#include <linux/module.h> #include <linux/moduleparam.h> #include <linux/sched.h> #include <linux/fs.h> #include <linux/blkdev.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/blk-mq.h> #include <linux/hrtimer.h> #include <linux/lightnvm.h> struct nullb_cmd { struct list_head list; struct llist_node ll_list; struct call_single_data csd; struct request *rq; struct bio *bio; unsigned int tag; struct nullb_queue *nq; struct hrtimer timer; }; struct nullb_queue { unsigned long *tag_map; wait_queue_head_t wait; unsigned int queue_depth; struct nullb_cmd *cmds; }; struct nullb { struct list_head list; unsigned int index; struct request_queue *q; struct gendisk *disk; struct blk_mq_tag_set tag_set; struct hrtimer timer; unsigned int queue_depth; spinlock_t lock; struct nullb_queue *queues; unsigned int nr_queues; char disk_name[DISK_NAME_LEN]; }; static LIST_HEAD(nullb_list); static struct mutex lock; static int null_major; static int nullb_indexes; static struct kmem_cache *ppa_cache; enum { NULL_IRQ_NONE = 0, NULL_IRQ_SOFTIRQ = 1, NULL_IRQ_TIMER = 2, }; enum { NULL_Q_BIO = 0, NULL_Q_RQ = 1, NULL_Q_MQ = 2, }; static int submit_queues; module_param(submit_queues, int, S_IRUGO); MODULE_PARM_DESC(submit_queues, "Number of submission queues"); static int home_node = NUMA_NO_NODE; module_param(home_node, int, S_IRUGO); MODULE_PARM_DESC(home_node, "Home node for the device"); static int queue_mode = NULL_Q_MQ; static int null_param_store_val(const char *str, int *val, int min, int max) { int ret, new_val; ret = kstrtoint(str, 10, &new_val); if (ret) return -EINVAL; if (new_val < min || new_val > max) return -EINVAL; *val = new_val; return 0; } static int null_set_queue_mode(const char *str, const struct kernel_param *kp) { return null_param_store_val(str, &queue_mode, NULL_Q_BIO, NULL_Q_MQ); } static const struct kernel_param_ops null_queue_mode_param_ops = { .set = null_set_queue_mode, .get = param_get_int, }; device_param_cb(queue_mode, &null_queue_mode_param_ops, &queue_mode, S_IRUGO); MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)"); static int gb = 250; module_param(gb, int, S_IRUGO); MODULE_PARM_DESC(gb, "Size in GB"); static int bs = 512; module_param(bs, int, S_IRUGO); MODULE_PARM_DESC(bs, "Block size (in bytes)"); static int nr_devices = 2; module_param(nr_devices, int, S_IRUGO); MODULE_PARM_DESC(nr_devices, "Number of devices to register"); static bool use_lightnvm; module_param(use_lightnvm, bool, S_IRUGO); MODULE_PARM_DESC(use_lightnvm, "Register as a LightNVM device"); static int irqmode = NULL_IRQ_SOFTIRQ; static int null_set_irqmode(const char *str, const struct kernel_param *kp) { return null_param_store_val(str, &irqmode, NULL_IRQ_NONE, NULL_IRQ_TIMER); } static const struct kernel_param_ops null_irqmode_param_ops = { .set = null_set_irqmode, .get = param_get_int, }; device_param_cb(irqmode, &null_irqmode_param_ops, &irqmode, S_IRUGO); MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer"); static unsigned long completion_nsec = 10000; module_param(completion_nsec, ulong, S_IRUGO); MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns"); static int hw_queue_depth = 64; module_param(hw_queue_depth, int, S_IRUGO); MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64"); static bool use_per_node_hctx = false; module_param(use_per_node_hctx, bool, S_IRUGO); MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false"); static void put_tag(struct nullb_queue *nq, unsigned int tag) { clear_bit_unlock(tag, nq->tag_map); if (waitqueue_active(&nq->wait)) wake_up(&nq->wait); } static unsigned int get_tag(struct nullb_queue *nq) { unsigned int tag; do { tag = find_first_zero_bit(nq->tag_map, nq->queue_depth); if (tag >= nq->queue_depth) return -1U; } while (test_and_set_bit_lock(tag, nq->tag_map)); return tag; } static void free_cmd(struct nullb_cmd *cmd) { put_tag(cmd->nq, cmd->tag); } static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer); static struct nullb_cmd *__alloc_cmd(struct nullb_queue *nq) { struct nullb_cmd *cmd; unsigned int tag; tag = get_tag(nq); if (tag != -1U) { cmd = &nq->cmds[tag]; cmd->tag = tag; cmd->nq = nq; if (irqmode == NULL_IRQ_TIMER) { hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); cmd->timer.function = null_cmd_timer_expired; } return cmd; } return NULL; } static struct nullb_cmd *alloc_cmd(struct nullb_queue *nq, int can_wait) { struct nullb_cmd *cmd; DEFINE_WAIT(wait); cmd = __alloc_cmd(nq); if (cmd || !can_wait) return cmd; do { prepare_to_wait(&nq->wait, &wait, TASK_UNINTERRUPTIBLE); cmd = __alloc_cmd(nq); if (cmd) break; io_schedule(); } while (1); finish_wait(&nq->wait, &wait); return cmd; } static void end_cmd(struct nullb_cmd *cmd) { struct request_queue *q = NULL; if (cmd->rq) q = cmd->rq->q; switch (queue_mode) { case NULL_Q_MQ: blk_mq_end_request(cmd->rq, 0); return; case NULL_Q_RQ: INIT_LIST_HEAD(&cmd->rq->queuelist); blk_end_request_all(cmd->rq, 0); break; case NULL_Q_BIO: bio_endio(cmd->bio); break; } free_cmd(cmd); /* Restart queue if needed, as we are freeing a tag */ if (queue_mode == NULL_Q_RQ && blk_queue_stopped(q)) { unsigned long flags; spin_lock_irqsave(q->queue_lock, flags); blk_start_queue_async(q); spin_unlock_irqrestore(q->queue_lock, flags); } } static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer) { end_cmd(container_of(timer, struct nullb_cmd, timer)); return HRTIMER_NORESTART; } static void null_cmd_end_timer(struct nullb_cmd *cmd) { ktime_t kt = ktime_set(0, completion_nsec); hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL); } static void null_softirq_done_fn(struct request *rq) { if (queue_mode == NULL_Q_MQ) end_cmd(blk_mq_rq_to_pdu(rq)); else end_cmd(rq->special); } static inline void null_handle_cmd(struct nullb_cmd *cmd) { /* Complete IO by inline, softirq or timer */ switch (irqmode) { case NULL_IRQ_SOFTIRQ: switch (queue_mode) { case NULL_Q_MQ: blk_mq_complete_request(cmd->rq, cmd->rq->errors); break; case NULL_Q_RQ: blk_complete_request(cmd->rq); break; case NULL_Q_BIO: /* * XXX: no proper submitting cpu information available. */ end_cmd(cmd); break; } break; case NULL_IRQ_NONE: end_cmd(cmd); break; case NULL_IRQ_TIMER: null_cmd_end_timer(cmd); break; } } static struct nullb_queue *nullb_to_queue(struct nullb *nullb) { int index = 0; if (nullb->nr_queues != 1) index = raw_smp_processor_id() / ((nr_cpu_ids + nullb->nr_queues - 1) / nullb->nr_queues); return &nullb->queues[index]; } static blk_qc_t null_queue_bio(struct request_queue *q, struct bio *bio) { struct nullb *nullb = q->queuedata; struct nullb_queue *nq = nullb_to_queue(nullb); struct nullb_cmd *cmd; cmd = alloc_cmd(nq, 1); cmd->bio = bio; null_handle_cmd(cmd); return BLK_QC_T_NONE; } static int null_rq_prep_fn(struct request_queue *q, struct request *req) { struct nullb *nullb = q->queuedata; struct nullb_queue *nq = nullb_to_queue(nullb); struct nullb_cmd *cmd; cmd = alloc_cmd(nq, 0); if (cmd) { cmd->rq = req; req->special = cmd; return BLKPREP_OK; } blk_stop_queue(q); return BLKPREP_DEFER; } static void null_request_fn(struct request_queue *q) { struct request *rq; while ((rq = blk_fetch_request(q)) != NULL) { struct nullb_cmd *cmd = rq->special; spin_unlock_irq(q->queue_lock); null_handle_cmd(cmd); spin_lock_irq(q->queue_lock); } } static int null_queue_rq(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *bd) { struct nullb_cmd *cmd = blk_mq_rq_to_pdu(bd->rq); if (irqmode == NULL_IRQ_TIMER) { hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); cmd->timer.function = null_cmd_timer_expired; } cmd->rq = bd->rq; cmd->nq = hctx->driver_data; blk_mq_start_request(bd->rq); null_handle_cmd(cmd); return BLK_MQ_RQ_QUEUE_OK; } static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq) { BUG_ON(!nullb); BUG_ON(!nq); init_waitqueue_head(&nq->wait); nq->queue_depth = nullb->queue_depth; } static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int index) { struct nullb *nullb = data; struct nullb_queue *nq = &nullb->queues[index]; hctx->driver_data = nq; null_init_queue(nullb, nq); nullb->nr_queues++; return 0; } static struct blk_mq_ops null_mq_ops = { .queue_rq = null_queue_rq, .map_queue = blk_mq_map_queue, .init_hctx = null_init_hctx, .complete = null_softirq_done_fn, }; static void cleanup_queue(struct nullb_queue *nq) { kfree(nq->tag_map); kfree(nq->cmds); } static void cleanup_queues(struct nullb *nullb) { int i; for (i = 0; i < nullb->nr_queues; i++) cleanup_queue(&nullb->queues[i]); kfree(nullb->queues); } static void null_del_dev(struct nullb *nullb) { list_del_init(&nullb->list); if (use_lightnvm) nvm_unregister(nullb->disk_name); else del_gendisk(nullb->disk); blk_cleanup_queue(nullb->q); if (queue_mode == NULL_Q_MQ) blk_mq_free_tag_set(&nullb->tag_set); if (!use_lightnvm) put_disk(nullb->disk); cleanup_queues(nullb); kfree(nullb); } #ifdef CONFIG_NVM static void null_lnvm_end_io(struct request *rq, int error) { struct nvm_rq *rqd = rq->end_io_data; struct nvm_dev *dev = rqd->dev; dev->mt->end_io(rqd, error); blk_put_request(rq); } static int null_lnvm_submit_io(struct nvm_dev *dev, struct nvm_rq *rqd) { struct request_queue *q = dev->q; struct request *rq; struct bio *bio = rqd->bio; rq = blk_mq_alloc_request(q, bio_rw(bio), GFP_KERNEL, 0); if (IS_ERR(rq)) return -ENOMEM; rq->cmd_type = REQ_TYPE_DRV_PRIV; rq->__sector = bio->bi_iter.bi_sector; rq->ioprio = bio_prio(bio); if (bio_has_data(bio)) rq->nr_phys_segments = bio_phys_segments(q, bio); rq->__data_len = bio->bi_iter.bi_size; rq->bio = rq->biotail = bio; rq->end_io_data = rqd; blk_execute_rq_nowait(q, NULL, rq, 0, null_lnvm_end_io); return 0; } static int null_lnvm_id(struct nvm_dev *dev, struct nvm_id *id) { sector_t size = gb * 1024 * 1024 * 1024ULL; sector_t blksize; struct nvm_id_group *grp; id->ver_id = 0x1; id->vmnt = 0; id->cgrps = 1; id->cap = 0x3; id->dom = 0x1; id->ppaf.blk_offset = 0; id->ppaf.blk_len = 16; id->ppaf.pg_offset = 16; id->ppaf.pg_len = 16; id->ppaf.sect_offset = 32; id->ppaf.sect_len = 8; id->ppaf.pln_offset = 40; id->ppaf.pln_len = 8; id->ppaf.lun_offset = 48; id->ppaf.lun_len = 8; id->ppaf.ch_offset = 56; id->ppaf.ch_len = 8; do_div(size, bs); /* convert size to pages */ do_div(size, 256); /* concert size to pgs pr blk */ grp = &id->groups[0]; grp->mtype = 0; grp->fmtype = 0; grp->num_ch = 1; grp->num_pg = 256; blksize = size; do_div(size, (1 << 16)); grp->num_lun = size + 1; do_div(blksize, grp->num_lun); grp->num_blk = blksize; grp->num_pln = 1; grp->fpg_sz = bs; grp->csecs = bs; grp->trdt = 25000; grp->trdm = 25000; grp->tprt = 500000; grp->tprm = 500000; grp->tbet = 1500000; grp->tbem = 1500000; grp->mpos = 0x010101; /* single plane rwe */ grp->cpar = hw_queue_depth; return 0; } static void *null_lnvm_create_dma_pool(struct nvm_dev *dev, char *name) { mempool_t *virtmem_pool; virtmem_pool = mempool_create_slab_pool(64, ppa_cache); if (!virtmem_pool) { pr_err("null_blk: Unable to create virtual memory pool\n"); return NULL; } return virtmem_pool; } static void null_lnvm_destroy_dma_pool(void *pool) { mempool_destroy(pool); } static void *null_lnvm_dev_dma_alloc(struct nvm_dev *dev, void *pool, gfp_t mem_flags, dma_addr_t *dma_handler) { return mempool_alloc(pool, mem_flags); } static void null_lnvm_dev_dma_free(void *pool, void *entry, dma_addr_t dma_handler) { mempool_free(entry, pool); } static struct nvm_dev_ops null_lnvm_dev_ops = { .identity = null_lnvm_id, .submit_io = null_lnvm_submit_io, .create_dma_pool = null_lnvm_create_dma_pool, .destroy_dma_pool = null_lnvm_destroy_dma_pool, .dev_dma_alloc = null_lnvm_dev_dma_alloc, .dev_dma_free = null_lnvm_dev_dma_free, /* Simulate nvme protocol restriction */ .max_phys_sect = 64, }; #else static struct nvm_dev_ops null_lnvm_dev_ops; #endif /* CONFIG_NVM */ static int null_open(struct block_device *bdev, fmode_t mode) { return 0; } static void null_release(struct gendisk *disk, fmode_t mode) { } static const struct block_device_operations null_fops = { .owner = THIS_MODULE, .open = null_open, .release = null_release, }; static int setup_commands(struct nullb_queue *nq) { struct nullb_cmd *cmd; int i, tag_size; nq->cmds = kzalloc(nq->queue_depth * sizeof(*cmd), GFP_KERNEL); if (!nq->cmds) return -ENOMEM; tag_size = ALIGN(nq->queue_depth, BITS_PER_LONG) / BITS_PER_LONG; nq->tag_map = kzalloc(tag_size * sizeof(unsigned long), GFP_KERNEL); if (!nq->tag_map) { kfree(nq->cmds); return -ENOMEM; } for (i = 0; i < nq->queue_depth; i++) { cmd = &nq->cmds[i]; INIT_LIST_HEAD(&cmd->list); cmd->ll_list.next = NULL; cmd->tag = -1U; } return 0; } static int setup_queues(struct nullb *nullb) { nullb->queues = kzalloc(submit_queues * sizeof(struct nullb_queue), GFP_KERNEL); if (!nullb->queues) return -ENOMEM; nullb->nr_queues = 0; nullb->queue_depth = hw_queue_depth; return 0; } static int init_driver_queues(struct nullb *nullb) { struct nullb_queue *nq; int i, ret = 0; for (i = 0; i < submit_queues; i++) { nq = &nullb->queues[i]; null_init_queue(nullb, nq); ret = setup_commands(nq); if (ret) return ret; nullb->nr_queues++; } return 0; } static int null_add_dev(void) { struct gendisk *disk; struct nullb *nullb; sector_t size; int rv; nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, home_node); if (!nullb) { rv = -ENOMEM; goto out; } spin_lock_init(&nullb->lock); if (queue_mode == NULL_Q_MQ && use_per_node_hctx) submit_queues = nr_online_nodes; rv = setup_queues(nullb); if (rv) goto out_free_nullb; if (queue_mode == NULL_Q_MQ) { nullb->tag_set.ops = &null_mq_ops; nullb->tag_set.nr_hw_queues = submit_queues; nullb->tag_set.queue_depth = hw_queue_depth; nullb->tag_set.numa_node = home_node; nullb->tag_set.cmd_size = sizeof(struct nullb_cmd); nullb->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; nullb->tag_set.driver_data = nullb; rv = blk_mq_alloc_tag_set(&nullb->tag_set); if (rv) goto out_cleanup_queues; nullb->q = blk_mq_init_queue(&nullb->tag_set); if (IS_ERR(nullb->q)) { rv = -ENOMEM; goto out_cleanup_tags; } } else if (queue_mode == NULL_Q_BIO) { nullb->q = blk_alloc_queue_node(GFP_KERNEL, home_node); if (!nullb->q) { rv = -ENOMEM; goto out_cleanup_queues; } blk_queue_make_request(nullb->q, null_queue_bio); rv = init_driver_queues(nullb); if (rv) goto out_cleanup_blk_queue; } else { nullb->q = blk_init_queue_node(null_request_fn, &nullb->lock, home_node); if (!nullb->q) { rv = -ENOMEM; goto out_cleanup_queues; } blk_queue_prep_rq(nullb->q, null_rq_prep_fn); blk_queue_softirq_done(nullb->q, null_softirq_done_fn); rv = init_driver_queues(nullb); if (rv) goto out_cleanup_blk_queue; } nullb->q->queuedata = nullb; queue_flag_set_unlocked(QUEUE_FLAG_NONROT, nullb->q); queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, nullb->q); mutex_lock(&lock); list_add_tail(&nullb->list, &nullb_list); nullb->index = nullb_indexes++; mutex_unlock(&lock); blk_queue_logical_block_size(nullb->q, bs); blk_queue_physical_block_size(nullb->q, bs); sprintf(nullb->disk_name, "nullb%d", nullb->index); if (use_lightnvm) { rv = nvm_register(nullb->q, nullb->disk_name, &null_lnvm_dev_ops); if (rv) goto out_cleanup_blk_queue; goto done; } disk = nullb->disk = alloc_disk_node(1, home_node); if (!disk) { rv = -ENOMEM; goto out_cleanup_lightnvm; } size = gb * 1024 * 1024 * 1024ULL; set_capacity(disk, size >> 9); disk->flags |= GENHD_FL_EXT_DEVT | GENHD_FL_SUPPRESS_PARTITION_INFO; disk->major = null_major; disk->first_minor = nullb->index; disk->fops = &null_fops; disk->private_data = nullb; disk->queue = nullb->q; strncpy(disk->disk_name, nullb->disk_name, DISK_NAME_LEN); add_disk(disk); done: return 0; out_cleanup_lightnvm: if (use_lightnvm) nvm_unregister(nullb->disk_name); out_cleanup_blk_queue: blk_cleanup_queue(nullb->q); out_cleanup_tags: if (queue_mode == NULL_Q_MQ) blk_mq_free_tag_set(&nullb->tag_set); out_cleanup_queues: cleanup_queues(nullb); out_free_nullb: kfree(nullb); out: return rv; } static int __init null_init(void) { int ret = 0; unsigned int i; struct nullb *nullb; if (bs > PAGE_SIZE) { pr_warn("null_blk: invalid block size\n"); pr_warn("null_blk: defaults block size to %lu\n", PAGE_SIZE); bs = PAGE_SIZE; } if (use_lightnvm && bs != 4096) { pr_warn("null_blk: LightNVM only supports 4k block size\n"); pr_warn("null_blk: defaults block size to 4k\n"); bs = 4096; } if (use_lightnvm && queue_mode != NULL_Q_MQ) { pr_warn("null_blk: LightNVM only supported for blk-mq\n"); pr_warn("null_blk: defaults queue mode to blk-mq\n"); queue_mode = NULL_Q_MQ; } if (queue_mode == NULL_Q_MQ && use_per_node_hctx) { if (submit_queues < nr_online_nodes) { pr_warn("null_blk: submit_queues param is set to %u.", nr_online_nodes); submit_queues = nr_online_nodes; } } else if (submit_queues > nr_cpu_ids) submit_queues = nr_cpu_ids; else if (!submit_queues) submit_queues = 1; mutex_init(&lock); null_major = register_blkdev(0, "nullb"); if (null_major < 0) return null_major; if (use_lightnvm) { ppa_cache = kmem_cache_create("ppa_cache", 64 * sizeof(u64), 0, 0, NULL); if (!ppa_cache) { pr_err("null_blk: unable to create ppa cache\n"); ret = -ENOMEM; goto err_ppa; } } for (i = 0; i < nr_devices; i++) { ret = null_add_dev(); if (ret) goto err_dev; } pr_info("null: module loaded\n"); return 0; err_dev: while (!list_empty(&nullb_list)) { nullb = list_entry(nullb_list.next, struct nullb, list); null_del_dev(nullb); } kmem_cache_destroy(ppa_cache); err_ppa: unregister_blkdev(null_major, "nullb"); return ret; } static void __exit null_exit(void) { struct nullb *nullb; unregister_blkdev(null_major, "nullb"); mutex_lock(&lock); while (!list_empty(&nullb_list)) { nullb = list_entry(nullb_list.next, struct nullb, list); null_del_dev(nullb); } mutex_unlock(&lock); kmem_cache_destroy(ppa_cache); } module_init(null_init); module_exit(null_exit); MODULE_AUTHOR("Jens Axboe <jaxboe@fusionio.com>"); MODULE_LICENSE("GPL");