encrypted begin, w = %u\n", gspca_dev->pixfmt.width); reg_w_buf(gspca_dev, reg_init_begin, ARRAY_SIZE(reg_init_begin)); configure_wh(gspca_dev); reg_w_buf(gspca_dev, reg_init_end, ARRAY_SIZE(reg_init_end)); reg_w(gspca_dev, 0x0100, REG_GROUPED_PARAMETER_HOLD); reg_w(gspca_dev, 0x0000, REG_GROUPED_PARAMETER_HOLD); PDEBUG(D_STREAM, "Encrypted end\n"); } static int configure(struct gspca_dev *gspca_dev) { int rc; uint8_t buff[4]; PDEBUG(D_STREAM, "configure()\n"); /* * First driver sets a sort of encryption key * A number of futur requests of this type have wValue and wIndex * encrypted as follows: * -Compute key = this wValue rotate left by 4 bits * (decrypt.py rotates right because we are decrypting) * -Later packets encrypt packets by XOR'ing with key * XOR encrypt/decrypt is symmetrical * wValue, and wIndex are encrypted * bRequest is not and bRequestType is always 0xC0 * This allows resyncing if key is unknown? * By setting 0 we XOR with 0 and the shifting and XOR drops out */ rc = usb_control_msg(gspca_dev->dev, usb_rcvctrlpipe(gspca_dev->dev, 0), 0x16, 0xC0, 0x0000, 0x0000, buff, 2, 500); if (val_reply(gspca_dev, buff, rc)) { PERR("failed key req"); return -EIO; } /* * Next does some sort of 2 packet challenge / response * evidence suggests its an Atmel I2C crypto part but nobody cares to * look * (to make sure its not cloned hardware?) * Ignore: I want to work with their hardware, not clone it * 16 bytes out challenge, requestType: 0x40 * 16 bytes in response, requestType: 0xC0 */ rc = usb_control_msg(gspca_dev->dev, usb_sndctrlpipe(gspca_dev->dev, 0), 0x01, 0x40, 0x0001, 0x000F, NULL, 0, 500); if (rc < 0) { PERR("failed to replay packet 176 w/ rc %d\n", rc); return rc; } rc = usb_control_msg(gspca_dev->dev, usb_sndctrlpipe(gspca_dev->dev, 0), 0x01, 0x40, 0x0000, 0x000F, NULL, 0, 500); if (rc < 0) { PERR("failed to replay packet 178 w/ rc %d\n", rc); return rc; } rc = usb_control_msg(gspca_dev->dev, usb_sndctrlpipe(gspca_dev->dev, 0), 0x01, 0x40, 0x0001, 0x000F, NULL, 0, 500); if (rc < 0) { PERR("failed to replay packet 180 w/ rc %d\n", rc); return rc; } /* * Serial number? Doesn't seem to be required * cam1: \xE6\x0D\x00\x00, cam2: \x70\x19\x00\x00 * rc = usb_control_msg(gspca_dev->dev, * usb_rcvctrlpipe(gspca_dev->dev, 0), * 0x20, 0xC0, 0x0000, 0x0000, buff, 4, 500); */ /* Large (EEPROM?) read, skip it since no idea what to do with it */ gspca_dev->usb_err = 0; configure_encrypted(gspca_dev); if (gspca_dev->usb_err) return gspca_dev->usb_err; /* Omitted this by accident, does not work without it */ rc = usb_control_msg(gspca_dev->dev, usb_sndctrlpipe(gspca_dev->dev, 0), 0x01, 0x40, 0x0003, 0x000F, NULL, 0, 500); if (rc < 0) { PERR("failed to replay final packet w/ rc %d\n", rc); return rc; } PDEBUG(D_STREAM, "Configure complete\n"); return 0; } static int sd_config(struct gspca_dev *gspca_dev, const struct usb_device_id *id) { gspca_dev->cam.cam_mode = vga_mode; gspca_dev->cam.nmodes = ARRAY_SIZE(vga_mode); /* Yes we want URBs and we want them now! */ gspca_dev->cam.no_urb_create = 0; gspca_dev->cam.bulk_nurbs = 4; /* Largest size the windows driver uses */ gspca_dev->cam.bulk_size = BULK_SIZE; /* Def need to use bulk transfers */ gspca_dev->cam.bulk = 1; return 0; } static int sd_start(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; int rc; sd->this_f = 0; rc = configure(gspca_dev); if (rc < 0) { PERR("Failed configure"); return rc; } /* First two frames have messed up gains Drop them to avoid special cases in user apps? */ return 0; } static void sd_pkt_scan(struct gspca_dev *gspca_dev, u8 *data, /* isoc packet */ int len) /* iso packet length */ { struct sd *sd = (struct sd *) gspca_dev; if (len != BULK_SIZE) { /* can we finish a frame? */ if (sd->this_f + len == gspca_dev->pixfmt.sizeimage) { gspca_frame_add(gspca_dev, LAST_PACKET, data, len); PDEBUG(D_FRAM, "finish frame sz %u/%u w/ len %u\n", sd->this_f, gspca_dev->pixfmt.sizeimage, len); /* lost some data, discard the frame */ } else { gspca_frame_add(gspca_dev, DISCARD_PACKET, NULL, 0); PDEBUG(D_FRAM, "abort frame sz %u/%u w/ len %u\n", sd->this_f, gspca_dev->pixfmt.sizeimage, len); } sd->this_f = 0; } else { if (sd->this_f == 0) gspca_frame_add(gspca_dev, FIRST_PACKET, data, len); else gspca_frame_add(gspca_dev, INTER_PACKET, data, len); sd->this_f += len; } } static int sd_init(struct gspca_dev *gspca_dev) { return 0; } static int sd_s_ctrl(struct v4l2_ctrl *ctrl) { struct gspca_dev *gspca_dev = container_of(ctrl->handler, struct gspca_dev, ctrl_handler); struct sd *sd = (struct sd *) gspca_dev; gspca_dev->usb_err = 0; if (!gspca_dev->streaming) return 0; switch (ctrl->id) { case V4L2_CID_EXPOSURE: setexposure(gspca_dev, ctrl->val); break; case V4L2_CID_GAIN: /* gspca_dev->gain automatically updated */ setggain(gspca_dev, gspca_dev->gain->val); break; case V4L2_CID_BLUE_BALANCE: sd->blue->val = ctrl->val; setbgain(gspca_dev, sd->blue->val, gspca_dev->gain->val); break; case V4L2_CID_RED_BALANCE: sd->red->val = ctrl->val; setrgain(gspca_dev, sd->red->val, gspca_dev->gain->val); break; } return gspca_dev->usb_err; } static const struct v4l2_ctrl_ops sd_ctrl_ops = { .s_ctrl = sd_s_ctrl, }; static int sd_init_controls(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; struct v4l2_ctrl_handler *hdl = &gspca_dev->ctrl_handler; gspca_dev->vdev.ctrl_handler = hdl; v4l2_ctrl_handler_init(hdl, 4); gspca_dev->exposure = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, /* Mostly limited by URB timeouts */ /* XXX: make dynamic based on frame rate? */ V4L2_CID_EXPOSURE, 0, 800, 1, 350); gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, V4L2_CID_GAIN, 0, 511, 1, 128); sd->blue = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, V4L2_CID_BLUE_BALANCE, 0, 1023, 1, 80); sd->red = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, V4L2_CID_RED_BALANCE, 0, 1023, 1, 295); if (hdl->error) { PERR("Could not initialize controls\n"); return hdl->error; } return 0; } /* sub-driver description */ static const struct sd_desc sd_desc = { .name = MODULE_NAME, .config = sd_config, .init = sd_init, .init_controls = sd_init_controls, .start = sd_start, .pkt_scan = sd_pkt_scan, }; /* Table of supported USB devices */ static const struct usb_device_id device_table[] = { /* Commented out devices should be related */ /* AS: AmScope, TT: ToupTek */ /* { USB_DEVICE(0x0547, 0x6035) }, TT UCMOS00350KPA */ /* { USB_DEVICE(0x0547, 0x6130) }, TT UCMOS01300KPA */ /* { USB_DEVICE(0x0547, 0x6200) }, TT UCMOS02000KPA */ /* { USB_DEVICE(0x0547, 0x6310) }, TT UCMOS03100KPA */ /* { USB_DEVICE(0x0547, 0x6510) }, TT UCMOS05100KPA */ /* { USB_DEVICE(0x0547, 0x6800) }, TT UCMOS08000KPA */ /* { USB_DEVICE(0x0547, 0x6801) }, TT UCMOS08000KPB */ { USB_DEVICE(0x0547, 0x6801) }, /* TT UCMOS08000KPB, AS MU800 */ /* { USB_DEVICE(0x0547, 0x6900) }, TT UCMOS09000KPA */ /* { USB_DEVICE(0x0547, 0x6901) }, TT UCMOS09000KPB */ /* { USB_DEVICE(0x0547, 0x6010) }, TT UCMOS10000KPA */ /* { USB_DEVICE(0x0547, 0x6014) }, TT UCMOS14000KPA */ /* { USB_DEVICE(0x0547, 0x6131) }, TT UCMOS01300KMA */ /* { USB_DEVICE(0x0547, 0x6511) }, TT UCMOS05100KMA */ /* { USB_DEVICE(0x0547, 0x8080) }, TT UHCCD00800KPA */ /* { USB_DEVICE(0x0547, 0x8140) }, TT UHCCD01400KPA */ /* { USB_DEVICE(0x0547, 0x8141) }, TT EXCCD01400KPA */ /* { USB_DEVICE(0x0547, 0x8200) }, TT UHCCD02000KPA */ /* { USB_DEVICE(0x0547, 0x8201) }, TT UHCCD02000KPB */ /* { USB_DEVICE(0x0547, 0x8310) }, TT UHCCD03100KPA */ /* { USB_DEVICE(0x0547, 0x8500) }, TT UHCCD05000KPA */ /* { USB_DEVICE(0x0547, 0x8510) }, TT UHCCD05100KPA */ /* { USB_DEVICE(0x0547, 0x8600) }, TT UHCCD06000KPA */ /* { USB_DEVICE(0x0547, 0x8800) }, TT UHCCD08000KPA */ /* { USB_DEVICE(0x0547, 0x8315) }, TT UHCCD03150KPA */ /* { USB_DEVICE(0x0547, 0x7800) }, TT UHCCD00800KMA */ /* { USB_DEVICE(0x0547, 0x7140) }, TT UHCCD01400KMA */ /* { USB_DEVICE(0x0547, 0x7141) }, TT UHCCD01400KMB */ /* { USB_DEVICE(0x0547, 0x7200) }, TT UHCCD02000KMA */ /* { USB_DEVICE(0x0547, 0x7315) }, TT UHCCD03150KMA */ { } }; MODULE_DEVICE_TABLE(usb, device_table); static int sd_probe(struct usb_interface *intf, const struct usb_device_id *id) { return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd), THIS_MODULE); } static struct usb_driver sd_driver = { .name = MODULE_NAME, .id_table = device_table, .probe = sd_probe, .disconnect = gspca_disconnect, #ifdef CONFIG_PM .suspend = gspca_suspend, .resume = gspca_resume, #endif }; static int __init sd_mod_init(void) { int ret; ret = usb_register(&sd_driver); if (ret < 0) return ret; return 0; } static void __exit sd_mod_exit(void) { usb_deregister(&sd_driver); } module_init(sd_mod_init); module_exit(sd_mod_exit);