/* * Elonics E4000 silicon tuner driver * * Copyright (C) 2012 Antti Palosaari <crope@iki.fi> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "e4000_priv.h" static int e4000_init(struct e4000_dev *dev) { struct i2c_client *client = dev->client; int ret; dev_dbg(&client->dev, "\n"); /* reset */ ret = regmap_write(dev->regmap, 0x00, 0x01); if (ret) goto err; /* disable output clock */ ret = regmap_write(dev->regmap, 0x06, 0x00); if (ret) goto err; ret = regmap_write(dev->regmap, 0x7a, 0x96); if (ret) goto err; /* configure gains */ ret = regmap_bulk_write(dev->regmap, 0x7e, "\x01\xfe", 2); if (ret) goto err; ret = regmap_write(dev->regmap, 0x82, 0x00); if (ret) goto err; ret = regmap_write(dev->regmap, 0x24, 0x05); if (ret) goto err; ret = regmap_bulk_write(dev->regmap, 0x87, "\x20\x01", 2); if (ret) goto err; ret = regmap_bulk_write(dev->regmap, 0x9f, "\x7f\x07", 2); if (ret) goto err; /* DC offset control */ ret = regmap_write(dev->regmap, 0x2d, 0x1f); if (ret) goto err; ret = regmap_bulk_write(dev->regmap, 0x70, "\x01\x01", 2); if (ret) goto err; /* gain control */ ret = regmap_write(dev->regmap, 0x1a, 0x17); if (ret) goto err; ret = regmap_write(dev->regmap, 0x1f, 0x1a); if (ret) goto err; dev->active = true; return 0; err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int e4000_sleep(struct e4000_dev *dev) { struct i2c_client *client = dev->client; int ret; dev_dbg(&client->dev, "\n"); dev->active = false; ret = regmap_write(dev->regmap, 0x00, 0x00); if (ret) goto err; return 0; err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int e4000_set_params(struct e4000_dev *dev) { struct i2c_client *client = dev->client; int ret, i; unsigned int div_n, k, k_cw, div_out; u64 f_vco; u8 buf[5], i_data[4], q_data[4]; if (!dev->active) { dev_dbg(&client->dev, "tuner is sleeping\n"); return 0; } /* gain control manual */ ret = regmap_write(dev->regmap, 0x1a, 0x00); if (ret) goto err; /* * Fractional-N synthesizer * * +----------------------------+ * v | * Fref +----+ +-------+ +------+ +---+ * ------> | PD | --> | VCO | ------> | /N.F | <-- | K | * +----+ +-------+ +------+ +---+ * | * | * v * +-------+ Fout * | /Rout | ------> * +-------+ */ for (i = 0; i < ARRAY_SIZE(e4000_pll_lut); i++) { if (dev->f_frequency <= e4000_pll_lut[i].freq) break; } if (i == ARRAY_SIZE(e4000_pll_lut)) { ret = -EINVAL; goto err; } #define F_REF dev->clk div_out = e4000_pll_lut[i].div_out; f_vco = (u64) dev->f_frequency * div_out; /* calculate PLL integer and fractional control word */ div_n = div_u64_rem(f_vco, F_REF, &k); k_cw = div_u64((u64) k * 0x10000, F_REF); dev_dbg(&client->dev, "frequency=%u bandwidth=%u f_vco=%llu F_REF=%u div_n=%u k=%u k_cw=%04x div_out=%u\n", dev->f_frequency, dev->f_bandwidth, f_vco, F_REF, div_n, k, k_cw, div_out); buf[0] = div_n; buf[1] = (k_cw >> 0) & 0xff; buf[2] = (k_cw >> 8) & 0xff; buf[3] = 0x00; buf[4] = e4000_pll_lut[i].div_out_reg; ret = regmap_bulk_write(dev->regmap, 0x09, buf, 5); if (ret) goto err; /* LNA filter (RF filter) */ for (i = 0; i < ARRAY_SIZE(e400_lna_filter_lut); i++) { if (dev->f_frequency <= e400_lna_filter_lut[i].freq) break; } if (i == ARRAY_SIZE(e400_lna_filter_lut)) { ret = -EINVAL; goto err; } ret = regmap_write(dev->regmap, 0x10, e400_lna_filter_lut[i].val); if (ret) goto err; /* IF filters */ for (i = 0; i < ARRAY_SIZE(e4000_if_filter_lut); i++) { if (dev->f_bandwidth <= e4000_if_filter_lut[i].freq) break; } if (i == ARRAY_SIZE(e4000_if_filter_lut)) { ret = -EINVAL; goto err; } buf[0] = e4000_if_filter_lut[i].reg11_val; buf[1] = e4000_if_filter_lut[i].reg12_val; ret = regmap_bulk_write(dev->regmap, 0x11, buf, 2); if (ret) goto err; /* frequency band */ for (i = 0; i < ARRAY_SIZE(e4000_band_lut); i++) { if (dev->f_frequency <= e4000_band_lut[i].freq) break; } if (i == ARRAY_SIZE(e4000_band_lut)) { ret = -EINVAL; goto err; } ret = regmap_write(dev->regmap, 0x07, e4000_band_lut[i].reg07_val); if (ret) goto err; ret = regmap_write(dev->regmap, 0x78, e4000_band_lut[i].reg78_val); if (ret) goto err; /* DC offset */ for (i = 0; i < 4; i++) { if (i == 0) ret = regmap_bulk_write(dev->regmap, 0x15, "\x00\x7e\x24", 3); else if (i == 1) ret = regmap_bulk_write(dev->regmap, 0x15, "\x00\x7f", 2); else if (i == 2) ret = regmap_bulk_write(dev->regmap, 0x15, "\x01", 1); else ret = regmap_bulk_write(dev->regmap, 0x16, "\x7e", 1); if (ret) goto err; ret = regmap_write(dev->regmap, 0x29, 0x01); if (ret) goto err; ret = regmap_bulk_read(dev->regmap, 0x2a, buf, 3); if (ret) goto err; i_data[i] = (((buf[2] >> 0) & 0x3) << 6) | (buf[0] & 0x3f); q_data[i] = (((buf[2] >> 4) & 0x3) << 6) | (buf[1] & 0x3f); } swap(q_data[2], q_data[3]); swap(i_data[2], i_data[3]); ret = regmap_bulk_write(dev->regmap, 0x50, q_data, 4); if (ret) goto err; ret = regmap_bulk_write(dev->regmap, 0x60, i_data, 4); if (ret) goto err; /* gain control auto */ ret = regmap_write(dev->regmap, 0x1a, 0x17); if (ret) goto err; return 0; err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } /* * V4L2 API */ #if IS_ENABLED(CONFIG_VIDEO_V4L2) static const struct v4l2_frequency_band bands[] = { { .type = V4L2_TUNER_RF, .index = 0, .capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS, .rangelow = 59000000, .rangehigh = 1105000000, }, { .type = V4L2_TUNER_RF, .index = 1, .capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS, .rangelow = 1249000000, .rangehigh = 2208000000UL, }, }; static inline struct e4000_dev *e4000_subdev_to_dev(struct v4l2_subdev *sd) { return container_of(sd, struct e4000_dev, sd); } static int e4000_s_power(struct v4l2_subdev *sd, int on) { struct e4000_dev *dev = e4000_subdev_to_dev(sd); struct i2c_client *client = dev->client; int ret; dev_dbg(&client->dev, "on=%d\n", on); if (on) ret = e4000_init(dev); else ret = e4000_sleep(dev); if (ret) return ret; return e4000_set_params(dev); } static const struct v4l2_subdev_core_ops e4000_subdev_core_ops = { .s_power = e4000_s_power, }; static int e4000_g_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *v) { struct e4000_dev *dev = e4000_subdev_to_dev(sd); struct i2c_client *client = dev->client; dev_dbg(&client->dev, "index=%d\n", v->index); strlcpy(v->name, "Elonics E4000", sizeof(v->name)); v->type = V4L2_TUNER_RF; v->capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS; v->rangelow = bands[0].rangelow; v->rangehigh = bands[1].rangehigh; return 0; } static int e4000_s_tuner(struct v4l2_subdev *sd, const struct v4l2_tuner *v) { struct e4000_dev *dev = e4000_subdev_to_dev(sd); struct i2c_client *client = dev->client; dev_dbg(&client->dev, "index=%d\n", v->index); return 0; } static int e4000_g_frequency(struct v4l2_subdev *sd, struct v4l2_frequency *f) { struct e4000_dev *dev = e4000_subdev_to_dev(sd); struct i2c_client *client = dev->client; dev_dbg(&client->dev, "tuner=%d\n", f->tuner); f->frequency = dev->f_frequency; return 0; } static int e4000_s_frequency(struct v4l2_subdev *sd, const struct v4l2_frequency *f) { struct e4000_dev *dev = e4000_subdev_to_dev(sd); struct i2c_client *client = dev->client; dev_dbg(&client->dev, "tuner=%d type=%d frequency=%u\n", f->tuner, f->type, f->frequency); dev->f_frequency = clamp_t(unsigned int, f->frequency, bands[0].rangelow, bands[1].rangehigh); return e4000_set_params(dev); } static int e4000_enum_freq_bands(struct v4l2_subdev *sd, struct v4l2_frequency_band *band) { struct e4000_dev *dev = e4000_subdev_to_dev(sd); struct i2c_client *client = dev->client; dev_dbg(&client->dev, "tuner=%d type=%d index=%d\n", band->tuner, band->type, band->index); if (band->index >= ARRAY_SIZE(bands)) return -EINVAL; band->capability = bands[band->index].capability; band->rangelow = bands[band->index].rangelow; band->rangehigh = bands[band->index].rangehigh; return 0; } static const struct v4l2_subdev_tuner_ops e4000_subdev_tuner_ops = { .g_tuner = e4000_g_tuner, .s_tuner = e4000_s_tuner, .g_frequency = e4000_g_frequency, .s_frequency = e4000_s_frequency, .enum_freq_bands = e4000_enum_freq_bands, }; static const struct v4l2_subdev_ops e4000_subdev_ops = { .core = &e4000_subdev_core_ops, .tuner = &e4000_subdev_tuner_ops, }; static int e4000_set_lna_gain(struct dvb_frontend *fe) { struct e4000_dev *dev = fe->tuner_priv; struct i2c_client *client = dev->client; int ret; u8 u8tmp; dev_dbg(&client->dev, "lna auto=%d->%d val=%d->%d\n", dev->lna_gain_auto->cur.val, dev->lna_gain_auto->val, dev->lna_gain->cur.val, dev->lna_gain->val); if (dev->lna_gain_auto->val && dev->if_gain_auto->cur.val) u8tmp = 0x17; else if (dev->lna_gain_auto->val) u8tmp = 0x19; else if (dev->if_gain_auto->cur.val) u8tmp = 0x16; else u8tmp = 0x10; ret = regmap_write(dev->regmap, 0x1a, u8tmp); if (ret) goto err; if (dev->lna_gain_auto->val == false) { ret = regmap_write(dev->regmap, 0x14, dev->lna_gain->val); if (ret) goto err; } return 0; err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int e4000_set_mixer_gain(struct dvb_frontend *fe) { struct e4000_dev *dev = fe->tuner_priv; struct i2c_client *client = dev->client; int ret; u8 u8tmp; dev_dbg(&client->dev, "mixer auto=%d->%d val=%d->%d\n", dev->mixer_gain_auto->cur.val, dev->mixer_gain_auto->val, dev->mixer_gain->cur.val, dev->mixer_gain->val); if (dev->mixer_gain_auto->val) u8tmp = 0x15; else u8tmp = 0x14; ret = regmap_write(dev->regmap, 0x20, u8tmp); if (ret) goto err; if (dev->mixer_gain_auto->val == false) { ret = regmap_write(dev->regmap, 0x15, dev->mixer_gain->val); if (ret) goto err; } return 0; err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int e4000_set_if_gain(struct dvb_frontend *fe) { struct e4000_dev *dev = fe->tuner_priv; struct i2c_client *client = dev->client; int ret; u8 buf[2]; u8 u8tmp; dev_dbg(&client->dev, "if auto=%d->%d val=%d->%d\n", dev->if_gain_auto->cur.val, dev->if_gain_auto->val, dev->if_gain->cur.val, dev->if_gain->val); if (dev->if_gain_auto->val && dev->lna_gain_auto->cur.val) u8tmp = 0x17; else if (dev->lna_gain_auto->cur.val) u8tmp = 0x19; else if (dev->if_gain_auto->val) u8tmp = 0x16; else u8tmp = 0x10; ret = regmap_write(dev->regmap, 0x1a, u8tmp); if (ret) goto err; if (dev->if_gain_auto->val == false) { buf[0] = e4000_if_gain_lut[dev->if_gain->val].reg16_val; buf[1] = e4000_if_gain_lut[dev->if_gain->val].reg17_val; ret = regmap_bulk_write(dev->regmap, 0x16, buf, 2); if (ret) goto err; } return 0; err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int e4000_pll_lock(struct dvb_frontend *fe) { struct e4000_dev *dev = fe->tuner_priv; struct i2c_client *client = dev->client; int ret; unsigned int uitmp; ret = regmap_read(dev->regmap, 0x07, &uitmp); if (ret) goto err; dev->pll_lock->val = (uitmp & 0x01); return 0; err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int e4000_g_volatile_ctrl(struct v4l2_ctrl *ctrl) { struct e4000_dev *dev = container_of(ctrl->handler, struct e4000_dev, hdl); struct i2c_client *client = dev->client; int ret; if (!dev->active) return 0; switch (ctrl->id) { case V4L2_CID_RF_TUNER_PLL_LOCK: ret = e4000_pll_lock(dev->fe); break; default: dev_dbg(&client->dev, "unknown ctrl: id=%d name=%s\n", ctrl->id, ctrl->name); ret = -EINVAL; } return ret; } static int e4000_s_ctrl(struct v4l2_ctrl *ctrl) { struct e4000_dev *dev = container_of(ctrl->handler, struct e4000_dev, hdl); struct i2c_client *client = dev->client; int ret; if (!dev->active) return 0; switch (ctrl->id) { case V4L2_CID_RF_TUNER_BANDWIDTH_AUTO: case V4L2_CID_RF_TUNER_BANDWIDTH: /* * TODO: Auto logic does not work 100% correctly as tuner driver * do not have information to calculate maximum suitable * bandwidth. Calculating it is responsible of master driver. */ dev->f_bandwidth = dev->bandwidth->val; ret = e4000_set_params(dev); break; case V4L2_CID_RF_TUNER_LNA_GAIN_AUTO: case V4L2_CID_RF_TUNER_LNA_GAIN: ret = e4000_set_lna_gain(dev->fe); break; case V4L2_CID_RF_TUNER_MIXER_GAIN_AUTO: case V4L2_CID_RF_TUNER_MIXER_GAIN: ret = e4000_set_mixer_gain(dev->fe); break; case V4L2_CID_RF_TUNER_IF_GAIN_AUTO: case V4L2_CID_RF_TUNER_IF_GAIN: ret = e4000_set_if_gain(dev->fe); break; default: dev_dbg(&client->dev, "unknown ctrl: id=%d name=%s\n", ctrl->id, ctrl->name); ret = -EINVAL; } return ret; } static const struct v4l2_ctrl_ops e4000_ctrl_ops = { .g_volatile_ctrl = e4000_g_volatile_ctrl, .s_ctrl = e4000_s_ctrl, }; #endif /* * DVB API */ static int e4000_dvb_set_params(struct dvb_frontend *fe) { struct e4000_dev *dev = fe->tuner_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; dev->f_frequency = c->frequency; dev->f_bandwidth = c->bandwidth_hz; return e4000_set_params(dev); } static int e4000_dvb_init(struct dvb_frontend *fe) { return e4000_init(fe->tuner_priv); } static int e4000_dvb_sleep(struct dvb_frontend *fe) { return e4000_sleep(fe->tuner_priv); } static int e4000_dvb_get_if_frequency(struct dvb_frontend *fe, u32 *frequency) { *frequency = 0; /* Zero-IF */ return 0; } static const struct dvb_tuner_ops e4000_dvb_tuner_ops = { .info = { .name = "Elonics E4000", .frequency_min = 174000000, .frequency_max = 862000000, }, .init = e4000_dvb_init, .sleep = e4000_dvb_sleep, .set_params = e4000_dvb_set_params, .get_if_frequency = e4000_dvb_get_if_frequency, }; static int e4000_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct e4000_dev *dev; struct e4000_config *cfg = client->dev.platform_data; struct dvb_frontend *fe = cfg->fe; int ret; unsigned int uitmp; static const struct regmap_config regmap_config = { .reg_bits = 8, .val_bits = 8, }; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) { ret = -ENOMEM; goto err; } dev->clk = cfg->clock; dev->client = client; dev->fe = cfg->fe; dev->regmap = devm_regmap_init_i2c(client, ®map_config); if (IS_ERR(dev->regmap)) { ret = PTR_ERR(dev->regmap); goto err_kfree; } /* check if the tuner is there */ ret = regmap_read(dev->regmap, 0x02, &uitmp); if (ret) goto err_kfree; dev_dbg(&client->dev, "chip id=%02x\n", uitmp); if (uitmp != 0x40) { ret = -ENODEV; goto err_kfree; } /* put sleep as chip seems to be in normal mode by default */ ret = regmap_write(dev->regmap, 0x00, 0x00); if (ret) goto err_kfree; #if IS_ENABLED(CONFIG_VIDEO_V4L2) /* Register controls */ v4l2_ctrl_handler_init(&dev->hdl, 9); dev->bandwidth_auto = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops, V4L2_CID_RF_TUNER_BANDWIDTH_AUTO, 0, 1, 1, 1); dev->bandwidth = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops, V4L2_CID_RF_TUNER_BANDWIDTH, 4300000, 11000000, 100000, 4300000); v4l2_ctrl_auto_cluster(2, &dev->bandwidth_auto, 0, false); dev->lna_gain_auto = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops, V4L2_CID_RF_TUNER_LNA_GAIN_AUTO, 0, 1, 1, 1); dev->lna_gain = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops, V4L2_CID_RF_TUNER_LNA_GAIN, 0, 15, 1, 10); v4l2_ctrl_auto_cluster(2, &dev->lna_gain_auto, 0, false); dev->mixer_gain_auto = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops, V4L2_CID_RF_TUNER_MIXER_GAIN_AUTO, 0, 1, 1, 1); dev->mixer_gain = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops, V4L2_CID_RF_TUNER_MIXER_GAIN, 0, 1, 1, 1); v4l2_ctrl_auto_cluster(2, &dev->mixer_gain_auto, 0, false); dev->if_gain_auto = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops, V4L2_CID_RF_TUNER_IF_GAIN_AUTO, 0, 1, 1, 1); dev->if_gain = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops, V4L2_CID_RF_TUNER_IF_GAIN, 0, 54, 1, 0); v4l2_ctrl_auto_cluster(2, &dev->if_gain_auto, 0, false); dev->pll_lock = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops, V4L2_CID_RF_TUNER_PLL_LOCK, 0, 1, 1, 0); if (dev->hdl.error) { ret = dev->hdl.error; dev_err(&client->dev, "Could not initialize controls\n"); v4l2_ctrl_handler_free(&dev->hdl); goto err_kfree; } dev->sd.ctrl_handler = &dev->hdl; dev->f_frequency = bands[0].rangelow; dev->f_bandwidth = dev->bandwidth->val; v4l2_i2c_subdev_init(&dev->sd, client, &e4000_subdev_ops); #endif fe->tuner_priv = dev; memcpy(&fe->ops.tuner_ops, &e4000_dvb_tuner_ops, sizeof(fe->ops.tuner_ops)); v4l2_set_subdevdata(&dev->sd, client); i2c_set_clientdata(client, &dev->sd); dev_info(&client->dev, "Elonics E4000 successfully identified\n"); return 0; err_kfree: kfree(dev); err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int e4000_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct e4000_dev *dev = container_of(sd, struct e4000_dev, sd); dev_dbg(&client->dev, "\n"); #if IS_ENABLED(CONFIG_VIDEO_V4L2) v4l2_ctrl_handler_free(&dev->hdl); #endif kfree(dev); return 0; } static const struct i2c_device_id e4000_id_table[] = { {"e4000", 0}, {} }; MODULE_DEVICE_TABLE(i2c, e4000_id_table); static struct i2c_driver e4000_driver = { .driver = { .name = "e4000", .suppress_bind_attrs = true, }, .probe = e4000_probe, .remove = e4000_remove, .id_table = e4000_id_table, }; module_i2c_driver(e4000_driver); MODULE_DESCRIPTION("Elonics E4000 silicon tuner driver"); MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>"); MODULE_LICENSE("GPL");