/* * sun4i-ss-cipher.c - hardware cryptographic accelerator for Allwinner A20 SoC * * Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com> * * This file add support for AES cipher with 128,192,256 bits * keysize in CBC and ECB mode. * Add support also for DES and 3DES in CBC and ECB mode. * * You could find the datasheet in Documentation/arm/sunxi/README * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include "sun4i-ss.h" static int sun4i_ss_opti_poll(struct ablkcipher_request *areq) { struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq); struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm); struct sun4i_ss_ctx *ss = op->ss; unsigned int ivsize = crypto_ablkcipher_ivsize(tfm); struct sun4i_cipher_req_ctx *ctx = ablkcipher_request_ctx(areq); u32 mode = ctx->mode; /* when activating SS, the default FIFO space is SS_RX_DEFAULT(32) */ u32 rx_cnt = SS_RX_DEFAULT; u32 tx_cnt = 0; u32 spaces; u32 v; int i, err = 0; unsigned int ileft = areq->nbytes; unsigned int oleft = areq->nbytes; unsigned int todo; struct sg_mapping_iter mi, mo; unsigned int oi, oo; /* offset for in and out */ unsigned long flags; if (areq->nbytes == 0) return 0; if (!areq->info) { dev_err_ratelimited(ss->dev, "ERROR: Empty IV\n"); return -EINVAL; } if (!areq->src || !areq->dst) { dev_err_ratelimited(ss->dev, "ERROR: Some SGs are NULL\n"); return -EINVAL; } spin_lock_irqsave(&ss->slock, flags); for (i = 0; i < op->keylen; i += 4) writel(*(op->key + i / 4), ss->base + SS_KEY0 + i); if (areq->info) { for (i = 0; i < 4 && i < ivsize / 4; i++) { v = *(u32 *)(areq->info + i * 4); writel(v, ss->base + SS_IV0 + i * 4); } } writel(mode, ss->base + SS_CTL); sg_miter_start(&mi, areq->src, sg_nents(areq->src), SG_MITER_FROM_SG | SG_MITER_ATOMIC); sg_miter_start(&mo, areq->dst, sg_nents(areq->dst), SG_MITER_TO_SG | SG_MITER_ATOMIC); sg_miter_next(&mi); sg_miter_next(&mo); if (!mi.addr || !mo.addr) { dev_err_ratelimited(ss->dev, "ERROR: sg_miter return null\n"); err = -EINVAL; goto release_ss; } ileft = areq->nbytes / 4; oleft = areq->nbytes / 4; oi = 0; oo = 0; do { todo = min3(rx_cnt, ileft, (mi.length - oi) / 4); if (todo > 0) { ileft -= todo; writesl(ss->base + SS_RXFIFO, mi.addr + oi, todo); oi += todo * 4; } if (oi == mi.length) { sg_miter_next(&mi); oi = 0; } spaces = readl(ss->base + SS_FCSR); rx_cnt = SS_RXFIFO_SPACES(spaces); tx_cnt = SS_TXFIFO_SPACES(spaces); todo = min3(tx_cnt, oleft, (mo.length - oo) / 4); if (todo > 0) { oleft -= todo; readsl(ss->base + SS_TXFIFO, mo.addr + oo, todo); oo += todo * 4; } if (oo == mo.length) { sg_miter_next(&mo); oo = 0; } } while (oleft > 0); if (areq->info) { for (i = 0; i < 4 && i < ivsize / 4; i++) { v = readl(ss->base + SS_IV0 + i * 4); *(u32 *)(areq->info + i * 4) = v; } } release_ss: sg_miter_stop(&mi); sg_miter_stop(&mo); writel(0, ss->base + SS_CTL); spin_unlock_irqrestore(&ss->slock, flags); return err; } /* Generic function that support SG with size not multiple of 4 */ static int sun4i_ss_cipher_poll(struct ablkcipher_request *areq) { struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq); struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm); struct sun4i_ss_ctx *ss = op->ss; int no_chunk = 1; struct scatterlist *in_sg = areq->src; struct scatterlist *out_sg = areq->dst; unsigned int ivsize = crypto_ablkcipher_ivsize(tfm); struct sun4i_cipher_req_ctx *ctx = ablkcipher_request_ctx(areq); u32 mode = ctx->mode; /* when activating SS, the default FIFO space is SS_RX_DEFAULT(32) */ u32 rx_cnt = SS_RX_DEFAULT; u32 tx_cnt = 0; u32 v; u32 spaces; int i, err = 0; unsigned int ileft = areq->nbytes; unsigned int oleft = areq->nbytes; unsigned int todo; struct sg_mapping_iter mi, mo; unsigned int oi, oo; /* offset for in and out */ char buf[4 * SS_RX_MAX];/* buffer for linearize SG src */ char bufo[4 * SS_TX_MAX]; /* buffer for linearize SG dst */ unsigned int ob = 0; /* offset in buf */ unsigned int obo = 0; /* offset in bufo*/ unsigned int obl = 0; /* length of data in bufo */ unsigned long flags; if (areq->nbytes == 0) return 0; if (!areq->info) { dev_err_ratelimited(ss->dev, "ERROR: Empty IV\n"); return -EINVAL; } if (!areq->src || !areq->dst) { dev_err_ratelimited(ss->dev, "ERROR: Some SGs are NULL\n"); return -EINVAL; } /* * if we have only SGs with size multiple of 4, * we can use the SS optimized function */ while (in_sg && no_chunk == 1) { if ((in_sg->length % 4) != 0) no_chunk = 0; in_sg = sg_next(in_sg); } while (out_sg && no_chunk == 1) { if ((out_sg->length % 4) != 0) no_chunk = 0; out_sg = sg_next(out_sg); } if (no_chunk == 1) return sun4i_ss_opti_poll(areq); spin_lock_irqsave(&ss->slock, flags); for (i = 0; i < op->keylen; i += 4) writel(*(op->key + i / 4), ss->base + SS_KEY0 + i); if (areq->info) { for (i = 0; i < 4 && i < ivsize / 4; i++) { v = *(u32 *)(areq->info + i * 4); writel(v, ss->base + SS_IV0 + i * 4); } } writel(mode, ss->base + SS_CTL); sg_miter_start(&mi, areq->src, sg_nents(areq->src), SG_MITER_FROM_SG | SG_MITER_ATOMIC); sg_miter_start(&mo, areq->dst, sg_nents(areq->dst), SG_MITER_TO_SG | SG_MITER_ATOMIC); sg_miter_next(&mi); sg_miter_next(&mo); if (!mi.addr || !mo.addr) { dev_err_ratelimited(ss->dev, "ERROR: sg_miter return null\n"); err = -EINVAL; goto release_ss; } ileft = areq->nbytes; oleft = areq->nbytes; oi = 0; oo = 0; while (oleft > 0) { if (ileft > 0) { /* * todo is the number of consecutive 4byte word that we * can read from current SG */ todo = min3(rx_cnt, ileft / 4, (mi.length - oi) / 4); if (todo > 0 && ob == 0) { writesl(ss->base + SS_RXFIFO, mi.addr + oi, todo); ileft -= todo * 4; oi += todo * 4; } else { /* * not enough consecutive bytes, so we need to * linearize in buf. todo is in bytes * After that copy, if we have a multiple of 4 * we need to be able to write all buf in one * pass, so it is why we min() with rx_cnt */ todo = min3(rx_cnt * 4 - ob, ileft, mi.length - oi); memcpy(buf + ob, mi.addr + oi, todo); ileft -= todo; oi += todo; ob += todo; if (ob % 4 == 0) { writesl(ss->base + SS_RXFIFO, buf, ob / 4); ob = 0; } } if (oi == mi.length) { sg_miter_next(&mi); oi = 0; } } spaces = readl(ss->base + SS_FCSR); rx_cnt = SS_RXFIFO_SPACES(spaces); tx_cnt = SS_TXFIFO_SPACES(spaces); dev_dbg(ss->dev, "%x %u/%u %u/%u cnt=%u %u/%u %u/%u cnt=%u %u %u\n", mode, oi, mi.length, ileft, areq->nbytes, rx_cnt, oo, mo.length, oleft, areq->nbytes, tx_cnt, todo, ob); if (tx_cnt == 0) continue; /* todo in 4bytes word */ todo = min3(tx_cnt, oleft / 4, (mo.length - oo) / 4); if (todo > 0) { readsl(ss->base + SS_TXFIFO, mo.addr + oo, todo); oleft -= todo * 4; oo += todo * 4; if (oo == mo.length) { sg_miter_next(&mo); oo = 0; } } else { /* * read obl bytes in bufo, we read at maximum for * emptying the device */ readsl(ss->base + SS_TXFIFO, bufo, tx_cnt); obl = tx_cnt * 4; obo = 0; do { /* * how many bytes we can copy ? * no more than remaining SG size * no more than remaining buffer * no need to test against oleft */ todo = min(mo.length - oo, obl - obo); memcpy(mo.addr + oo, bufo + obo, todo); oleft -= todo; obo += todo; oo += todo; if (oo == mo.length) { sg_miter_next(&mo); oo = 0; } } while (obo < obl); /* bufo must be fully used here */ } } if (areq->info) { for (i = 0; i < 4 && i < ivsize / 4; i++) { v = readl(ss->base + SS_IV0 + i * 4); *(u32 *)(areq->info + i * 4) = v; } } release_ss: sg_miter_stop(&mi); sg_miter_stop(&mo); writel(0, ss->base + SS_CTL); spin_unlock_irqrestore(&ss->slock, flags); return err; } /* CBC AES */ int sun4i_ss_cbc_aes_encrypt(struct ablkcipher_request *areq) { struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq); struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm); struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq); rctx->mode = SS_OP_AES | SS_CBC | SS_ENABLED | SS_ENCRYPTION | op->keymode; return sun4i_ss_cipher_poll(areq); } int sun4i_ss_cbc_aes_decrypt(struct ablkcipher_request *areq) { struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq); struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm); struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq); rctx->mode = SS_OP_AES | SS_CBC | SS_ENABLED | SS_DECRYPTION | op->keymode; return sun4i_ss_cipher_poll(areq); } /* ECB AES */ int sun4i_ss_ecb_aes_encrypt(struct ablkcipher_request *areq) { struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq); struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm); struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq); rctx->mode = SS_OP_AES | SS_ECB | SS_ENABLED | SS_ENCRYPTION | op->keymode; return sun4i_ss_cipher_poll(areq); } int sun4i_ss_ecb_aes_decrypt(struct ablkcipher_request *areq) { struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq); struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm); struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq); rctx->mode = SS_OP_AES | SS_ECB | SS_ENABLED | SS_DECRYPTION | op->keymode; return sun4i_ss_cipher_poll(areq); } /* CBC DES */ int sun4i_ss_cbc_des_encrypt(struct ablkcipher_request *areq) { struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq); struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm); struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq); rctx->mode = SS_OP_DES | SS_CBC | SS_ENABLED | SS_ENCRYPTION | op->keymode; return sun4i_ss_cipher_poll(areq); } int sun4i_ss_cbc_des_decrypt(struct ablkcipher_request *areq) { struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq); struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm); struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq); rctx->mode = SS_OP_DES | SS_CBC | SS_ENABLED | SS_DECRYPTION | op->keymode; return sun4i_ss_cipher_poll(areq); } /* ECB DES */ int sun4i_ss_ecb_des_encrypt(struct ablkcipher_request *areq) { struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq); struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm); struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq); rctx->mode = SS_OP_DES | SS_ECB | SS_ENABLED | SS_ENCRYPTION | op->keymode; return sun4i_ss_cipher_poll(areq); } int sun4i_ss_ecb_des_decrypt(struct ablkcipher_request *areq) { struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq); struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm); struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq); rctx->mode = SS_OP_DES | SS_ECB | SS_ENABLED | SS_DECRYPTION | op->keymode; return sun4i_ss_cipher_poll(areq); } /* CBC 3DES */ int sun4i_ss_cbc_des3_encrypt(struct ablkcipher_request *areq) { struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq); struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm); struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq); rctx->mode = SS_OP_3DES | SS_CBC | SS_ENABLED | SS_ENCRYPTION | op->keymode; return sun4i_ss_cipher_poll(areq); } int sun4i_ss_cbc_des3_decrypt(struct ablkcipher_request *areq) { struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq); struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm); struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq); rctx->mode = SS_OP_3DES | SS_CBC | SS_ENABLED | SS_DECRYPTION | op->keymode; return sun4i_ss_cipher_poll(areq); } /* ECB 3DES */ int sun4i_ss_ecb_des3_encrypt(struct ablkcipher_request *areq) { struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq); struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm); struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq); rctx->mode = SS_OP_3DES | SS_ECB | SS_ENABLED | SS_ENCRYPTION | op->keymode; return sun4i_ss_cipher_poll(areq); } int sun4i_ss_ecb_des3_decrypt(struct ablkcipher_request *areq) { struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq); struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm); struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq); rctx->mode = SS_OP_3DES | SS_ECB | SS_ENABLED | SS_DECRYPTION | op->keymode; return sun4i_ss_cipher_poll(areq); } int sun4i_ss_cipher_init(struct crypto_tfm *tfm) { struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm); struct crypto_alg *alg = tfm->__crt_alg; struct sun4i_ss_alg_template *algt; memset(op, 0, sizeof(struct sun4i_tfm_ctx)); algt = container_of(alg, struct sun4i_ss_alg_template, alg.crypto); op->ss = algt->ss; tfm->crt_ablkcipher.reqsize = sizeof(struct sun4i_cipher_req_ctx); return 0; } /* check and set the AES key, prepare the mode to be used */ int sun4i_ss_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int keylen) { struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm); struct sun4i_ss_ctx *ss = op->ss; switch (keylen) { case 128 / 8: op->keymode = SS_AES_128BITS; break; case 192 / 8: op->keymode = SS_AES_192BITS; break; case 256 / 8: op->keymode = SS_AES_256BITS; break; default: dev_err(ss->dev, "ERROR: Invalid keylen %u\n", keylen); crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } op->keylen = keylen; memcpy(op->key, key, keylen); return 0; } /* check and set the DES key, prepare the mode to be used */ int sun4i_ss_des_setkey(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int keylen) { struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm); struct sun4i_ss_ctx *ss = op->ss; u32 flags; u32 tmp[DES_EXPKEY_WORDS]; int ret; if (unlikely(keylen != DES_KEY_SIZE)) { dev_err(ss->dev, "Invalid keylen %u\n", keylen); crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } flags = crypto_ablkcipher_get_flags(tfm); ret = des_ekey(tmp, key); if (unlikely(ret == 0) && (flags & CRYPTO_TFM_REQ_WEAK_KEY)) { crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_WEAK_KEY); dev_dbg(ss->dev, "Weak key %u\n", keylen); return -EINVAL; } op->keylen = keylen; memcpy(op->key, key, keylen); return 0; } /* check and set the 3DES key, prepare the mode to be used */ int sun4i_ss_des3_setkey(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int keylen) { struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm); struct sun4i_ss_ctx *ss = op->ss; if (unlikely(keylen != 3 * DES_KEY_SIZE)) { dev_err(ss->dev, "Invalid keylen %u\n", keylen); crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } op->keylen = keylen; memcpy(op->key, key, keylen); return 0; }