/* * Copyright (C) 2015 Red Hat. All rights reserved. * * This file is released under the GPL. */ #include "dm-cache-policy.h" #include "dm-cache-policy-internal.h" #include "dm.h" #include <linux/hash.h> #include <linux/jiffies.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/vmalloc.h> #include <linux/math64.h> #define DM_MSG_PREFIX "cache-policy-smq" /*----------------------------------------------------------------*/ /* * Safe division functions that return zero on divide by zero. */ static unsigned safe_div(unsigned n, unsigned d) { return d ? n / d : 0u; } static unsigned safe_mod(unsigned n, unsigned d) { return d ? n % d : 0u; } /*----------------------------------------------------------------*/ struct entry { unsigned hash_next:28; unsigned prev:28; unsigned next:28; unsigned level:7; bool dirty:1; bool allocated:1; bool sentinel:1; dm_oblock_t oblock; }; /*----------------------------------------------------------------*/ #define INDEXER_NULL ((1u << 28u) - 1u) /* * An entry_space manages a set of entries that we use for the queues. * The clean and dirty queues share entries, so this object is separate * from the queue itself. */ struct entry_space { struct entry *begin; struct entry *end; }; static int space_init(struct entry_space *es, unsigned nr_entries) { if (!nr_entries) { es->begin = es->end = NULL; return 0; } es->begin = vzalloc(sizeof(struct entry) * nr_entries); if (!es->begin) return -ENOMEM; es->end = es->begin + nr_entries; return 0; } static void space_exit(struct entry_space *es) { vfree(es->begin); } static struct entry *__get_entry(struct entry_space *es, unsigned block) { struct entry *e; e = es->begin + block; BUG_ON(e >= es->end); return e; } static unsigned to_index(struct entry_space *es, struct entry *e) { BUG_ON(e < es->begin || e >= es->end); return e - es->begin; } static struct entry *to_entry(struct entry_space *es, unsigned block) { if (block == INDEXER_NULL) return NULL; return __get_entry(es, block); } /*----------------------------------------------------------------*/ struct ilist { unsigned nr_elts; /* excluding sentinel entries */ unsigned head, tail; }; static void l_init(struct ilist *l) { l->nr_elts = 0; l->head = l->tail = INDEXER_NULL; } static struct entry *l_head(struct entry_space *es, struct ilist *l) { return to_entry(es, l->head); } static struct entry *l_tail(struct entry_space *es, struct ilist *l) { return to_entry(es, l->tail); } static struct entry *l_next(struct entry_space *es, struct entry *e) { return to_entry(es, e->next); } static struct entry *l_prev(struct entry_space *es, struct entry *e) { return to_entry(es, e->prev); } static bool l_empty(struct ilist *l) { return l->head == INDEXER_NULL; } static void l_add_head(struct entry_space *es, struct ilist *l, struct entry *e) { struct entry *head = l_head(es, l); e->next = l->head; e->prev = INDEXER_NULL; if (head) head->prev = l->head = to_index(es, e); else l->head = l->tail = to_index(es, e); if (!e->sentinel) l->nr_elts++; } static void l_add_tail(struct entry_space *es, struct ilist *l, struct entry *e) { struct entry *tail = l_tail(es, l); e->next = INDEXER_NULL; e->prev = l->tail; if (tail) tail->next = l->tail = to_index(es, e); else l->head = l->tail = to_index(es, e); if (!e->sentinel) l->nr_elts++; } static void l_add_before(struct entry_space *es, struct ilist *l, struct entry *old, struct entry *e) { struct entry *prev = l_prev(es, old); if (!prev) l_add_head(es, l, e); else { e->prev = old->prev; e->next = to_index(es, old); prev->next = old->prev = to_index(es, e); if (!e->sentinel) l->nr_elts++; } } static void l_del(struct entry_space *es, struct ilist *l, struct entry *e) { struct entry *prev = l_prev(es, e); struct entry *next = l_next(es, e); if (prev) prev->next = e->next; else l->head = e->next; if (next) next->prev = e->prev; else l->tail = e->prev; if (!e->sentinel) l->nr_elts--; } static struct entry *l_pop_tail(struct entry_space *es, struct ilist *l) { struct entry *e; for (e = l_tail(es, l); e; e = l_prev(es, e)) if (!e->sentinel) { l_del(es, l, e); return e; } return NULL; } /*----------------------------------------------------------------*/ /* * The stochastic-multi-queue is a set of lru lists stacked into levels. * Entries are moved up levels when they are used, which loosely orders the * most accessed entries in the top levels and least in the bottom. This * structure is *much* better than a single lru list. */ #define MAX_LEVELS 64u struct queue { struct entry_space *es; unsigned nr_elts; unsigned nr_levels; struct ilist qs[MAX_LEVELS]; /* * We maintain a count of the number of entries we would like in each * level. */ unsigned last_target_nr_elts; unsigned nr_top_levels; unsigned nr_in_top_levels; unsigned target_count[MAX_LEVELS]; }; static void q_init(struct queue *q, struct entry_space *es, unsigned nr_levels) { unsigned i; q->es = es; q->nr_elts = 0; q->nr_levels = nr_levels; for (i = 0; i < q->nr_levels; i++) { l_init(q->qs + i); q->target_count[i] = 0u; } q->last_target_nr_elts = 0u; q->nr_top_levels = 0u; q->nr_in_top_levels = 0u; } static unsigned q_size(struct queue *q) { return q->nr_elts; } /* * Insert an entry to the back of the given level. */ static void q_push(struct queue *q, struct entry *e) { if (!e->sentinel) q->nr_elts++; l_add_tail(q->es, q->qs + e->level, e); } static void q_push_before(struct queue *q, struct entry *old, struct entry *e) { if (!e->sentinel) q->nr_elts++; l_add_before(q->es, q->qs + e->level, old, e); } static void q_del(struct queue *q, struct entry *e) { l_del(q->es, q->qs + e->level, e); if (!e->sentinel) q->nr_elts--; } /* * Return the oldest entry of the lowest populated level. */ static struct entry *q_peek(struct queue *q, unsigned max_level, bool can_cross_sentinel) { unsigned level; struct entry *e; max_level = min(max_level, q->nr_levels); for (level = 0; level < max_level; level++) for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) { if (e->sentinel) { if (can_cross_sentinel) continue; else break; } return e; } return NULL; } static struct entry *q_pop(struct queue *q) { struct entry *e = q_peek(q, q->nr_levels, true); if (e) q_del(q, e); return e; } /* * Pops an entry from a level that is not past a sentinel. */ static struct entry *q_pop_old(struct queue *q, unsigned max_level) { struct entry *e = q_peek(q, max_level, false); if (e) q_del(q, e); return e; } /* * This function assumes there is a non-sentinel entry to pop. It's only * used by redistribute, so we know this is true. It also doesn't adjust * the q->nr_elts count. */ static struct entry *__redist_pop_from(struct queue *q, unsigned level) { struct entry *e; for (; level < q->nr_levels; level++) for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) if (!e->sentinel) { l_del(q->es, q->qs + e->level, e); return e; } return NULL; } static void q_set_targets_subrange_(struct queue *q, unsigned nr_elts, unsigned lbegin, unsigned lend) { unsigned level, nr_levels, entries_per_level, remainder; BUG_ON(lbegin > lend); BUG_ON(lend > q->nr_levels); nr_levels = lend - lbegin; entries_per_level = safe_div(nr_elts, nr_levels); remainder = safe_mod(nr_elts, nr_levels); for (level = lbegin; level < lend; level++) q->target_count[level] = (level < (lbegin + remainder)) ? entries_per_level + 1u : entries_per_level; } /* * Typically we have fewer elements in the top few levels which allows us * to adjust the promote threshold nicely. */ static void q_set_targets(struct queue *q) { if (q->last_target_nr_elts == q->nr_elts) return; q->last_target_nr_elts = q->nr_elts; if (q->nr_top_levels > q->nr_levels) q_set_targets_subrange_(q, q->nr_elts, 0, q->nr_levels); else { q_set_targets_subrange_(q, q->nr_in_top_levels, q->nr_levels - q->nr_top_levels, q->nr_levels); if (q->nr_in_top_levels < q->nr_elts) q_set_targets_subrange_(q, q->nr_elts - q->nr_in_top_levels, 0, q->nr_levels - q->nr_top_levels); else q_set_targets_subrange_(q, 0, 0, q->nr_levels - q->nr_top_levels); } } static void q_redistribute(struct queue *q) { unsigned target, level; struct ilist *l, *l_above; struct entry *e; q_set_targets(q); for (level = 0u; level < q->nr_levels - 1u; level++) { l = q->qs + level; target = q->target_count[level]; /* * Pull down some entries from the level above. */ while (l->nr_elts < target) { e = __redist_pop_from(q, level + 1u); if (!e) { /* bug in nr_elts */ break; } e->level = level; l_add_tail(q->es, l, e); } /* * Push some entries up. */ l_above = q->qs + level + 1u; while (l->nr_elts > target) { e = l_pop_tail(q->es, l); if (!e) /* bug in nr_elts */ break; e->level = level + 1u; l_add_head(q->es, l_above, e); } } } static void q_requeue_before(struct queue *q, struct entry *dest, struct entry *e, unsigned extra_levels) { struct entry *de; unsigned new_level; q_del(q, e); if (extra_levels && (e->level < q->nr_levels - 1u)) { new_level = min(q->nr_levels - 1u, e->level + extra_levels); for (de = l_head(q->es, q->qs + new_level); de; de = l_next(q->es, de)) { if (de->sentinel) continue; q_del(q, de); de->level = e->level; if (dest) q_push_before(q, dest, de); else q_push(q, de); break; } e->level = new_level; } q_push(q, e); } static void q_requeue(struct queue *q, struct entry *e, unsigned extra_levels) { q_requeue_before(q, NULL, e, extra_levels); } /*----------------------------------------------------------------*/ #define FP_SHIFT 8 #define SIXTEENTH (1u << (FP_SHIFT - 4u)) #define EIGHTH (1u << (FP_SHIFT - 3u)) struct stats { unsigned hit_threshold; unsigned hits; unsigned misses; }; enum performance { Q_POOR, Q_FAIR, Q_WELL }; static void stats_init(struct stats *s, unsigned nr_levels) { s->hit_threshold = (nr_levels * 3u) / 4u; s->hits = 0u; s->misses = 0u; } static void stats_reset(struct stats *s) { s->hits = s->misses = 0u; } static void stats_level_accessed(struct stats *s, unsigned level) { if (level >= s->hit_threshold) s->hits++; else s->misses++; } static void stats_miss(struct stats *s) { s->misses++; } /* * There are times when we don't have any confidence in the hotspot queue. * Such as when a fresh cache is created and the blocks have been spread * out across the levels, or if an io load changes. We detect this by * seeing how often a lookup is in the top levels of the hotspot queue. */ static enum performance stats_assess(struct stats *s) { unsigned confidence = safe_div(s->hits << FP_SHIFT, s->hits + s->misses); if (confidence < SIXTEENTH) return Q_POOR; else if (confidence < EIGHTH) return Q_FAIR; else return Q_WELL; } /*----------------------------------------------------------------*/ struct hash_table { struct entry_space *es; unsigned long long hash_bits; unsigned *buckets; }; /* * All cache entries are stored in a chained hash table. To save space we * use indexing again, and only store indexes to the next entry. */ static int h_init(struct hash_table *ht, struct entry_space *es, unsigned nr_entries) { unsigned i, nr_buckets; ht->es = es; nr_buckets = roundup_pow_of_two(max(nr_entries / 4u, 16u)); ht->hash_bits = __ffs(nr_buckets); ht->buckets = vmalloc(sizeof(*ht->buckets) * nr_buckets); if (!ht->buckets) return -ENOMEM; for (i = 0; i < nr_buckets; i++) ht->buckets[i] = INDEXER_NULL; return 0; } static void h_exit(struct hash_table *ht) { vfree(ht->buckets); } static struct entry *h_head(struct hash_table *ht, unsigned bucket) { return to_entry(ht->es, ht->buckets[bucket]); } static struct entry *h_next(struct hash_table *ht, struct entry *e) { return to_entry(ht->es, e->hash_next); } static void __h_insert(struct hash_table *ht, unsigned bucket, struct entry *e) { e->hash_next = ht->buckets[bucket]; ht->buckets[bucket] = to_index(ht->es, e); } static void h_insert(struct hash_table *ht, struct entry *e) { unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits); __h_insert(ht, h, e); } static struct entry *__h_lookup(struct hash_table *ht, unsigned h, dm_oblock_t oblock, struct entry **prev) { struct entry *e; *prev = NULL; for (e = h_head(ht, h); e; e = h_next(ht, e)) { if (e->oblock == oblock) return e; *prev = e; } return NULL; } static void __h_unlink(struct hash_table *ht, unsigned h, struct entry *e, struct entry *prev) { if (prev) prev->hash_next = e->hash_next; else ht->buckets[h] = e->hash_next; } /* * Also moves each entry to the front of the bucket. */ static struct entry *h_lookup(struct hash_table *ht, dm_oblock_t oblock) { struct entry *e, *prev; unsigned h = hash_64(from_oblock(oblock), ht->hash_bits); e = __h_lookup(ht, h, oblock, &prev); if (e && prev) { /* * Move to the front because this entry is likely * to be hit again. */ __h_unlink(ht, h, e, prev); __h_insert(ht, h, e); } return e; } static void h_remove(struct hash_table *ht, struct entry *e) { unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits); struct entry *prev; /* * The down side of using a singly linked list is we have to * iterate the bucket to remove an item. */ e = __h_lookup(ht, h, e->oblock, &prev); if (e) __h_unlink(ht, h, e, prev); } /*----------------------------------------------------------------*/ struct entry_alloc { struct entry_space *es; unsigned begin; unsigned nr_allocated; struct ilist free; }; static void init_allocator(struct entry_alloc *ea, struct entry_space *es, unsigned begin, unsigned end) { unsigned i; ea->es = es; ea->nr_allocated = 0u; ea->begin = begin; l_init(&ea->free); for (i = begin; i != end; i++) l_add_tail(ea->es, &ea->free, __get_entry(ea->es, i)); } static void init_entry(struct entry *e) { /* * We can't memset because that would clear the hotspot and * sentinel bits which remain constant. */ e->hash_next = INDEXER_NULL; e->next = INDEXER_NULL; e->prev = INDEXER_NULL; e->level = 0u; e->allocated = true; } static struct entry *alloc_entry(struct entry_alloc *ea) { struct entry *e; if (l_empty(&ea->free)) return NULL; e = l_pop_tail(ea->es, &ea->free); init_entry(e); ea->nr_allocated++; return e; } /* * This assumes the cblock hasn't already been allocated. */ static struct entry *alloc_particular_entry(struct entry_alloc *ea, unsigned i) { struct entry *e = __get_entry(ea->es, ea->begin + i); BUG_ON(e->allocated); l_del(ea->es, &ea->free, e); init_entry(e); ea->nr_allocated++; return e; } static void free_entry(struct entry_alloc *ea, struct entry *e) { BUG_ON(!ea->nr_allocated); BUG_ON(!e->allocated); ea->nr_allocated--; e->allocated = false; l_add_tail(ea->es, &ea->free, e); } static bool allocator_empty(struct entry_alloc *ea) { return l_empty(&ea->free); } static unsigned get_index(struct entry_alloc *ea, struct entry *e) { return to_index(ea->es, e) - ea->begin; } static struct entry *get_entry(struct entry_alloc *ea, unsigned index) { return __get_entry(ea->es, ea->begin + index); } /*----------------------------------------------------------------*/ #define NR_HOTSPOT_LEVELS 64u #define NR_CACHE_LEVELS 64u #define WRITEBACK_PERIOD (10 * HZ) #define DEMOTE_PERIOD (60 * HZ) #define HOTSPOT_UPDATE_PERIOD (HZ) #define CACHE_UPDATE_PERIOD (10u * HZ) struct smq_policy { struct dm_cache_policy policy; /* protects everything */ spinlock_t lock; dm_cblock_t cache_size; sector_t cache_block_size; sector_t hotspot_block_size; unsigned nr_hotspot_blocks; unsigned cache_blocks_per_hotspot_block; unsigned hotspot_level_jump; struct entry_space es; struct entry_alloc writeback_sentinel_alloc; struct entry_alloc demote_sentinel_alloc; struct entry_alloc hotspot_alloc; struct entry_alloc cache_alloc; unsigned long *hotspot_hit_bits; unsigned long *cache_hit_bits; /* * We maintain three queues of entries. The cache proper, * consisting of a clean and dirty queue, containing the currently * active mappings. The hotspot queue uses a larger block size to * track blocks that are being hit frequently and potential * candidates for promotion to the cache. */ struct queue hotspot; struct queue clean; struct queue dirty; struct stats hotspot_stats; struct stats cache_stats; /* * Keeps track of time, incremented by the core. We use this to * avoid attributing multiple hits within the same tick. */ unsigned tick; /* * The hash tables allows us to quickly find an entry by origin * block. */ struct hash_table table; struct hash_table hotspot_table; bool current_writeback_sentinels; unsigned long next_writeback_period; bool current_demote_sentinels; unsigned long next_demote_period; unsigned write_promote_level; unsigned read_promote_level; unsigned long next_hotspot_period; unsigned long next_cache_period; }; /*----------------------------------------------------------------*/ static struct entry *get_sentinel(struct entry_alloc *ea, unsigned level, bool which) { return get_entry(ea, which ? level : NR_CACHE_LEVELS + level); } static struct entry *writeback_sentinel(struct smq_policy *mq, unsigned level) { return get_sentinel(&mq->writeback_sentinel_alloc, level, mq->current_writeback_sentinels); } static struct entry *demote_sentinel(struct smq_policy *mq, unsigned level) { return get_sentinel(&mq->demote_sentinel_alloc, level, mq->current_demote_sentinels); } static void __update_writeback_sentinels(struct smq_policy *mq) { unsigned level; struct queue *q = &mq->dirty; struct entry *sentinel; for (level = 0; level < q->nr_levels; level++) { sentinel = writeback_sentinel(mq, level); q_del(q, sentinel); q_push(q, sentinel); } } static void __update_demote_sentinels(struct smq_policy *mq) { unsigned level; struct queue *q = &mq->clean; struct entry *sentinel; for (level = 0; level < q->nr_levels; level++) { sentinel = demote_sentinel(mq, level); q_del(q, sentinel); q_push(q, sentinel); } } static void update_sentinels(struct smq_policy *mq) { if (time_after(jiffies, mq->next_writeback_period)) { __update_writeback_sentinels(mq); mq->next_writeback_period = jiffies + WRITEBACK_PERIOD; mq->current_writeback_sentinels = !mq->current_writeback_sentinels; } if (time_after(jiffies, mq->next_demote_period)) { __update_demote_sentinels(mq); mq->next_demote_period = jiffies + DEMOTE_PERIOD; mq->current_demote_sentinels = !mq->current_demote_sentinels; } } static void __sentinels_init(struct smq_policy *mq) { unsigned level; struct entry *sentinel; for (level = 0; level < NR_CACHE_LEVELS; level++) { sentinel = writeback_sentinel(mq, level); sentinel->level = level; q_push(&mq->dirty, sentinel); sentinel = demote_sentinel(mq, level); sentinel->level = level; q_push(&mq->clean, sentinel); } } static void sentinels_init(struct smq_policy *mq) { mq->next_writeback_period = jiffies + WRITEBACK_PERIOD; mq->next_demote_period = jiffies + DEMOTE_PERIOD; mq->current_writeback_sentinels = false; mq->current_demote_sentinels = false; __sentinels_init(mq); mq->current_writeback_sentinels = !mq->current_writeback_sentinels; mq->current_demote_sentinels = !mq->current_demote_sentinels; __sentinels_init(mq); } /*----------------------------------------------------------------*/ /* * These methods tie together the dirty queue, clean queue and hash table. */ static void push_new(struct smq_policy *mq, struct entry *e) { struct queue *q = e->dirty ? &mq->dirty : &mq->clean; h_insert(&mq->table, e); q_push(q, e); } static void push(struct smq_policy *mq, struct entry *e) { struct entry *sentinel; h_insert(&mq->table, e); /* * Punch this into the queue just in front of the sentinel, to * ensure it's cleaned straight away. */ if (e->dirty) { sentinel = writeback_sentinel(mq, e->level); q_push_before(&mq->dirty, sentinel, e); } else { sentinel = demote_sentinel(mq, e->level); q_push_before(&mq->clean, sentinel, e); } } /* * Removes an entry from cache. Removes from the hash table. */ static void __del(struct smq_policy *mq, struct queue *q, struct entry *e) { q_del(q, e); h_remove(&mq->table, e); } static void del(struct smq_policy *mq, struct entry *e) { __del(mq, e->dirty ? &mq->dirty : &mq->clean, e); } static struct entry *pop_old(struct smq_policy *mq, struct queue *q, unsigned max_level) { struct entry *e = q_pop_old(q, max_level); if (e) h_remove(&mq->table, e); return e; } static dm_cblock_t infer_cblock(struct smq_policy *mq, struct entry *e) { return to_cblock(get_index(&mq->cache_alloc, e)); } static void requeue(struct smq_policy *mq, struct entry *e) { struct entry *sentinel; if (!test_and_set_bit(from_cblock(infer_cblock(mq, e)), mq->cache_hit_bits)) { if (e->dirty) { sentinel = writeback_sentinel(mq, e->level); q_requeue_before(&mq->dirty, sentinel, e, 1u); } else { sentinel = demote_sentinel(mq, e->level); q_requeue_before(&mq->clean, sentinel, e, 1u); } } } static unsigned default_promote_level(struct smq_policy *mq) { /* * The promote level depends on the current performance of the * cache. * * If the cache is performing badly, then we can't afford * to promote much without causing performance to drop below that * of the origin device. * * If the cache is performing well, then we don't need to promote * much. If it isn't broken, don't fix it. * * If the cache is middling then we promote more. * * This scheme reminds me of a graph of entropy vs probability of a * binary variable. */ static unsigned table[] = {1, 1, 1, 2, 4, 6, 7, 8, 7, 6, 4, 4, 3, 3, 2, 2, 1}; unsigned hits = mq->cache_stats.hits; unsigned misses = mq->cache_stats.misses; unsigned index = safe_div(hits << 4u, hits + misses); return table[index]; } static void update_promote_levels(struct smq_policy *mq) { /* * If there are unused cache entries then we want to be really * eager to promote. */ unsigned threshold_level = allocator_empty(&mq->cache_alloc) ? default_promote_level(mq) : (NR_HOTSPOT_LEVELS / 2u); /* * If the hotspot queue is performing badly then we have little * confidence that we know which blocks to promote. So we cut down * the amount of promotions. */ switch (stats_assess(&mq->hotspot_stats)) { case Q_POOR: threshold_level /= 4u; break; case Q_FAIR: threshold_level /= 2u; break; case Q_WELL: break; } mq->read_promote_level = NR_HOTSPOT_LEVELS - threshold_level; mq->write_promote_level = (NR_HOTSPOT_LEVELS - threshold_level) + 2u; } /* * If the hotspot queue is performing badly, then we try and move entries * around more quickly. */ static void update_level_jump(struct smq_policy *mq) { switch (stats_assess(&mq->hotspot_stats)) { case Q_POOR: mq->hotspot_level_jump = 4u; break; case Q_FAIR: mq->hotspot_level_jump = 2u; break; case Q_WELL: mq->hotspot_level_jump = 1u; break; } } static void end_hotspot_period(struct smq_policy *mq) { clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks); update_promote_levels(mq); if (time_after(jiffies, mq->next_hotspot_period)) { update_level_jump(mq); q_redistribute(&mq->hotspot); stats_reset(&mq->hotspot_stats); mq->next_hotspot_period = jiffies + HOTSPOT_UPDATE_PERIOD; } } static void end_cache_period(struct smq_policy *mq) { if (time_after(jiffies, mq->next_cache_period)) { clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size)); q_redistribute(&mq->dirty); q_redistribute(&mq->clean); stats_reset(&mq->cache_stats); mq->next_cache_period = jiffies + CACHE_UPDATE_PERIOD; } } static int demote_cblock(struct smq_policy *mq, struct policy_locker *locker, dm_oblock_t *oblock) { struct entry *demoted = q_peek(&mq->clean, mq->clean.nr_levels, false); if (!demoted) /* * We could get a block from mq->dirty, but that * would add extra latency to the triggering bio as it * waits for the writeback. Better to not promote this * time and hope there's a clean block next time this block * is hit. */ return -ENOSPC; if (locker->fn(locker, demoted->oblock)) /* * We couldn't lock this block. */ return -EBUSY; del(mq, demoted); *oblock = demoted->oblock; free_entry(&mq->cache_alloc, demoted); return 0; } enum promote_result { PROMOTE_NOT, PROMOTE_TEMPORARY, PROMOTE_PERMANENT }; /* * Converts a boolean into a promote result. */ static enum promote_result maybe_promote(bool promote) { return promote ? PROMOTE_PERMANENT : PROMOTE_NOT; } static enum promote_result should_promote(struct smq_policy *mq, struct entry *hs_e, struct bio *bio, bool fast_promote) { if (bio_data_dir(bio) == WRITE) { if (!allocator_empty(&mq->cache_alloc) && fast_promote) return PROMOTE_TEMPORARY; else return maybe_promote(hs_e->level >= mq->write_promote_level); } else return maybe_promote(hs_e->level >= mq->read_promote_level); } static void insert_in_cache(struct smq_policy *mq, dm_oblock_t oblock, struct policy_locker *locker, struct policy_result *result, enum promote_result pr) { int r; struct entry *e; if (allocator_empty(&mq->cache_alloc)) { result->op = POLICY_REPLACE; r = demote_cblock(mq, locker, &result->old_oblock); if (r) { result->op = POLICY_MISS; return; } } else result->op = POLICY_NEW; e = alloc_entry(&mq->cache_alloc); BUG_ON(!e); e->oblock = oblock; if (pr == PROMOTE_TEMPORARY) push(mq, e); else push_new(mq, e); result->cblock = infer_cblock(mq, e); } static dm_oblock_t to_hblock(struct smq_policy *mq, dm_oblock_t b) { sector_t r = from_oblock(b); (void) sector_div(r, mq->cache_blocks_per_hotspot_block); return to_oblock(r); } static struct entry *update_hotspot_queue(struct smq_policy *mq, dm_oblock_t b, struct bio *bio) { unsigned hi; dm_oblock_t hb = to_hblock(mq, b); struct entry *e = h_lookup(&mq->hotspot_table, hb); if (e) { stats_level_accessed(&mq->hotspot_stats, e->level); hi = get_index(&mq->hotspot_alloc, e); q_requeue(&mq->hotspot, e, test_and_set_bit(hi, mq->hotspot_hit_bits) ? 0u : mq->hotspot_level_jump); } else { stats_miss(&mq->hotspot_stats); e = alloc_entry(&mq->hotspot_alloc); if (!e) { e = q_pop(&mq->hotspot); if (e) { h_remove(&mq->hotspot_table, e); hi = get_index(&mq->hotspot_alloc, e); clear_bit(hi, mq->hotspot_hit_bits); } } if (e) { e->oblock = hb; q_push(&mq->hotspot, e); h_insert(&mq->hotspot_table, e); } } return e; } /* * Looks the oblock up in the hash table, then decides whether to put in * pre_cache, or cache etc. */ static int map(struct smq_policy *mq, struct bio *bio, dm_oblock_t oblock, bool can_migrate, bool fast_promote, struct policy_locker *locker, struct policy_result *result) { struct entry *e, *hs_e; enum promote_result pr; hs_e = update_hotspot_queue(mq, oblock, bio); e = h_lookup(&mq->table, oblock); if (e) { stats_level_accessed(&mq->cache_stats, e->level); requeue(mq, e); result->op = POLICY_HIT; result->cblock = infer_cblock(mq, e); } else { stats_miss(&mq->cache_stats); pr = should_promote(mq, hs_e, bio, fast_promote); if (pr == PROMOTE_NOT) result->op = POLICY_MISS; else { if (!can_migrate) { result->op = POLICY_MISS; return -EWOULDBLOCK; } insert_in_cache(mq, oblock, locker, result, pr); } } return 0; } /*----------------------------------------------------------------*/ /* * Public interface, via the policy struct. See dm-cache-policy.h for a * description of these. */ static struct smq_policy *to_smq_policy(struct dm_cache_policy *p) { return container_of(p, struct smq_policy, policy); } static void smq_destroy(struct dm_cache_policy *p) { struct smq_policy *mq = to_smq_policy(p); h_exit(&mq->hotspot_table); h_exit(&mq->table); free_bitset(mq->hotspot_hit_bits); free_bitset(mq->cache_hit_bits); space_exit(&mq->es); kfree(mq); } static int smq_map(struct dm_cache_policy *p, dm_oblock_t oblock, bool can_block, bool can_migrate, bool fast_promote, struct bio *bio, struct policy_locker *locker, struct policy_result *result) { int r; unsigned long flags; struct smq_policy *mq = to_smq_policy(p); result->op = POLICY_MISS; spin_lock_irqsave(&mq->lock, flags); r = map(mq, bio, oblock, can_migrate, fast_promote, locker, result); spin_unlock_irqrestore(&mq->lock, flags); return r; } static int smq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock) { int r; unsigned long flags; struct smq_policy *mq = to_smq_policy(p); struct entry *e; spin_lock_irqsave(&mq->lock, flags); e = h_lookup(&mq->table, oblock); if (e) { *cblock = infer_cblock(mq, e); r = 0; } else r = -ENOENT; spin_unlock_irqrestore(&mq->lock, flags); return r; } static void __smq_set_clear_dirty(struct smq_policy *mq, dm_oblock_t oblock, bool set) { struct entry *e; e = h_lookup(&mq->table, oblock); BUG_ON(!e); del(mq, e); e->dirty = set; push(mq, e); } static void smq_set_dirty(struct dm_cache_policy *p, dm_oblock_t oblock) { unsigned long flags; struct smq_policy *mq = to_smq_policy(p); spin_lock_irqsave(&mq->lock, flags); __smq_set_clear_dirty(mq, oblock, true); spin_unlock_irqrestore(&mq->lock, flags); } static void smq_clear_dirty(struct dm_cache_policy *p, dm_oblock_t oblock) { struct smq_policy *mq = to_smq_policy(p); unsigned long flags; spin_lock_irqsave(&mq->lock, flags); __smq_set_clear_dirty(mq, oblock, false); spin_unlock_irqrestore(&mq->lock, flags); } static int smq_load_mapping(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t cblock, uint32_t hint, bool hint_valid) { struct smq_policy *mq = to_smq_policy(p); struct entry *e; e = alloc_particular_entry(&mq->cache_alloc, from_cblock(cblock)); e->oblock = oblock; e->dirty = false; /* this gets corrected in a minute */ e->level = hint_valid ? min(hint, NR_CACHE_LEVELS - 1) : 1; push(mq, e); return 0; } static int smq_save_hints(struct smq_policy *mq, struct queue *q, policy_walk_fn fn, void *context) { int r; unsigned level; struct entry *e; for (level = 0; level < q->nr_levels; level++) for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) { if (!e->sentinel) { r = fn(context, infer_cblock(mq, e), e->oblock, e->level); if (r) return r; } } return 0; } static int smq_walk_mappings(struct dm_cache_policy *p, policy_walk_fn fn, void *context) { struct smq_policy *mq = to_smq_policy(p); int r = 0; /* * We don't need to lock here since this method is only called once * the IO has stopped. */ r = smq_save_hints(mq, &mq->clean, fn, context); if (!r) r = smq_save_hints(mq, &mq->dirty, fn, context); return r; } static void __remove_mapping(struct smq_policy *mq, dm_oblock_t oblock) { struct entry *e; e = h_lookup(&mq->table, oblock); BUG_ON(!e); del(mq, e); free_entry(&mq->cache_alloc, e); } static void smq_remove_mapping(struct dm_cache_policy *p, dm_oblock_t oblock) { struct smq_policy *mq = to_smq_policy(p); unsigned long flags; spin_lock_irqsave(&mq->lock, flags); __remove_mapping(mq, oblock); spin_unlock_irqrestore(&mq->lock, flags); } static int __remove_cblock(struct smq_policy *mq, dm_cblock_t cblock) { struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock)); if (!e || !e->allocated) return -ENODATA; del(mq, e); free_entry(&mq->cache_alloc, e); return 0; } static int smq_remove_cblock(struct dm_cache_policy *p, dm_cblock_t cblock) { int r; unsigned long flags; struct smq_policy *mq = to_smq_policy(p); spin_lock_irqsave(&mq->lock, flags); r = __remove_cblock(mq, cblock); spin_unlock_irqrestore(&mq->lock, flags); return r; } #define CLEAN_TARGET_CRITICAL 5u /* percent */ static bool clean_target_met(struct smq_policy *mq, bool critical) { if (critical) { /* * Cache entries may not be populated. So we're cannot rely on the * size of the clean queue. */ unsigned nr_clean = from_cblock(mq->cache_size) - q_size(&mq->dirty); unsigned target = from_cblock(mq->cache_size) * CLEAN_TARGET_CRITICAL / 100u; return nr_clean >= target; } else return !q_size(&mq->dirty); } static int __smq_writeback_work(struct smq_policy *mq, dm_oblock_t *oblock, dm_cblock_t *cblock, bool critical_only) { struct entry *e = NULL; bool target_met = clean_target_met(mq, critical_only); if (critical_only) /* * Always try and keep the bottom level clean. */ e = pop_old(mq, &mq->dirty, target_met ? 1u : mq->dirty.nr_levels); else e = pop_old(mq, &mq->dirty, mq->dirty.nr_levels); if (!e) return -ENODATA; *oblock = e->oblock; *cblock = infer_cblock(mq, e); e->dirty = false; push_new(mq, e); return 0; } static int smq_writeback_work(struct dm_cache_policy *p, dm_oblock_t *oblock, dm_cblock_t *cblock, bool critical_only) { int r; unsigned long flags; struct smq_policy *mq = to_smq_policy(p); spin_lock_irqsave(&mq->lock, flags); r = __smq_writeback_work(mq, oblock, cblock, critical_only); spin_unlock_irqrestore(&mq->lock, flags); return r; } static void __force_mapping(struct smq_policy *mq, dm_oblock_t current_oblock, dm_oblock_t new_oblock) { struct entry *e = h_lookup(&mq->table, current_oblock); if (e) { del(mq, e); e->oblock = new_oblock; e->dirty = true; push(mq, e); } } static void smq_force_mapping(struct dm_cache_policy *p, dm_oblock_t current_oblock, dm_oblock_t new_oblock) { unsigned long flags; struct smq_policy *mq = to_smq_policy(p); spin_lock_irqsave(&mq->lock, flags); __force_mapping(mq, current_oblock, new_oblock); spin_unlock_irqrestore(&mq->lock, flags); } static dm_cblock_t smq_residency(struct dm_cache_policy *p) { dm_cblock_t r; unsigned long flags; struct smq_policy *mq = to_smq_policy(p); spin_lock_irqsave(&mq->lock, flags); r = to_cblock(mq->cache_alloc.nr_allocated); spin_unlock_irqrestore(&mq->lock, flags); return r; } static void smq_tick(struct dm_cache_policy *p, bool can_block) { struct smq_policy *mq = to_smq_policy(p); unsigned long flags; spin_lock_irqsave(&mq->lock, flags); mq->tick++; update_sentinels(mq); end_hotspot_period(mq); end_cache_period(mq); spin_unlock_irqrestore(&mq->lock, flags); } /* Init the policy plugin interface function pointers. */ static void init_policy_functions(struct smq_policy *mq) { mq->policy.destroy = smq_destroy; mq->policy.map = smq_map; mq->policy.lookup = smq_lookup; mq->policy.set_dirty = smq_set_dirty; mq->policy.clear_dirty = smq_clear_dirty; mq->policy.load_mapping = smq_load_mapping; mq->policy.walk_mappings = smq_walk_mappings; mq->policy.remove_mapping = smq_remove_mapping; mq->policy.remove_cblock = smq_remove_cblock; mq->policy.writeback_work = smq_writeback_work; mq->policy.force_mapping = smq_force_mapping; mq->policy.residency = smq_residency; mq->policy.tick = smq_tick; } static bool too_many_hotspot_blocks(sector_t origin_size, sector_t hotspot_block_size, unsigned nr_hotspot_blocks) { return (hotspot_block_size * nr_hotspot_blocks) > origin_size; } static void calc_hotspot_params(sector_t origin_size, sector_t cache_block_size, unsigned nr_cache_blocks, sector_t *hotspot_block_size, unsigned *nr_hotspot_blocks) { *hotspot_block_size = cache_block_size * 16u; *nr_hotspot_blocks = max(nr_cache_blocks / 4u, 1024u); while ((*hotspot_block_size > cache_block_size) && too_many_hotspot_blocks(origin_size, *hotspot_block_size, *nr_hotspot_blocks)) *hotspot_block_size /= 2u; } static struct dm_cache_policy *smq_create(dm_cblock_t cache_size, sector_t origin_size, sector_t cache_block_size) { unsigned i; unsigned nr_sentinels_per_queue = 2u * NR_CACHE_LEVELS; unsigned total_sentinels = 2u * nr_sentinels_per_queue; struct smq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL); if (!mq) return NULL; init_policy_functions(mq); mq->cache_size = cache_size; mq->cache_block_size = cache_block_size; calc_hotspot_params(origin_size, cache_block_size, from_cblock(cache_size), &mq->hotspot_block_size, &mq->nr_hotspot_blocks); mq->cache_blocks_per_hotspot_block = div64_u64(mq->hotspot_block_size, mq->cache_block_size); mq->hotspot_level_jump = 1u; if (space_init(&mq->es, total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size))) { DMERR("couldn't initialize entry space"); goto bad_pool_init; } init_allocator(&mq->writeback_sentinel_alloc, &mq->es, 0, nr_sentinels_per_queue); for (i = 0; i < nr_sentinels_per_queue; i++) get_entry(&mq->writeback_sentinel_alloc, i)->sentinel = true; init_allocator(&mq->demote_sentinel_alloc, &mq->es, nr_sentinels_per_queue, total_sentinels); for (i = 0; i < nr_sentinels_per_queue; i++) get_entry(&mq->demote_sentinel_alloc, i)->sentinel = true; init_allocator(&mq->hotspot_alloc, &mq->es, total_sentinels, total_sentinels + mq->nr_hotspot_blocks); init_allocator(&mq->cache_alloc, &mq->es, total_sentinels + mq->nr_hotspot_blocks, total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size)); mq->hotspot_hit_bits = alloc_bitset(mq->nr_hotspot_blocks); if (!mq->hotspot_hit_bits) { DMERR("couldn't allocate hotspot hit bitset"); goto bad_hotspot_hit_bits; } clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks); if (from_cblock(cache_size)) { mq->cache_hit_bits = alloc_bitset(from_cblock(cache_size)); if (!mq->cache_hit_bits) { DMERR("couldn't allocate cache hit bitset"); goto bad_cache_hit_bits; } clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size)); } else mq->cache_hit_bits = NULL; mq->tick = 0; spin_lock_init(&mq->lock); q_init(&mq->hotspot, &mq->es, NR_HOTSPOT_LEVELS); mq->hotspot.nr_top_levels = 8; mq->hotspot.nr_in_top_levels = min(mq->nr_hotspot_blocks / NR_HOTSPOT_LEVELS, from_cblock(mq->cache_size) / mq->cache_blocks_per_hotspot_block); q_init(&mq->clean, &mq->es, NR_CACHE_LEVELS); q_init(&mq->dirty, &mq->es, NR_CACHE_LEVELS); stats_init(&mq->hotspot_stats, NR_HOTSPOT_LEVELS); stats_init(&mq->cache_stats, NR_CACHE_LEVELS); if (h_init(&mq->table, &mq->es, from_cblock(cache_size))) goto bad_alloc_table; if (h_init(&mq->hotspot_table, &mq->es, mq->nr_hotspot_blocks)) goto bad_alloc_hotspot_table; sentinels_init(mq); mq->write_promote_level = mq->read_promote_level = NR_HOTSPOT_LEVELS; mq->next_hotspot_period = jiffies; mq->next_cache_period = jiffies; return &mq->policy; bad_alloc_hotspot_table: h_exit(&mq->table); bad_alloc_table: free_bitset(mq->cache_hit_bits); bad_cache_hit_bits: free_bitset(mq->hotspot_hit_bits); bad_hotspot_hit_bits: space_exit(&mq->es); bad_pool_init: kfree(mq); return NULL; } /*----------------------------------------------------------------*/ static struct dm_cache_policy_type smq_policy_type = { .name = "smq", .version = {1, 0, 0}, .hint_size = 4, .owner = THIS_MODULE, .create = smq_create }; static struct dm_cache_policy_type default_policy_type = { .name = "default", .version = {1, 4, 0}, .hint_size = 4, .owner = THIS_MODULE, .create = smq_create, .real = &smq_policy_type }; static int __init smq_init(void) { int r; r = dm_cache_policy_register(&smq_policy_type); if (r) { DMERR("register failed %d", r); return -ENOMEM; } r = dm_cache_policy_register(&default_policy_type); if (r) { DMERR("register failed (as default) %d", r); dm_cache_policy_unregister(&smq_policy_type); return -ENOMEM; } return 0; } static void __exit smq_exit(void) { dm_cache_policy_unregister(&smq_policy_type); dm_cache_policy_unregister(&default_policy_type); } module_init(smq_init); module_exit(smq_exit); MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("smq cache policy"); MODULE_ALIAS("dm-cache-default");